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Abstract— The selection of a particular NoSQL database for 
use in a big data system imposes a specific distributed software 
architecture and data model, making the technology selection 
difficult to defer and expensive to change. This paper reports 
on the selection of a NoSQL database for use in an Electronic 
Healthcare Record system being developed by a large 
healthcare provider. We performed application-specific 
prototyping and measurement to identify NoSQL products 
that fit data model and query use cases, and meet performance 
requirements. We found that database throughput varied by a 
factor of 10, read operation latency varied by a factor of 5, and 
write latency by a factor of 4 (with the highest throughput 
product delivering the highest latency). We also found that the 
throughput for workloads using strong consistency was 10-
25% lower than workloads using eventual consistency. We 
conclude by reflecting on some of the fundamental difficulties 
of performing detailed technical evaluations of NoSQL 
databases specifically, and big data systems in general, that 
have become apparent during our study. 

Keywords- NoSQL; distributed databases; technology 
evaluation 

I. INTRODUCTION  
At the heart of many big data systems are “NoSQL” 

database management systems that are simpler than 
traditional relational databases and provide higher scalability 
and availability [1]. These databases are typically designed 
to scale horizontally across clusters of low cost, moderate 
performance servers. They achieve high performance, elastic 
storage capacity, and availability by replicating and 
partitioning data sets across a cluster of servers. Each of 
these products implements a different data model and query 
language, as well as specific mechanisms to achieve 
distributed data consistency and availability.  

When a big data system uses a particular database, the 
data, consistency and distribution models imposed by the 
database have a pervasive impact on the design of the 
associated applications Error! Reference source not 
found.. Hence, the selection of a particular NoSQL database 
must be made early in the design process and is difficult and 
expensive to change downstream. In other words, NoSQL 
database selection becomes a critical architectural decision 
for big data systems.  

Commercial off-the-shelf (COTS) software selection has 
been extensively studied in software engineering [3][4][5]. In 
complex technology landscapes with multiple competing 
products, developers must balance the cost and speed of the 
selection process against the fidelity of the analysis [6]. 

While there is rarely a single “right answer” in selecting a 
complex component for an application, selection of 
inappropriate components can be costly, reduce downstream 
productivity due to rework, and even lead to project 
cancelation. This is especially true for large scale, big data 
systems, due to their complexity and the magnitude of the 
investment. 

There are several unique challenges that make selection 
of NoSQL databases for use in big data applications a 
particularly hard problem: 
• This is an early architecture decision that must be made 

with inevitably incomplete requirements. 

• Capabilities and features vary widely across NoSQL 
databases and performance is very sensitive to how a 
product’s data model and query features match 
application needs, making generalized comparisons 
difficult. 

• Production-scale prototypes, with hundreds of servers, 
multi-terabyte data sets, and thousands or millions of 
clients, are usually impractical. 

• The solution space is changing rapidly, with new 
products emerging and existing products releasing 
several versions per year with ever evolving feature sets.  

We faced these challenges during a recent project for a 
healthcare provider considering the use of NoSQL databases 
for an Electronic Health Record (EHR) system.  

The next section provides details of the project context 
and technology evaluation approach. This is followed in 
Section III by a discussion of the prototype design and 
configuration. Section IV presents the performance test 
results. We conclude with a reflection on lessons learned 
during this project. 

II. EHR CASE STUDY 

A. Project Context 
Our customer was a large healthcare provider developing 

a new EHR system. This system supports healthcare delivery 
for over 9,000,000 patients in more than 100 facilities across 
the globe. The data growth rate is more than one terabyte per 
month, and all data must be retained for 99 years.  

NoSQL technologies were considered attractive 
candidates for two specific uses, namely: 
• the primary data store for the EHR system 
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• a local cache at each site to improve request latency and 
availability 

This will replace an existing system that uses “thick 
client” applications running at sites around the world, all 
connected to a centralized relational database, so the 
customer wanted to characterize performance with hundreds 
of concurrent database sessions. 

The customer was familiar with RDMS technology for 
these use cases, but had no experience using NoSQL, so we 
were directed to focus our evaluation only on NoSQL 
technology.  

B. Evaluation Approach 
The approach is inspired by previous work on 

middleware evaluation [6][7] and customized to address the 
characteristics of big data systems. The basic main steps are 
depicted in Fig. 1 and outlined below. 

 

 

Fig. 1. Lightweight Evaluation and Prototyping for Big Data (LEAP4BD) 

1) Specify Requirements 
We used a stakeholder workshop to elicit key functional 

and quality attribute requirements to frame the evaluation. 
These key requirements were: 

Performance/Scalability: The main quantitative 
requirements were to replicate data across geographically 
distributed data centers, and to achieve high availability and 
low latencies under load in distributed database deployments. 
Hence understanding the inherent performance and 
scalability that is achievable with each candidate NoSQL 
database was an essential part of the evaluation.  

Data Model Mapping Complexity: Healthcare systems 
have common logical data models and query patterns that 
need to be supported by a NoSQL database. This required us 
to evaluate the specific data modeling and query features for 
each product, including capabilities to maintain replica 
consistency in a distributed deployment.  

We next helped the customer define two primary use 
cases for the EHR system. These drove the evaluation that 
we performed in subsequent steps in the project. The first use 
case was to read recent medical test results for a single 
patient, is a core function used to populate the user interface 

whenever a clinician selects a new patient. The second use 
case was achieving strong replica consistency when a new 
medical test result is written for a patient, so that all 
clinicians using the EHR to make patient care decisions will 
see the same information, whether they are at the same site 
as the patient, or providing telemedicine support from 
another location.  

2) Select Candidate NoSQL Databases 
Our customer was specifically interested in evaluating 

how different NoSQL data models (key-value, column, 
document, graph) would support their application domain, 
and so we selected one NoSQL database from each category 
to investigate in detail. We subsequently ruled out graph 
databases, as none provided the horizontal partitioning 
required for this customer’s application. We chose Riak, 
Cassandra and MongoDB as the three candidates, based on 
product maturity and availability of enterprise support.  

3) Design and Execute Performance Tests 
In order to make an “apples to apples” comparison of the 

databases that were evaluated, we defined and performed a 
systematic test procedure. Based on the use cases defined 
during the requirements step, we: 

• Defined and implemented a consistent test 
environment, which included server platform, test 
client platform, and network topology. 

• Mapped the logical model for a patient’s medical 
test history onto each database’s data model and 
loaded the resulting database with a large collection 
of synthetic test data.  

• Created a load test client that implements the 
database read and write operations defined for each 
use case. This client is capable of issuing many 
simultaneous requests so that we can analyze how 
each product responds as the request load increases. 

• Defined and executed test scripts that exerted a 
specified load on the database using the test client.  

We executed each test case on several distributed 
configurations to measure performance and scalability. 
These test scenarios ranged from baseline testing on a single 
server to 9 server instances that sharded and replicated data.  

This enabled us to produce a consistent set of test results 
that assess the likely performance and scalability of each 
database for this customer’s EHR system. The details of the 
environment and test design are presented in the next section. 

III. PROTOTYPE AND EVALUATION SETUP 

A. Test Environment 
The three databases we tested were: 
1. MongoDB version 2.2, a document store 

(http://docs.mongodb.org/v2.2/);  
2. Cassandra version 2.0, a column store 

(http://www.datastax.com/documentation/cassandra/
2.0);  

3. Riak version 1.4, a key-value store 
(http://docs.basho.com/riak/1.4.10/).  
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In Section IV, we report performance results for two 
database server configurations: Single node server, and a 
nine-node configuration that was representative of a 
production deployment. Executing on a single node allowed 
us to validate our test environment for each database. The 
nine-node cluster was configured to represent a 
geographically distributed deployment across three data 
centers. The data set was sharded across three nodes, and 
then replicated to two additional groups of three nodes each. 
This was achieved using MongoDB’s primary/secondary 
feature, and Cassandra’s data center aware distribution 
feature. Riak did not directly support this “3x3” data 
distribution, so we used a configuration where the data was 
sharded across all nine nodes, with three replicas of each 
shard stored across the nine nodes.  

Testing was performed using the Amazon EC2 
(http://aws.amazon.com/ec2/). Database servers executed on 
“m1.large” instances. Database data and log files were stored 
on separate EBS volumes attached to each server instance. 
The EBS volumes were not provisioned with the IOPS 
feature, to minimize the tuning parameters used in each test 
configuration. The test client was also executed on an 
“m1.large” instance. The servers and the test client both used 
the CentOS operating system (http://www.centos.org). All 
instances were in the same EC2 availability zone (i.e. the 
same Amazon cloud data center).  

B. Mapping the data model 
Most of the prototyping effort was spent mapping the 

application-specific logical data model onto the particular 
data model, indexing, and query language capabilities of 
each database to be tested. 

We used the HL7 Fast Healthcare Interoperability 
Resources (FHIR)1 as the logical data model for our analysis 
and prototyping. The set of all test results for a patient, were 
modeled using the “FHIR Patient Resources” (e.g., 
demographic information such as names, addresses, and 
telephone numbers) along with “FHIR Observation 
Resources” (e.g., test type, result quantity, and result units). 
There was a one-to-many relation from each patient to the 
associated test results. Although this was a relatively simple 
model, the internal complexity of the FHIR Patient 
Resource, with multiple addresses and phone numbers, along 
with the one-to-many relation from patient to observations, 
required a number of data modeling design decisions and 
tradeoffs in the data mapping. 

The most significant data modeling challenge was the 
representation of the one-to-many relation from patient to lab 
results, coupled with the need to efficiently access the most-
recently written lab results for a particular patient. Zola has 
analyzed the various approaches and tradeoffs of 
representing the one-to-many relation in MongoDB [11]. We 
used a composite index of ⟨��������	
�������������	
⟩ for 
lab result records, and also indexed by the lab result date-
time stamp. This allowed efficient retrieval of the most 
recent lab result records for a particular patient. 

                                                             
1 http://www.hl7.org/implement/standards/fhir/ 

A similar approach was used for Cassandra. Here we 
used a composite index of ⟨�������	
�����������������������
�����⟩. This caused the result set returned by the query to 
be sorted by the server, making it efficient to retrieve the 
most recent lab records for a particular patient.  

In Riak, representing the one-to-many relation was more 
complicated. Riak’s key-value data model provides the 
capability to retrieval a value, given a unique key. Riak also 
provides a “secondary index” capability to avoid a full scan 
when the key is not known. However, each node in the 
cluster stores only the secondary indices for those shards 
stored by the node. A query to match a secondary index 
value causes the request coordinator to perform a “scatter-
gather”, asking each node for records with the requested 
secondary index value, waiting for all nodes to respond, and 
then sending the list of keys for the matching records back to 
the requester. The requester must then make a second request 
with the list of keys, to retrieve the record values.  

 The latency of the “scatter-gather” to locate records and 
the need for two round trips to retrieve the records had a 
negative impact on Riak’s performance for our data model. 
Since there is no mechanism in Riak for the server to filter 
and return only the most recent observations for a patient, all 
matching records must be returned and then sorted and 
filtered by the client.  

MongoDB and Cassandra both provided a relatively 
straightforward data model mapping and both provided the 
strong replica consistency needed for this application. The 
data model mapping for MongoDB seemed more transparent 
than the use of the Cassandra Query Language (CQL), and 
the indexing capabilities of MongoDB were a better fit for 
this application.  

C. Generate and load data 
A synthetic data set was used for testing. This data set 

contained one million patient records, and 10 million lab 
result records. The number of lab results for a patient ranged 
from 0 to 20, with an average of 7. 

D. Create load test client 
We used the YCSB framework [8] as the foundation for 

the test client, to manage test execution and test 
measurement. For test execution, we replaced YCSB’s very 
simple default data models, data sets, and queries with 
implementations specific to our use case data and requests.  

YCSB’s built-in capabilities allow specification of the 
total number of operations and the mix of read and write 
operations in a workload. Our customer specified that the 
typical workload for the EHR system was 80% read and 20% 
write operations. For this operation mix, we implemented a 
read operation to retrieve the five most recent observations 
for a single patient, and a write operation to insert a single 
new observation record for a single existing patient. 

In order to investigate using the NoSQL technology as a 
local cache (described in §II.A, above), we implemented a 
write-only workload that represented a daily operation to 
load a local cache from a centralized primary data store with 
records for patients with scheduled appointments for that 
day. We also implemented a read-only workload that 
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represented flushing the cache back to the centralized 
primary data store. 

The YCSB measurement framework measures operation 
latency as the time from when the request is sent to the 
database until the response is received back from the 
database. The YCSB reporting framework aggregates latency 
measurements separately for read and write operations. 
Latency distribution is a key scalability metric for big data 
systems [9][10], so we recorded both average and 95th

percentile values.  
We extended YCSB to report Overall Throughput, in 

operations per second. This was the total number of 
operations performed (reads plus writes) divided by the 
workload execution time (from the start of the first operation 
to the completion of the last operation in the workload 
execution, and not including initial setup and final cleanup 
times).  

E. Define and execute test scripts 
For each database and configuration, every workload was 

run three times, to minimize the impact of transient events in 
the cloud infrastructure. The standard deviation of the 
throughput for any three-run set never exceeded 2% of the 
average.  

YCSB can use multiple execution threads to create 
concurrent client sessions, so for each of the three test runs, 
the workload execution was repeated for a defined range of 
test client threads (1, 2, 5, 10, 25, 50, 100, 200, 500, and 
1000), which created a corresponding number of concurrent 
database connections. Post-processing of test results 
averaged measurements across the three runs for each thread 
count.  

NoSQL databases are not typically designed to operate 
with a large number of concurrent database client sessions. 
Usually, clients connect to a web server tier and/or an 
application server tier, which aggregates the client operations 
on the database using a pool of roughly 16-64 concurrent 
sessions. However, since this customer was modernizing a 
system that used thick clients with direct database 
connections, they wanted to understand the feasibility of 
retaining the thick client architecture.  

Since there were multiple concurrent connections to the 
database, we had to define how these were distributed across 
the server nodes. MongoDB uses a centralized router node, 
so all clients connected to that single router node. 
Cassandra’s data center aware distribution feature created 
three sub-clusters of three nodes each, and client connections 
were spread uniformly across the three nodes in one sub-
clusters. In the case of Riak, the product architecture only 
allowed client connections to be spread uniformly across the 
full set of nine nodes. 

IV. PERFORMANCE AND SCALABILITY TEST RESULTS 
We report here on results for the nine-node configuration 

that reflected a typical production system (described in 
§III.A above). Other tested configurations included running 
on a single server. The single-node configuration’s 
availability and scalability limitations make it unfeasible for 
production use, and so we do not present performance 

comparisons across databases for this configuration. 
However, in the following discussion, we compare the single 
node configuration for a particular database to its distributed 
configuration, to provide insights into the efficiency of 
distributed coordination mechanisms and guide tradeoffs to 
scale up by adding more nodes versus using faster nodes 
with more storage.  

This EHR application required strong replica 
consistency. These results are reported first, below. This is 
followed by a comparison of strong replica consistency to 
eventual consistency. 

A. Performance Evaluation – Strong Consistency 
The database configuration options to achieve strong 

replica consistency are summarized in TABLE I. . For 
MongoDB, these settings cause all writes to be committed on 
the primary server, and all reads are from the primary server. 
For Cassandra, the effect is that all writes are committed on a 
quorum formed on each of the three sub-clusters, while a read 
required a quorum only on the local sub-cluster. For Riak, the 
effect is to require a quorum on the entire nine-node cluster 
for both write operations and read operations.  

TABLE I.  SETTINGS FOR REPRESENTATIVE PRODUCTION CONFIGURATION 

Database Write Options Read Options 
MongoDB Primary Acknowledged Primary Preferred 
Cassandra EACH_QUORUM LOCAL_QUORUM 
Riak quorum Quorum 

 
The throughput performance for the representative 

production configuration for each of the workloads is shown 
in Figs. 2, 3, and 4.  

 

 
Fig. 2. Throughput, Representative Production Configuration, Read-Only 

Workload (higher is better) 

In every case, Cassandra provided the best overall 
performance (peaking at approximately 3500 operations per 
second), with read-only workload performance 
approximately 10% better than the single node configuration, 
and write-only and read/write workload performance 
approximately 25% higher than the single node 
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configuration. In moving from single node to a distributed 
configuration, we gain performance from decreased 
contention for storage I/O and other per-node resource. We 
also lose performance, due to the additional work of 
coordinating write and read quorums across replicas and data 
centers. For Cassandra, the gains exceeded the losses, 
resulting in net higher performance in the distributed 
configuration. 

 

 

Fig. 3. Throughput, Representative Production Configuration, Write-Only 
Workload 

 

Fig. 4. Throughput, Representative Production Configuration, Read/Write 
Workload 

Furthermore, Cassandra’s “data center aware” features 
provide some separation of replication configuration from 
sharding configuration. In these tests, compared to Riak, this 
allowed a larger portion of the read operations to be 
completed without requiring request coordination (i.e. peer-
to-peer proxying of the client request),.  

Riak performance in this distributed configuration is 
approximately 2.5x better than the single node configuration. 
In test runs using the write-only workload and the read/write 
workload, our Riak client had insufficient socket resources to 
execute the workload for 500 and 1000 concurrent sessions. 

These data points are hence reported as zero values in Figs. 3 
and 4. We later determined that this resource exhaustion was 
due to ambiguous documentation of Riak’s internal thread 
pool configuration parameter, which creates a pool for each 
client session and not a pool shared by all client sessions. 
After determining that this did not impact the results for one 
through 250 concurrent sessions, and given that Riak had 
qualitative capability gaps with respect to our strong 
consistency requirements (discussed below), we decided not 
to re-execute the tests for those data points. 

MongoDB’s single node configuration performance was 
nearly 8x better than the distributed configuration. We 
attribute this to two factors: First, the distributed 
configuration is sharded, which introduces the router and 
configuration nodes into the MongoDB deployment 
architecture. The router proxies each request to the 
appropriate shard, using the key mapping stored in the 
configuration node. In our tests, the router node became a 
performance bottleneck. Figs. 5 and 6 show read and write 
operation latency for the read/write workload, with nearly 
constant average latency for MongoDB as the number of 
concurrent sessions is increased, which we attribute to rapid 
saturation of the single router node. 

The second factor affecting MongoDB performance is 
the interaction between the sharding scheme used by 
MongoDB and the write-only and read/write workloads that 
we used. Both Cassandra and Riak use a hash-based sharding 
scheme, which provides a uniformly distributed mapping 
from the range of keys onto the physical nodes. In contrast, 
MongoDB used a range-based sharding scheme with 
rebalancing2.  

 
 

 
Fig. 5. Read Latency, Representative Production Configuration, 

Read/Write Workload 

Our workloads generated a monotonically-increasing key 
for new records to be written, which caused all write 
operations to be directed to the same shard, since all of the 
write keys mapped into the range stored in that shard. This is 

                                                             
2 http://docs.mongodb.org/v2.2/core/sharded-clusters/  
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a typical key generation approach (e.g., the SQL 
“autoincrement” key types), but in this case, it focuses the 
write load for all new records onto a single node and thus 
negatively impacts performance. A different indexing 
scheme was not available to us, as it would impact other 
systems that our customer operates. (We note that MongoDB 
introduced hash-based sharding in v2.4, after our testing had 
concluded.) 

 

 
Fig. 6. Write Latency, Representative Production Configuration, 

Read/Write Workload 

Our tests also measured latency of read and write 
operations. While Cassandra achieved the highest overall 
throughput (approximately 3500 operations per second), it 
also delivered the highest average latencies (indicative of high 
internal concurrency in request processing). For example, at 
32 client connections, Riak’s read operation latency was 20% 
of Cassandra (5x faster), and MongoDB’s write operation 
latency was 25% of Cassandra’s (4x faster). Figs. 5 and 6 
show average and 95th percentile latencies for each test 
configuration. 

B. Performance Evaluation – Eventual Consistency 
We also performed tests to quantify the performance cost 

of strong replica consistency, compared to eventual 
consistency. These tests were limited to the Cassandra and 
Riak databases – the performance of MongoDB in the 
representative production configuration was such that no 
additional characterization of that database was warranted 
for our application. The selected write and read options to 
achieve eventual consistency are summarized in TABLE II. . 
The effect of these settings for both Cassandra and Riak was 
that writes were committed on one node (with replication 
occurring after the operation was acknowledged to the 
client), and read operations were executed on one replica, 
which may or may not return the latest value written. 

TABLE II.  SETTINGS FOR EVENTUAL CONSISTENCY 
CONFIGURATION 

Database Write Options Read Options 
Cassandra ONE ONE

Riak noquorum noquorum 
 
For Cassandra, at 32 client sessions, there is a 25% 

reduction in throughput going from eventual consistency to 
strong consistency. Figure 7 shows throughput performance 
for the read/write workload on the Cassandra database, 
comparing the representative production configuration with 
the eventual consistency configuration. 

The same comparison is shown for Riak in Figure 8. 
Here, at 32 client sessions, there is only a 10% reduction in 
throughput. (As discussed above, test client configuration 
issues resulted in no data recorded for 500 and 1000 
concurrent sessions.) 

 

 
Fig. 7. Cassandra – Comparison of strong and eventual consistency 

 
Fig. 8. Riak – Comparison of strong and eventual consistency 

In summary, the Cassandra database provided the best 
throughput performance, but with the highest latency, for the 
specific workloads and configurations tested here. We 
attribute this to several factors. First, hash-based sharding 
spread the request and storage load better than MongoDB. 
Second, Cassandra’s indexing features allowed efficient 
retrieval of the most recently written records, particularly 
compared to Riak. Finally, Cassandra’s peer-to-peer 
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architecture and data center aware features provide efficient 
coordination of both read and write operations across 
replicas and data centers. 

V. LESSONS LEARNED 
Product evaluation of NoSQL databases presents a 

number of challenges that we had to address in the course of 
this project. Our lessons learned fall in two broad categories:  
The first category includes issues related the essential 
complexity of evaluating NoSQL products, and the second 
category includes issues that arose from the accidental 
complexity of the available tools and technologies. 

A. Essential Issues 
1) Defining selection criteria 

This technology selection decision must be made early in 
the design cycle, and may be difficult and expensive to 
change Error! Reference source not found.. The selection 
must be made in a context where the problem definition may 
not be complete, and the solution space is large and rapidly 
changing as the open source landscape continues to evolve. 

We found that principal decision drivers were the size 
and growth rate of the data (number of records and record 
size), the complexity of the data model including the 
relations and navigations to support the use cases, the 
operational environment including system management 
practices and tools, and user access patterns including 
operation mix, queries, and number of concurrent users. We 
used quality attribute scenarios [12] to elicit these 
requirements, followed by clustering and prioritization. 
There were diverse stakeholder concerns, and identifying  
“go/no-go” decision criteria helped to focus the evaluation. 

2) Configuration tuning 
There are many configuration tuning parameters 

available, at the database, operating system, and EC2 level. 
We minimized changes to default configurations for two 
reasons. First, tuning can be a lengthy process, balancing 
interactions between settings within a layer and across 
layers. Second, our workload and data set were 
representative of, but not identical to, our production system 
and so optimization for our test workload would not 
necessarily apply to the production system. We found 
significant performance differences between products that 
would not be eliminated by tuning, and these were sufficient 
to make a selection. 

3) Quantitative selection criteria 
Quantitative selection criteria with hard thresholds were 

problematic to validate through prototyping. There are a 
many parameters that can be tuned to affect performance, in 
the infrastructure, operating system, and database product 
itself. While the final target system architecture must include 
that tuning, the testing space can quickly explode during 
selection. We found it useful to frame the performance 
criteria in terms of the shape of the performance curve. For 
example, is there a linear increase in throughput as the load 
increases? If not, are there discontinuities or inflection points 
within the input range of interest? Understanding the 
sensitivities and trade offs in a product’s capabilities can be 

sufficient to make a selection, and also provides valuable 
information to make downstream architecture design 
decisions regarding the selected product. 

4) Screening candidate products to prototype 
We used architecturally significant requirements to 

perform a manual survey of product documentation to 
identify viable candidates for prototyping. The manual 
survey process was slow and inefficient; as noted earlier, the 
solution space is large and rapidly changing. We began to 
collect and aggregate product feature and capability 
information into a queryable, reusable knowledge base, 
which included general quality attribute scenarios as 
templates for concrete scenarios, and linked the quality 
attribute scenarios to particular product features. This 
knowledge base was reused successfully for later projects, 
and is an area for further research. 

5) Tradeoff between evaluation cost and fidelity 
Any COTS selection process must balance cost (in time 

and resources) against fidelity (along dimensions such as 
data set size, cluster size, and exact configuration tuning), 
and the rapid changes in NoSQL technology exacerbate 
these issues. During the course of our evaluation, each of the 
candidate products released at least one new version that 
included changes to relevant features, so a lengthy evaluation 
process is likely to produce results that are not relevant or 
valid. Furthermore, if a public cloud infrastructure is used to 
support the prototyping and measurement, then changes to 
that environment can impact results. For example, during our 
testing process, Amazon changed standard instance types 
offered in EC2. Our recommendation is to limit prototyping 
and measurement to just two or three products, in order to 
finish quickly and produce results that are both valid and 
relevant in this evolving context. 

B. Accidental Issues 
1) Choosing between manual and automated testing 

The prototyping and measurement reported here used the 
Amazon cloud, which enabled efficient management and 
execution of the tests. Our peak utilization was more than 50 
concurrently executing server nodes (supporting several 
product configurations), which is more than can be 
efficiently managed in physical hardware environments. 

We had constant tension between using manual processes 
for server deployment and management, and automating 
some or all of these processes. While repeating manual tasks 
goes against software engineering best practices such as 
“don’t repeat yourself”3, in retrospect we think that the 
decision to make slow, but constant, forward progress, rather 
than stopping to introduce automation, was appropriate. In 
organizations that have an automation capability and 
expertise in place may reach a different conclusion. We did 
automate test execution and data collection, processing, and 
visualization. These tasks were performed frequently, had 
many steps, and had to be repeatable. 

                                                             
3 http://c2.com/cgi/wiki?DontRepeatYourself 
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2) Initial database loading 
Evaluation of a big data system requires that the database 

under test contains a large data set. Our read-intensive use 
cases required populating the database test execution. We 
found that bulk or batch loading of NoSQL databases 
requires special attention; each database product had specific 
recommendations and special APIs for this function. For 
example, recommendations like “pre-splitting” the data set 
significantly improved bulk load performance (e.g., for 
MongoDB). In other cases, we found that following the 
recommendations was absolutely necessary to avoid failures 
due to resource exhaustion in the database server during the 
load processing. We recommend that if bulk load is not one 
of your selection criteria, consider taking a brute force 
approach to load the data once, and then use database 
backups, or virtual machine or storage volume snapshots to 
return to the initial state as needed. 

3) Deleting records at completion of a test  
All of our tests that performed write operations ended the 

test by restoring the database to its initial state. We found 
that deleting records in most NoSQL databases is a very 
slow operation, taking as much as 10 times longer than a 
read or write operation. In retrospect, we would consider 
using snapshots to restore state, rather than cleaning up using 
delete operations. 

4) Measurement framework 
It is necessary to understand the measurement framework 

used in the test client. Although YCSB is the de facto 
standard for NoSQL database characterization, the 95th and 
99th percentile measurements that it reports are incorrect 
under certain latency distribution conditions. The YCSB 
implementation could be modified to extend the validity of 
those measurements to a broader range of latencies, or 
alternative metrics can be used for selection criteria. 

VI. FURTHER WORK AND CONCLUSIONS 
Ultimately, technical capabilities and performance are 

just one input to a software technology selection decision. 
Non-technical factors such as development and operational 
cost, schedule, risk, and alignment with organizational 
standards are also considered, and may have more influence 
on the final decision. However, a rigorous technical 
evaluation, based on prototyping and measurement, provides 
important information to assess both technical and non-
technical considerations. 

We have described a systematic method to perform this 
technology evaluation for NoSQL database technology, in a 
context where the solution space is broad and changing fast, 
and the system requirements may not be fully defined. Our 
approach was to evaluate the products in the specific context 
of use, starting with elicitation of key requirements to 
capture architecture drivers and selection criteria. Next, 
product documentation is surveyed to identify viable 
candidate technologies, and finally, rigorous prototyping and 
measurement is performed on a small number of candidates 
to collect data to make the final selection. 

We described the execution of this method to evaluate 
NoSQL technologies for an electronic healthcare system, and 

present the results of our measurements of performance, 
along with a discussion of alignment of the NoSQL data 
model with system-specific requirements. We presented 
lessons learned from our experience on this project. 

Our experience identified the benefits of having a trusted 
knowledge base that can be queried to discover the features 
and capabilities of particular NoSQL products, and 
accelerate the initial screening to identify viable candidate 
products for a particular set of quality attribute scenario 
requirements. This is an area for further research.  
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