
Design Assistant for NoSQL Technology Selection
John Klein and Ian Gorton

Software Engineering Institute at Carnegie Mellon University
Pittsburgh, PA, USA

{jklein, igorton}@sei.cmu.edu

ABSTRACT
NoSQL databases create tight coupling between data model,
deployment topology, and application architecture, and so this
technology selection must be one of the earliest architecture
decisions. The NoSQL technology landscape is large and evolving
rapidly, so architects need efficient and trusted design assistance
to explore the solution space. Our solution was to create a
queryable knowledge base, populated with curated information,
which is rendered dynamically as content grows and changes. We
built the knowledge base using Semantic MediaWiki,
implementing a novel knowledge model that enables reasoning
from quality attributes to architecture patterns and tactics to
features implemented in specific NoSQL products. We also
provide tabular and graphical visualizations to support both
systematic and ad hoc exploration. Our contributions to the field
of architecture design assistants are the knowledge model, its
implementation in a semantic platform, and the resulting
populated knowledge base for big data system architects.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
computer-aided software engineering. D.2.2 [Software
Engineering]: Software Architectures – domain-specific
architectures, patterns.

General Terms
Design.

Keywords
Design assistant; knowledge base; quality attribute; pattern,
architecture tactic; NoSQL; feature model

1. INTRODUCTION
Software architects frequently must choose specific commercial
off-the-shelf (COTS) products to realize particular elements in the
architecture. Best practices are to design an architecture that is
technology neutral, and defer the product selection decision until
late in the design process [1][2]. Architects designing big data
systems often use NoSQL databases, which deliver high
performance, elastic storage capacity, and availability by
replicating and partitioning data sets across a cluster of servers.
Each NoSQL product implements a different data model and
query language, as well as specific tactics to achieve distributed
data consistency and availability.

The data, consistency and distribution models imposed by the
selected database have a pervasive impact on the design of the
associated applications, and so this technology selection decision
must be made early and it becomes difficult and expensive to
change [3]. Other COTS product selections can also become
“architectural decisions”, e.g., operating system or middleware.
However, as a still-maturing technology, the NoSQL solution
space is large and dynamic1, with new products constantly
emerging and existing products releasing several versions per year
with ever evolving feature sets.

As we discovered in performing a NoSQL product evaluation for
a customer [4], navigating this solution space can be a hard
problem for architects. The predominant information sources are
product vendors and experience reports published informally on
the Internet. In both cases, the quality is highly variable and
difficult to assess. Architects, thinking in terms of system level
quality attributes, encounter product descriptions framed terms of
their features, and the relationship between particular product
features and system-level quality attributes is often not clear.

Architecture design assistants, such as ArchE [5], support
reasoning from quality attributes to patterns, but do not directly
support reasoning all the way through to COTS selection. Other
assistants, such as AREL, capture design rationale for reuse [6].
Both types of assistants take a broad, general approach to
architecture decisions. At the other extreme, curated COTS
comparisons consolidate product feature lists but do not relate
features to qualities or provide insight into tradeoffs, and are not
easily queried or filtered [7][8].

Our solution, called QuABaseBD (Quality At Scale Knowledge
Base for Big Data, pronounced k-base-bee-dee) provides decision
support to architects, in the narrow but important domain of
NoSQL product selection. QuABaseBD supports reasoning from
general quality attributes, expressed as scenarios, to architecture
approaches and tactics, to features implemented by concrete
NoSQL products that realize those tactics. QuABaseBD is an
interactive assistant, and does not provide automated suggestions
or automated decisions.

The main contributions of this work, discussed in the following
sections of this paper, are:

 A generalizable architecture knowledge model, instantiated for
the domain of NoSQL distributed databases;

 A feature model for NoSQL technology, which aligns with the
instantiated knowledge model;

 An implementation of the knowledge base on the Semantic
MediaWiki platform, using forms to add knowledge that
conforms to the models, query-driven templates dynamically

1 See, for example,

http://blogs.the451group.com/information_management/2014/0
3/18/updated-data-platforms-landscape-map-february-2014/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
FoSADA’15, May 6, 2015, Montreal, QC, Canada.
Copyright 2015 ACM 978-1-4503-3438-9/15/05...$15.00
http://dx.doi.org/10.1145/2751491.2751494

7

render content as the knowledge base grows, and hyperlinked
text, tables, and graphics for presentation and navigation.

2. QUABASEBD KNOWLEDGE MODEL
The QuABaseBD semantic knowledge model, show in Figure 1,
is divided into two main sections. The first of the sections, shown
in the left half of the figure, represents general software
architecture design concerns related to quality attributes, quality
attribute scenarios, and architecture tactics. The second section of
the knowledge model represents the features of a particular COTS
product, shown on the right half of the figure. The purpose of this
section is to systematically decompose product features using a
normalized taxonomy.

The novelty of this model is the linkage between the two sections
through the relationship of an instance of a tactic to the instances
of the features of a particular database that implement that tactic,
enabling reasoning from general architecture principles to
concrete COTS implementations.

Figure 1. Extract from QuABaseBD Knowledge Model

The left-hand section of the QuABaseBD model is similar to other
general architecture knowledge models, such as presented by
Babar [9].

While the structure of this section of the knowledge model is very
general, in QuABaseBD it is populated only the concepts and
properties needed to reason about the domain of big data systems
design and database technology selection. The purposes of this
section of the model are to support the definition of architecturally
significant requirements, to identify the quality attribute tradeoffs
that are inherent in distributed data-intensive systems, and to
identify relevant tactics to achieve particular architecture
requirements.

As such, QuABaseBD is only concerned with the quality
attributes of Availability, Consistency, Performance, Scalability,
and Security. Each Quality Attribute2 is characterized by a
General Scenario. The general scenario includes only those
stimuli, responses, and response measures that are relevant in big
data systems, in contrast to the abstract general scenarios

2 In this section of the paper, terms in italics refer to concepts in

the model shown in Figure 1.

presented by Bass and colleagues [10]. An example of the
QuABaseBD General Scenario for Scalability is shown in Table
1.

Table 1. QuABaseBD General Scenario for Scalability

Stimulus:

Increase in load (demand) on a system resource such as
processing (OR)

I/O (OR)

storage.

Environment:
Increase in load is transient (OR)

Increase in load is permanent

Response: System provides new resources to satisfy the load

Response
Measure:

Ratio of increase in cost to provide new resources to
value of increased load

Time to provide additional resources when load
increases

A general scenario is a prototype that generates many Quality
Attribute Scenarios, each of which combines a stimulus and
response in the context of a big data system. A Quality Attribute
Scenario covers a specific situation, and so we can identify the
Tactics that can be employed to achieve the desired the scenario
response. Table 2 shows a quality attribute scenario derived from
the Scalability General Scenario. Note that the stimulus, response,
and response measure specialize the general scenario shown
above.

Table 2. Scalability Scenario

Scale to handle increased read or write request load

Quality
Attribute:

Scalability

Stimulus:
An increase in read requests is experienced by the
system for a finite period of time (e.g typically
minutes to days)

Environment: The system has been operating in production.

Response:
Additional nodes can be added to the cluster and
the data set can be repartitioned to use the new
resources.

Response
Measure:

Downtime during repartitioning, Amount of
manual intervention needed.

Tactics:

Automatically maintain cluster membership list
(gossip), Shard data set across multiple servers
(Consistent Hashing), Shard data set across
multiple servers (Range-based), Load balance
across replicas (one data center), Load balance
across replicas (multiple data centers)

AntiTactics: None

Tactics represent tradeoffs – each promotes at least one quality
attribute, and may inhibit other quality attributes. Although not
represented in Figure 1, the knowledge model also includes “anti-
tactics”, representing design approaches that prevent the desired
response from being achieved. In Figure 2, we show a screenshot
from QuABaseBD for the Consistent Hashing tactic, referenced in
the Scalability Scenario. The tactic definition includes a
description that outlines the approach, followed by a table that
summarizes the tradeoffs inherent in applying the tactic along
with references to related tactics.

Tactics also represent specific design decisions that can be
realized by a Product implementation, so we can say that a

Key

Quality Attribute

General
Scenario

Quality Attribute
Scenario

Tactic

Product

Feature
Category

Feature

Attributes

Concept

1 - N Relationship

Promotes Inhibits

Is
Supported

By

Supports

8

database supports a tactic. At the bottom of the screenshot in
Figure 2, we see links to the specific NoSQL products that support
the Consistent Hashing tactic.

Figure 2. Screenshot of Tactic Page in QuABaseBD

3. NOSQL FEATURE MODEL
The product feature model in QuABaseBD addresses two related
concerns:

 It provides the structure and normalized vocabulary (i.e. a
taxonomy) to allow product comparisons, and

 It identifies product features that realize the architecture tactics
defined in the QuABaseBD Knowledge Model.

The NoSQL feature model was initially based on our work
evaluating NoSQL databases [4], and evolved as other products
were added to the knowledge base, and as new tactics and tactics
were identified and added.

The model has three levels, which are shown on the right side of
Figure 1. The first level contained Feature Categories, which
were identified as dimensions where the COTS product features
had significant impact on architecture of the software using the
product. The complete NoSQL feature model is described in [11].
Here we summarize the QuABaseBD feature categories Table 3,
and show the details of the Data Model feature category in Table
4.

4. SEMANTIC MEDIAWIKI PLATFORM
As depicted in Figure 3, QuABaseBD is presented to a user
through a standard Web-based wiki interface. QuABaseBD is
built upon the Semantic MediaWiki (SMW) platform
(https://semantic-mediawiki.org/), which adds dynamic, semantic
capabilities to the base MediaWiki implementation (as used, for
example, in Wikipedia).

In contrast to a typical wiki such as Wikipedia, the pages in
QuABase are generated dynamically, based on information that
users enter into a set of structured forms. These forms, which
leverage built-in SMW capabilities, guide and constrain content
creation, providing three main benefits:

 Users are guided through the content entry process, which
improves usability and efficiency;

 Much of the data entry is constrained, using picklists, radio
buttons, checkboxes, and autocompletion, and free text fields
can be designated as required, which ensures that the data
conforms to the knowledge and feature models.

 When the form is saved, semantic annotation is automatically
applied, which enable querying the content.

All QuABaseBD content is rendered as web pages for a user using
SMW templates, which extend on the basic MediaWiki template
mechanism. The SMW templates are populated by SMW queries,
which extract content based on the semantic annotation that was
applied by the form when the content was created.

Table 3. QuABaseBD Feature Categories

Feature Category Description

Data Model The data model supported by a distributed database
dictates both how application data can be
organized, and to a large extent, how it can be
queried.

Query Language Characteristics include declarative or imperitive
style, key matching options, cursor handling,
sorting and filtering of result sets, and programing
language bindings.

Consistency Replica consistency features such as atomic
updates, quorums, conflict detection and resolution,
and durability; transactional consistency concerns.

Scalability Features that support concurrent client access,
including horizontal partitioning (sharding),
replication, request distribution, and write locking
strategies.

Data Distribution Features specific to horizontal distribution
(sharding), such as rebalancing strategies and query
processing.

Replication Features supporting replication to improve
availability and to improve performance.

Security Authentication, authorization, encryption features.

Table 4. Features in Data Model Feature Category

Feature Allowed Values

Data Model Column, Key-Value, Graph, Document,
Object, Relational

Fixed Schema Required, optional, none

Opaque Data Objects Required, not required

Hierarchical Data Objects Supported, not supported

Automatic Primary Key
Allocation

Supported, not supported

Composite Keys Supported, not supported

Secondary Indexes Supported, not supported

Query by Key Range Supported, not supported

Query by Partial Key Supported, not supported

Query by Non-Key Value
(Scan)

Supported, not supported

Map Reduce API Builtin, integration with external
framework, not supported

Indexed Text Search Support in plugin (e.g. Solr), builtin
proprietary, not supported

9

Figure 3. Conceptual Architecture of QuABaseBD

For example, the following SMW query will return a list of all of
the Quality Attribute Scenarios associated with a particular
Quality Attribute.

{{#ask:[[Category:Quality Attribute Scenario]] |
 [[Describes quality attribute::{{PAGENAME}}]]
 |mainlabel=Quality Attribute Scenario
 |?Has Tactic = Tactics
 |order=ASC}}

This query is placed in the template that renders the wiki page for
Quality Attributes. When this template is invoked, for example,
for the Consistency Quality Attribute, it creates the table shown in
the screenshot in Figure 4.

Figure 4. Screenshot showing use of query

The use of SMW queries and templates to render content provides
several benefits:

 There is consistent “look and feel”, page structure, and content
placement, which improves usability;

 Content is generated dynamically; new content is immediately
included and presented to users. For example, if a new Quality
Attribute Scenario were created for the Consistency Quality
Attribute, the table shown in Figure 4 would automatically
include the new scenario.

Finally, forms can be used to specialize queries to create pages
that summarize or filter the knowledge content. For example,
Figure 5 shows a QuABaseBD page that uses a SMW form to
specialize a query of Scalability features. Executing the query
renders a page with the table shown in Figure 6. Note that SMW
automatically creates hyperlinks for the table headings and values,
wherever possible.

Figure 5. Scalability query form

Figure 6. Results of scalability query

5. QUABASEBD USE CASES
Design and implementation decisions for QuABaseBD were
driven by two primary use cases:

 Architecture Design: The target user is an architect who has
little experience with big data systems and NoSQL technology.
He or she uses the General Scenarios and Quality Attribute
Scenarios in QuABaseBD to support definition of
architecturally significant requirements. The Quality Attribute
Scenarios are used to select appropriate Tactics, and finally,
one or more candidate NoSQL products are selected that
implement the tactics.

 Identification of Alternatives: The target user is an architect
who has some experience with big data systems and NoSQL
technology. The architect knows some or all of the product
features needed for his or her system, and uses the QuABaseBD
feature queries to identify one or more suitable candidate
NoSQL products.

Both of these cases might be followed by a use case in which the
architect “works backwards” from a candidate NoSQL product.
Large COTS products, like these NoSQL databases, implement
many tactics, with each tactic embodying a set of quality attribute
tradeoffs. An architect uses QuABaseDB to identify a product
because it supports tactics he or she desires, but then the architect
must ensure that other tactics supported by the product to not
embody tradeoffs that would be detrimental to system qualities.
QuABaseBD supports tracing from the Tactics that are
implemented by a candidate product, identifying the quality
attribute tradeoffs that those tactics embody, and using Quality
Attribute Scenarios to provide concrete examples of the
implications of each tradeoff.

6. USER TRIALS
In order to prepare for public deployment of the QuABase, we
have performed usability and utility testing of the resulting Web

10

site. We publicized QuABaseBD through the authors’
professional networks, and opened QuABaseBD to volunteers to
perform testing. Volunteers were requested to purposefully
explore the knowledge base: when access credentials were issued,
they were encouraged to use the knowledgebase to solve a
particular design problem that we provided, rather than simply
browsing the QuABase content. These open access sessions were
limited to one hour in duration. Users were given a worksheet to
record their impressions from the testing. There was no additional
training, guidance, or instruction provided.

All of the 20 users who provided feedback on their experience
were software architects with 5-23 years of experience. All but
two users characterized their expertise in big data systems as
“somewhat knowledgeable”, but they did not have any specific
experience in any of the database technologies currently
represented in QuABase.

The “main page”, where users enter the knowledge base after
authenticating, offers three options: Explore Software Design
Principles, Explore Database Technologies and Features, and
Explore Architecture Tactics for Big Data Systems. The workflow
that testers employed was split nearly evenly between those that
started with architecture tactics, and those that started with
database features. No testers started with design principles,
although some testers eventually explored this section of the
knowledgebase. These workflows matched our pre-test
expectations: The software design principles path is intended to
help define architecturally significant requirements. If these are
already established (as they were in the test problems), then we
expect users to start with tactics (top-down reasoning), or database
features (bottom-up reasoning). This gives us confidence that the
QuABase design is structured to support this use case.

Testers starting with database features made extensive use of the
faceted search capability and the tabular results visualizations (for
example, the pages shown in Figure 6). The information in these
tables was sufficient to answer the tester’s questions. Few of these
testers relied on the detailed feature description pages. In contrast,
testers who started with tactics relied on following links within
QuABaseBD, which led them to the detailed feature description
pages. Interestingly, no testers employed the full-text search
capability of the SMW platform.

All but one tester said that they were able to answer all of their
questions using the content of QuABaseBD. In providing
feedback on the utility of the knowledge base, testers were asked
to rate their confidence that their answers were complete and
correct. The large majority rated their confidence as 3 or 4 on a
scale of 1 (no confidence) to 5 (absolutely sure).

Only one tester followed any of the hyperlinks to external
resources that are provided in the detailed product feature
descriptions. We hypothesize that this may be due to the limited
time we allowed for testing, but again this gives us confidence
that the current QuABaseBD content is sufficiently extensive to
meet many of the anticipated needs of the big data software
engineering community.

7. CONCLUSIONS AND FUTURE WORK
QuABaseBD provides an example of how a decision support
design assistant can help architects who are not familiar with a
system domain (in this case, big data systems) and also those
working in a broad and dynamic technology domain (in this case,
NoSQL databases). The core knowledge model and the feature
meta-model, along with much of the SMW customizations, are

not specific to any domain or technology, and so are reusable to
create other design assistants.

Based on our experience creating and using QuABaseBD, we see
several areas for future work, which we consider in more detail in
the following sections:

 Knowledge visualization;

 Automating the population of the feature model;

 Curation practices and processes.

7.1 Knowledge Visualization
Information visualization is a powerful technique for conveying
complex concepts and knowledge in ways that are easily
understood by humans [12]. Information visualization presumes
that "visual representations and interaction techniques take
advantage of the human eye’s broad bandwidth pathway into the
mind to allow users to see, explore, and understand large amounts
of information at once. Information visualization focused on the
creation of approaches for conveying abstract information in
intuitive ways” [13].

QuABaseBD currently implements several basic visualizations
that graphically show the relationships based on the semantic
annotation of the knowledge and feature information. For
example, FX shows part of a visualization that shows the tactics
and resulting tradeoffs for a particular NoSQL product.

Figure 7. Tactics supported by Neo4j product (Extract)

We have begun experimenting with more sophisticated
visualizations, particularly to summarize and compare suitability
of two or more products, based on how well the tactics and
features match the user’s requirements. To this end, we are
considering approaches for graphical multidimensional
comparison of two or more products such as Kiviat (“radar”)
diagrams, heat map plots, and bubble charts.

The practical challenges in this area are integrating the graphics
generation framework into SMW, so that the visualizations are an
integral part of the QuABase user experience.

The research challenges include extending the semantics of the
feature model to rank the qualitative values for a particular
feature, and how to represent multi-dimensional comparisons of
qualitative information in ways that are useful for architects using
the tool.

11

7.2 Automating the Population of the Feature
Model
Our goal in creating QuABaseBD was to provide a trusted source
of information for architects working in the large and dynamic
NoSQL database technology domain, and to design a decision
support system that would be reusable in other technology
domains. To date, we have populated the feature model in
QuABaseBD with data for nine NoSQL products. This has been a
time-intensive and labor-intensive process, beginning with
identifying and locating the relevant product documentation,
learning product-specific terminology, and mapping product
feature descriptions into the feature model. Since the feature
model was initially populated, most of the products included have
undergone at least one significant revision, necessitating review
and update to the content. This manual approach is not
sustainable: Alternatives are automation and increasing the
number of contributors.

We are currently investigating the use of machine learning to
automate the feature model population of QuABaseBD, using the
Concept Graph Learning (CGL) machine learning method [14].
The QuABaseBD semantic knowledge model provides the
necessary linked information for CGL to learn a directed universal
concept graph that represents the major concepts in big data
systems. CGL will use the learned graph to predict unobserved
relations from new data – the documentation pages for specific
big data technologies that we wish to include or update in the
feature model. This will enable QuABaseBD to be rapidly
updated to reflect the characteristics of new and evolving
implementation technologies.

7.3 Curation Practices and Processes
In preparation for public release of QuABaseBD, we are
consulting with experts on each included product to validate that
our curated values for the database features are correct. We
believe that, as a curated scientific knowledge base, there are high
expectations that the content in QuABaseBD is trustworthy at all
times.

Even if some of the feature model population is automated, as
discussed above, there is still a need to increase the capacity of
knowledge content creation to keep up with the size and pace of
change in the NoSQL technology domain.

We are considering several alternative approaches that would
allow contributions by a broader group, which might include any
QuABaseBD user, or be narrower, for example NoSQL product
developers or a pre-qualified group of experts. There are benefits
and costs to each approach, and certainly there are lessons to be
learned from open source software projects, crowdsourced
projects such as Wikipedia, and other online communities.

To this end, we are working to design a systematic curation
process where a small cohort of experts will be responsible for
changes to the content. We anticipate that visitors to the
knowledge base will be able to suggest changes through
associated comments pages, and the curators will assess these
proposals for inclusion.

8. ACKNOWLEDGMENTS
Copyright 2015 ACM. This material is based upon work funded
and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the

operation of the Software Engineering Institute, a federally funded
research and development center. References herein to any
specific commercial product, process, or service by trade name,
trade mark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring
by Carnegie Mellon University or its Software Engineering
Institute. This material has been approved for public release and
unlimited distribution. DM-0002243.

9. REFERENCES
[1] N. Rozanski and E. Woods, Software Systems Architecture:

Working With Stakeholders Using Viewpoints and
Perspectives. Addison-Wesley, 2005.

[2] “TOGAF Version 9.1.” The Open Group, Standard, 2011,
http://pubs.opengroup.org/architecture/togaf9-doc/arch/
(Accessed 10 Mar 2013).

[3] I. Gorton and J. Klein, “Distribution, Data, Deployment:
Software Architecture Convergence in Big Data Systems,”
IEEE Software, vol. PP, no. 99, 18 March 2014. doi:
10.1109/MS.2014.51

[4] J. Klein, I. Gorton, N. Ernst, et al., “Performance Evaluation
of NoSQL Databases: A Case Study,” in Proc. of 1st
Workshop on Performance Analysis of Big Data Systems
(PABS 2015), Austin, TX, USA, 2015. doi:
10.1145/2694730.2694731.

[5] F. Bachmann, L. Bass, and M. H. Klein, “Preliminary Design
of ArchE: A Software Architecture Design Assistant.”
Software Engineering Institute, Technical Report, CMU/SEI-
2003-TR-021, 2003.

[6] A. Tang and H. van Vliet, “Software Architecture Design
Reasoning”. In M. A. Babar, T. Dingsøyr, P. Lago, et al.,
(Eds.), Software Architecture Knowledge Management:
Theory and Practice (pp. 155-174). Heidelberg: Springer,
2009.

[7] K. Kovacs. Cassandra vs MongoDB vs CouchDB vs Redis
vs […] comparison [Online]. http://kkovacs.eu/cassandra-vs-
mongodb-vs-couchdb-vs-redis (Accessed 7 Oct 2014).

[8] J. Yu and R. Buyya, A Taxonomy of Workflow Management
Systems for Grid Computing, Journal of Grid Computing,
Volume 3, Numbers 3-4, Pages: 171-200, Sept. 2005.

[9] M.A. Babar, “Supporting the Software Architecture Process
with Knowledge Management”. In M. A. Babar, T.
Dingsøyr, P. Lago, et al., (Eds.), Software Architecture
Knowledge Management: Theory and Practice (pp. 69-111).
Heidelberg: Springer, 2009.

[10] L. Bass, P. Clements, and R. Kazman, Software Architecture
in Practice, 3rd Edition. Addison-Wesley, 2013.

[11] I. Gorton, J. Klein, and A. Nurgaliev, “Architecture
Knowledge for Evaluating Scalable Databases,” in Proc.
12th Working IEEE/IFIP Conf. on Software Architecture
(WICSA 2015), Montreal, Canada, 2015.

[12] Joe Kielman, Jim Thomas, and Richard May. 2009.
Foundations and frontiers in visual analytics. Information
Visualization 8, 4 (December 2009), 239-246.

[13] James J. Thomas and Kristin A. Cook (Eds.) Illuminating the
Path: The R&D Agenda for Visual Analytics. National
Visualization and Analytics Center. p. 30, 2005.

[14] Y. Yang, H. Liu, J. Carbonell, and W. Ma. “Concept Graph
Learning from Educational Data”. In Proc. 8th ACM Intl.
Conf. on Web Search and Data Mining (WSDM '15),
Shanghai, China, 2015. doi: 10.1145/2684822.2685292

12

