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Abstract—There is no widely-accepted lexicon or standard
set of rules for auditing static analysis alerts in the software
engineering community. Auditing rules and a lexicon should guide
different auditors to make the same determination for an alert.
Standard terms and processes are necessary so that initial de-
terminations are correctly interpreted, which helps organizations
reduce code flaws. They are also needed to improve the quality of
audit data to benefit research on alert prioritization. This paper
provides a suggested set of auditing rules and a lexicon, detailing
rationales based on modern software engineering practices for
each rule and each lexicon term. Some code examples are
provided with the auditing rules. The authors’ hope is that this
suggested framework will motivate community discussion leading
to agreed-upon standards.

I. INTRODUCTION

In the software engineering community, there is no widely-
accepted lexicon or standard set of rules for auditing static
analysis (SA) tool alerts. This is in spite of static analysis
being an integral part of the software development lifecycle
[1] [2]. A standard auditing rule set and lexicon should guide
different auditors to reach the same determination for an
alert, achieving consistent results by reducing ambiguity. Well-
defined auditing terms and processes would help organizations
to reduce flaws during code repair, code development, and
future audits. A standard lexicon and rules would also improve
audit data quality, benefitting research on alert prioritization
and classification (detailed in Section II). This paper starts with
a general description of modern alert auditing and associated
issues that shape a lexicon and auditing rules, noting related
work (research as well as practice) on lexicons and auditing
rules. Section II provides a suggested lexicon with a rationale
for each term. Section III lists suggested auditing rules with a
rationale for each rule. Section IV discusses a small test case.
Section V summarizes conclusions and future work plans.

A. Static analysis

SA tools attempt to automatically identify defects in soft-
ware products. At a high level, these tools define a set of
conditions describing a well-behaved program (e.g., a null
pointer shall not be dereferenced). SA tools then analyze a
program to find violations of those conditions. The analysis
may inspect the source code of the program, or some other
representation thereof, such as the compiled binary.

However, SA tools often wrongly accuse programs of vi-
olating a condition. That is, static analysis is prone to false
positives. Formally determining statically whether a program

violates arbitrary conditions is undecidable. Hence, tools apply
heuristics to find potential bugs, and these heuristics tend to
over-approximate the occurrence of violations. False positives
may also result from bugs in the tool.

Consequently, SA reports must be validated. This task often
falls to human auditors.

B. State of the art: auditing

Auditors examine tool alerts and determine whether the
program violates the condition identified therein. This deter-
mination may be a simple True or False (the code violates the
condition, or it does not), though other labels are possible.

An audit determination alone does not indicate whether the
offending code should be modified; such decisions are driven
by organizational priorities. For example, an alert may be False
but the related code still warrants fixing, e.g., if the code
construct is difficult to maintain. Conversely, an alert may be
True but not warrant fixing, e.g., because the code is dead or a
fix elsewhere mitigates the problem. An organization may let
management determine alert prioritization, or may set policies
for that. For example, a zero-new-defect policy would mandate
that new true alerts be fixed before new code is written.

Organizations can vary widely in their auditing sophistica-
tion. At one end, each developer performs their own SA, audits
the results, and fixes bugs on an individual basis. At the other
end, dedicated auditors do nothing but diagnose alerts without
any alert prioritization. These auditors may be oblivious to
audit resolution issues, and need only conduct audits based
on the code. While audit resolution is an interesting problem,
this paper ignores that problem and instead focuses on the
auditors’ problem of audit determinations.

For most large codebases, there are too many alerts for a
team to economically address them all. Auditors may therefore
triage alerts, preferring alerts in a certain category or with
a certain (e.g., tool-reported) priority [3]. Some tools allow
auditors to specify which alerts were not audited and why.

Software grows and evolves as bugs are fixed and features
added. Some changes introduce new bugs. Consequently SA
tools must be periodically re-run on the codebase. Some SA
tools track a codebase’s audit history, remembering previous
verdicts. This is helpful if a True alert remains unfixed, e.g.,
if the fix is postponed. It is most helpful with false positives.
Without this tracking ability, an auditor would have to mark
the same alerts as false many times during development.



Automatic alert classification is an active area of research.
Classification models have achieved high prediction accuracy
in some studies [4].

C. Related research & existing SA tool functionality

Previous research publications use varied lexicons for static
analysis determinations. True and False determinations (or
synonyms) are used by all the research, and are often the only
determinations mentioned (e.g., in Livshits’ work on finding
security vulnerabilities in Java applications [5]). Delaitre’s
rating system evolved multiple times during a research project
using test suites to analyze static analysis tool efficacy, and
the lexicon for alert determinations ended up being “security-
related”, “quality-related”, “insignificant”, and “false” [6].
Ciriello’s analysis simply uses “C++ Test Problem” and
“False Positive” determinations [7]. Baca’s work on improving
software security using static analysis in an industry setting
uses three auditing determinations: “False positive”, “True
positive” for correctly identified faults that do not affect
specified parameters with respect to security, and “Security”
for a correct warning that could propagate into a user-induced
system failure [1]. Carlsson’s research with SA tools used
four audit determinations: “false positive”, “possible security
improvement”, “security risk with consequences”, and “false
negative” (the latter was possible because he used multiple SA
tools) [8]. Cifuentes describes Oracle’s internal deployment of
the Parfait static analysis tool, where their server keeps track of
historical audit data per codebase including nightly run results,
overall report status, and audit determinations using a lexicon
of “true”, “false positive”, and “won’t fix” [9].

Much static analysis research disregards utility of historical
determinations on alerts, for instance, if the focus is on utility
of a particular new analysis technique to find a flaw. Johnson’s
research on why software developers don’t use SA tools to
find bugs discovered barriers including difficulty integrating
SA tools into their development environment and development
workflow [10]. An auditing determination lexicon with terms
like “Dangerous construct”, “Dead”, “Complex”, and “Current
environment not applicable” (see Section II) could address
those issues and be helpful in a development environment
and workflow where previously dead code can be used, too-
complex alerts can be avoided if work effort isn’t available,
and platform environments can change. Likewise, Chess’
“Secure Programming with Static Analysis” book says that
SA tool output needs to integrate easily with the development
environment, with historical results being stored for future
code reviews [11].

Most SA tools natively provide various alert determinations
(differing per tool), and some provide an annotation capability.

Related work providing a set of documented auditing rules
could not be found. General guidelines are provided in Chess’
book, which recommends considering mitigation factors that
could prevent the code from being vulnerable despite the SA
tool’s alert, and also recommends that the user pay attention
to other problems they find inspecting the code even if there
are no alerts for them (related to our rule 8).

D. Related practices by project collaborators and students

Our three DoD collaborator organizations had varied meth-
ods for auditing and for making audit determinations. None
previously had a documented standard for rules or lexicons.
One large organization used notably different auditing deter-
minations in its different groups. For example, in one group
“True” simply meant validation of the indicated error, but in
others “True” was used to indicate code which should be
fixed (e.g., the alert was false, but the code had a difficult-
to-maintain construct). Most used the determination options
provided by the SA tools they used. One auditor mentioned
that code lines with associated historical “do not fix” determi-
nations sometimes currently needed fixes, so more information
should be noted (e.g., free form notes and/or a determination
“not a problem in current environment”). Another auditor
said his perception is that “we are more concerned with
finding problems in our code than in minimizing variance
between reviewers.” Those goals are related since declaring
“no problem with this code” could result in a missed defect.

Prior to this project, CERT also lacked documented auditing
rules and a lexicon. In the past year, we have trained 3 classes
of software engineers (2 were DoD organizations, and 1 was
a class at Carnegie Mellon University – a total of 37 students)
on these auditing rules and the lexicon, inviting feedback
each time. None of the students reported having used an
auditing lexicon or rules before, and their suggestions were
incorporated into the lexicon and rules.

[12], [3], [13], [14], and [4] aim to determine if
alerts are true, using automated and accurate methods, and
require a large amount of high-quality archived audit data.
That archived data is statistically analyzed to develop clas-
sifiers. High-quality audit determinations mean that different
auditors should come to the same determination for the same
SA alert. Aggregation of such audit archives would become
possible and useful. Improving the auditing, code maintenance,
and cross-program development within an organization and
developing accurate classifiers and alert prioritization schemes
in general will require consistent auditing methods and a
standard lexicon.

II. AUDITING LEXICON

The lack of a standard auditing lexicon (see Section I-D)
can cause problems in code maintenance and cross-program
development. For instance, a manual audit determination of
“True” for one alert should mean the same thing to different
organizations. However, for some organizations it is used even
in situations where the alert is false, to signify “must fix”
(e.g., if the code construct related to the alert is dangerous).
Similarly, organizations deal with alerts related to dead code
using determinations in overlapping and different ways.

In this section, we present a lexicon that we believe is
necessary for common audit determinations. The lexicon is
based on a survey of previous literature, our research with
audit archives, our work analyzing corner cases for audit rules
in Section III, our experience auditing 16 million LOC, and



consultation with three (anonymous) collaborating DoD orga-
nizations that together audit over 200 million LOC annually.

Manual audit determinations vary if the same process is not
used. In developing our set of auditing rules, we found corner
cases that we believe auditing systems should explicitly dictate
how the auditor should handle those cases. For example, if an
alert about one flaw depends on a second code flaw (e.g., one
that could cause indeterminate behavior) to be True, should the
first alert be marked True? Ideally, different auditors should
reach the same determination for the same alert. Unfortunately,
without more expressive determinations, different auditors can
mark such cases differently. Some organizations mark as True
any alert that warrants fixing, even if it is incorrect, while
others mark such alerts as False.

Our audit determinations lexicon consists of labels we
believe every auditing framework should provide, based on
our expertise, related research review, review of modern tools,
and consultation with professional code auditors including our
project collaborators.

Our goal in developing the lexicon is to provide audit
determination labels that will help efficiently direct work on
the codebase, according to an organization’s priorities and
workers’ varying time availability. “Workers” here means
auditors and developers who repair the code after an audit.
Those developers use the audit determinations to look for
particular types of code flaws that their organization prioritizes
fixing. We aimed to include all the labels (and combinations
of labels) that the developers might want to target or filter out.
Auditors may make initial determinations, and then later (only
if time allows) complete work on alerts that previous auditors
hadn’t been able to resolve as True or False. Furthermore,
archived audit determinations for previous versions of the
codebase might be carried over by an auditing tool, to help
guide auditors’ work. Our lexicon is meant to be useful for
auditing tools with historical audit information, as well as to
allow auditors to sharpen their initial audit determinations.

A. Lexicon for basic audit determinations

For a given alert, exactly one of the following basic deter-
minations (in bold below) must be selected:

• Complex: The alert is too difficult to judge in a reason-
able amount of time and effort. Each organization should
document what is a reasonable amount of time and effort.
Preferably, an approximate time spent auditing would be
documented with each Complex alert. See Audit Rule 2
for more information.

• Dependent: The alert indicates a code flaw which could
only be true if a different coding flaw that is marked
True or “Dangerous construct” occurs earlier in the code
execution. See Audit Rule 3 for more information. This
determination should include a reference to the related
alert, via the alert’s unique identifier.

• False: The code in question does not violate the condition
indicated by the alert.

• True: The code in question violates the condition indi-
cated by the alert.

• Unknown: (default value before auditing) None of the
above.

B. Lexicon for supplemental audit determinations

For a given alert, any of the following labels (in bold below)
may be added, as appropriate. They may be applied to the alert
in addition to its basic determination.

• Dangerous construct: This label is accompanied with a
risk level (High, Medium, or Low). The precise notion
of risk is left up to the organization. One example use is
that alerts marked “False” may be marked “Dangerous” to
indicate the code requires attention despite not violating
the indicated condition. See Audit Rule 10 for more
information.

• Dead: The code in question is unused and is not ex-
portable. See Audit Rule 4 for more information.

• Ignore: The code in question does not require mitigation.
There are many reasons an organization may want to
ignore an alert. For example, an organization may decide
to ignore all alerts in a module that they intend to replace.

• Inapplicable environment: The alert is not True in the
current environment (operating system platform, hard-
ware, CPU), but in a more suitable environment the alert
could be True. SA tools occasionally give alerts that
are not applicable to a particular platform because some
developers want to maximize their code portability. See
Audit Rule 7 for more information.

An auditing system should allow an auditor to create a free-
form note about each alert which provides information for the
developers, future auditors of the same section of code, and
developers. Passing information using notes (e.g., details about
non-obvious code flaws) saves other workers time when they
deal with this section of code.

An organization may choose to add their own supplemental
labels (although the basic labels should not be modified). This
would be useful for handling alerts that receive treatment that
is specific to an organization.

For example, it has been reported that one useful label
would be “Misconfigured”. This label would apply to an alert
that was produced by an analysis tool that was misconfigured
or improperly run. An organization might choose to identify
such alerts in an initial pass before proceeding with the main
audit. Such an organization could add “Misconfigured” as a
supplemental label, and they would be responsible for dictating
how and when to apply it. Alternatively, the organization could
mark such alerts as “Ignore” and add a note explaining why.
The note might include the term “Misconfigured”, which could
be automatically queried to produce all such alerts if desired.

C. Lexicon for additional auditing terms

More terms for the auditing lexicon are listed below, in bold.

• Alert: A warning, typically from an SA tool, which
indicates a violation of a well-defined condition. Many
SA tools’ alerts directly map the code flaw to a coding



taxonomy. Alerts are assumed to possess a unique iden-
tifier, for the purpose of reference. Auditors can create
alerts manually when expedient.

• Message: Text associated with an alert that describes it.
Alerts may have multiple messages.

• Audit Determination: Decision made by human reviewer
about the validity of an SA tool’s alert. This may be made
with respect to only a message from the SA tool itself,
or with respect to a coding taxonomy that the alert is
mapped to. The audit record should maintain information
about which coding taxonomy conditions (or direct SA
tool alert) that the determination was based on.

• Exportable Code: Code that is made available to external
applications, e.g., part of a public API, shared library, or
public class.

• Condition: A constraint or property of validity with
which code should comply. SA tools try to detect if code
violates conditions.

• Coding Taxonomy: A named set of coding rules, weak-
nesses, standards, or guidelines. See Section III for
example taxonomies. Each rule or weakness is consid-
ered a single condition. An SA tool’s alert may in-
clude a mapping to conditions in one or more coding
taxonomies (e.g., MITRE’s “CWE-Compatible Products
and Services” [15] lists many static analysis tools that
provide CWE output). Frameworks for handling alerts
may separately provide mappings between alerts and
coding taxonomies (e.g., SCALe [16], ThreadFix [3], and
CodeDX [17]).

D. Basic and supplemental determinations

An alert has exactly one basic determination, and any
number of applicable supplemental determinations. We catego-
rized determinations as basic or supplemental by considering
all possible pairs. Mutually exclusive determinations were
categorized as basic, the remainder as supplemental. Based
on these determinations, an organization can make informed
allocation of resources (e.g., auditor time and developer time).
An auditor might stop auditing an alert after making any
determination (basic or supplemental).

The Unknown determination allows organizations to esti-
mate the remaining amount of work for an audit, e.g., by
counting the number of Unknown alerts.

True and False help an organization focus on actual code
flaws. For example, developer time may only be allocated
for True alerts. “Complex” allows identification of expensive
(with respect to auditor time) alerts. Analysis of Complex
alerts can be put on hold until resources are available. The
“Dangerous Construct” severity can be used to prioritize flaws
to be repaired first. An organization might decide to mark
certain alerts or code constructs as “Dangerous Construct”,
without investing the effort to make other determinations.
For high-severity Dangerous alerts, an organization might
choose to do code repairs without finding if a true code flaw
exists. “Inapplicable environment” indicates alerts that do not
impact the software given its current set of target platforms.

Organizations may choose to ignore such alerts, or to address
them if targets change. Also, this marking could help an
organization to estimate the cost of supporting an additional
platform.

An auditor may already know some code is unreachable, and
alerts in that code can be marked as “Dead”. To save auditor
time, some organizations choose not to further analyze alerts
after they are marked Dead. Other times, determination that
code is dead may require whole-program analysis. Often an
auditor can mark code as one of [True, False, or Dependent],
before sufficient analysis exists to mark it Dead. An organi-
zation may decide not to use further auditor time on the alert
to decide if code is Dead.

Code that is Dependent usually does not require further
attention, because dependent code is usually fixed as the
code it depends on is also fixed. However, an auditor may
indicate that Dependent code still requires individual attention
by marking it Dangerous. Marking an alert “Ignore” indicates
that it mandates no further attention. This is most useful
when paired with alerts whose basic determination indicates
otherwise (e.g., True or Dependent). An organization might
also apply Ignore to False or other alerts, especially if they
use an automated tool to mark alerts with other characteristics
(e.g., such as being in an obsolete module).

Figure 1 shows transitions between basic determinations that
could be made for a single alert as an auditor studies the
code and her understanding improves, assuming she makes no
auditing errors and the code does not change. From any state,
an alert may move to any state to the right (from Unknown
to True, for example), but may not move to the left (e.g.,
from False to Complex). An alert that transitioned from False
to Complex would indicate either a code change or that an
auditor made an error in marking it False.

III. AUDITING RULES

Auditing rules were chosen with the goal of clarifying
ambiguous auditing scenarios, to make audit determinations
consistent. These rules are intended to apply to auditing
by all organizations. For example, setting a zero-new-defect
policy would not be affordable for some organizations. As
a standard universal auditing rule, that type of auditing rule
would not suffice. However, an organization could support
such a policy with their auditors and their developers who
do code repair, by using our suggested lexicon (and possibly
adding a supplemental determination of “New Alert” that an
analysis tool could easily automatically mark).

The following auditing rules are designed to be independent
of programming language, platform, and coding taxonomy.
Examples of taxonomies that can be used with the auditing
rules include MITRE’s Common Weakness Enumeration [18],
the SEI CERT Coding Standards for C [19] or Java [20], and
MISRA rules [21]. Alternatively, these auditing rules can be
used with no taxonomy at all, in which case each SA tool is
expected to endow its alerts with sufficient documentation of
the conditions it warns about.
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Fig. 1. Basic determination changes are transitive, if correct and no code changes

static int jas_icccurv_input(jas_iccattrval_t *

attrval, jas_stream_t *in, int cnt)

{

jas_icccurv_t *curv = &attrval->data.curv;

// ...

if (JAS_CAST(int, 4 + 2 * curv->numents) != cnt

)

goto error;

}

Fig. 2. Example for Rule 1 from JasPer (jas_icc.c)

To illustrate auditing rule use, we provide code examples
in the C language. Most of the code examples accompanying
these rules come from the open-source JasPer Project [22].

1) Assume external inputs to the program are malicious.
In applying this rule, also assume external inputs to arguments
of exportable functions are malicious.

Example: The code in Fig. 2 produces the following alert
for the highlighted section: Rule INT31-C (Ensure that integer
conversions do not result in lost or misinterpreted data). The
code reads an unsigned 32-bit integer which comes from the
attrval function parameter. The goal of this software is to
parse an image file for various purposes. The input comes
from an external file, which we assume can be designed
by a malicious attacker. Therefore we must assume that the
integer along with the remainder of the input is untrusted. The
function then performs some arithmetic on the integer and
casts it to an int. This definitely has the potential for misinter-
preted values. This can cause 4 + 2 * curv->numents to be
greater than INT_MAX. The casting in the JAS_CAST() macro
changes signedness. Therefore, this alert should be marked as
True.

2) Some alerts are too difficult to judge; they should be
marked Complex.
Theoretically, an auditor can mark every alert as True or

False if they have complete access to the source code and
sufficient time to fully understand how the code works. Un-
fortunately, auditors have limited time and understanding, and
are occasionally unable to make a thorough investigation in a
reasonable period of time. In such a case, the auditor should
mark the alert Complex. The auditor is free to reexamine the
alert later and mark it True or False if they can make a sound
judgment. They may also refer the alert to an auditing expert,
who may be able to render a judgment. An auditor could finish
a large audit quickly by marking every alert Complex, but then

jas_image_t *jas_image_copy(jas_image_t *image)

{

jas_image_t *newimage;

int cmptno;

newimage = jas_image_create0();

if (jas_image_growcmpts(newimage, image->

numcmpts_)) {

goto error;

}

for (cmptno = 0; cmptno < image->numcmpts_; ++

cmptno) {

if (!(newimage->cmpts_[cmptno] =

jas_image_cmpt_copy(image->cmpts_[cmptno]))) {

goto error;

}

++newimage->numcmpts_;

}

}

Fig. 3. Example for Rule 3 from JasPer (jas_image.c)

the audit would be useless. Therefore, auditors should spend a
reasonable amount of time analyzing each alert, and only mark
it Complex if a determination cannot be made in that time.
Each organization is responsible for deciding what constitutes
a “reasonable amount of time”. A suggested initial value is 5
minutes per alert [23].

3) If an alert is true only when a previous alert is true, mark
it Dependent.
Causal relationships may exist between alerts. Unless these

relationships are explicitly identified by the tool, they may be
difficult to determine during the audit process, especially if
the alerts are far apart in the source code. In the absence of
prior knowledge about alert relationships, an auditor should
proceed as if alerts are causally unrelated.

However, if an auditor is able to deduce a causal relation-
ship between alerts during their audit, they should note this
relationship. In particular, if an auditor is convinced that an
alert (alert A) can only be true if a different true alert (alert
B) occurs on all control flow paths leading to alert A, then
alert A should be marked as Dependent. See Rule 3 for how
to handle the earlier violation (alert B). Ideally, only the root
cause of a set of alerts should be marked True, and other alerts
in the set should be marked Dependent. This helps to target
code repair work more precisely.

Each Dependent marking should include a reference to the
related alert, using its unique identifier.

Example: Code in Fig. 3 generates three alerts, one for



each highlighted section; each claims that the code violates
Rule EXP34-C (Do not dereference null pointers). We know
that the jas_image_create0() call before the first alert can
return null or a non-null value (a return value from malloc()).
We also know that the jas_image_growcmpts() call in the
first alert dereferences newimage. It is also clear that a single
fix can eliminate all three EXP34-C alerts. Adding a null check
for newimage after jas_image_create0() returns would
guarantee that newimage is not null for the rest of the function.
The first alert is indisputably True, since a null dereference is
possible in the callee. It can be argued that the subsequent
alerts should be False, because if newimage is null, the
program crashes due to the initial null dereference. It can also
be argued that the subsequent alerts should be True, because
they make the same mistake of dereferencing newimage.
Without formal auditing rules, auditors can make inconsistent
judgements for these alerts. Using this rule, auditors should
mark these two subsequent alerts as Dependent.

4) Handle an alert in unreachable code depending on
whether it is exportable.

Unreachable code, also called dead code, is code that is
never invoked. In a single program, dead code is a liability,
as it might still be invoked by an attacker if they obtain
code execution privileges, even in some restricted context,
such as in a Java security sandbox. Dead code may also be
indicative of a more serious, underlying issue, such as a logic
error in the program (e.g., a tautological predicate). Return-
oriented programming is one exploitation technique that can
take advantage of dead code [24]. Many organizations wish
to identify dead code and either remove it or fix the logic
errors that result in the code being dead. Therefore this unique
audit marking allows one to readily identify dead code. For
example, CERT provides recommendation MSC12-C (Detect
and remove code that has no effect or is never executed). Such
code is considered non-exportable dead code. An alert in non-
exportable dead code should be marked as Dead.

Many libraries will provide a public API of functions,
and programs using these libraries need not invoke every
function. Such a function, while it may be considered dead
code within a program, may be invoked by a separate program.
Such exportable code is to be handled differently than non-
exportable dead code. An alert in exportable dead code should
be audited by assuming untrusted inputs to the function, as
discussed in Auditing Rule 1.

Example: In Fig. 4, the variable always_zero is initialized
to the value of 0, and it is not set to any other value in
this function. Therefore, the comparison of this variable to
1 is always False, so the highlighted line has an alert in
unreachable non-exportable code. Thus, this alert should be
marked as Dead.

5) An alert might indicate a true violation of the condition it
is mapped to, even if the alert’s message is useless or incorrect.
While an alert message can be informative, it should not solely
determine whether the alert is true or false. The message may

int func()

{

int sometimes_zero = 1;

int always_zero = 0;

int returnValue = 55;

sometimes_zero = returnAnInt();

if (always_zero == 1) {

returnValue = performIfOne();

} else {

returnValue = performIfNotOne();

}

return(returnValue);

}

Fig. 4. Example for Rule 4

be correct, yet the alert may be False. Conversely, the message
may be incorrect, yet the alert may be True. The alert message
should be taken as a hint, but the auditor may ignore the
message when considering an alert. This is especially useful
if the auditor can rely on a coding taxonomy.

6) Mark an alert True even if code maintainers will protest.
There can be tension between code maintainers who wish to
avoid superfluous changes and code auditors who desire code
security. Often, maintainers will understand the code more
thoroughly than auditors, and they may have the final say on
whether code is modified due to an auditor’s recommendations.
Auditors should mark true alerts as True, even if maintainers
may protest the determination.

For example, suppose that C code accesses memory 0
(e.g., dereferences null) because it runs only on a platform
that allows this. The auditor should still report a potential
null pointer dereference, to make the organization aware of
the issue (e.g., the organization might choose to resolve the
problem by documenting platform requirements).

This rule permits auditors to ignore how the organization
handles an alert’s determinations and to focus solely on the
correctness of the code.

7) Unless instructed otherwise, assume code must be
portable.

Sometimes an auditor must audit a code base without
knowledge of the target architecture. When auditing alerts
from this code base, it is reasonable to err on the side of
portability. If a diagnosed segment of code malfunctions on
certain platforms, and in doing so violates a condition, this is
suitable justification for marking the alert True.

For alerts for any codebase, the auditor might answer one of
two questions: 1. Is this code secure for one particular platform
(e.g., 32-bit x86)?; or 2. Is this code secure for all platforms
(e.g., strictly conformant to the ISO C standard)?

Which question to answer often depends on the codebase,
but it applies to all alerts within that codebase. If an auditor
is not given this information, the auditor should assume that
the codebase is intended to be portable; that is, it should run
on any platform that supports the programming language.



8) When auditing an alert, if a second true violation is
discovered, its alert should be marked True.
Auditors often discover defects in the code that are distinct

from a particular alert they are examining. For example, the
line of code in question may violate a condition not indicated
by the alert. Or the defect might involve a different line of
code entirely.

Some auditors may restrict the set of conditions they are
auditing against. This is useful for auditors in training, or in
scanning code they have not audited before. If the condition
violated by any defect is not one of the conditions the auditor
has been instructed to focus on, the auditor is instructed to
ignore the defect. Otherwise, the auditor should, in addition
to the current alert, produce an alert associated with the defect
and mark it True.

The auditor may search to see if any tool already reported an
alert associated with the defect in question, and if a suitable
alert is found, it should be marked True. If no tool reports
a suitable alert, the auditor should manually create an alert
describing the defect.

Discovery of a distinct defect while auditing an alert does
not warrant automatically marking the original alert as True,
even if the distinct defect involves the same line of code. Each
distinct defect merits an independent alert. If alerts are mapped
to a coding taxonomy, the new alerts should likewise also be
mapped to the same taxonomy.

9) Auditors must understand the language and the current
alert’s condition.
A poor understanding of the programming language will
render many edge cases inscrutable, and many alert audits
depend on these edge cases. To correctly evaluate an alert, an
auditor must be familiar with its associated condition.

If no taxonomy is being used, the condition is implied by the
tool’s alert itself. The auditor must understand their analysis
tool, and correct configuration and runtime options of the static
analysis tool can greatly affect results. If the condition is in a
taxonomy, a deep understanding of the alert and SA tool can
be replaced by an understanding of the taxonomy condition.

We recommend that new auditors focus on one condition
(e.g., null pointer dereferences) and audit many alerts just for
that one condition, before attempting a second condition. They
should then do the same for subsequent conditions they need to
audit, to best learn each condition. Access to the authoritative
standard for the programming language also helps.

10) Do not arbitrarily extend the scope of a condition.
When auditing an alert, determine only if the precise condition
is violated. If code is judged insecure but not in violation of the
condition in question, it may violate a different condition being
audited for. Even if it does not violate any conditions in the
coding taxonomy, the code may still warrant attention. Rather
than marking such an alert True, an auditor could mark it
Dangerous (see “Dangerous construct” in Section III lexicon),
along with a note explaining the issue.

Example: The code in Fig. 5 produces the following

static jpc_enc_tcmpt_t *tcmpt_create(

jpc_enc_tcmpt_t *tcmpt, jpc_enc_cp_t *cp,

jas_image_t *image, jpc_enc_tile_t *tile)

{

// ...

memset(tcmpt->stepsizes, 0, sizeof(tcmpt->

numstepsizes * sizeof(uint_fast16_t)));

// ...

}

Fig. 5. Example for Rule 10 from JasPer (jpc_enc.c)

int jas_tvparser_next(jas_tvparser_t *tvp)

{

char *p;

char *tag;

char *val;

/* Skip any leading whitespace. */

p = tvp->pos;

/* Is a value field not present? */

if (*p != ’=’) {

if (*p != ’\0’ && !isspace(*p)) {

return -1;

}

Fig. 6. Example for Rule 11 from JasPer (jas_tvp.c)

alert for the highlighted section: Rule MEM35-C (Allocate
sufficient memory for an object). This code will behave
unexpectedly, because it performs a multiplication in a sizeof
expression, which will discard its product. This violates CERT
rule ARR38-C (Guarantee that library functions do not form
invalid pointers); see Rule 8 for how to handle the ARR38-C
issue. However, this is not a violation of MEM35-C, which
deals strictly with memory allocation, and no memory is
allocated in this code. Therefore, the auditor should mark this
alert as False, despite the code’s other problems.

11) Code that behaves as expected might still violate a
condition.
Do not assume code is secure simply because it seems to

work. Vulnerabilities get discovered in production code.
Example: The code in Fig. 6 produces the following alert:

Line 165, Rule STR34-C (Cast characters to unsigned char
before converting to larger integer sizes). This rule dictates
that plain character pointers should be cast to unsigned char
before being passed to isspace(). This code may work
properly on an x86 platform, but would have unexpected
behavior on a platform where plain chars are implemented
as unsigned ints (they are signed ints on x86). This
example also supports Rule 7, which dictates that the auditor
must assume code is portable, unless instructed otherwise. If
the auditor has been instructed to assume this code only runs
on x86, then they would mark this False. Otherwise, they
should mark this alert True.

12) Multiple messages help in understanding an alert.



Many SA tools produce multiple messages for a single over-
arching alert. The tool might provide a trace through a function
that illustrates why some code may be in error. It is worthwhile
to trace through multiple messages to understand the tool’s
rationale. Similarly, multiple SA tools may report violation of
the same condition on the same line of the same file, as may
be seen in multi-tool frameworks (SCALe [16], CodeDX [17],
Threadfix [3]). Messages can vary between tools, and viewing
all the messages may be helpful in auditing these alerts.

IV. SMALL TEST CASE

Two of the three collaborating organizations on this project
used the auditing rules for auditing alerts from their own
codebases. Using the auditing rules, one of the collaborators
audited 93 alerts for 8 CERT C-language coding rules, and
the other collaborator audited 195 alerts for 15 CERT Java-
language coding rules. Rule 8 was developed to clarify how
an alert determination should be handled, due to an issue
discovered during an audit by a collaborator. The full auditing
lexicon was not used, but it was developed partially as a result
of discussions with the collaborators.

V. CONCLUSIONS & FUTURE WORK

The software engineering community needs a widely-
accepted standard lexicon and set of rules for auditing static
analysis alerts. This would guide different auditors to make
the same determination for an alert. This paper provides a
suggested lexicon and auditing rules, detailing rationales based
on modern software engineering practices for each term in the
lexicon and for each rule. In future work, we plan to gather
more extensive feedback on the lexicon and rules via surveys,
focus groups, and communication with subject matter experts,
to improve the lexicon and rules. We will also implement an
auditing system with all the audit determinations described in
the lexicon, and work with collaborators to extensively test
utility of the rules and lexicon on real-world code.
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