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ABSTRACT 
Concretely communicating technical debt and its consequences is 
of common interest to both researchers and software engineers. In 
the absence of validated tools and techniques to achieve this goal 
with repeatable results, developers resort to ad hoc practices in an 
effort to communicate technical debt. Most commonly they report 
using issue trackers or their existing backlog management 
practices to capture and track technical debt. In a manual 
examination of 1,246 issues from four issue trackers from open 
source industry and government projects, we identified 109 
technical debt examples. Our study reveals that technical debt and 
its related concepts have entered the vernacular of developers as 
they discuss development tasks through issue trackers. Even when 
issues are not explicitly tagged as technical debt, it is possible to 
identify technical debt items in these issue trackers using a 
categorization method we developed. We use our results and data 
to motivate an improved definition of technical debt and an 
approach to explicitly report technical debt in issue trackers. 

CCS Concepts 
Software and its engineering → Software creation and 
management → Software post-development issues 
→ Maintaining software 

Keywords 
Technical debt; software anomalies; issue tracking; text 
categorization; software design. 

1. INTRODUCTION 
What is technical debt? Why identify technical debt? Shouldn’t 
these issues be captured as defects and bugs? The inability to 
answer these questions empirically, supported by a software 
economics theory, can result in technical debt attaining a 
legendary status [33]. We know its value as a metaphor, and we 
hear stories from developers and project folklore about its 
symptoms and their consequences, but can we see, describe, and 
hold the thing itself as a concrete software development artifact? 
While progress is being made toward refining our understanding 
of technical debt theoretically, data-driven studies to contribute to 
theoretical research endeavors lag behind. 

Results of our recent, broad practitioner survey of 1,831 software 
engineers and managers demonstrate that they share a common 
understanding of the concept of technical debt [12]. According to 
participants, lack of proven tool support to accurately identify, 
communicate, and track technical debt is a key issue and remains 
a gap in practice. In the absence of validated tools to concretely 
communicate technical debt and its consequences, developers 
resort to practices they are familiar with.  

More than half of the participants of our survey reported using 
issue trackers to communicate technical debt either explicitly 
(“technical debt” is mentioned) or implicitly (the concept of 
“technical debt” is discussed but not explicitly mentioned). This is 
consistent with anecdotal feedback from our own experiences of 
working with organizations as well as case studies represented in 
literature on technical debt [36]. 

Intuitively it makes sense for issue trackers to serve as an entry 
point for communicating technical debt since developers use issue 
trackers as one tool to manage task priorities. To understand how 
issue trackers are used to communicate technical debt by software 
developers, we conducted an exploratory study of four issue 
trackers, including the Chromium [8] and Connect Health IT 
Exchange open source [11] projects and two government IT 
projects for which we are aware of technical debt issues.  

We address the following questions: 

• RQ1: Do developers use the term technical debt explicitly when 
discussing issues and tasks in their issue trackers? 

• RQ2: Can technical debt items be discovered systematically within 
issue trackers? 

• RQ3: What are the distinguishing characteristics of technical debt 
items discovered in issue trackers? 

We searched through 1,246 issues, identified 109 examples of 
technical debt, and evaluated them with experts and the 
developers of the systems when applicable. Our study results 
show that software engineers are in practice using issue trackers to 
communicate technical debt. A summary of our findings and 
conclusions include the following: 

Finding 1: Technical debt-related concepts, such as take-on 
debt, accumulate debt, and pay-back debt, have entered the 
developers’ vocabulary. While technical debt items were not 
labeled explicitly in the issue trackers we studied, we identified 58 
examples where developers explicitly use the term “technical 
debt” and related concepts to understand an issue.  

Finding 2: Developers do not always clearly identify the 
consequences of not paying down the debt. We developed and 
used a classification approach to find additional examples where 
developers articulated concerns related to technical debt but did 
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not use the term. Using this approach, we identified 51 more 
examples of technical debt.   

Finding 3: The examples provide early results for design areas 
where technical debt mostly occurs, including consequences of 
dead code, duplicate code, and API mismatches. Studying the 
characteristics of project-management indicators recorded in the 
issue trackers (such as the amount of time an issue stays in the 
issue tracker, number of watchers, priority) demonstrate that more 
data analysis is needed to find consistent values that may show a 
relationship between these characteristics and technical debt. 

Finding 4: Technical debt is mostly result of unintentional 
design choices. The appeal—and promise—of understanding 
technical debt is to use design choices strategically to 
intentionally trade off speed and development effort with minimal 
compromise of quality. The reality is that the technical debt items 
we found are mostly unintentional and surface in issue trackers 
only when the symptoms of their unintended consequences 
become visible.  

Building on these findings, we recommend that to take best 
advantage of technical debt and pay it back before the debt grows, 
its definition should concretely map to development artifacts.  

Technical debt is work relating to software units (including 
infrastructure as code) that have design implications and 
evidence of present or anticipated accumulation  extra  work.  

Conversely, technical debt is not work related to a non-software 
unit (e.g., requirement, documentation, process concern), nor is it 
a low-impact, executable artifact change with minimal 
consequence if not fixed (e.g., code cleanup). 

In this paper, we present our analysis results and how to report a 
technical debt item. 

2. APPROACH 
We conducted or study on four projects as described in Table 1 
and in four phases as summarized in Figure 1.  

 
Figure 1. The four research phases followed. 
The data sets included subsets of items from the Connect Health 
IT Exchange (Connect) and Chromium issue trackers and two 
government IT projects, Project A and Project B.  

We selected Connect for the study because it is an active open-
source, open-contribution project with public access to its Jira 
repository. Connect aims to enable secure, electronic health data 
exchange among health-care providers, insurers, government 
agencies, and consumer services in the United States by 
establishing a gateway between health information systems and 
organizations. It is based on service-oriented architecture design 

principles and web service interfaces [10]. It has been in 
development and use since 2008.  

Table 1. Projects studied by phase. 

 Data set  Source  Filter criteria # Records 
analyzed 

Phase 0  
Setup 
 
 

Chromium  Google 
issue 
tracker 

Text search 
“technical debt” 

56 

Connect 
 

Jira Text search 
“technical debt” 

15 

Technical 
debt survey 

Examples 
(as text) 

N/A 265 

Phase 1  
TD 
categorization 

Connect  Jira 2012, first 200 
records 

200 

Phases 2-4 
TD 
classification, 
analysis, and 
evaluation  
Total 
727 issues 

Connect Jira March 2012 286 
Project A Jira Defects/CRs 

Sep. 2010 to 
Dec. 2014  

86 

Project B FogBugz All year 2013 193 
Chromium Google 

issue 
tracker 

M(ilestone):48  
Stars (watchers) 
>3 

163 

   Total 1,246 
 

Projects A and B are government-related data sets from ongoing 
clients selected because they have a history of releases focused on 
rework to address technical debt. Project A is a mission-critical 
compliance tracking system for a large government organization 
that centralizes the data gathered from several sources into one 
nation-wide system. This Oracle client-server system has been in 
use for over 15 years. Since the initial release, over 1.2 million 
work assignments have been created in the system. Most issues 
are entered into the issue tracker by the product manager. 

Project B is an IT system for federal government employees to 
protect the system environment by monitoring physical and 
environmental conditions against cyberattack. The software has 
been in use for 4 years and serves 125 users. Key technologies 
used include web services, embedded OS on BeagleBone Black, 
Socket IO services, and a customized sensor data communication 
protocol and collection mechanism. Programming languages used 
include Python, JS, HTML, CSS, C, C++, and DB: PostgreSQL. 
Several stakeholders create issues in the issue trackers, but the 
main person entering them is the product owner/manager. 

In all three data sets, we have additional technical information 
about known refactoring activities related to technical debt and 
access to developers who can serve as experts to validate our 
findings. We included Chromium as our fourth and control data 
set due to the relatively robust issue-tracker practices followed. 
Table 1 summarizes the subsets of the issues selected from these 
projects.  

The subset of the issues studied from these projects were selected 
randomly to minimize bias. The issues were not triaged based on 
any particular classification that the specific project may impose, 
such as bug, defect, and new feature. Some data sets had more 
disciplined issue-tracking practices than others, such as tracking 
priority, release assigned, number of watchers, code commits, and 
the like. All data sets had sufficient description of the issues to 
allow researchers to make classifications and judgments.  



We first looked through the data sets for a technical debt label. 
We also searched for the term “technical debt” and expanded our 
search for technical debt concepts using terms we extracted from 
the vocabulary of a cross-section of developers who provided 256 
exemplar descriptions of technical debt items. We refer to this 
initial investigation as Phase 0.  

In Phase 1, we extracted recurring technical debt concepts and 
created categories to classify issues as technical debt, even if not 
explicitly tagged as such by developers. In Phase 2, we used the 
categories to manually classify issues as technical debt or not.  

In Phase 3, we evaluated whether we were able to systematically 
discover technical debt within issues trackers correctly by talking 
to the developers of the systems under study. In Phase 4, we 
looked across all the identified technical debt examples for 
distinguishing characteristics that might serve as consistent 
indicators of technical debt. 

2.1 Phase 1: Creating Categories  
In Phase 1, we extracted concepts related to technical debt 
following the concept extraction approach described in [9]. The 
sample data set was prepared by copying a subset of Connect 
issues into a spreadsheet where each line represented an issue 
tracker record. The record contained both predefined field data 
(e.g., type, priority, duration) and issue descriptions.  

Two researchers acting as technical debt subject-matter experts 
independently tagged each issue. Three decision outcomes were 
possible: yes, no, or cannot determine. Researchers were asked to 
highlight portions of the issue relevant to their decision, capture 
recurring concepts (for example abstract concepts [9] such as 
executable artifact or design concern and concept specializations 
such as duplicate code or incorrect functionality), and provide 
rationale for categorization. After each categorization round, we 
met to resolve discrepancies and   improve the categorization.  

We repeated this categorization process three times, each time 
elaborating and refining the categorization method. We conducted 
two rounds of categorization using the first 100 records. Then we 
did a third round of categorization using the second 100 records of 
the Phase 1 data set. We set a target threshold of achieving 80% 
rater consistency before exiting Phase 1. 

A known expert in the field of software engineering and technical 
debt, external to our research team, assessed the results of our 
Phase 1 classification. The expert categorized a random sample of 
our issues   without knowledge of the software system under study 
or the approach we used to categorize the sample. As he 
categorized each entry, we asked him to discuss his rationale 
aloud and extracted concepts as feedback to inform our categories 
and guidance. 

The output of Phase 1 is an initial categorization summarized in 
Figure 2.  

2.2 Phase 2: Classifying Issues 
In Phase 2, pairs of researchers manually classified the four 
selected data sets using the categorization developed in Phase 1 
(Figure 2) following the steps below.  

Step 1. One researcher prepared the data sets by selecting a random subset 
of issues. 

Step 2. Two reviewers independently classified the issues.  
Step 3. One researcher consolidated results into a single spreadsheet that 

highlights agreements and discrepancies. 
Step 4. Researchers together discussed classification discrepancies and 

extracted recurring concepts. 

The two major outputs of Phase 2 include (1) a data set of issues 
classified as technical debt or not and (2) refined classification 
guidance. 

2.3 Phase 3: Evaluating Results 
In Phase 3, we walked through the identified technical debt 
records with project representatives from Connect, Project A, and 
Project B. We started by asking them whether they were familiar 
with technical debt and if their project had technical debt. We did 
not offer our definition of technical debt to avoid biasing them, 
but allowed them to offer us theirs to ensure that there was 
sufficient understanding for them to proceed with the task.  

We asked the project representatives to indicate whether they 
agreed with our assessment of identified technical debt issues. We 
also asked if we missed any technical debt examples. We did not 
reach out to Chromium developers. The issues we looked at from 
Chromium are a representative but small subset of the entire 
Chromium issues.  

We asked a second expert in the field of software engineering and 
external to our research team to use our categorization under the 
same conditions to see if he would generate the same results. We 
did this to ensure that unintentional bias of the researchers did not 
influence the integrity of the results and that the classification and 
its guidance is understandable, logical, and easy to follow. The 
expert received instructions for conducting the study, read through 
the guidance, and had an opportunity to ask questions. The expert 
tagged a sample data set from Project A. The expert was then 
given a post-experiment questionnaire that included questions 
gauging quality of the data, ease of use, and quality of guidance 
for classifying the issues. Several minor improvements were 
incorporated into the guidance document.  

Outputs of Phase 3 resulted in our final data set of classified 
technical debt items, 51 from the four project data sets.  

2.4 Phase 4: Analyzing Tagged Issues 
In Phase 4, we analyzed the selected issues for distinguishing 
characteristics that potentially identify technical debt.  

We examined structured data in the issue tracker predefined field 
data such as priority, duration open, number of watchers, and 
number of linked issues. Our motivation was to see if we could 
observe trends. For example, did technical debt issues take longer 
to resolve, have higher priority, or cause changes that ripple 
through a number of issues, hence suggesting additional time 
spent dealing with consequences?  

We examined the unstructured text in fields such as summary and 
description. A pair of researchers followed an open-coding 
approach [9], identified reoccurring design concepts from the 
records in which we identified technical debt, and affinity grouped 
this data (Figure 6). We discuss these results in Section 5.We also 
extracted concepts that signal accumulation of consequences of 
debt. There was variation among these concepts such that we 
could not create meaningful affinity groups. The implications of 
this result for future research are discussed in Section 6. 

Outputs of Phase 4 include analysis results of predefined fields 
(e.g., priority, opened date, closed date) and text for design 
concerns (organized by affinity grouping) and intentionality. 



3. TECHNICAL DEBT IN ISSUE 
TRACKERS 
None of the four issue trackers used technical debt as a predefined 
label or as an issue type.  Consequently, we searched for the key 
word “technical debt” in each data set. Only Chromium and 
Connect returned positive results, a total of 71 (Table 2). Both 
Connect and Chromium include data that dates back several years. 
The use of the term first appears in 2010 in Connect and 2012 in 
Chromium, coinciding with time that the research community 
began studying technical debt.  

To eliminate false positives, one researcher read all of the issues 
and discarded 7 of the 15 Connect issues and 6 of the 56 
Chromium issues, resulting in 58 examples where technical debt 
was explicitly used to refer to a concrete system problem that 
caused rework. Reasons for discarding issues included issues that 
were duplicate entries, documentation tasks (e.g., a blog post, 
software architecture design document), and defects to be 
resolved during the iteration in which it was discovered. 

Table 2. TD discussion occurrence. 

Project # Issues # Times TD key 
word found 

Date first 
occurred 

Connect 5,186 since 
July 2009 15 Jan. 2012 

Project A 86 0 NA 
Project B 193 0 NA 

Chromium >390,000 since 
Sep. 2008 56 Oct. 2010 

 
For example, we discarded the following because it was a 
documentation task, despite explicit reference to technical debt. 
Hereafter, we refer to the issues by the project name followed by 
the issue number: 

[Connect #1650] The brief blog post should describe the detriments of 
technical debt, the balances of keeping vs. jettisoning, and how the 
CONNECT team approached the decision and what we did about it - 
compromise and balance. 

While this issue suggests that the developers are aware of 
technical debt, the issue is a blog post task. It does not reveal 
where the debt was, how it accumulated, and how it was paid, 
hence it does not represent a technical debt item. 

Another example of a discarded issue is one in which the 
developers concluded that the issue is a “legitimate bug.”  

[Chromium #496267] The NCN registers for connectivity messages 
iNetworkChangeNotifierAutoDetect::onApplication, but fails to register 
when the device starts. …This is a legit bug, not 
cleanup/refactoring/technical-debt-reduction. 

Errors that are visible to users and result from coding mistakes, 
are bugs or defects and should not be confused with technical 
debt. In this example, Chromium developers demonstrate that they 
are well aware of these concepts and declare that this issue should 
be handled as a defect, not as cleanup or refactoring.  

In issues where technical debt discussions were explicit, we 
observed developers using concepts related to technical debt. For 
example, they referred to “taking on debt” when there was a clear 
design trade off, “accumulation of debt” when issues were not 
fixed on time, or “paying off technical debt” when the developers 

wanted to act or had acted on issues in the system. The following 
examples demonstrate how developers referred to these related 
concerns.  

[Chromium #402086] The change looks larger and more complex than 
it really is: it's mostly plumbing and changes to method signatures 
adding to the line count. It's been in canary for a week without issue. 
Landing this will enable WebView to shed some technical debt, which is 
quite a big benefit for us. 

[Connect #Gateway-1942] To address code added into CONNECT to 
support Deferred Patient Discovery as a Reference Implementation in 
3.0 and enhanced as part of 3.2. This code is now considered technical 
debt since the only approved version…supported in production prior to 
the approved Summer 2011 is version 1.0 which doesn't include 
functionality for Deferred Patient Discovery. 

[Chromium 500991]…However this change is somewhat dwarfed by 
the technical debt that needed to be paid off in order to allow this new 
change to be tested… 

In these examples, developers consciously and correctly refer to 
development and design tasks required to deal with technical debt 
and its consequences in their discussions. They talk about specific 
code snippets, design trade-offs, mapping testing scripts, and their 
alignment and the consequences. In particular, among Chromium 
developers an unspoken process seems to have emerged in dealing 
with technical debt that we could infer from these discussions. 

[Chromium #243948] Paying off technical debt becomes a higher 
priority, not lower, when in those rare cases it must be deferred. Tests 
are not a 'nice to fix' feature. Raising to Pri-1. 

These examples show results from a keyword search on “technical 
debt.” We also explored whether other terms that developers used 
might be useful in extracting examples of technical debt from 
issue trackers. To broaden our search terms, we analyzed 256 
examples from members of a large multinational organization 
who responded to a technical debt survey [12]. From these 
examples, we created a list of search terms that includes the 
following: duplicate, custom, workaround, inconsistent, hack, 
legacy, refresh, rewrite, cleanup, refactor, and refresh. Section 6.2 
summarizes the results of this analysis. 

Based on these examples found in Connect and Chromium issue 
trackers, we conclude that 

• while ad hoc, developers use issue trackers to communicate technical 
debt 

• technical debt concepts have entered developers’ vocabulary 
• once developers are aware of the symptoms of technical debt they 

respond  by examining concrete changes., that caused such debt to 
accumulate, such as code snippets, design decisions about 
implementation, build and testing scripts, and data models. The 
linkage of technical debt to a concrete artifact leaves less room for 
confusion in high-level technical debt discussions. 

4. TECHNICAL DEBT CLASSIFICATION 
Experts apply unspoken rules and heuristics when determining 
whether a particular issue represents technical debt. We observe 
this in the results of the examples we discussed in Section 3 as 
well as in literature [12][15][23][30]. Our goal in developing the 
technical debt classification is to capture the expertise and allow 
repeatable classification of issues. Figure 2 shows the categories 
that resulted from our classification at the end of Phase 1. 
Complete guidance for our classification can be found in [34]. 
Here we summarize the key decision points with examples.  



Enough information: When an issue did not contain enough 
information, we tagged it as not technical debt to minimize biased 
decision making. These were often one-line issue descriptions that 
required further context, such as the following example:  

[Connect#Gateway-1616]Update 
AdapterComponentMpiSecuredService to use PatientDiscoveryFault 

Executable or data related: A major source of confusion in 
dealing with technical debt is overgeneralization of the concept 
and inclusion of related project management activities, such as 
documentation, requirements analysis, quality assessment, and 
investigation. For technical debt to be actionable for development 
teams, it needs to be related to a concrete artifact of the 
development, such as code, implementation units, processing units 
of the executing system, data models, build scripts, and unit tests. 
We tagged any issue that did not mention a concrete development 
artifact as not technical debt. A good example is the following:  

[Project B-#2645] Perform web application security assessment. Ran 
Netsparker and found 4 issues, 1 major and 3 minor.  

Running an assessment tool and examining the issues it reveals do 
not represent technical debt.  

Classification from this point on requires articulation of often 
fuzzy concepts such as defect, bug, and design concerns. Defects 
are identified as concerns visible to end users; technical debt tends 
to be invisible system issues. We separated defects from system 
improvement issues [27]. In addition, we separated defects as 
visible incorrect functionality from cases where they were 
symptoms of an underlying design consideration that may be 
related to technical debt. Similarly, we separated system 
improvements as new features from cases where an underlying 
design limitation impacted the feature request. 

Type  Defect type  Incorrect functionality: We found 
many examples of defects in which the system did not work as 
expected, such as a tester discovers that a button doesn’t work in 
the UI, the system crashes, or a wrong classification is added. We 
classified these issue as not technical debt. They are visible to the 
users and represent system errors. Examples include 

[Project A #25] Correct the values for subsystem A to reflect the 
subsystem b values 

[Project B # 265] Update alert authoring UI – ‘event window’ should 
be close to ‘any rule’ checkbox  

Type  Defect type  Design consideration: Several defects 
impacted a quality attribute such as availability, security, or 

performance. We classified these as design consideration. We also 
classified as design issues several examples of cleanup activities 
impacting maintainability. If we also found evidence of 
accumulation of unintended side effects, or projection that they 
would accumulate, we then classified these issues as technical 
debt (e.g., duplicate code, nonstandard binding, type mismatch, 
inconsistent implementation, or unused classes). 

An example of a defect that represents a design consideration, but 
not technical debt, is the following 

[Project B #2722] … rule engine repeats alerts because of event query, 
causes the rule engine to keep dragging over the last query …. 

The researchers tagged this as a defect representing a design 
consideration because of the implications on the data model, 
performance implications of the query, and the rule engines. But 
we did not classify this issue as not technical debt because the side 
effects of accumulating rework and refactoring were not clear.  

Type  Improvement type  Feature: New features as system 
improvements, such as adding a new node to a sensor component 
or removing a drop-down box, were not classified as technical 
debt. An example is the following 

[Project B # 1485] Filter alert trigger list by date 

Type  Improvement type  Design limitation: In some 
cases, an issue was not a defect or mistake but a system 
improvement to remedy a design limitation such as the inability to 
add a new feature quickly, the current technology not supporting 
the improvement needed, maintainability issues, or consequences 
of refactoring. We classified these issues as not technical debt 
when evidence of side effects were not clear, even those that 
clearly talked about refactoring.  

[Project B #1513] Refactor onclicks in nodes.html into query events 

Accumulation: 51 issues were design related and showed some 
evidence of accumulation such as increased time to make 
implementation changes, automated tests not supporting the 
refactored classes, or security vulnerability. We tagged only those 
issues for which we could identify an explicit impact of side 
effects—in other words, accumulating consequences—as 
technical debt. Here is an example from Connect: 

[Connect #Gateway-1631] …The re-architecture of the source code to 
support multiple NwHIN specifications has introduced a new Java 
packaging scheme. New and existing classes have been moved into 
these new package folders; however, the previous package folders have 
been left in place with no class files. No impact to functionality; 

Figure 2. Concepts for classifying technical debt. 



however, may lead to confusion for users implementing enhancements / 
modifications to the source code. 

Further details from project stakeholders on the issues we 
classified as not technical debt may reveal that they represent 
technical debt. However, our goal in this study was to uncover 
those issues that could be classified with available information, 
then use this output to make progress on a concrete technical debt 
definition and an improved reporting mechanism. Data quality of 
the issue reports is a known concern in such studies; therefore, we 
erred on the side of false negatives rather than false positives. An 
issue we discarded may have been technical debt, but we did not 
have enough context to evaluate it. Our samples represent a 
starting set to analyze concrete examples of technical debt and its 
characteristics to help developers communicate and act on such 
issues.  

Table 3 is the summary of our classification of the four data sets. 
Out of 727 records, we identified 51 as technical debt issues.  

Table 3. Summary of technical debt classification. 
 

TD 
Not 
TD Stuck  

No 
agreement  

 
Total  

Connect 12 265 1 7 285 

Project A 10 74 1 1 86 

Project B 13 171 8 0 193 
Chromium 16 146 1 0 163 

Total 51 656 12 8 727 

 
We allowed research team members to identify points where they 
got stuck, represented as S1, S2, and S3 in Figure 2. This surfaced 
12 issues that we discussed for future improvements to the 
classification guidance.  

One example where the researchers got stuck is from Project A. 
There is clearly a design concern about decommissioning a 
database. However, while the proposed remediation suggests web 
service implementation to avoid rework later (future 
accumulation), it is unclear if the current design solution is 
causing accumulation. 

[Project A, #21] Request (made by xx) for read only access to the xx 
tables in xx database. Requirements are: 1. Web Service 
implementation a. Since xx is planned for decommission, a database 
view is not a viable solution. We would like to go with implement it in 
Web Services to avoid rework in the future 

We resolved this discrepancy by limiting the scope to evidence on 
current accumulation to avoid researchers’ knowledge or 
interpretation of projects’ technical context biasing the results. 

As a result of the several iterations of tagging, discussions, and 
analysis of the examples, we conclude that 

• technical debt exists when design decisions cause unintended work 
that potentially increases the time to delivery, which we refer to as 
accumulation. Making accumulation clear is critical in 
communicating technical debt concretely. In its absence, confusion 
about whether an issue represents technical debt or not is inevitable.  

• technical debt is a design-related concept, as confirmed by the 
examples we identified.  

5. CHARACTERISTICS OF TECHNICAL 
DEBT 
We analyzed the 51 technical debt examples identified in Phase 2 
for generalizable characteristics. We looked at both predefined 
issue fields—including open days, watchers, and priority—and 
analyzed description text for design concerns and intentionality. 
We report our analysis results by the questions we addressed.  

Do technical debt issues take longer to close? 

We hypothesized that the 51 technical debt issues may take longer 
to resolve than the 656 non-technical debt issues. Figure 3 
compares average days that an issue remained open between these 
two groups.  

 
Figure 3. Average days open by project.  

Chromium, Connect, and Project A show a slightly higher average 
number of days open for technical debt issues; however, the delta 
is not significant. 

While all projects had large Days Open standard deviations, 
Chromium and Connect were a little tighter (Chromium σ = 319 
days, Connect σ = 251, Project A σ = 456, and Project B σ = 557).  

Figure 4. Time issues remain open. 
Figure 4 shows the cumulative percentage of issues closed for 
each project, revealing subtle differences in pace of issue closure. 
Both Chromium and Connect close 95% or more issues within 2 
years compared to Projects A and B, which close less than 70%. 
This suggests that issue management practices may be slightly 
stronger in Chromium and Connect. In addition, for these two 
projects we found examples in the issue records of language like 
“technical debt” and “accumulation” in the developer vocabulary. 

We conclude that results are not significant to declare days open a 
distinguishing characteristic of technical debt; however, future 
analysis in larger data sets with mature issue management 
practices could yield different results. 



Do technical debt issues have higher numbers of watchers? 

Watcher is a measure of the number of people interested in an 
issue record in the issue tracker. Only Chromium has a fully 
populated data set for “watcher,” so we took a deeper dive into 
Chromium Watchers. Figure 5 has Number of Watchers on the x 
axis and Days Open on the y axis. Technical debt issues are 
shown in orange and non-technical debt issues in blue.  

 
Figure 5. Chromium by number of watchers and days open. 

The patterns of the number of watchers between the two classes of 
issues are not significantly different. The gap in orange technical 
debt dots between 8 and 60 days open is likely a random 
occurrence due to the size of the data set. Therefore, we conclude 
that we cannot declare a relationship between number of watchers 
and technical debt from this data set. 

Are technical debt issues high priority? 

Table 4 compares the issues by priority (1 = highest priority and 3 
= lowest). 

Table 4: Analysis of priority. 
 Priority 1 Priority 2 Priority 3 
Technical Debt Issues   22% 56% 22% 
Not Technical Debt Issues   24% 50% 26% 

The percentages represent counts of issues with that priority 
divided by the total count for that row (e.g., 22% of the technical 
debt issues have a Priority = 1). Both categories have 50–60% of 
the issues (the majority) assigned to Priority 2. Given this, we do 
not have evidence to conclude that technical debt issues have 
higher priority than other issues. 

Do the technical debt issues show recurring design concepts? 

We analyzed the textual data from the 51 technical debt examples 
for recurring design concepts. We created affinity groups derived 
bottom-up from the issue descriptions (contrary to a top-down 
approach of creating the concepts first and then classifying them). 
The resulting affinity groups are shown in Figure 6 with the 
number of issues that contained the concept as well as the 
project(s) where we found the concept. If we found the concept in 
multiple projects, the number of times per project is shown. For 
example, for the 5 instances of event handling, two of these were 
found on the Chromium project and three were found on Connect. 

Our resulting data set is too small; however, it serves as a starting 
point to do more in-depth analysis of potential issues that may 
commonly cause unintentional consequences. In particular, 

refactoring-related consequences, such as dead code, misaligned 
test and build scripts, and version conflicts, are places to start 
improving unintentional technical debt accumulation. 

Deployment & 
Build  

Out-of-sync build dependencies  3 CN 
Version conflict  1  CN 
Dead code in build scripts  1 CN 

Code Structure 
 
 
 
 
 
 
 

Event handling  5 2CH, 3PB 
API/Interfaces  5  2CH, 1CN, 2PB 
Unreliable output or behavior  5 4CH, 1PA 
Type conformance issue  3 CN 
UI design  3 PB 
Throttling  2 1CH, 1PB 
Dead code  2 CN 
Large file processing or rendering  2 CH 
Memory limitation  2 CH 
Poor error handling  1 PA 
Performance appending nodes  1 CH 
Encapsulation  1 PB 
Caching issues  1 CN 

Data Model Data integrity  6 PA 
Data persistence  3 PB 
Duplicate data  2 PA 

Regression 
Tests 

Test execution  1 CH 
Overly complex tests  1 CH 

CH=Chromium, PA= Project A, PB=Project B, CN=CONNECT 

Figure 6. Affinity groups of design concerns. 

Is technical debt used strategically? 

The appeal of technical debt is that it allows development teams 
to make intentional design trade-offs to accelerate development 
and revisit them as needed. Yet, 49 of the the 51 issues were 
unintentional design decisions. We provide examples (one from 
each of the four affinity groupings from Figure 6). 

Deployment & Build: Out-of-sync build dependencies  

[CONNECT #Gateway-1623] The CONNECT 3.3 release is to be 
deployed against the 2.1.1 version of the Metro Web Stack. Therefore, 
the compilation and build dependencies should reference the 2.1.1 
version of the Metro libraries…Impact to the users enhancing / 
modifying CONNECT is that they will not have the correct version of 
the Metro Web Stack library for development.  

The reference to “will not have correct version,” describe the 
impact of not maintaining accurate build dependencies in the 
build scripts. The word “should” suggests unintentionality. 

Code Structure: Event handling 
[Chromium # 294388] The |code| attribute specified in UI Events is 
intended to accurately identify the physical key associated with a key 
event. The legacy attribute |keyCode| was previously used by 
developers for this purpose, but it has problems in that it was never 
completely specified and thus it is not consistently implemented across 
browsers…add a new |code| attribute to WebKeyboardEvent. 

The words “not consistently implemented” imply design 
complexity, and “never completely specified” suggests 
unintentionality. 

Data Model: Data integrity 
[Project A # ] approximately 340 records exist in the database twice… 
so much time had elapsed in some cases the duplicate was endorsed. 

In this example, “340 records exist in the database twice” implies 
maintenance complexity, and “so much time has elapsed” 
suggests unintentionality. 

 



Regression Tests: Overly complex test  

[Chromium #367158] Currently, we have a lot of duplicate/boilerplate 
code in this test. We should try to simplify this test so that it's easier to 
maintain and read. 

Here, “easier to maintain” implies maintenance complexity and, 
“we should try to simplify” suggests unintentionality. 

Only two issues among the 51 hint at intentionality; however, we 
would not go so far as to call them strategic. The two 
“intentional” decision examples are shown below: 

[Project B # 1393] Add "disabled" class to sensor tabs - it's a little bit 
hacky - disabled tab is still active. But it'll do for this version. 

[CONNECT #Gateway-1771]…Setting Guidance at the Adapter layer 
is an idea that we documented and designed, however…we quickly 
realized some pitfalls and decided not to go through with the 
implementation such as: 1) There were many error cases which we 
would have to handle...  

In the first example, “for this version” suggest that the developer 
is making an intentional decision to take on technical debt with 
hopes of refactoring later. In the second example, “Setting 
Guidance at the Adapter layer” imply a design limitation in the 
adapter, and “decided not to go through with the implementation” 
suggests an intentional decision to defer the rework. The issue 
description does not contain enough information to determine the 
impact of not making the change (such as increased accumulation 
in the form of complexity or maintainability). 

Do groups of issues suggest technical debt? 

When we asked project stakeholders to evaluate the results of our 
technical debt classification, we uncovered cases in which an 
issue by itself did not represent technical debt; however, when 
two or more issues were analyzed together, they suggested design 
limitations with accumulating side effects.  

The Project A stakeholder confirmed that he would have also 
classified 9 of the 10 issues that we tagged as technical debt. In 
addition, he pointed out that several of the issues we found point 
to neglecting the data architecture, causing reliability, complexity, 
and data integrity issues. As shown in Figure 6, 72% of the 
technical debt issues in the Data Model group were found on 
Project A (8 of 11).  

The Project B stakeholder positively confirmed 100% of the 
technical debt examples that we found. The project stakeholder 
revealed that lack of a robust and extensible UI framework had 
caused significant rework on the project. He said he would also 
include some other issues that we did not tag as technical debt due 
to their dependence on the UI framework. All three of the UI 
design issues shown in Figure 6 were from Project B. 

The Connect stakeholder (one of the architecture evaluation leads) 
was able to positively confirm only 42% of the technical debt 
examples because he said the issue description lacked enough 
detail to make a determination. However, of the 42% positively 
confirmed technical debt examples (5 of 12 examples), he said 
that several issues were consistent with maintainability risks 
discovered during the architecture evaluation. For example, all 
four of the issues in the Deployment & Build group shown in 
Figure 6 were related to design concerns about the Connect build 
script maintainability. 

Analysis of the technical debt issues we identified allows us to 
conclude that 

• issue data such as priority, duration open, and number of watchers 
does not imply accumulation, so it does not help identify technical 
debt historically. 

• while our data set is small, we identify a starting set of recurring 
issues in technical debt. Post-refactoring alignment of unit test, build 
scripts, and versions and removal of dead code emerge as obvious 
technical debt-related concerns. 

• intentional technical debt is not discussed in issue trackers explicitly. 

• groups of issues that appear not to be technical debt when assessed 
individually can reveal underlying technical debt issues when 
assessed together.  

6. IMPLICATIONS FOR PRACTICE AND 
RESEARCH 
Issue trackers serve as an entry point for communicating technical 
debt since developers use them to manage task priorities. 
Anecdotal feedback from developers tells us that even when 
technical debt is included in the issue tracker it may languish as it 
is not given priority or the symptoms are addressed but not the 
underlying issue. Our findings offer some practical improvements 
to bring better visibility to technical debt and ideas for future 
work. 

6.1 Practice Improvements 
Technical debt is useful as a rhetorical concept to foster dialogue 
between business and technical actors. Classifying technical debt 
issues allows developers to justify budgeting project resources for 
technical debt (typically 10–15%) in a similar manner to allocate a 
discretionary budget for defects.  

There are standards for providing bug reports with enough 
information so they may be reproduced and fixed [27] [28]. These 
essential properties are encoded in predefined fields in issue 
trackers. These fields are necessary but not sufficient for 
describing technical debt. Recent research on technical debt has 
offered templates for reporting technical debt [36] [23]. These 
contributions have similar goals to our work; however, templates 
recommend concepts that are at too high a level to overlap with 
daily routines and tasks of developers, such as estimated interest 
probability or principal and interest that are directly driven from 
the financial analogy.   

Our analysis and examples demonstrate that technical debt 
becomes concrete when it relates to software units, as opposed to 
software process artifacts such as requirements or documentation. 
This refined scope leads to an understanding of technical debt as 
the collection of technical debt items associated with a system.  

Table 5. Properties of technical debt items. 

Name Shorthand designation 

Development 
artifact 

Element of the system or the supporting work products: 
design, code, data, build scripts, test suites, etc. 

Symptoms Observable qualitative or measurable consequence 

Consequences Effect on value, quality, or cost of the system in the form 
of 
• accumulation: additional costs due to reduced 

productivity, induced defects, or loss of quality incurred 
by software depending on an element of technical debt 

• remediation: current cost to develop a “better” 
solution 

Analysis Degree to which the development approach meets 
stakeholder needs or expectations 



A technical debt item is a single element of technical debt 
connecting a set of development artifacts; with consequences for 
the quality, value, and cost of the system; and triggered by some 
causes related to process, management, context, and business 
goals. An item can be described using the properties in Table 5, 
supplementing a typical issue report. 

Introducing these properties can help developers understand trade-
offs and the longer term consequences of technical debt when 
discussing an issue among themselves. It can also help make the 
case for additional resources when communicating to 
management. We suggest that developers use the properties 
shown here to write better descriptions and perhaps to increase the 
degree of automation possible in classifying them. Table 6 shows 
an example of organizing the text according to these properties 
from a CONNECT issue. 

Table 6. Example of a technical debt item. 

Name Connect #Gateway-1631: Empty Java package (dead 
code) 

Development 
artifact 

The re-architecture of the source code to support 
multiple NwHIN specifications has introduced a new 
Java packaging scheme. 

Symptoms Numerous empty Java package folders present across 
multiple projects. 

Consequences No impact to functionality; however, may lead to 
confusion for users implementing enhancements / 
modifications to the source code. 

Analysis New and existing classes have been moved into these 
new package folders; however, the previous package 
folders have been left in place with no class files. 

 

The properties can also help parse the issues and identify what is 
ambiguous or missing. For example, without explicit information 
about debt accumulation, the issue cannot be properly classified 
nor the trade-offs understood. Developers may need this 
information to justify paying down the debt as an alternative to 
paying ongoing costs associated with addressing the symptoms. 

6.2 Future Research 
Our results suggest that by using automated text analysis and 
machine-learning techniques, technical debt issues can be more 
systematically discovered. To explore this, we ran a manual 
search against the 727 issues with the following words (identified 
during Phase 0): duplicate, custom, workaround, inconsistent, 
hack, legacy, refresh, rewrite, cleanup, refactor, and refresh. We 
hypothesized that there would be a statistically significant 
difference between the percentage of issues that contain a key 
word AND are technical debt and the percentage of issues that 
contain a key word but are not technical debt. We found that 67% 
of the issues contained one of the key words and were tagged as 
carrying debt. Only 8% fall in the latter category. These findings 
suggest that automated word searches of key concepts related to 
technical debt may hold promise, but more experimentation and 
setup is needed with large data sets.  

Assessing accumulation was one of the biggest challenges we 
faced with systematically classifying technical debt issues in this 
study. Disagreement stemmed from two major sources. First, the 
language used by developers to describe accumulation is even less 
explicit than the design issue description. For example, developers 
made accumulation statements like “so much time has passed that 

now we have duplicate data,” “this may lead to confusion for 
users,” or “we should try to simplify so it is easier to maintain.” 
The implicit, unstructured nature of accumulation language makes 
it difficult for reviewers to classify consistently, developers to 
assess impact, and researchers to study how to automate technical 
debt classification. Second, issues often included three types of 
accumulation information: (1) existing accumulation related to the 
current problem, (2) future recurring accumulation related to the 
current problem, and (3) accumulation related to the potential 
solution of the current problem, which we refer to a remediation. 
As discussed in Section 3.1, our response to confusion over this as 
we classified was update the classification guidance to limit the 
scope of accumulation to type (1) for this study [34]. Future 
research is needed to better define and model accumulation in 
terms of the costs associated with not fixing the problem and the 
added costs of fixing the problem at a later time. 

Several of the examples, particularly in the more mature issue 
trackers (e.g., Chromium, Connect), included extensive developer 
discussion accompanied by significant code file check-in/check-
out activity. A natural next step for this work is analyzing patterns 
found in the developer text discussion with references to technical 
debt and commit and change histories. 

Our findings indicate several fruitful future research activities and 
our plans include the following: 

• Evaluate other techniques for mining unstructured data (e.g., pattern 
matching, island/lake parsers, information retrieval methods, and 
word categories) to locate technical debt in software repositories. 

• Trace technical debt in the developer text discussion to code through 
the commit log to evaluate efficacy of self-reported debt in issue 
trackers. 

• Model dimensions of accumulation in terms of cost to fix (paying 
down the principal) and cost to not fix (paying interest), and the 
influence of time (current and future costs) to improve guidelines for 
describing technical debt. 

• Build on the investment in the Chromium data set to conduct 
correlation studies with defects and software vulnerabilities to better 
understand the relationships among these kinds of software 
anomalies. 

6.3 Threats to Validity 
We identified the following threats to the validity of our study and 
took steps to minimize them.  

Manual inspection: Manual inspection is crucial, especially in an 
exploratory study like ours that serves as input for creating key 
concepts. To counter the threat of making classification and 
interpretation mistakes, we included steps in our study to cross-
check and discuss items. We also set a high inter-rater reliability 
threshold and had multiple researchers classify and code issues. In 
order to minimize researcher bias, we also had both developers of 
the system and experts external to the research team classify 
random samplings of the issues. 

Study subjects: Software development management and issue 
tracking practices of the organizations whose data we used affect 
the quality of our results. The systems we selected may not have 
been representative. We aimed to minimize skewing of our results 
by selecting a variety of data sets both from open and closed 
systems, representative types of issue trackers, and established 
empirical analysis approaches. 

Data quality and size: Technical debt represents only a small 
subset of all issues in a system, although its impact may be 



significant. Technical debt may not have been significantly 
represented in the data we selected, especially given the varying 
quality of the issue tracker data. We aimed to minimize this by 
randomizing the issues we selected, including both projects where 
we knew technical debt existed as well as others where we had no 
prior knowledge.  

7. RELATED WORK 
In empirical software engineering, it has become commonplace to 
mine data from change request and bug databases to detect where 
issues have occurred in the past and use that information for 
improved definitions, quality analysis, development management, 
and predictive models. Examples include but are not limited to 
manual and automated mining of issue trackers for 
misclassification [16], duplicates [5], and correlations of 
vulnerabilities and bugs [7]. Issue trackers also serve as historical 
data to help identify patterns to assist with predicting current or 
future events, such as risks [6]. To our knowledge, our study is the 
first one that extensively looks at issue databases through the 
technical debt lens. 

A key challenge in mining software repositories is data quality 
and missing data [26]. A number of studies look at the quality of 
reported data and ways to improve it, such as ensuring that 
missing links between bugs and bug-fix commits are included [4] 
and studying bug report quality [17][37]. These studies suggest 
that reports that contain key information get addressed sooner. 
Our results are consistent with these studies when it comes to 
reporting issues related to technical debt as well. To our 
knowledge, our study is the first one that provides key fields that 
need to be included in an issue report on technical debt.  

The ability to accurately create an issue report communicating 
technical debt assumes a concrete understanding of technical debt. 
Numerous researchers have proposed a definition of technical 
debt, including McConnell [29], Li [22], Shull [32], and Kniberg 
[20]. To date these definitions stay at a conceptual level. Our 
study is the first that grounds an improved understanding of 
technical debt in actual software artifacts supported by extensive 
empirical data, contributing to the envisioned future for an 
improved data analysis and practice for managing technical debt 
[3] . 

To understand implications of technical debt, Systematic literature 
reviews have created categories and concept ontologies [18] [1] or 
related debt to different stages in the development life cycle 
[2][22][35]. Small-scale interview studies on understanding how 
developers talk about technical debt have focused on sources of 
technical debt [15][24][33]. These categories and classifications 
of technical debt rely on limited literature reviews and single-case 
studies. Our study is the first that demonstrates empirically that a 
significant amount of data is needed to talk about technical debt 
classification.  

A number of studies have looked for relationships between 
software metrics and technical debt [14][25]. This work has 
applied existing code smells, coupling and cohesion, and 
dependency analysis to identifying areas of technical debt. Other 
work has looked at extracted examples of technical debt using 
keywords from developers’ comments in code as self-admitted 
technical debt [30]. All of these stay at the level of code analysis, 
associating local code changes with technical debt. The work by 
Kazman et al. [19] relates architectural modularity violations to 
number of bugs to detect technical debt. This study is closest in its 
spirit to our findings that systematic issues hint at underlying 
technical debt.  

8. CONCLUSIONS 
Our study contributes to research on mining software repositories 
by looking at issue trackers from the perspective of early 
representations of technical debt. Our findings tell us the 
following: 

• Technical debt concepts (e.g., taking on, accumulating, and paying 
back debt) have entered the vernacular of developers. But now they 
need a simple and formal approach to communicate the most crucial 
information. We offer the technical debt item and examples as a step 
toward that goal. 

• Our data and analysis weakly support that issues where developers 
discuss certain classes of changes such as refactoring and cleanup 
are more likely to contain references to accumulation and technical 
debt.  

• Technical debt conceptually is about conscious design trade-offs. 
However, the majority of technical debt that developers deal with is 
a consequence of unintentional design choices. Issue trackers carry 
information that can assist in uncovering the underlying technical 
debt. 

We suggest that developers adopt a simple practice of concretely 
tagging and reporting technical debt and its consequences with 
accumulating side effects as they discover debt or take it on. This 
helps development teams start communicating about these issues 
more concretely and creates a valuable resource for research. This 
contribution could help increase the sample size and quality of the 
data to make future research possible, since ambiguity led us to 
discard many issues in the existing data sets.  

The past decade has seen significant progress in the mining 
software repositories community with substantial outcomes in 
robust automated analysis and correction tools as well as sound 
research approaches. Our exploratory study demonstrates that 
technical debt has become a ripe area in practice where mining 
software repositories research can be put to use to further improve 
our understanding, communication, and analysis of technical debt.  
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