
Got Technical Debt?
Surfacing Elusive Technical Debt in Issue Trackers

Stephany Bellomo, Robert L. Nord, Ipek Ozkaya, and Mary Popeck
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

1-412-268-5800
sbellomo, rn, ozkaya, mpopeck@sei.cmu.edu

ABSTRACT
Concretely communicating technical debt and its consequences is
of common interest to both researchers and software engineers. In
the absence of validated tools and techniques to achieve this goal
with repeatable results, developers resort to ad hoc practices in an
effort to communicate technical debt. Most commonly they report
using issue trackers or their existing backlog management
practices to capture and track technical debt. In a manual
examination of 1,246 issues from four issue trackers from open
source industry and government projects, we identified 109
technical debt examples. Our study reveals that technical debt and
its related concepts have entered the vernacular of developers as
they discuss development tasks through issue trackers. Even when
issues are not explicitly tagged as technical debt, it is possible to
identify technical debt items in these issue trackers using a
categorization method we developed. We use our results and data
to motivate an improved definition of technical debt and an
approach to explicitly report technical debt in issue trackers.

CCS Concepts
Software and its engineering → Software creation and
management → Software post-development issues
→ Maintaining software

Keywords
Technical debt; software anomalies; issue tracking; text
categorization; software design.

1. INTRODUCTION
What is technical debt? Why identify technical debt? Shouldn’t
these issues be captured as defects and bugs? The inability to
answer these questions empirically, supported by a software
economics theory, can result in technical debt attaining a
legendary status [33]. We know its value as a metaphor, and we
hear stories from developers and project folklore about its
symptoms and their consequences, but can we see, describe, and
hold the thing itself as a concrete software development artifact?
While progress is being made toward refining our understanding
of technical debt theoretically, data-driven studies to contribute to
theoretical research endeavors lag behind.

Results of our recent, broad practitioner survey of 1,831 software
engineers and managers demonstrate that they share a common
understanding of the concept of technical debt [12]. According to
participants, lack of proven tool support to accurately identify,
communicate, and track technical debt is a key issue and remains
a gap in practice. In the absence of validated tools to concretely
communicate technical debt and its consequences, developers
resort to practices they are familiar with.

More than half of the participants of our survey reported using
issue trackers to communicate technical debt either explicitly
(“technical debt” is mentioned) or implicitly (the concept of
“technical debt” is discussed but not explicitly mentioned). This is
consistent with anecdotal feedback from our own experiences of
working with organizations as well as case studies represented in
literature on technical debt [36].

Intuitively it makes sense for issue trackers to serve as an entry
point for communicating technical debt since developers use issue
trackers as one tool to manage task priorities. To understand how
issue trackers are used to communicate technical debt by software
developers, we conducted an exploratory study of four issue
trackers, including the Chromium [8] and Connect Health IT
Exchange open source [11] projects and two government IT
projects for which we are aware of technical debt issues.

We address the following questions:

• RQ1: Do developers use the term technical debt explicitly when
discussing issues and tasks in their issue trackers?

• RQ2: Can technical debt items be discovered systematically within
issue trackers?

• RQ3: What are the distinguishing characteristics of technical debt
items discovered in issue trackers?

We searched through 1,246 issues, identified 109 examples of
technical debt, and evaluated them with experts and the
developers of the systems when applicable. Our study results
show that software engineers are in practice using issue trackers to
communicate technical debt. A summary of our findings and
conclusions include the following:

Finding 1: Technical debt-related concepts, such as take-on
debt, accumulate debt, and pay-back debt, have entered the
developers’ vocabulary. While technical debt items were not
labeled explicitly in the issue trackers we studied, we identified 58
examples where developers explicitly use the term “technical
debt” and related concepts to understand an issue.

Finding 2: Developers do not always clearly identify the
consequences of not paying down the debt. We developed and
used a classification approach to find additional examples where
developers articulated concerns related to technical debt but did

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE/MSR’16, May 14–15, 2016, Austin, Texas, USA.
Copyright 2016 ACM 1-58113-000-0/00/0010 …$15.00.

not use the term. Using this approach, we identified 51 more
examples of technical debt.

Finding 3: The examples provide early results for design areas
where technical debt mostly occurs, including consequences of
dead code, duplicate code, and API mismatches. Studying the
characteristics of project-management indicators recorded in the
issue trackers (such as the amount of time an issue stays in the
issue tracker, number of watchers, priority) demonstrate that more
data analysis is needed to find consistent values that may show a
relationship between these characteristics and technical debt.

Finding 4: Technical debt is mostly result of unintentional
design choices. The appeal—and promise—of understanding
technical debt is to use design choices strategically to
intentionally trade off speed and development effort with minimal
compromise of quality. The reality is that the technical debt items
we found are mostly unintentional and surface in issue trackers
only when the symptoms of their unintended consequences
become visible.

Building on these findings, we recommend that to take best
advantage of technical debt and pay it back before the debt grows,
its definition should concretely map to development artifacts.

Technical debt is work relating to software units (including
infrastructure as code) that have design implications and
evidence of present or anticipated accumulation extra work.

Conversely, technical debt is not work related to a non-software
unit (e.g., requirement, documentation, process concern), nor is it
a low-impact, executable artifact change with minimal
consequence if not fixed (e.g., code cleanup).

In this paper, we present our analysis results and how to report a
technical debt item.

2. APPROACH
We conducted or study on four projects as described in Table 1
and in four phases as summarized in Figure 1.

Figure 1. The four research phases followed.
The data sets included subsets of items from the Connect Health
IT Exchange (Connect) and Chromium issue trackers and two
government IT projects, Project A and Project B.

We selected Connect for the study because it is an active open-
source, open-contribution project with public access to its Jira
repository. Connect aims to enable secure, electronic health data
exchange among health-care providers, insurers, government
agencies, and consumer services in the United States by
establishing a gateway between health information systems and
organizations. It is based on service-oriented architecture design

principles and web service interfaces [10]. It has been in
development and use since 2008.

Table 1. Projects studied by phase.

 Data set Source Filter criteria # Records
analyzed

Phase 0
Setup

Chromium Google
issue
tracker

Text search
“technical debt”

56

Connect

Jira Text search
“technical debt”

15

Technical
debt survey

Examples
(as text)

N/A 265

Phase 1
TD
categorization

Connect Jira 2012, first 200
records

200

Phases 2-4
TD
classification,
analysis, and
evaluation
Total
727 issues

Connect Jira March 2012 286
Project A Jira Defects/CRs

Sep. 2010 to
Dec. 2014

86

Project B FogBugz All year 2013 193
Chromium Google

issue
tracker

M(ilestone):48
Stars (watchers)
>3

163

 Total 1,246

Projects A and B are government-related data sets from ongoing
clients selected because they have a history of releases focused on
rework to address technical debt. Project A is a mission-critical
compliance tracking system for a large government organization
that centralizes the data gathered from several sources into one
nation-wide system. This Oracle client-server system has been in
use for over 15 years. Since the initial release, over 1.2 million
work assignments have been created in the system. Most issues
are entered into the issue tracker by the product manager.

Project B is an IT system for federal government employees to
protect the system environment by monitoring physical and
environmental conditions against cyberattack. The software has
been in use for 4 years and serves 125 users. Key technologies
used include web services, embedded OS on BeagleBone Black,
Socket IO services, and a customized sensor data communication
protocol and collection mechanism. Programming languages used
include Python, JS, HTML, CSS, C, C++, and DB: PostgreSQL.
Several stakeholders create issues in the issue trackers, but the
main person entering them is the product owner/manager.

In all three data sets, we have additional technical information
about known refactoring activities related to technical debt and
access to developers who can serve as experts to validate our
findings. We included Chromium as our fourth and control data
set due to the relatively robust issue-tracker practices followed.
Table 1 summarizes the subsets of the issues selected from these
projects.

The subset of the issues studied from these projects were selected
randomly to minimize bias. The issues were not triaged based on
any particular classification that the specific project may impose,
such as bug, defect, and new feature. Some data sets had more
disciplined issue-tracking practices than others, such as tracking
priority, release assigned, number of watchers, code commits, and
the like. All data sets had sufficient description of the issues to
allow researchers to make classifications and judgments.

We first looked through the data sets for a technical debt label.
We also searched for the term “technical debt” and expanded our
search for technical debt concepts using terms we extracted from
the vocabulary of a cross-section of developers who provided 256
exemplar descriptions of technical debt items. We refer to this
initial investigation as Phase 0.

In Phase 1, we extracted recurring technical debt concepts and
created categories to classify issues as technical debt, even if not
explicitly tagged as such by developers. In Phase 2, we used the
categories to manually classify issues as technical debt or not.

In Phase 3, we evaluated whether we were able to systematically
discover technical debt within issues trackers correctly by talking
to the developers of the systems under study. In Phase 4, we
looked across all the identified technical debt examples for
distinguishing characteristics that might serve as consistent
indicators of technical debt.

2.1 Phase 1: Creating Categories
In Phase 1, we extracted concepts related to technical debt
following the concept extraction approach described in [9]. The
sample data set was prepared by copying a subset of Connect
issues into a spreadsheet where each line represented an issue
tracker record. The record contained both predefined field data
(e.g., type, priority, duration) and issue descriptions.

Two researchers acting as technical debt subject-matter experts
independently tagged each issue. Three decision outcomes were
possible: yes, no, or cannot determine. Researchers were asked to
highlight portions of the issue relevant to their decision, capture
recurring concepts (for example abstract concepts [9] such as
executable artifact or design concern and concept specializations
such as duplicate code or incorrect functionality), and provide
rationale for categorization. After each categorization round, we
met to resolve discrepancies and improve the categorization.

We repeated this categorization process three times, each time
elaborating and refining the categorization method. We conducted
two rounds of categorization using the first 100 records. Then we
did a third round of categorization using the second 100 records of
the Phase 1 data set. We set a target threshold of achieving 80%
rater consistency before exiting Phase 1.

A known expert in the field of software engineering and technical
debt, external to our research team, assessed the results of our
Phase 1 classification. The expert categorized a random sample of
our issues without knowledge of the software system under study
or the approach we used to categorize the sample. As he
categorized each entry, we asked him to discuss his rationale
aloud and extracted concepts as feedback to inform our categories
and guidance.

The output of Phase 1 is an initial categorization summarized in
Figure 2.

2.2 Phase 2: Classifying Issues
In Phase 2, pairs of researchers manually classified the four
selected data sets using the categorization developed in Phase 1
(Figure 2) following the steps below.

Step 1. One researcher prepared the data sets by selecting a random subset
of issues.

Step 2. Two reviewers independently classified the issues.
Step 3. One researcher consolidated results into a single spreadsheet that

highlights agreements and discrepancies.
Step 4. Researchers together discussed classification discrepancies and

extracted recurring concepts.

The two major outputs of Phase 2 include (1) a data set of issues
classified as technical debt or not and (2) refined classification
guidance.

2.3 Phase 3: Evaluating Results
In Phase 3, we walked through the identified technical debt
records with project representatives from Connect, Project A, and
Project B. We started by asking them whether they were familiar
with technical debt and if their project had technical debt. We did
not offer our definition of technical debt to avoid biasing them,
but allowed them to offer us theirs to ensure that there was
sufficient understanding for them to proceed with the task.

We asked the project representatives to indicate whether they
agreed with our assessment of identified technical debt issues. We
also asked if we missed any technical debt examples. We did not
reach out to Chromium developers. The issues we looked at from
Chromium are a representative but small subset of the entire
Chromium issues.

We asked a second expert in the field of software engineering and
external to our research team to use our categorization under the
same conditions to see if he would generate the same results. We
did this to ensure that unintentional bias of the researchers did not
influence the integrity of the results and that the classification and
its guidance is understandable, logical, and easy to follow. The
expert received instructions for conducting the study, read through
the guidance, and had an opportunity to ask questions. The expert
tagged a sample data set from Project A. The expert was then
given a post-experiment questionnaire that included questions
gauging quality of the data, ease of use, and quality of guidance
for classifying the issues. Several minor improvements were
incorporated into the guidance document.

Outputs of Phase 3 resulted in our final data set of classified
technical debt items, 51 from the four project data sets.

2.4 Phase 4: Analyzing Tagged Issues
In Phase 4, we analyzed the selected issues for distinguishing
characteristics that potentially identify technical debt.

We examined structured data in the issue tracker predefined field
data such as priority, duration open, number of watchers, and
number of linked issues. Our motivation was to see if we could
observe trends. For example, did technical debt issues take longer
to resolve, have higher priority, or cause changes that ripple
through a number of issues, hence suggesting additional time
spent dealing with consequences?

We examined the unstructured text in fields such as summary and
description. A pair of researchers followed an open-coding
approach [9], identified reoccurring design concepts from the
records in which we identified technical debt, and affinity grouped
this data (Figure 6). We discuss these results in Section 5.We also
extracted concepts that signal accumulation of consequences of
debt. There was variation among these concepts such that we
could not create meaningful affinity groups. The implications of
this result for future research are discussed in Section 6.

Outputs of Phase 4 include analysis results of predefined fields
(e.g., priority, opened date, closed date) and text for design
concerns (organized by affinity grouping) and intentionality.

3. TECHNICAL DEBT IN ISSUE
TRACKERS
None of the four issue trackers used technical debt as a predefined
label or as an issue type. Consequently, we searched for the key
word “technical debt” in each data set. Only Chromium and
Connect returned positive results, a total of 71 (Table 2). Both
Connect and Chromium include data that dates back several years.
The use of the term first appears in 2010 in Connect and 2012 in
Chromium, coinciding with time that the research community
began studying technical debt.

To eliminate false positives, one researcher read all of the issues
and discarded 7 of the 15 Connect issues and 6 of the 56
Chromium issues, resulting in 58 examples where technical debt
was explicitly used to refer to a concrete system problem that
caused rework. Reasons for discarding issues included issues that
were duplicate entries, documentation tasks (e.g., a blog post,
software architecture design document), and defects to be
resolved during the iteration in which it was discovered.

Table 2. TD discussion occurrence.

Project # Issues # Times TD key
word found

Date first
occurred

Connect 5,186 since
July 2009 15 Jan. 2012

Project A 86 0 NA
Project B 193 0 NA

Chromium >390,000 since
Sep. 2008 56 Oct. 2010

For example, we discarded the following because it was a
documentation task, despite explicit reference to technical debt.
Hereafter, we refer to the issues by the project name followed by
the issue number:

[Connect #1650] The brief blog post should describe the detriments of
technical debt, the balances of keeping vs. jettisoning, and how the
CONNECT team approached the decision and what we did about it -
compromise and balance.

While this issue suggests that the developers are aware of
technical debt, the issue is a blog post task. It does not reveal
where the debt was, how it accumulated, and how it was paid,
hence it does not represent a technical debt item.

Another example of a discarded issue is one in which the
developers concluded that the issue is a “legitimate bug.”

[Chromium #496267] The NCN registers for connectivity messages
iNetworkChangeNotifierAutoDetect::onApplication, but fails to register
when the device starts. …This is a legit bug, not
cleanup/refactoring/technical-debt-reduction.

Errors that are visible to users and result from coding mistakes,
are bugs or defects and should not be confused with technical
debt. In this example, Chromium developers demonstrate that they
are well aware of these concepts and declare that this issue should
be handled as a defect, not as cleanup or refactoring.

In issues where technical debt discussions were explicit, we
observed developers using concepts related to technical debt. For
example, they referred to “taking on debt” when there was a clear
design trade off, “accumulation of debt” when issues were not
fixed on time, or “paying off technical debt” when the developers

wanted to act or had acted on issues in the system. The following
examples demonstrate how developers referred to these related
concerns.

[Chromium #402086] The change looks larger and more complex than
it really is: it's mostly plumbing and changes to method signatures
adding to the line count. It's been in canary for a week without issue.
Landing this will enable WebView to shed some technical debt, which is
quite a big benefit for us.

[Connect #Gateway-1942] To address code added into CONNECT to
support Deferred Patient Discovery as a Reference Implementation in
3.0 and enhanced as part of 3.2. This code is now considered technical
debt since the only approved version…supported in production prior to
the approved Summer 2011 is version 1.0 which doesn't include
functionality for Deferred Patient Discovery.

[Chromium 500991]…However this change is somewhat dwarfed by
the technical debt that needed to be paid off in order to allow this new
change to be tested…

In these examples, developers consciously and correctly refer to
development and design tasks required to deal with technical debt
and its consequences in their discussions. They talk about specific
code snippets, design trade-offs, mapping testing scripts, and their
alignment and the consequences. In particular, among Chromium
developers an unspoken process seems to have emerged in dealing
with technical debt that we could infer from these discussions.

[Chromium #243948] Paying off technical debt becomes a higher
priority, not lower, when in those rare cases it must be deferred. Tests
are not a 'nice to fix' feature. Raising to Pri-1.

These examples show results from a keyword search on “technical
debt.” We also explored whether other terms that developers used
might be useful in extracting examples of technical debt from
issue trackers. To broaden our search terms, we analyzed 256
examples from members of a large multinational organization
who responded to a technical debt survey [12]. From these
examples, we created a list of search terms that includes the
following: duplicate, custom, workaround, inconsistent, hack,
legacy, refresh, rewrite, cleanup, refactor, and refresh. Section 6.2
summarizes the results of this analysis.

Based on these examples found in Connect and Chromium issue
trackers, we conclude that

• while ad hoc, developers use issue trackers to communicate technical
debt

• technical debt concepts have entered developers’ vocabulary
• once developers are aware of the symptoms of technical debt they

respond by examining concrete changes., that caused such debt to
accumulate, such as code snippets, design decisions about
implementation, build and testing scripts, and data models. The
linkage of technical debt to a concrete artifact leaves less room for
confusion in high-level technical debt discussions.

4. TECHNICAL DEBT CLASSIFICATION
Experts apply unspoken rules and heuristics when determining
whether a particular issue represents technical debt. We observe
this in the results of the examples we discussed in Section 3 as
well as in literature [12][15][23][30]. Our goal in developing the
technical debt classification is to capture the expertise and allow
repeatable classification of issues. Figure 2 shows the categories
that resulted from our classification at the end of Phase 1.
Complete guidance for our classification can be found in [34].
Here we summarize the key decision points with examples.

Enough information: When an issue did not contain enough
information, we tagged it as not technical debt to minimize biased
decision making. These were often one-line issue descriptions that
required further context, such as the following example:

[Connect#Gateway-1616]Update
AdapterComponentMpiSecuredService to use PatientDiscoveryFault

Executable or data related: A major source of confusion in
dealing with technical debt is overgeneralization of the concept
and inclusion of related project management activities, such as
documentation, requirements analysis, quality assessment, and
investigation. For technical debt to be actionable for development
teams, it needs to be related to a concrete artifact of the
development, such as code, implementation units, processing units
of the executing system, data models, build scripts, and unit tests.
We tagged any issue that did not mention a concrete development
artifact as not technical debt. A good example is the following:

[Project B-#2645] Perform web application security assessment. Ran
Netsparker and found 4 issues, 1 major and 3 minor.

Running an assessment tool and examining the issues it reveals do
not represent technical debt.

Classification from this point on requires articulation of often
fuzzy concepts such as defect, bug, and design concerns. Defects
are identified as concerns visible to end users; technical debt tends
to be invisible system issues. We separated defects from system
improvement issues [27]. In addition, we separated defects as
visible incorrect functionality from cases where they were
symptoms of an underlying design consideration that may be
related to technical debt. Similarly, we separated system
improvements as new features from cases where an underlying
design limitation impacted the feature request.

Type Defect type Incorrect functionality: We found
many examples of defects in which the system did not work as
expected, such as a tester discovers that a button doesn’t work in
the UI, the system crashes, or a wrong classification is added. We
classified these issue as not technical debt. They are visible to the
users and represent system errors. Examples include

[Project A #25] Correct the values for subsystem A to reflect the
subsystem b values

[Project B # 265] Update alert authoring UI – ‘event window’ should
be close to ‘any rule’ checkbox

Type Defect type Design consideration: Several defects
impacted a quality attribute such as availability, security, or

performance. We classified these as design consideration. We also
classified as design issues several examples of cleanup activities
impacting maintainability. If we also found evidence of
accumulation of unintended side effects, or projection that they
would accumulate, we then classified these issues as technical
debt (e.g., duplicate code, nonstandard binding, type mismatch,
inconsistent implementation, or unused classes).

An example of a defect that represents a design consideration, but
not technical debt, is the following

[Project B #2722] … rule engine repeats alerts because of event query,
causes the rule engine to keep dragging over the last query ….

The researchers tagged this as a defect representing a design
consideration because of the implications on the data model,
performance implications of the query, and the rule engines. But
we did not classify this issue as not technical debt because the side
effects of accumulating rework and refactoring were not clear.

Type Improvement type Feature: New features as system
improvements, such as adding a new node to a sensor component
or removing a drop-down box, were not classified as technical
debt. An example is the following

[Project B # 1485] Filter alert trigger list by date

Type Improvement type Design limitation: In some
cases, an issue was not a defect or mistake but a system
improvement to remedy a design limitation such as the inability to
add a new feature quickly, the current technology not supporting
the improvement needed, maintainability issues, or consequences
of refactoring. We classified these issues as not technical debt
when evidence of side effects were not clear, even those that
clearly talked about refactoring.

[Project B #1513] Refactor onclicks in nodes.html into query events

Accumulation: 51 issues were design related and showed some
evidence of accumulation such as increased time to make
implementation changes, automated tests not supporting the
refactored classes, or security vulnerability. We tagged only those
issues for which we could identify an explicit impact of side
effects—in other words, accumulating consequences—as
technical debt. Here is an example from Connect:

[Connect #Gateway-1631] …The re-architecture of the source code to
support multiple NwHIN specifications has introduced a new Java
packaging scheme. New and existing classes have been moved into
these new package folders; however, the previous package folders have
been left in place with no class files. No impact to functionality;

Figure 2. Concepts for classifying technical debt.

however, may lead to confusion for users implementing enhancements /
modifications to the source code.

Further details from project stakeholders on the issues we
classified as not technical debt may reveal that they represent
technical debt. However, our goal in this study was to uncover
those issues that could be classified with available information,
then use this output to make progress on a concrete technical debt
definition and an improved reporting mechanism. Data quality of
the issue reports is a known concern in such studies; therefore, we
erred on the side of false negatives rather than false positives. An
issue we discarded may have been technical debt, but we did not
have enough context to evaluate it. Our samples represent a
starting set to analyze concrete examples of technical debt and its
characteristics to help developers communicate and act on such
issues.

Table 3 is the summary of our classification of the four data sets.
Out of 727 records, we identified 51 as technical debt issues.

Table 3. Summary of technical debt classification.

TD
Not
TD Stuck

No
agreement

Total

Connect 12 265 1 7 285

Project A 10 74 1 1 86

Project B 13 171 8 0 193
Chromium 16 146 1 0 163

Total 51 656 12 8 727

We allowed research team members to identify points where they
got stuck, represented as S1, S2, and S3 in Figure 2. This surfaced
12 issues that we discussed for future improvements to the
classification guidance.

One example where the researchers got stuck is from Project A.
There is clearly a design concern about decommissioning a
database. However, while the proposed remediation suggests web
service implementation to avoid rework later (future
accumulation), it is unclear if the current design solution is
causing accumulation.

[Project A, #21] Request (made by xx) for read only access to the xx
tables in xx database. Requirements are: 1. Web Service
implementation a. Since xx is planned for decommission, a database
view is not a viable solution. We would like to go with implement it in
Web Services to avoid rework in the future

We resolved this discrepancy by limiting the scope to evidence on
current accumulation to avoid researchers’ knowledge or
interpretation of projects’ technical context biasing the results.

As a result of the several iterations of tagging, discussions, and
analysis of the examples, we conclude that

• technical debt exists when design decisions cause unintended work
that potentially increases the time to delivery, which we refer to as
accumulation. Making accumulation clear is critical in
communicating technical debt concretely. In its absence, confusion
about whether an issue represents technical debt or not is inevitable.

• technical debt is a design-related concept, as confirmed by the
examples we identified.

5. CHARACTERISTICS OF TECHNICAL
DEBT
We analyzed the 51 technical debt examples identified in Phase 2
for generalizable characteristics. We looked at both predefined
issue fields—including open days, watchers, and priority—and
analyzed description text for design concerns and intentionality.
We report our analysis results by the questions we addressed.

Do technical debt issues take longer to close?

We hypothesized that the 51 technical debt issues may take longer
to resolve than the 656 non-technical debt issues. Figure 3
compares average days that an issue remained open between these
two groups.

Figure 3. Average days open by project.

Chromium, Connect, and Project A show a slightly higher average
number of days open for technical debt issues; however, the delta
is not significant.

While all projects had large Days Open standard deviations,
Chromium and Connect were a little tighter (Chromium σ = 319
days, Connect σ = 251, Project A σ = 456, and Project B σ = 557).

Figure 4. Time issues remain open.
Figure 4 shows the cumulative percentage of issues closed for
each project, revealing subtle differences in pace of issue closure.
Both Chromium and Connect close 95% or more issues within 2
years compared to Projects A and B, which close less than 70%.
This suggests that issue management practices may be slightly
stronger in Chromium and Connect. In addition, for these two
projects we found examples in the issue records of language like
“technical debt” and “accumulation” in the developer vocabulary.

We conclude that results are not significant to declare days open a
distinguishing characteristic of technical debt; however, future
analysis in larger data sets with mature issue management
practices could yield different results.

Do technical debt issues have higher numbers of watchers?

Watcher is a measure of the number of people interested in an
issue record in the issue tracker. Only Chromium has a fully
populated data set for “watcher,” so we took a deeper dive into
Chromium Watchers. Figure 5 has Number of Watchers on the x
axis and Days Open on the y axis. Technical debt issues are
shown in orange and non-technical debt issues in blue.

Figure 5. Chromium by number of watchers and days open.

The patterns of the number of watchers between the two classes of
issues are not significantly different. The gap in orange technical
debt dots between 8 and 60 days open is likely a random
occurrence due to the size of the data set. Therefore, we conclude
that we cannot declare a relationship between number of watchers
and technical debt from this data set.

Are technical debt issues high priority?

Table 4 compares the issues by priority (1 = highest priority and 3
= lowest).

Table 4: Analysis of priority.
 Priority 1 Priority 2 Priority 3
Technical Debt Issues 22% 56% 22%
Not Technical Debt Issues 24% 50% 26%

The percentages represent counts of issues with that priority
divided by the total count for that row (e.g., 22% of the technical
debt issues have a Priority = 1). Both categories have 50–60% of
the issues (the majority) assigned to Priority 2. Given this, we do
not have evidence to conclude that technical debt issues have
higher priority than other issues.

Do the technical debt issues show recurring design concepts?

We analyzed the textual data from the 51 technical debt examples
for recurring design concepts. We created affinity groups derived
bottom-up from the issue descriptions (contrary to a top-down
approach of creating the concepts first and then classifying them).
The resulting affinity groups are shown in Figure 6 with the
number of issues that contained the concept as well as the
project(s) where we found the concept. If we found the concept in
multiple projects, the number of times per project is shown. For
example, for the 5 instances of event handling, two of these were
found on the Chromium project and three were found on Connect.

Our resulting data set is too small; however, it serves as a starting
point to do more in-depth analysis of potential issues that may
commonly cause unintentional consequences. In particular,

refactoring-related consequences, such as dead code, misaligned
test and build scripts, and version conflicts, are places to start
improving unintentional technical debt accumulation.

Deployment &
Build

Out-of-sync build dependencies 3 CN
Version conflict 1 CN
Dead code in build scripts 1 CN

Code Structure

Event handling 5 2CH, 3PB
API/Interfaces 5 2CH, 1CN, 2PB
Unreliable output or behavior 5 4CH, 1PA
Type conformance issue 3 CN
UI design 3 PB
Throttling 2 1CH, 1PB
Dead code 2 CN
Large file processing or rendering 2 CH
Memory limitation 2 CH
Poor error handling 1 PA
Performance appending nodes 1 CH
Encapsulation 1 PB
Caching issues 1 CN

Data Model Data integrity 6 PA
Data persistence 3 PB
Duplicate data 2 PA

Regression
Tests

Test execution 1 CH
Overly complex tests 1 CH

CH=Chromium, PA= Project A, PB=Project B, CN=CONNECT

Figure 6. Affinity groups of design concerns.

Is technical debt used strategically?

The appeal of technical debt is that it allows development teams
to make intentional design trade-offs to accelerate development
and revisit them as needed. Yet, 49 of the the 51 issues were
unintentional design decisions. We provide examples (one from
each of the four affinity groupings from Figure 6).

Deployment & Build: Out-of-sync build dependencies

[CONNECT #Gateway-1623] The CONNECT 3.3 release is to be
deployed against the 2.1.1 version of the Metro Web Stack. Therefore,
the compilation and build dependencies should reference the 2.1.1
version of the Metro libraries…Impact to the users enhancing /
modifying CONNECT is that they will not have the correct version of
the Metro Web Stack library for development.

The reference to “will not have correct version,” describe the
impact of not maintaining accurate build dependencies in the
build scripts. The word “should” suggests unintentionality.

Code Structure: Event handling
[Chromium # 294388] The |code| attribute specified in UI Events is
intended to accurately identify the physical key associated with a key
event. The legacy attribute |keyCode| was previously used by
developers for this purpose, but it has problems in that it was never
completely specified and thus it is not consistently implemented across
browsers…add a new |code| attribute to WebKeyboardEvent.

The words “not consistently implemented” imply design
complexity, and “never completely specified” suggests
unintentionality.

Data Model: Data integrity
[Project A #] approximately 340 records exist in the database twice…
so much time had elapsed in some cases the duplicate was endorsed.

In this example, “340 records exist in the database twice” implies
maintenance complexity, and “so much time has elapsed”
suggests unintentionality.

Regression Tests: Overly complex test

[Chromium #367158] Currently, we have a lot of duplicate/boilerplate
code in this test. We should try to simplify this test so that it's easier to
maintain and read.

Here, “easier to maintain” implies maintenance complexity and,
“we should try to simplify” suggests unintentionality.

Only two issues among the 51 hint at intentionality; however, we
would not go so far as to call them strategic. The two
“intentional” decision examples are shown below:

[Project B # 1393] Add "disabled" class to sensor tabs - it's a little bit
hacky - disabled tab is still active. But it'll do for this version.

[CONNECT #Gateway-1771]…Setting Guidance at the Adapter layer
is an idea that we documented and designed, however…we quickly
realized some pitfalls and decided not to go through with the
implementation such as: 1) There were many error cases which we
would have to handle...

In the first example, “for this version” suggest that the developer
is making an intentional decision to take on technical debt with
hopes of refactoring later. In the second example, “Setting
Guidance at the Adapter layer” imply a design limitation in the
adapter, and “decided not to go through with the implementation”
suggests an intentional decision to defer the rework. The issue
description does not contain enough information to determine the
impact of not making the change (such as increased accumulation
in the form of complexity or maintainability).

Do groups of issues suggest technical debt?

When we asked project stakeholders to evaluate the results of our
technical debt classification, we uncovered cases in which an
issue by itself did not represent technical debt; however, when
two or more issues were analyzed together, they suggested design
limitations with accumulating side effects.

The Project A stakeholder confirmed that he would have also
classified 9 of the 10 issues that we tagged as technical debt. In
addition, he pointed out that several of the issues we found point
to neglecting the data architecture, causing reliability, complexity,
and data integrity issues. As shown in Figure 6, 72% of the
technical debt issues in the Data Model group were found on
Project A (8 of 11).

The Project B stakeholder positively confirmed 100% of the
technical debt examples that we found. The project stakeholder
revealed that lack of a robust and extensible UI framework had
caused significant rework on the project. He said he would also
include some other issues that we did not tag as technical debt due
to their dependence on the UI framework. All three of the UI
design issues shown in Figure 6 were from Project B.

The Connect stakeholder (one of the architecture evaluation leads)
was able to positively confirm only 42% of the technical debt
examples because he said the issue description lacked enough
detail to make a determination. However, of the 42% positively
confirmed technical debt examples (5 of 12 examples), he said
that several issues were consistent with maintainability risks
discovered during the architecture evaluation. For example, all
four of the issues in the Deployment & Build group shown in
Figure 6 were related to design concerns about the Connect build
script maintainability.

Analysis of the technical debt issues we identified allows us to
conclude that

• issue data such as priority, duration open, and number of watchers
does not imply accumulation, so it does not help identify technical
debt historically.

• while our data set is small, we identify a starting set of recurring
issues in technical debt. Post-refactoring alignment of unit test, build
scripts, and versions and removal of dead code emerge as obvious
technical debt-related concerns.

• intentional technical debt is not discussed in issue trackers explicitly.

• groups of issues that appear not to be technical debt when assessed
individually can reveal underlying technical debt issues when
assessed together.

6. IMPLICATIONS FOR PRACTICE AND
RESEARCH
Issue trackers serve as an entry point for communicating technical
debt since developers use them to manage task priorities.
Anecdotal feedback from developers tells us that even when
technical debt is included in the issue tracker it may languish as it
is not given priority or the symptoms are addressed but not the
underlying issue. Our findings offer some practical improvements
to bring better visibility to technical debt and ideas for future
work.

6.1 Practice Improvements
Technical debt is useful as a rhetorical concept to foster dialogue
between business and technical actors. Classifying technical debt
issues allows developers to justify budgeting project resources for
technical debt (typically 10–15%) in a similar manner to allocate a
discretionary budget for defects.

There are standards for providing bug reports with enough
information so they may be reproduced and fixed [27] [28]. These
essential properties are encoded in predefined fields in issue
trackers. These fields are necessary but not sufficient for
describing technical debt. Recent research on technical debt has
offered templates for reporting technical debt [36] [23]. These
contributions have similar goals to our work; however, templates
recommend concepts that are at too high a level to overlap with
daily routines and tasks of developers, such as estimated interest
probability or principal and interest that are directly driven from
the financial analogy.

Our analysis and examples demonstrate that technical debt
becomes concrete when it relates to software units, as opposed to
software process artifacts such as requirements or documentation.
This refined scope leads to an understanding of technical debt as
the collection of technical debt items associated with a system.

Table 5. Properties of technical debt items.

Name Shorthand designation

Development
artifact

Element of the system or the supporting work products:
design, code, data, build scripts, test suites, etc.

Symptoms Observable qualitative or measurable consequence

Consequences Effect on value, quality, or cost of the system in the form
of
• accumulation: additional costs due to reduced

productivity, induced defects, or loss of quality incurred
by software depending on an element of technical debt

• remediation: current cost to develop a “better”
solution

Analysis Degree to which the development approach meets
stakeholder needs or expectations

A technical debt item is a single element of technical debt
connecting a set of development artifacts; with consequences for
the quality, value, and cost of the system; and triggered by some
causes related to process, management, context, and business
goals. An item can be described using the properties in Table 5,
supplementing a typical issue report.

Introducing these properties can help developers understand trade-
offs and the longer term consequences of technical debt when
discussing an issue among themselves. It can also help make the
case for additional resources when communicating to
management. We suggest that developers use the properties
shown here to write better descriptions and perhaps to increase the
degree of automation possible in classifying them. Table 6 shows
an example of organizing the text according to these properties
from a CONNECT issue.

Table 6. Example of a technical debt item.

Name Connect #Gateway-1631: Empty Java package (dead
code)

Development
artifact

The re-architecture of the source code to support
multiple NwHIN specifications has introduced a new
Java packaging scheme.

Symptoms Numerous empty Java package folders present across
multiple projects.

Consequences No impact to functionality; however, may lead to
confusion for users implementing enhancements /
modifications to the source code.

Analysis New and existing classes have been moved into these
new package folders; however, the previous package
folders have been left in place with no class files.

The properties can also help parse the issues and identify what is
ambiguous or missing. For example, without explicit information
about debt accumulation, the issue cannot be properly classified
nor the trade-offs understood. Developers may need this
information to justify paying down the debt as an alternative to
paying ongoing costs associated with addressing the symptoms.

6.2 Future Research
Our results suggest that by using automated text analysis and
machine-learning techniques, technical debt issues can be more
systematically discovered. To explore this, we ran a manual
search against the 727 issues with the following words (identified
during Phase 0): duplicate, custom, workaround, inconsistent,
hack, legacy, refresh, rewrite, cleanup, refactor, and refresh. We
hypothesized that there would be a statistically significant
difference between the percentage of issues that contain a key
word AND are technical debt and the percentage of issues that
contain a key word but are not technical debt. We found that 67%
of the issues contained one of the key words and were tagged as
carrying debt. Only 8% fall in the latter category. These findings
suggest that automated word searches of key concepts related to
technical debt may hold promise, but more experimentation and
setup is needed with large data sets.

Assessing accumulation was one of the biggest challenges we
faced with systematically classifying technical debt issues in this
study. Disagreement stemmed from two major sources. First, the
language used by developers to describe accumulation is even less
explicit than the design issue description. For example, developers
made accumulation statements like “so much time has passed that

now we have duplicate data,” “this may lead to confusion for
users,” or “we should try to simplify so it is easier to maintain.”
The implicit, unstructured nature of accumulation language makes
it difficult for reviewers to classify consistently, developers to
assess impact, and researchers to study how to automate technical
debt classification. Second, issues often included three types of
accumulation information: (1) existing accumulation related to the
current problem, (2) future recurring accumulation related to the
current problem, and (3) accumulation related to the potential
solution of the current problem, which we refer to a remediation.
As discussed in Section 3.1, our response to confusion over this as
we classified was update the classification guidance to limit the
scope of accumulation to type (1) for this study [34]. Future
research is needed to better define and model accumulation in
terms of the costs associated with not fixing the problem and the
added costs of fixing the problem at a later time.

Several of the examples, particularly in the more mature issue
trackers (e.g., Chromium, Connect), included extensive developer
discussion accompanied by significant code file check-in/check-
out activity. A natural next step for this work is analyzing patterns
found in the developer text discussion with references to technical
debt and commit and change histories.

Our findings indicate several fruitful future research activities and
our plans include the following:

• Evaluate other techniques for mining unstructured data (e.g., pattern
matching, island/lake parsers, information retrieval methods, and
word categories) to locate technical debt in software repositories.

• Trace technical debt in the developer text discussion to code through
the commit log to evaluate efficacy of self-reported debt in issue
trackers.

• Model dimensions of accumulation in terms of cost to fix (paying
down the principal) and cost to not fix (paying interest), and the
influence of time (current and future costs) to improve guidelines for
describing technical debt.

• Build on the investment in the Chromium data set to conduct
correlation studies with defects and software vulnerabilities to better
understand the relationships among these kinds of software
anomalies.

6.3 Threats to Validity
We identified the following threats to the validity of our study and
took steps to minimize them.

Manual inspection: Manual inspection is crucial, especially in an
exploratory study like ours that serves as input for creating key
concepts. To counter the threat of making classification and
interpretation mistakes, we included steps in our study to cross-
check and discuss items. We also set a high inter-rater reliability
threshold and had multiple researchers classify and code issues. In
order to minimize researcher bias, we also had both developers of
the system and experts external to the research team classify
random samplings of the issues.

Study subjects: Software development management and issue
tracking practices of the organizations whose data we used affect
the quality of our results. The systems we selected may not have
been representative. We aimed to minimize skewing of our results
by selecting a variety of data sets both from open and closed
systems, representative types of issue trackers, and established
empirical analysis approaches.

Data quality and size: Technical debt represents only a small
subset of all issues in a system, although its impact may be

significant. Technical debt may not have been significantly
represented in the data we selected, especially given the varying
quality of the issue tracker data. We aimed to minimize this by
randomizing the issues we selected, including both projects where
we knew technical debt existed as well as others where we had no
prior knowledge.

7. RELATED WORK
In empirical software engineering, it has become commonplace to
mine data from change request and bug databases to detect where
issues have occurred in the past and use that information for
improved definitions, quality analysis, development management,
and predictive models. Examples include but are not limited to
manual and automated mining of issue trackers for
misclassification [16], duplicates [5], and correlations of
vulnerabilities and bugs [7]. Issue trackers also serve as historical
data to help identify patterns to assist with predicting current or
future events, such as risks [6]. To our knowledge, our study is the
first one that extensively looks at issue databases through the
technical debt lens.

A key challenge in mining software repositories is data quality
and missing data [26]. A number of studies look at the quality of
reported data and ways to improve it, such as ensuring that
missing links between bugs and bug-fix commits are included [4]
and studying bug report quality [17][37]. These studies suggest
that reports that contain key information get addressed sooner.
Our results are consistent with these studies when it comes to
reporting issues related to technical debt as well. To our
knowledge, our study is the first one that provides key fields that
need to be included in an issue report on technical debt.

The ability to accurately create an issue report communicating
technical debt assumes a concrete understanding of technical debt.
Numerous researchers have proposed a definition of technical
debt, including McConnell [29], Li [22], Shull [32], and Kniberg
[20]. To date these definitions stay at a conceptual level. Our
study is the first that grounds an improved understanding of
technical debt in actual software artifacts supported by extensive
empirical data, contributing to the envisioned future for an
improved data analysis and practice for managing technical debt
[3] .

To understand implications of technical debt, Systematic literature
reviews have created categories and concept ontologies [18] [1] or
related debt to different stages in the development life cycle
[2][22][35]. Small-scale interview studies on understanding how
developers talk about technical debt have focused on sources of
technical debt [15][24][33]. These categories and classifications
of technical debt rely on limited literature reviews and single-case
studies. Our study is the first that demonstrates empirically that a
significant amount of data is needed to talk about technical debt
classification.

A number of studies have looked for relationships between
software metrics and technical debt [14][25]. This work has
applied existing code smells, coupling and cohesion, and
dependency analysis to identifying areas of technical debt. Other
work has looked at extracted examples of technical debt using
keywords from developers’ comments in code as self-admitted
technical debt [30]. All of these stay at the level of code analysis,
associating local code changes with technical debt. The work by
Kazman et al. [19] relates architectural modularity violations to
number of bugs to detect technical debt. This study is closest in its
spirit to our findings that systematic issues hint at underlying
technical debt.

8. CONCLUSIONS
Our study contributes to research on mining software repositories
by looking at issue trackers from the perspective of early
representations of technical debt. Our findings tell us the
following:

• Technical debt concepts (e.g., taking on, accumulating, and paying
back debt) have entered the vernacular of developers. But now they
need a simple and formal approach to communicate the most crucial
information. We offer the technical debt item and examples as a step
toward that goal.

• Our data and analysis weakly support that issues where developers
discuss certain classes of changes such as refactoring and cleanup
are more likely to contain references to accumulation and technical
debt.

• Technical debt conceptually is about conscious design trade-offs.
However, the majority of technical debt that developers deal with is
a consequence of unintentional design choices. Issue trackers carry
information that can assist in uncovering the underlying technical
debt.

We suggest that developers adopt a simple practice of concretely
tagging and reporting technical debt and its consequences with
accumulating side effects as they discover debt or take it on. This
helps development teams start communicating about these issues
more concretely and creates a valuable resource for research. This
contribution could help increase the sample size and quality of the
data to make future research possible, since ambiguity led us to
discard many issues in the existing data sets.

The past decade has seen significant progress in the mining
software repositories community with substantial outcomes in
robust automated analysis and correction tools as well as sound
research approaches. Our exploratory study demonstrates that
technical debt has become a ripe area in practice where mining
software repositories research can be put to use to further improve
our understanding, communication, and analysis of technical debt.

9. ACKNOWLEDGMENTS
Copyright 2016 ACM. This material is based upon work funded
and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally funded
research and development center.
References herein to any specific commercial product, process, or
service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement,
recommendation, or favoring by Carnegie Mellon University or
its Software Engineering Institute.
[Distribution Statement A] This material has been approved for
public release and unlimited distribution. Please see Copyright
notice for non-US Government use and distribution. DM-0003242
We thank Felix Bachmann, Phil Bianco, Philippe Kruchten,
Tamara Marshall-Keim, Timothy Palko, and Hasan Yasar for their
valuable feedback and expert input.

10. REFERENCES
[1] Alves, N. S. R., Ribeiro, L. F., Caires, V., Mendes, T. S., and

Spínola, R. O. 2014. Towards an ontology of terms on
technical debt. In ACM SIGSOFT 40, 2 (Mar. 2015), 32-34.
DOI=http://dx.doi.org/10.1145/2735399.2735419.

[2] Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., and
Avgeriou, P. 2015. The financial aspect of managing

technical debt: A systematic literature review. Inform.
Software Tech. 64 (Aug. 2015), 52-73.

[3] Avgeriou, P., Kruchten, P., Nord, R., Ozkaya, I., Seaman, C.
2016. Reducing friction in software development, IEEE
Software 33, 1 (Jan./Feb. 2016), 66-73.

[4] Bachmann, A., Bird, C., Rahman, F., Devanbu, P., and
Bernstein, A. 2010. The missing links: bugs and bug-fix
commits. In Proceedings of the Eighteenth ACM SIGSOFT
international symposium on Foundations of software
engineering (FSE '10). ACM, New York, NY, USA, 97-106.

[5] Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S. 2008.
Duplicate bug reports considered harmful … really? In IEEE
International Conference on Software Maintenance. IEEE
Press, Piscataway, NJ, USA, 337-345.

[6] Choetkiertikul, M., Dam, H. K., Tran, T., and Ghose, A.
2015. Characterization and prediction of issue-related risks in
software projects. In Proceedings of the 12th Working
Conference on Mining Software Repositories. IEEE Press,
Piscataway, NJ, USA, 280-291.

[7] Camilo, F.; Meneely, A.; Nagappan, M. 2015. Do bugs
foreshadow vulnerabilities? A study of the Chromium
Project. In IEEE/ACM 12th Working Conference on Mining
Software Repositories. IEEE Press, Piscataway, NJ, USA,
269-279.

[8] Chromium Issues.
https://code.google.com/p/chromium/issues/list

[9] Corbin, J. and Strauss, A. 2008. Basics of Qualitative
Research- Techniques and Procedures for Developing
Grounded Theory, 3rd ed. Thousand Oaks, CA: Sage
Publications, 2008.

[10] CONNECT Health IT Exchange U.S. Health and Human
Services. 2009-2015 [open source project].
http://www.connectopensource.org/

[11] Connect Health IT Exchange Issue Tracker.
https://connectopensource.atlassian.net/secure/Dashboard.jspa

[12] Ernst, N., Bellomo, S., Ozkaya, I., Nord, R. L., and Gorton, I.
2015. Measure it? Manage it? Ignore it? Software
practitioners and technical debt. In Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering
(Bergamo, Italy, Aug. 30-Sep. 4, 2015). ACM, New York,
NY, 50-60.

[13] Falessi, D., Shaw, M., Mullen, K., and Stein, M. 2013.
Practical considerations, challenges, and requirements of
tool-support for managing technical debt. In Proceedings of
the 4th International Workshop on Managing Technical Debt
(San Francisco, CA, May 20, 2013). IEEE Press, Piscataway,
NJ, 16-19.

[14] Fontana, F., Ferme, V., and Spinelli, S. 2012. Investigating
the impact of code smells debt on quality code evaluation. In
International Workshop on Managing Technical Debt, pages
15-22, Zurich, 2012.

[15] Guo, Y., Seaman, C., Gomes, R., Cavalcanti, A., Tonin, G.,
DaSilva, F., Santos, A., and Siebra, C. 2011. Tracking
technical debt: An exploratory case study. In Proceedings of
the 27th International Conference on Software Maintenance
(Williamsburg, VA, Sep. 25-30, 2011). IEEE Press,
Piscataway, NJ, 528-531

[16] Herzig, K., Just, S., and Zeller. A. 2013. It's not a bug, it's a
feature: how misclassification impacts bug prediction. In
Proceedings of the 2013 International Conference on

Software Engineering (ICSE '13). IEEE Press, Piscataway,
NJ, USA, 392-401.

[17] Hooimeijer P. and Weimer, W. 2007. Modeling bug report
quality. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering
(ASE '07). ACM, New York, NY, USA, 34-43.

[18] Izurieta, C., Vetro, A., Zazworka, N., Cai,Y., Seaman, C.,
and. Shull, F.. 2012. Organizing the technical debt landscape.
In International Workshop on Managing Technical Debt,
pages 23-26, 2012.

[19] Kazman, R., Cai, Y., Mo, R., Feng, Q., Xiao, L., Haziyev, S.,
Fedak, V., and Shapochka, A. 2015. A Case Study in
Locating the Architectural Roots of Technical Debt. In the
37th IEEE International Conference on Software
Engineering (ICSE), 2015, pp. 179-188.

[20] Kniberg. H. 2013. Good and bad technical debt (and how
TDD helps. Oct. 2013.
http://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-
technical-debt.

[21] Kruchten, P., Nord, R. L., and Ozkaya, I. 2012. Technical
debt: From metaphor to theory and practice. IEEE Softw.
Spec. Issue Tech. Debt 29, 6 (Nov.-Dec. 2012), 18-21.

[22] Li, Z., Avgeriou, P., and Liang, P. 2015. A systematic
mapping study on technical debt and its management. J. Syst.
Softw. 101 (Mar. 2015), 193-220

[23] Li, Z., Liang, P., and Avgeriou, P. 2014. Architectural debt
management, in I. Mistrik, R. Bahsoon, Y. Zhang, K.
Sullivan, R. Kazman (eds.), Economics-Driven Software
Architecture, Elsevier, 2014, Pages 183-204.

[24] Lim, E., Taksande, N., and Seaman. C. 2012. A balancing
act: what software practitioners have to say about technical
debt. IEEE Software, 29, 6 (2012), 22-27.

[25] Marinescu. R. 2012. Assessing technical debt by identifying
design aws in software systems. IBM Journal of Research
and Development, 56, 5 (2012), 9:1-9:13.

[26] Mockus, A. 2008. Missing data in software engineering, in F.
Shull, J. Singer, D. Sjoberg eds. 2008, 185-200. Springer
Verlag.

[27] IEEE Std 1044-2009: IEEE Standard Categorization for
Software Anomalies. 2009. IEEE Computer Society,
Washington, DC.

[28] ISO/IEC 14764:2006(E): Software Engineering – Software
Life Cycle Processes – Maintenance. 2006. ISO/IEC, Geneva
Switzerland.

[29] McConnell, S. 2007. Technical debt. Construx, Nov. 1, 2007.
http://www.construx. http://www.construx.com/10x_
Software_Development/Technical_Debt/

[30] Potdar, A. and Shihab, E. 2014. An exploratory study on
self-admitted technical debt. ICSME 2014: 91-100.

[31] Seaman, C. 1999. Qualitative methods in empirical studies of
software engineering. IEEE Trans. Software Eng. 25, 4 (Jul.-
Aug. 1999), 557-572.

[32] Shull, F., Falessi, D., Seaman, C., Diep, M., and Layman, L.
2013. Technical debt: Showing the way for better transfer of
empirical results. In Perspectives on the Future of Software
Engineering. Springer, Berlin, Germany, 179-190.

[33] Spínola, R. O., Zazworka, N., Vetro, A., Seaman, C., Shull,
F. 2012. Investigating technical debt folklore: shedding some
light on technical debt opinion. MTD@ICSE 2012: 1-7.

https://code.google.com/p/chromium/issues/list
https://connectopensource.atlassian.net/secure/Dashboard.jspa
http://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt
http://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt
http://dblp.uni-trier.de/pers/hd/s/Sp=iacute=nola:Rodrigo_O=
http://dblp.uni-trier.de/pers/hd/z/Zazworka:Nico
http://dblp.uni-trier.de/pers/hd/v/Vetro:Antonio
http://dblp.uni-trier.de/pers/hd/s/Shull:Forrest
http://dblp.uni-trier.de/db/conf/icse/mtd2013.html#SpinolaZVSS12

[34] Technical Debt Classification Approach Document and
Technical Debt Issue Examples. 2016 Sample Data Set
http://sei.cmu.edu/architecture/research/arch_tech_debt/got-
technical-debt.cfm

[35] Tom, E., Aurum, A., and Vidgen, R. T. 2013. An exploration
of technical debt. J. Syst. Softw. 86, 6 (2013), 1498-1516.

[36] Zazvorka N., Spínola R., Vetro’ A., Shull F., and Seaman C.
2013. A case study on effectively identifying technical debt.
In 17th International Conference on Evaluation and

Assessment in Software Engineering, Porto de Galinhas,
Brazil, April 14-16 , 2013. pp. 42-47.

[37] Zimmermann, T. Premraj, R., Bettenburg, N., Just, S.,
Schröter, A., Weiss, C. 2010. What makes a good bug
report? IEEE Trans. Software Eng. 36, 5 (Sep. 2010), 618-
643.

	1. INTRODUCTION
	2. APPROACH
	2.1 Phase 1: Creating Categories
	2.2 Phase 2: Classifying Issues
	2.3 Phase 3: Evaluating Results
	2.4 Phase 4: Analyzing Tagged Issues

	3. Technical debt in issue trackers
	4. TECHNICAL Debt Classification
	5. Characteristics of Technical Debt
	6. Implications for Practice and Research
	6.1 Practice Improvements
	6.2 Future Research
	6.3 Threats to Validity

	7. RELATED WORK
	8. CONCLUSIONS
	9. ACKNOWLEDGMENTS
	10. REFERENCES

