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ABSTRACT 
Acquirers, system builders, and other stakeholders of big data 
systems need to define requirements, develop and evaluate 
solutions, and integrate systems together. A reference architecture 
enables these software engineering activities by standardizing 
nomenclature, defining key solution elements and their 
relationships, collecting relevant solution patterns, and classifying 
existing technologies. Within the national security domain, 
existing reference architectures for big data systems have not been 
useful because they are too general or are not vendor-neutral. We 
present a reference architecture for big data systems that is 
focused on addressing typical national defence requirements and 
that is vendor-neutral, and we demonstrate how to use this 
reference architecture to define solutions in one mission area. 

CCS Concepts 
• Information systems~Data analytics • Information 
systems~Online analytical processing • Information 
systems~Information retrieval • Information systems~Data 
management systems • Information systems~Spatial-temporal 
systems • Software and its engineering~Software 
infrastructure • Software and its engineering~Distributed 
systems organizing principles 
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1. INTRODUCTION 
The national security application domain includes software 
systems used by government organisations such as police at the 
local, state, and federal level; military; and intelligence. Big data 
systems are pervasive in this domain, with applications ranging 
from: 

• Predictive maintenance of aircraft, ships, and vehicles, 
combining measured data collected on the platform with 
meteorological data, equipment supplier data, and other 
sources to optimise maintenance schedules (e.g., [1]). 

• Geospatial analytics that identify movement and changes of 

features on the ground, to support tactical, operational and 
strategic intelligence analysis and planning. 

• Network graph analysis to help police identify associates and 
organisational affiliations. 

Stakeholders who specify, evaluate, and acquire these big data 
systems often lack software engineering technical expertise in this 
emerging and dynamic technology space [2]. While these 
stakeholders may have competence in other types of software 
systems, the principles and practices for big data systems are 
different, and general software knowledge may not be sufficient to 
ensure success [3]. 

A reference architecture (RA) serves as a mechanism to represent 
and transfer software engineering knowledge that bridges from the 
problem domain to a family of solutions. A RA defines domain 
concepts and relevant qualities, decomposes the solution and 
creates a lexicon to enable efficient communication, and provides 
guidance and principles for system stakeholders [4]. 

There are a number of published RAs for big data systems. 
However, these were not useful for our clients in the national 
security domain, because they were too general (e.g., [5], [6], or 
[7]) or because the solutions were specific to a particular vendor’s 
technology (e.g., [8]). We discuss these in more detail in the 
Related Work section below.  

The contribution of this paper is a big data RA for applications in 
the national security domain, which includes: 

• Motivating use cases; 
• Architecture decomposition based on grouping of related 

concerns into architectural modules; 
• Mapping of current technologies onto the concerns; 
• Demonstration of how to use the RA to create big data 

system architectures. 

Each of these topics is discussed in a subsequent section of the 
paper. 

2. RELATED WORK 
RAs are a powerful software engineering knowledge transition 
tool, capturing both domain and solution knowledge for a 
portfolio of related systems [9]. In their survey of the state of the 
practice, Cloutier, et al. note that RAs facilitate multi-site, multi-
organisation, and multi-vendor systems, which are all primary 
considerations in our application domain. 

There are a number of existing big data RAs. The US National 
Institute of Standards and Technology (NIST) shepherded a 
community of researchers and practitioners to create a 7-volume 
Big Data Interoperability Framework, which includes a Reference 
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Architecture volume [10]. The NIST framework reflects the 
contributions of more than 35 authors, and included public review 
and comments, producing an architecture that is broad in coverage 
and applicability, but uneven in depth and detail. The RA 
presented below bears some superficial similarities to the NIST 
framework, but is distinguished by several key differences: 

• While both architectures are decomposed into elements with 
similar names, the decomposition rationale and principles are 
never articulated in the NIST architecture and so an architect 
cannot easily allocate functions and qualities to elements of 
that architecture. Our architecture is organised using explicit 
principles, discussed below, allowing architects to easily 
allocate new functions and qualities. 

• Our RA draws a clear system boundary, with data producers 
and consumers outside of the scope of the system. The NIST 
architecture includes data producers and consumers inside 
the RA, which leaves the scope effectively unbounded. 

• The NIST RA is domain-agnostic. As such, it does not 
satisfy the first key principle of that Cloutier, et al. identify 
for a reference, architecture, namely that of elaborating 
mission, vision, and strategy [9]. The NIST RA represents a 
“Meta RA”, which must be further refined for an application 
domain. Our RA could be viewed as one such refinement. 

The strengths of the NIST RA include strict vendor neutrality, a 
stand-alone volume providing clear definitions of big data 
terminology, and a comprehensive inventory of use cases across 
many domains (although the relationship of the RA to those use 
cases is not part of the baseline release). 

Technology vendors such as IBM [6], Oracle [7], and Microsoft 
[8] have produced big data RAs. Like the NIST RA, these RAs 
are not domain-specific, and while there are some domain-specific 
refinements presented, none of those refinements reflects the 
national security application domain.  

By structuring the problem and solution domains, RAs 
complement other architecture knowledge sharing approaches. 
For example, knowledge bases can provide more detailed 
guidance for architects in specific areas of a RA, such as 
QuABaseBD that focuses on the Storage module concerns and 
technologies in this RA [9]. 

3. DOMAIN REQUIREMENTS AND USE 
CASES 
The domain-specific requirements for this RA were discovered by 
analysing use cases in four mission capability areas. The mission 
capability areas were selected to cover a broad set of functions, 
deployment topologies, and data processing capabilities. 

The mission segments and uses cases analysed were: 

1. Strategic Geospatial Analysis and Visualisation – here we 
assessed map production from satellite imagery, which 
includes displaying the image with overlays showing known 
features, such as roads and buildings, and identifying and 
annotating new and changed features (i.e. adding metadata). 
This mission segment also included a use case that searched 
map data/metadata and rendered the results. 

2. Full-motion video analysis – this capability is used in 
missions ranging from search-and-rescue to surveillance 
from fixed or mobile cameras. The use cases here were to 
acquire, render, and store a digital video stream, and to detect 
and track objects of interest. 

3. Open Source Intelligence – This mission capability is used 
for decision support. Use cases include collecting and storing 
open source data, such as web sites, social media (including 
text, audio, and video), identifying entities (people, 
organisations) and relationships to populate a knowledge 
graph, querying the knowledge graph, and using the 
knowledge graph to summarise information about entities. 

4. Signals Intelligence Analysis – use cases in this mission area 
were to capture and store electronic transmissions, and to 
execute analytics to match new captures to archived 
transmissions. 

These use cases were analysed to identify requirements categories 
and general requirements relevant to big data, in areas such as 
data types (e.g., unstructured text, geospatial, audio), data 
transformations (e.g., clustering, correlation), queries (e.g., graph 
traversal, geospatial), visualisations (e.g., image and overlay, 
network), and deployment topologies (e.g., sensor-local 
processing, private cloud, and mobile clients).  

4. REFERENCE ARCHITECTURE 
4.1 Organisation of the Reference 
Architecture 
The RA metamodel is shown in Figure 1. The architecture is a 
collection of modules, which decompose the solution into 
elements that realise functions or capabilities, and that address a 
cohesive set of concerns. Concerns are addressed by solution 
patterns, or by strategies, which are design approaches that are 
less prescriptive than solution patterns. Together, modules and 
concerns define a solution domain lexicon, and the discussion of 
each concern relates problem space terminology (origin of the 
concern) to the solution terminology (patterns and strategies). 

  
Figure 1 – Reference Architecture Concepts 

The concerns are multi-faceted. Some concerns capture external 
constraints on the system (e.g., type of workload), design 
decisions (e.g., optimisations), or system quality attributes (e.g., 
latency and ease of programming). This type of concern has a 
significant impact on the design, analysis, or evaluation of a 
module. 

A second type of concern was related to reuse or sharing of 
modules. These concerns included differences in execution 
triggers/rates (e.g., driven by input data streams, user requests, or 
fixed period) and whether the functions or capabilities provided 
by a module were typically shared within or external to the big 
data system. 

Other concerns align with stakeholder communities of interest or 
stakeholders roles, such as processing algorithms or system 
management. This type of concern helps stakeholders orient their 
perspective on the RA by identifying the modules each 
stakeholder needs to focus on. 
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The last type of concern represents de facto partitioning of the 
commercial and open source packages and frameworks used to 
realise big data solutions. Reflecting this partitioning in the 
module decomposition simplifies the mapping between off-the-
shelf technology and the RA and helps stakeholders position 
vendors and products within the RA.  

This RA is intended to supplement other sources of general 
architecture knowledge: The scope of the concerns identified in 
the RA was limited to issues that arise from the volume, variety, 
and velocity of data in big data systems, and the solution patterns 
and strategies are focused on addressing these concerns in the big 
data context of high scale and heterogeneity. For example, 
usability is obviously a concern in any human-computer interface, 
and so this was not specifically identified as a concern in the RA. 
However, in a big data system, providing an indication of data 
confidence (e.g., from a statistical estimate, provenance metadata, 
or heuristics) in the user interface impacts usability, and this was 
identified as a concern for the Visualisation module. The concern-
driven decomposition discussed below reflects this scoping. 

4.2 Module Decomposition 
Figure 2 shows the system boundary and module decomposition 
of the RA. The RA assumes a system of systems context [10], 
where Data Providers and Data Consumers are external systems 
that are not under the same design or operational authority as the 
big data system. These systems may be instances of big data 
systems developed using this RA (or another architecture). 

The 13 modules are grouped into three categories: The Big Data 
Application Provider includes application-level business logic, 
data transformations and analysis, and functionality to be 
executed by the system. The Big Data Framework Provider 
includes the software middleware, storage, and computing 
platforms and networks used by the Big Data Application 
Provider. As shown in the figure, the system may include multiple 
instances of the Big Data Application Provider, all sharing the 
same instance of the Big Data Framework Provider. 

The third module category is Cross-Cutting Modules. Each of the 
three Cross-Cutting modules addresses a set of concerns that 
impact nearly every module in the other two categories. 

The following subsections discuss the modules in each of the 
three categories. 

4.2.1 Big Data Application Provider Modules 

4.2.1.1 Application Orchestration Module 
Application Orchestration configures and combines other modules 
of the big data Application Provider, integrating activities into a 
cohesive application. An application is the end-to-end data 
processing through the system to satisfy one or more use cases.  

Orchestration may be performed by humans, software, or some 
combination of the two, and may be fixed at system design time 
or configurable via a Graphical User Interface (GUI) or Domain 
Specific Language (DSL). 

4.2.1.2 Collection Module 
The Collection module is primarily concerned with the interface 
to external Data Providers. The Collection module is concerned 
with matching the characteristics and constraints of the providers 
and avoiding data loss. 

4.2.1.3 Preparation Module 
The main concern of the Preparation module is transforming data 
to make it useful for the other downstream modules, in particular 
Analytics. Preparation performs the transformation portion of the 
traditional Extract, Transform Load (ETL) cycle, including tasks 
such as: 

• Data validation (e.g. checksum validation); 
• Cleansing (e.g. removing or correcting bad records); 
• Optimisation (e.g. de-duplication); 
• Schema transformation and standardization; 
• Indexing to support fast lookup. 

The Preparation module may perform basic enrichment, which 
adds information from other sources to a data record. The 
enrichment process begins in Preparation and continues in 
Analytics. The enrichment preformed in Preparation is usually 
very simple processing, such as creating record counts for 
particular types or categories, or performing a lookup to add 
location name based on latitude and longitude values. Later, the 
Analytics module may perform more sophisticated enrichment, 
for example, using a recommendation engine to create new 
associations to other records. 

4.2.1.4 Analytics Module 
The Analytics module is concerned with efficiently extracting 
knowledge from the data, typically often working with multiple 
data sets with different data characteristics. Analytics can 
contribute further to the transform stage of the ETL cycle by 
performing more advanced transformations and enrichments to 
support knowledge extraction. 

4.2.1.5 Visualisation Module 
The Visualisation module is concerned with presenting processed 
data and the outputs of analytics to a human Data Consumer, in a 
format that communicates meaning and knowledge. It provides a 
"human interface" to the big data. Data Consumers are external to 
the big data system.  

Some visualisation techniques may involve producing a static 
document, cached for later access (e.g. a text report or graphic), 
however other techniques often include on-demand generation of 
an interactive interface (e.g. navigating and filtering search 
results, or traversing a social graph). Display of data confidence 
and/or data provenance information is common for machine-
generated data, and the interactive visualisations may include the 
ability to create, confirm, or correct (i.e. update) data. 

4.2.1.6 Access Module 
The Access module is concerned with the interactions with 
external actors, such as the Data Consumer, or with human users, 
via Visualisation. Unlike Visualisation, which addresses "human 
interfaces", the Access module is concerned with "machine 
interfaces" (e.g. APIs or web services). The Access module is the 
intermediary between the external world and the big data system 
to enforce security or provide load balancing capability. 

Similar to the Collection module, the primary concern of the 
Access module is matching the characteristics of the external 
systems. The format and style of the interfaces to systems will 
vary, and data may be pulled or pushed by the Access module. 
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4.2.2 Big Data Framework Provider Modules  

4.2.2.1 Processing Module 
The Processing module is concerned with efficient, scalable, and 
reliable execution of analytics. It provides the necessary 
infrastructure to support execution distributed across 10s to 1000s 
of nodes, defining how the computation and processing is 
performed. 

A common solution pattern to achieve scalability and efficiency is 
to distribute the processing logic and execute it locally on the 
same nodes where data is stored, transferring only the results of 
processing over the network. The large number of processing 
nodes and the long execution duration of some analytic processes 
lead to concerns about process or node failure during execution. 
Another critical concern of the Processing module is the ability to 
recover and not lose data in the event of a process or node failure 
within the framework. 

4.2.2.2 Messaging Module 
The Messaging module is concerned with reliable queuing, 
transmission, and delivery of data and control functions between 
components. While messaging is common in traditional IT 
systems, its use in big data systems creates additional challenges. 

Big data solutions are often comprised of many different products 
and frameworks, making integration a primary concern. The 
Messaging module must support a variety of clients, programming 
languages, and enterprise integration patterns. 

The volume and throughput of messages in big data solutions is a 
particular concern, and can necessitate distributed messaging 
frameworks. Volume also leads to concerns if durability (i.e. 
permanently storing all transferred messages) is needed. 

4.2.2.3 Data Storage Module 
The primary concerns of the Data Storage module are providing 
reliable and efficient access to the persistent data. This includes 
the logical data organisation, data distribution and access 
methods, and data discovery (using e.g. metadata services, 
registries and indexes).  

The data organisation and access methods are concerned with the 
data storage format (e.g. flat files, relational data, 
structured/unstructured data) and the type of access required by 
the big data Application Provider (e.g. file-type API, SQL, graph 
query). It is common for the Data Storage module to provide more 
than one representation of a single data record (a type of de-
normalisation) to support efficient analytic execution for different 
use cases. 

When data is distributed across a cluster, the Data Storage module 
will be concerned with the availability and consistency of the 
data, and the tolerance of partitions (network or node faults) 
within the cluster. 

4.2.2.4 Infrastructure Module 
The Infrastructure module provides the infrastructure resources 
necessary to host and execute the activities of the other BDRA 
modules. This includes: 

• Networking: resources that transfer data from one 
infrastructure framework component to another; 

• Computing: physical processors and memory that execute 
software; 

• Storage: resources which provide persistence of the data; 
• Environmental: physical resources (e.g. power, cooling) that 

must be accounted for when establishing an instance of a big 
data system. 

 
Figure 2 – Module Decomposition of the Reference Architecture 
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Infrastructure and data centre design are concerns when 
architecting a big data solution, and can be an important factor in 
achieving desired performance. Big data infrastructure needs to be 
scalable, reliable and support target workloads. 

4.2.3 Cross-Cutting Modules 

4.2.3.1 Security Module 
Security concerns affect all modules of the RA. The Security 
module is concerned with controlling access to data and 
applications, including enforcement of access rules and restricting 
access based on classification or need-to-know. 

Security is also concerned with intrusion detection and 
prevention. Big data systems can include introspective analytics 
that look at internal data and access patterns to perform intrusion 
detection. 

Big data can present an attractive target to attackers, and in 
general, security and privacy have not been primary concerns in 
the development of many big data technologies (e.g., see the 
security survey in http://www.quabase.sei.cmu.edu). Consistent 
application of controls requires a holistic approach to security and 
privacy as data traverses multiple components of the architecture. 

4.2.3.2 Management Module 
Concerns for the cross-cutting Management module are grouped 
into two broad categories: 

• System Management, including activities such as monitoring, 
configuration, provisioning and control of infrastructure and 
applications; 

• Data Management, involving activities surrounding the data 
lifecycle of collection, preparation, analytics, visualisation 
and access. 

4.2.3.3 Federation Module 
The Federation module is concerned with interoperation between 
federated instances of the RA. These concerns are similar to 
typical system of systems (SoS) federation concerns [10], 
however existing SoS federation strategies may not support the 
scale of big data systems. 

4.2.3.4 Common Concerns 
This “module” collects a set of concerns that did not map cleanly 
into any of the other modules, and which are not related to each 
other in any meaningful way, but should be considered in the 
architecture of a big data system. These other concerns are: 

• Scalability - the ability to increase or decrease the processing 
and storage provided, in response to changes in demand. In a 
perfectly scalable system, the cost of the provided resources 
is linearly related to the demand (usually up to some resource 
limit). In systems that are less scalable, the cost of the 
provided resources increases faster than the demand, or the 
resource limit may be unacceptably low.  In big data systems, 
scalability is often dynamic or “elastic”, and the architecture 
enables the system to adjust at runtime to changes in 
workload. Scalability needs to be considered at all layers of a 
big data architecture, from the data centre infrastructure 
through to the application layer. 

• Availability - the ability for a system to remain operational 
during fault conditions such as network outages or hardware 
failures. Similar to scalability, a holistic approach needs to be 
take to designing for availability, as a single component can 

prevent a system from providing the required level of 
availability. 

• Data organisation is a common concern, particularly for high 
data volume use cases, as the way that data is stored can 
significantly impact performance downstream in the 
processing pipeline. Data organisation design decisions can't 
be deferred, but must be made early, so that each stage in the 
processing pipeline stores data so the next stage can access it 
efficiently. 

• Technology stack decisions, both hardware and software, are 
driven by several interwoven considerations. In addition to  
features, concerns include standardization within the system, 
maturity, ease of operation, vendor support, cost, and staff 
skills. 

• Accreditation, which is a domain-specific concern and 
involves assessing the cybersecurity qualities of the system. 
Software accreditation can be challenging for big data 
solutions due to the prevalence of open source products in 
solution architectures. 

5. MAPPING CURRENT TECHNOLOGY 
Big data system architectures and implementations rely on 
composition of existing open source and commercial software 
technologies [3]. In the national security application domain, in 
particular, acquirers evaluating and analysing proposed solutions 
need an understanding of which off-the-shelf technologies are 
appropriate (or not appropriate) to satisfy a function or quality 
within the RA. Furthermore, most users of this RA already have 
big data systems within their enterprise, and a technology 
mapping provides an easy first step to view those systems through 
the RA lens. 

To satisfy these stakeholder needs, our RA provides a mapping of 
commercial and open source products to modules. This is a simple 
tabular mapping, where rows are products and columns are 
modules in the RA. An “x” at an intersection indicates that the 
particular product is an appropriate technology to use in the 
module. Products were identified based on stakeholder’s current 
big data systems, and from proposals for new systems. There were 
35 products mapped to Big Data Application Provider modules, 
and 64 products mapped to Big Data Framework Provider 
modules. 

This mapping is maintained in a separate volume of the RA, as it 
is the most dynamic content, and is the least normative and 
prescriptive content.  

6. USING THE RA TO DEFINE SYSTEM 
ARCHITECTURES 
Our RA concludes with a volume that contains tutorial 
information showing stakeholders how to use the architecture to 
create concrete solution designs, including examples of 
identifying relevant concerns, making design decisions, and 
selecting appropriate strategies and design patterns. 

Although the RA modules are presented “input to output” and 
“top to bottom”, as described above in Section 4, the tutorial 
recommends that stakeholders consider the modules in a different 
order at design time, which reflects a user-centric requirements 
perspective and also reflects the main design decision 
dependencies among the modules. The recommended design time 
order is shown in Figure 3. The recommended design process 
produces an initial system architecture, which would typically be 
refined as the system is prototyped and developed. 
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1. Visualisation - What information do the users need? 
2. Collection – What are the data sources and how to collect the data? 
3. Analytics - What information needs extracting from the data? 
4. Preparation - What transformations are needed prior to the analytics? 
5. Data Storage - How will the data be stored to support analytics, 

visualisations and access? 
6. Processing - How will analytics execute? 
7. Application Orchestration - Does the processing pipeline need 

orchestration? 
8. Access - What API access is required? How will the data be retrieved? 
9. Messaging - Is supporting messaging infrastructure required? 
10. Management - How will the application and infrastructure be managed? 
11. Security - What security controls are required? 
12. Federation - Does the solution need to operate within a federation? 
13. Infrastructure - What infrastructure is needed? 

Figure 3 – Design time ordering of RA modules 
The rest of this section describes how the RA is used to design a 
simple open-source intelligence (OSINT) system, that takes data 
from Twitter feeds (Tweets) and detects events (e.g., protests, 
riots, etc.), and then correlates detected events with data from 
news media websites. This description is highly abbreviated, 
touching on some of the important module refinements and 
skipping over many of the less interesting concerns. 

We begin with Visualisation concerns, and decide that the primary 
visualisation will display detected events on a map display, and 
allow filtering to a specified time range. This need for geospatial 
display and processing leads to an initial architecture iteration 
shown in Figure 4. 

 
Figure 4 - OSINT Architecture – Step 1 

Next, we consider the Collection concerns. The Twitter data and 
web page data is semi-structured, and consists of text and images. 
Based on the Twitter API limits, and a need to retain 3 years of 
live data, we decide that HBase is a good candidate for storing 
collected data. The result of these decisions is the second step of 
the architecture, shown in Figure 5. 

 
Figure 5 - OSINT Architecture – Step 2 

We next consider Analytics concerns. The approach to detecting 
events from Twitter feeds is to detect anomalies in vocabulary 
(new words, phrases, tags, etc.), cluster those anomalies, and 
finally categorise the target events and discard non-interesting 
events (such as related to a major weather event or celebrity 

appearance). This machine learning-based pipeline is instantiated 
as Step 3 of the architecture, shown in Figure 6. 

 
Figure 6 - OSINT Architecture – Twitter Event Detection 

Concerns related to Preparation are primarily data cleansing and 
normalisation, e.g., Tweet geo-tags are converted to Region IDs, 
emoticons are converted to text, and duplicate news pages will be 
removed. Tweets will be processed through a stream pipeline, and 
new pages through a batch pipeline. 

We next turn to Data Storage concerns. The primary Tweet access 
by analytics is by region ID and time range, so we decide to shard 
by region ID. We see that we can simplify some of the analytic 
processing and training by denormalising our data, creating an 
hourly summary for each region that includes counts of Tweets, 
unique users, new users, flags for the intervals that contain 
anomalies, and labelling data for training the anomaly detector. 
Similar reasoning is applied to define the storage structures for the 
news page data. 

Processing concerns depend on the Analytics to be performed. In 
this case, we choose Hadoop for batch processing, and Spark 
Streaming for stream processing for both Preparation and 
Analytics. 

Our Application Orchestration identifies continuously, hourly, 
daily, monthly, as shown in Figure 7. We decide to use Apache 
Oozie as the workflow manager, because it fits well with the 
processing ecosystem that we have chosen earlier. 

Access concerns show that a thin browser client is appropriate to 
overlay events onto maps. A separate map server and event server 
are instantiated, with the event server hiding the complexity of the 
SQL queries to the PostGIS database. 

Management concerns included logging, metrics collection, and 
health monitoring. Also, a data backup and retention strategy was 
chosen, and a system provisioning framework was chosen. These 
are shown in Figure 8. 
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Figure 7 - OSINT Architecture - Workflows 

 
Figure 8 - OSINT Architecture - Management 

Infrastructure concerns led to a combination of scale-up and scale-
out approaches. A significant concern was that the volume of the 
data sets drives cost to the point where we must share a single 
deployed system between the test and production teams. This is 
accomplished using a multi-tenant strategy, with separate logical 
namespaces on the Hadoop cluster and separate tables in the 
PostGIS database server. 

7. CONCLUSIONS AND FUTURE WORK 
We have described a reference architecture for big data systems in 
the national security application domain, including the principles 
used to organise the architecture decomposition. This RA serves 
as a knowledge capture and transfer mechanism, containing both 
domain knowledge (such as use cases) and solution knowledge 
(such as mapping to concrete technologies). We have also shown 
how the RA can be used to define architectures for big data 
systems in our domain. 

Future work includes: 

• Using the module decomposition in the RA to make 
decisions on where to standardize interfaces and 
implementations within a particular enterprise; 

• Creating new narrow and deep knowledge bases, similar to 
QuABaseBD (www.quabase.sei.cmu.edu) for other modules 
within the RA; 

• Evaluating the utility of the RA to define software product 
lines for sub-domains within the scope of the RA; 

• Creating instantiations of the RA for specific use cases 
within the intelligence domain. 
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