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ABSTRACT 
NoSQL databases create tight coupling between data model, 
deployment topology, and application architecture, and so this 
technology selection must be one of the earliest architecture 
decisions. The NoSQL technology landscape is large and evolving 
rapidly, so architects need efficient and trusted design assistance 
to explore the solution space. Our solution was to create a 
queryable knowledge base, populated with curated information, 
which is rendered dynamically as content grows and changes. We 
built the knowledge base using Semantic MediaWiki, 
implementing a novel knowledge model that enables reasoning 
from quality attributes to architecture patterns and tactics to 
features implemented in specific NoSQL products. We also 
provide tabular and graphical visualizations to support both 
systematic and ad hoc exploration. Our contributions to the field 
of architecture design assistants are the knowledge model, its 
implementation in a semantic platform, and the resulting 
populated knowledge base for big data system architects. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques –  
computer-aided software engineering. D.2.2 [Software 
Engineering]: Software Architectures – domain-specific 
architectures, patterns. 

General Terms 
Design. 

Keywords 
Design assistant; knowledge base; quality attribute; pattern, 
architecture tactic; NoSQL; feature model 

1. INTRODUCTION 
Software architects frequently must choose specific commercial 
off-the-shelf (COTS) products to realize particular elements in the 
architecture. Best practices are to design an architecture that is 
technology neutral, and defer the product selection decision until 
late in the design process [1][2]. Architects designing big data 
systems often use NoSQL databases, which deliver high 
performance, elastic storage capacity, and availability by 
replicating and partitioning data sets across a cluster of servers. 
Each NoSQL product implements a different data model and 
query language, as well as specific tactics to achieve distributed 
data consistency and availability.  

The data, consistency and distribution models imposed by the 
selected database have a pervasive impact on the design of the 
associated applications, and so this technology selection decision 
must be made early and it becomes difficult and expensive to 
change [3]. Other COTS product selections can also become 
“architectural decisions”, e.g., operating system or middleware. 
However, as a still-maturing technology, the NoSQL solution 
space is large and dynamic1, with new products constantly 
emerging and existing products releasing several versions per year 
with ever evolving feature sets. 

As we discovered in performing a NoSQL product evaluation for 
a customer [4], navigating this solution space can be a hard 
problem for architects. The predominant information sources are 
product vendors and experience reports published informally on 
the Internet. In both cases, the quality is highly variable and 
difficult to assess. Architects, thinking in terms of system level 
quality attributes, encounter product descriptions framed terms of 
their features, and the relationship between particular product 
features and system-level quality attributes is often not clear.  

Architecture design assistants, such as ArchE [5], support 
reasoning from quality attributes to patterns, but do not directly 
support reasoning all the way through to COTS selection. Other 
assistants, such as AREL, capture design rationale for reuse [6]. 
Both types of assistants take a broad, general approach to 
architecture decisions. At the other extreme, curated COTS 
comparisons consolidate product feature lists but do not relate 
features to qualities or provide insight into tradeoffs, and are not 
easily queried or filtered [7][8].  

Our solution, called QuABaseBD (Quality At Scale Knowledge 
Base for Big Data, pronounced k-base-bee-dee) provides decision 
support to architects, in the narrow but important domain of 
NoSQL product selection. QuABaseBD supports reasoning from 
general quality attributes, expressed as scenarios, to architecture 
approaches and tactics, to features implemented by concrete 
NoSQL products that realize those tactics.  QuABaseBD is an 
interactive assistant, and does not provide automated suggestions 
or automated decisions. 

The main contributions of this work, discussed in the following 
sections of this paper, are: 

 A generalizable architecture knowledge model, instantiated for 
the domain of NoSQL distributed databases; 

 A feature model for NoSQL technology, which aligns with the 
instantiated knowledge model; 

 An implementation of the knowledge base on the Semantic 
MediaWiki platform, using forms to add knowledge that 
conforms to the models, query-driven templates dynamically 

                                                                 
1 See, for example, 

http://blogs.the451group.com/information_management/2014/0
3/18/updated-data-platforms-landscape-map-february-2014/ 
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render content as the knowledge base grows, and hyperlinked 
text, tables, and graphics for presentation and navigation. 

2. QUABASEBD KNOWLEDGE MODEL 
The QuABaseBD semantic knowledge model, show in Figure 1, 
is divided into two main sections. The first of the sections, shown 
in the left half of the figure, represents general software 
architecture design concerns related to quality attributes, quality 
attribute scenarios, and architecture tactics. The second section of 
the knowledge model represents the features of a particular COTS 
product, shown on the right half of the figure. The purpose of this 
section is to systematically decompose product features using a 
normalized taxonomy.  

The novelty of this model is the linkage between the two sections 
through the relationship of an instance of a tactic to the instances 
of the features of a particular database that implement that tactic, 
enabling reasoning from general architecture principles to 
concrete COTS implementations. 

 

Figure 1. Extract from QuABaseBD Knowledge Model  

The left-hand section of the QuABaseBD model is similar to other 
general architecture knowledge models, such as presented by 
Babar [9]. 

While the structure of this section of the knowledge model is very 
general, in QuABaseBD it is populated only the concepts and 
properties needed to reason about the domain of big data systems 
design and database technology selection. The purposes of this 
section of the model are to support the definition of architecturally 
significant requirements, to identify the quality attribute tradeoffs 
that are inherent in distributed data-intensive systems, and to 
identify relevant tactics to achieve particular architecture 
requirements.  

As such, QuABaseBD is only concerned with the quality 
attributes of Availability, Consistency, Performance, Scalability, 
and Security.  Each Quality Attribute2 is characterized by a 
General Scenario. The general scenario includes only those 
stimuli, responses, and response measures that are relevant in big 
data systems, in contrast to the abstract general scenarios 
                                                                 
2 In this section of the paper, terms in italics refer to concepts in 

the model shown in Figure 1. 

presented by Bass and colleagues [10]. An example of the 
QuABaseBD General Scenario for Scalability is shown in Table 
1. 

Table 1. QuABaseBD General Scenario for Scalability 

Stimulus: 

Increase in load (demand) on a system resource such as 
processing (OR) 

I/O (OR) 

storage. 

Environment: 
Increase in load is transient (OR) 

Increase in load is permanent 

Response: System provides new resources to satisfy the load 

Response 
Measure: 

Ratio of increase in cost to provide new resources to 
value of increased load 

Time to provide additional resources when load 
increases 

 

A general scenario is a prototype that generates many Quality 
Attribute Scenarios, each of which combines a stimulus and 
response in the context of a big data system. A Quality Attribute 
Scenario covers a specific situation, and so we can identify the 
Tactics that can be employed to achieve the desired the scenario 
response. Table 2 shows a quality attribute scenario derived from 
the Scalability General Scenario. Note that the stimulus, response, 
and response measure specialize the general scenario shown 
above. 

Table 2. Scalability Scenario 

Scale to handle increased read or write request load 

Quality 
Attribute: 

Scalability 

Stimulus: 
An increase in read requests is experienced by the 
system for a finite period of time (e.g typically 
minutes to days) 

Environment: The system has been operating in production. 

Response: 
Additional nodes can be added to the cluster and 
the data set can be repartitioned to use the new 
resources. 

Response 
Measure: 

Downtime during repartitioning, Amount of 
manual intervention needed. 

Tactics: 

Automatically maintain cluster membership list 
(gossip), Shard data set across multiple servers 
(Consistent Hashing), Shard data set across 
multiple servers (Range-based), Load balance 
across replicas (one data center), Load balance 
across replicas (multiple data centers) 

AntiTactics: None 

 

Tactics represent tradeoffs – each promotes at least one quality 
attribute, and may inhibit other quality attributes. Although not 
represented in Figure 1, the knowledge model also includes “anti-
tactics”, representing design approaches that prevent the desired 
response from being achieved. In Figure 2, we show a screenshot 
from QuABaseBD for the Consistent Hashing tactic, referenced in 
the Scalability Scenario. The tactic definition includes a 
description that outlines the approach, followed by a table that 
summarizes the tradeoffs inherent in applying the tactic along 
with references to related tactics.  

Tactics also represent specific design decisions that can be 
realized by a Product implementation, so we can say that a 
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database supports a tactic. At the bottom of the screenshot in 
Figure 2, we see links to the specific NoSQL products that support 
the Consistent Hashing tactic.  

 

Figure 2. Screenshot of Tactic Page in QuABaseBD 

3. NOSQL FEATURE MODEL 
The product feature model in QuABaseBD addresses two related 
concerns: 

 It provides the structure and normalized vocabulary (i.e. a 
taxonomy) to allow product comparisons, and 

 It identifies product features that realize the architecture tactics 
defined in the QuABaseBD Knowledge Model. 

The NoSQL feature model was initially based on our work 
evaluating NoSQL databases [4], and evolved as other products 
were added to the knowledge base, and as new tactics and tactics 
were identified and added. 

The model has three levels, which are shown on the right side of 
Figure 1. The first level contained Feature Categories, which 
were identified as dimensions where the COTS product features 
had significant impact on architecture of the software using the 
product.  The complete NoSQL feature model is described in [11]. 
Here we summarize the QuABaseBD feature categories Table 3, 
and show the details of the Data Model feature category in Table 
4. 

4. SEMANTIC MEDIAWIKI PLATFORM 
As depicted in Figure 3, QuABaseBD is presented to a user 
through a standard Web-based wiki interface. QuABaseBD is 
built upon the Semantic MediaWiki (SMW) platform 
(https://semantic-mediawiki.org/), which adds dynamic, semantic 
capabilities to the base MediaWiki implementation (as used, for 
example, in Wikipedia).  

In contrast to a typical wiki such as Wikipedia, the pages in 
QuABase are generated dynamically, based on information that 
users enter into a set of structured forms. These forms, which 
leverage built-in SMW capabilities, guide and constrain content 
creation, providing three main benefits: 

 Users are guided through the content entry process, which 
improves usability and efficiency; 

 Much of the data entry is constrained, using picklists, radio 
buttons, checkboxes, and autocompletion, and free text fields 
can be designated as required, which ensures that the data 
conforms to the knowledge and feature models. 

 When the form is saved, semantic annotation is automatically 
applied, which enable querying the content.  

All QuABaseBD content is rendered as web pages for a user using 
SMW templates, which extend on the basic MediaWiki template 
mechanism. The SMW templates are populated by SMW queries, 
which extract content based on the semantic annotation that was 
applied by the form when the content was created. 

 

Table 3. QuABaseBD Feature Categories 

Feature Category Description 

Data Model The data model supported by a distributed database 
dictates both how application data can be 
organized, and to a large extent, how it can be 
queried. 

Query Language Characteristics include declarative or imperitive 
style, key matching options, cursor handling, 
sorting and filtering of result sets, and programing 
language bindings. 

Consistency Replica consistency features such as atomic 
updates, quorums, conflict detection and resolution, 
and durability; transactional consistency concerns. 

Scalability Features that support concurrent client access, 
including horizontal partitioning (sharding), 
replication, request distribution, and write locking 
strategies.  

Data Distribution Features specific to horizontal distribution 
(sharding), such as rebalancing strategies and query 
processing. 

Replication Features supporting replication to improve 
availability and to improve performance. 

Security Authentication, authorization, encryption features. 

 

Table 4. Features in Data Model Feature Category 

Feature Allowed Values 

Data Model Column, Key-Value, Graph, Document, 
Object, Relational 

Fixed Schema Required, optional, none 

Opaque Data Objects Required, not required 

Hierarchical Data Objects Supported, not supported 

Automatic Primary Key 
Allocation 

Supported, not supported 

Composite Keys Supported, not supported 

Secondary Indexes Supported, not supported 

Query by Key Range Supported, not supported 

Query by Partial Key Supported, not supported 

Query by Non-Key Value 
(Scan) 

Supported, not supported 

Map Reduce API Builtin, integration with external 
framework, not supported 

Indexed Text Search Support in plugin (e.g. Solr), builtin 
proprietary, not supported 
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Figure 3. Conceptual Architecture of QuABaseBD 

For example, the following SMW query will return a list of all of 
the Quality Attribute Scenarios associated with a particular 
Quality Attribute. 

{{#ask:[[Category:Quality Attribute Scenario]] |  
 [[Describes quality attribute::{{PAGENAME}}]] 
   |mainlabel=Quality Attribute Scenario 
   |?Has Tactic = Tactics 
   |order=ASC}} 

This query is placed in the template that renders the wiki page for 
Quality Attributes. When this template is invoked, for example, 
for the Consistency Quality Attribute, it creates the table shown in 
the screenshot in Figure 4.  

 

Figure 4. Screenshot showing use of query 

The use of SMW queries and templates to render content provides 
several benefits: 

 There is consistent “look and feel”, page structure, and content 
placement, which improves usability; 

 Content is generated dynamically; new content is immediately 
included and presented to users. For example, if a new Quality 
Attribute Scenario were created for the Consistency Quality 
Attribute, the table shown in Figure 4 would automatically 
include the new scenario. 

Finally, forms can be used to specialize queries to create pages 
that summarize or filter the knowledge content. For example, 
Figure 5 shows a QuABaseBD page that uses a SMW form to 
specialize a query of Scalability features. Executing the query 
renders a page with the table shown in Figure 6. Note that SMW 
automatically creates hyperlinks for the table headings and values, 
wherever possible.  

 

Figure 5. Scalability query form 

 

 

Figure 6. Results of scalability query 

5. QUABASEBD USE CASES 
Design and implementation decisions for QuABaseBD were 
driven by two primary use cases: 

 Architecture Design: The target user is an architect who has 
little experience with big data systems and NoSQL technology. 
He or she uses the General Scenarios and Quality Attribute 
Scenarios in QuABaseBD to support definition of 
architecturally significant requirements. The Quality Attribute 
Scenarios are used to select appropriate Tactics, and finally, 
one or more candidate NoSQL products are selected that 
implement the tactics. 

 Identification of Alternatives: The target user is an architect 
who has some experience with big data systems and NoSQL 
technology. The architect knows some or all of the product 
features needed for his or her system, and uses the QuABaseBD 
feature queries to identify one or more suitable candidate 
NoSQL products. 

Both of these cases might be followed by a use case in which the 
architect “works backwards” from a candidate NoSQL product. 
Large COTS products, like these NoSQL databases, implement 
many tactics, with each tactic embodying a set of quality attribute 
tradeoffs. An architect uses QuABaseDB to identify a product 
because it supports tactics he or she desires, but then the architect 
must ensure that other tactics supported by the product to not 
embody tradeoffs that would be detrimental to system qualities. 
QuABaseBD supports tracing from the Tactics that are 
implemented by a candidate product, identifying the quality 
attribute tradeoffs that those tactics embody, and using Quality 
Attribute Scenarios to provide concrete examples of the 
implications of each tradeoff. 

6. USER TRIALS 
In order to prepare for public deployment of the QuABase, we 
have performed usability and utility testing of the resulting Web 
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site. We publicized QuABaseBD through the authors’ 
professional networks, and opened QuABaseBD to volunteers to 
perform testing. Volunteers were requested to purposefully 
explore the knowledge base: when access credentials were issued, 
they were encouraged to use the knowledgebase to solve a 
particular design problem that we provided, rather than simply 
browsing the QuABase content. These open access sessions were 
limited to one hour in duration. Users were given a worksheet to 
record their impressions from the testing. There was no additional 
training, guidance, or instruction provided. 

All of the 20 users who provided feedback on their experience 
were software architects with 5-23 years of experience. All but 
two users characterized their expertise in big data systems as 
“somewhat knowledgeable”, but they did not have any specific 
experience in any of the database technologies currently 
represented in QuABase. 

The “main page”, where users enter the knowledge base after 
authenticating, offers three options: Explore Software Design 
Principles, Explore Database Technologies and Features, and 
Explore Architecture Tactics for Big Data Systems. The workflow 
that testers employed was split nearly evenly between those that 
started with architecture tactics, and those that started with 
database features. No testers started with design principles, 
although some testers eventually explored this section of the 
knowledgebase. These workflows matched our pre-test 
expectations: The software design principles path is intended to 
help define architecturally significant requirements. If these are 
already established (as they were in the test problems), then we 
expect users to start with tactics (top-down reasoning), or database 
features (bottom-up reasoning). This gives us confidence that the 
QuABase design is structured to support this use case.  

Testers starting with database features made extensive use of the 
faceted search capability and the tabular results visualizations (for 
example, the pages shown in Figure 6). The information in these 
tables was sufficient to answer the tester’s questions. Few of these 
testers relied on the detailed feature description pages. In contrast, 
testers who started with tactics relied on following links within 
QuABaseBD, which led them to the detailed feature description 
pages. Interestingly, no testers employed the full-text search 
capability of the SMW platform. 

All but one tester said that they were able to answer all of their 
questions using the content of QuABaseBD. In providing 
feedback on the utility of the knowledge base, testers were asked 
to rate their confidence that their answers were complete and 
correct. The large majority rated their confidence as 3 or 4 on a 
scale of 1 (no confidence) to 5 (absolutely sure).  

Only one tester followed any of the hyperlinks to external 
resources that are provided in the detailed product feature 
descriptions. We hypothesize that this may be due to the limited 
time we allowed for testing, but again this gives us confidence 
that the current QuABaseBD content is sufficiently extensive to 
meet many of the anticipated needs of the big data software 
engineering community. 

7. CONCLUSIONS AND FUTURE WORK 
QuABaseBD provides an example of how a decision support 
design assistant can help architects who are not familiar with a 
system domain (in this case, big data systems) and also those 
working in a broad and dynamic technology domain (in this case, 
NoSQL databases). The core knowledge model and the feature 
meta-model, along with much of the SMW customizations, are 

not specific to any domain or technology, and so are reusable to 
create other design assistants.  

Based on our experience creating and using QuABaseBD, we see 
several areas for future work, which we consider in more detail in 
the following sections: 

 Knowledge visualization; 

 Automating the population of the feature model; 

 Curation practices and processes. 

7.1 Knowledge Visualization 
Information visualization is a powerful technique for conveying 
complex concepts and knowledge in ways that are easily 
understood by humans [12]. Information visualization presumes 
that "visual representations and interaction techniques take 
advantage of the human eye’s broad bandwidth pathway into the 
mind to allow users to see, explore, and understand large amounts 
of information at once. Information visualization focused on the 
creation of approaches for conveying abstract information in 
intuitive ways” [13]. 

QuABaseBD currently implements several basic visualizations 
that graphically show the relationships based on the semantic 
annotation of the knowledge and feature information. For 
example, FX shows part of a visualization that shows the tactics 
and resulting tradeoffs for a particular NoSQL product. 

 

Figure 7. Tactics supported by Neo4j product (Extract) 

We have begun experimenting with more sophisticated 
visualizations, particularly to summarize and compare suitability 
of two or more products, based on how well the tactics and 
features match the user’s requirements. To this end, we are 
considering approaches for graphical multidimensional 
comparison of two or more products such as Kiviat (“radar”) 
diagrams, heat map plots, and bubble charts. 

The practical challenges in this area are integrating the graphics 
generation framework into SMW, so that the visualizations are an 
integral part of the QuABase user experience. 

The research challenges include extending the semantics of the 
feature model to rank the qualitative values for a particular 
feature, and how to represent multi-dimensional comparisons of 
qualitative information in ways that are useful for architects using 
the tool. 
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7.2 Automating the Population of the Feature 
Model 
Our goal in creating QuABaseBD was to provide a trusted source 
of information for architects working in the large and dynamic 
NoSQL database technology domain, and to design a decision 
support system that would be reusable in other technology 
domains. To date, we have populated the feature model in 
QuABaseBD with data for nine NoSQL products. This has been a 
time-intensive and labor-intensive process, beginning with 
identifying and locating the relevant product documentation, 
learning product-specific terminology, and mapping product 
feature descriptions into the feature model. Since the feature 
model was initially populated, most of the products included have 
undergone at least one significant revision, necessitating review 
and update to the content. This manual approach is not 
sustainable: Alternatives are automation and increasing the 
number of contributors. 

We are currently investigating the use of machine learning to 
automate the feature model population of QuABaseBD, using the 
Concept Graph Learning (CGL) machine learning method [14]. 
The QuABaseBD semantic knowledge model provides the 
necessary linked information for CGL to learn a directed universal 
concept graph that represents the major concepts in big data 
systems. CGL will use the learned graph to predict unobserved 
relations from new data – the documentation pages for specific 
big data technologies that we wish to include or update in the 
feature model. This will enable QuABaseBD to be rapidly 
updated to reflect the characteristics of new and evolving 
implementation technologies. 

7.3 Curation Practices and Processes 
In preparation for public release of QuABaseBD, we are 
consulting with experts on each included product to validate that 
our curated values for the database features are correct. We 
believe that, as a curated scientific knowledge base, there are high 
expectations that the content in QuABaseBD is trustworthy at all 
times.  

Even if some of the feature model population is automated, as 
discussed above, there is still a need to increase the capacity of 
knowledge content creation to keep up with the size and pace of 
change in the NoSQL technology domain. 

We are considering several alternative approaches that would 
allow contributions by a broader group, which might include any 
QuABaseBD user, or be narrower, for example NoSQL product 
developers or a pre-qualified group of experts. There are benefits 
and costs to each approach, and certainly there are lessons to be 
learned from open source software projects, crowdsourced 
projects such as Wikipedia, and other online communities. 

To this end, we are working to design a systematic curation 
process where a small cohort of experts will be responsible for 
changes to the content. We anticipate that visitors to the 
knowledge base will be able to suggest changes through 
associated comments pages, and the curators will assess these 
proposals for inclusion.  
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