
Application-Specific Evaluation of NoSQL Databases

John Klein, Ian Gorton, Neil Ernst, Patrick Donohoe
Architecture Practices, Software Solutions Division

Carnegie Mellon University Software Engineering Institute
Pittsburgh, PA, USA

{jklein, igorton, nernst, pd}@sei.cmu.edu

Kim Pham, Chrisjan Matser
Telemedicine and Advanced Technology Research Center

US Army Medical Research and Material Command
Frederick, MD, USA

kim.solutionsit@gmail.com, cmatser@codespinnerinc.com

Abstract— The selection of a particular NoSQL database for
use in a big data system imposes a specific distributed software
architecture and data model, making the technology selection
difficult to defer and expensive to change. This paper reports
on the selection of a NoSQL database for use in an Electronic
Healthcare Record system being developed by a large
healthcare provider. We performed application-specific
prototyping and measurement to identify NoSQL products
that fit data model and query use cases, and meet performance
requirements. We found that database throughput varied by a
factor of 10, read operation latency varied by a factor of 5, and
write latency by a factor of 4 (with the highest throughput
product delivering the highest latency). We also found that the
throughput for workloads using strong consistency was 10-
25% lower than workloads using eventual consistency. We
conclude by reflecting on some of the fundamental difficulties
of performing detailed technical evaluations of NoSQL
databases specifically, and big data systems in general, that
have become apparent during our study.

Keywords- NoSQL; distributed databases; technology
evaluation

I. INTRODUCTION
At the heart of many big data systems are “NoSQL”

database management systems that are simpler than
traditional relational databases and provide higher scalability
and availability [1]. These databases are typically designed
to scale horizontally across clusters of low cost, moderate
performance servers. They achieve high performance, elastic
storage capacity, and availability by replicating and
partitioning data sets across a cluster of servers. Each of
these products implements a different data model and query
language, as well as specific mechanisms to achieve
distributed data consistency and availability.

When a big data system uses a particular database, the
data, consistency and distribution models imposed by the
database have a pervasive impact on the design of the
associated applications Error! Reference source not
found.. Hence, the selection of a particular NoSQL database
must be made early in the design process and is difficult and
expensive to change downstream. In other words, NoSQL
database selection becomes a critical architectural decision
for big data systems.

Commercial off-the-shelf (COTS) software selection has
been extensively studied in software engineering [3][4][5]. In
complex technology landscapes with multiple competing
products, developers must balance the cost and speed of the
selection process against the fidelity of the analysis [6].

While there is rarely a single “right answer” in selecting a
complex component for an application, selection of
inappropriate components can be costly, reduce downstream
productivity due to rework, and even lead to project
cancelation. This is especially true for large scale, big data
systems, due to their complexity and the magnitude of the
investment.

There are several unique challenges that make selection
of NoSQL databases for use in big data applications a
particularly hard problem:
• This is an early architecture decision that must be made

with inevitably incomplete requirements.

• Capabilities and features vary widely across NoSQL
databases and performance is very sensitive to how a
product’s data model and query features match
application needs, making generalized comparisons
difficult.

• Production-scale prototypes, with hundreds of servers,
multi-terabyte data sets, and thousands or millions of
clients, are usually impractical.

• The solution space is changing rapidly, with new
products emerging and existing products releasing
several versions per year with ever evolving feature sets.

We faced these challenges during a recent project for a
healthcare provider considering the use of NoSQL databases
for an Electronic Health Record (EHR) system.

The next section provides details of the project context
and technology evaluation approach. This is followed in
Section III by a discussion of the prototype design and
configuration. Section IV presents the performance test
results. We conclude with a reflection on lessons learned
during this project.

II. EHR CASE STUDY

A. Project Context
Our customer was a large healthcare provider developing

a new EHR system. This system supports healthcare delivery
for over 9,000,000 patients in more than 100 facilities across
the globe. The data growth rate is more than one terabyte per
month, and all data must be retained for 99 years.

NoSQL technologies were considered attractive
candidates for two specific uses, namely:
• the primary data store for the EHR system

2015 IEEE International Congress on Big Data

978-1-4673-7278-7/15 $31.00 © 2015 IEEE

DOI 10.1109/BigDataCongress.2015.83

526

2015 IEEE International Congress on Big Data

978-1-4673-7278-7/15 $31.00 © 2015 IEEE

DOI 10.1109/BigDataCongress.2015.83

526

• a local cache at each site to improve request latency and
availability

This will replace an existing system that uses “thick
client” applications running at sites around the world, all
connected to a centralized relational database, so the
customer wanted to characterize performance with hundreds
of concurrent database sessions.

The customer was familiar with RDMS technology for
these use cases, but had no experience using NoSQL, so we
were directed to focus our evaluation only on NoSQL
technology.

B. Evaluation Approach
The approach is inspired by previous work on

middleware evaluation [6][7] and customized to address the
characteristics of big data systems. The basic main steps are
depicted in Fig. 1 and outlined below.

Fig. 1. Lightweight Evaluation and Prototyping for Big Data (LEAP4BD)

1) Specify Requirements
We used a stakeholder workshop to elicit key functional

and quality attribute requirements to frame the evaluation.
These key requirements were:

Performance/Scalability: The main quantitative
requirements were to replicate data across geographically
distributed data centers, and to achieve high availability and
low latencies under load in distributed database deployments.
Hence understanding the inherent performance and
scalability that is achievable with each candidate NoSQL
database was an essential part of the evaluation.

Data Model Mapping Complexity: Healthcare systems
have common logical data models and query patterns that
need to be supported by a NoSQL database. This required us
to evaluate the specific data modeling and query features for
each product, including capabilities to maintain replica
consistency in a distributed deployment.

We next helped the customer define two primary use
cases for the EHR system. These drove the evaluation that
we performed in subsequent steps in the project. The first use
case was to read recent medical test results for a single
patient, is a core function used to populate the user interface

whenever a clinician selects a new patient. The second use
case was achieving strong replica consistency when a new
medical test result is written for a patient, so that all
clinicians using the EHR to make patient care decisions will
see the same information, whether they are at the same site
as the patient, or providing telemedicine support from
another location.

2) Select Candidate NoSQL Databases
Our customer was specifically interested in evaluating

how different NoSQL data models (key-value, column,
document, graph) would support their application domain,
and so we selected one NoSQL database from each category
to investigate in detail. We subsequently ruled out graph
databases, as none provided the horizontal partitioning
required for this customer’s application. We chose Riak,
Cassandra and MongoDB as the three candidates, based on
product maturity and availability of enterprise support.

3) Design and Execute Performance Tests
In order to make an “apples to apples” comparison of the

databases that were evaluated, we defined and performed a
systematic test procedure. Based on the use cases defined
during the requirements step, we:

• Defined and implemented a consistent test
environment, which included server platform, test
client platform, and network topology.

• Mapped the logical model for a patient’s medical
test history onto each database’s data model and
loaded the resulting database with a large collection
of synthetic test data.

• Created a load test client that implements the
database read and write operations defined for each
use case. This client is capable of issuing many
simultaneous requests so that we can analyze how
each product responds as the request load increases.

• Defined and executed test scripts that exerted a
specified load on the database using the test client.

We executed each test case on several distributed
configurations to measure performance and scalability.
These test scenarios ranged from baseline testing on a single
server to 9 server instances that sharded and replicated data.

This enabled us to produce a consistent set of test results
that assess the likely performance and scalability of each
database for this customer’s EHR system. The details of the
environment and test design are presented in the next section.

III. PROTOTYPE AND EVALUATION SETUP

A. Test Environment
The three databases we tested were:
1. MongoDB version 2.2, a document store

(http://docs.mongodb.org/v2.2/);
2. Cassandra version 2.0, a column store

(http://www.datastax.com/documentation/cassandra/
2.0);

3. Riak version 1.4, a key-value store
(http://docs.basho.com/riak/1.4.10/).

527527

In Section IV, we report performance results for two
database server configurations: Single node server, and a
nine-node configuration that was representative of a
production deployment. Executing on a single node allowed
us to validate our test environment for each database. The
nine-node cluster was configured to represent a
geographically distributed deployment across three data
centers. The data set was sharded across three nodes, and
then replicated to two additional groups of three nodes each.
This was achieved using MongoDB’s primary/secondary
feature, and Cassandra’s data center aware distribution
feature. Riak did not directly support this “3x3” data
distribution, so we used a configuration where the data was
sharded across all nine nodes, with three replicas of each
shard stored across the nine nodes.

Testing was performed using the Amazon EC2
(http://aws.amazon.com/ec2/). Database servers executed on
“m1.large” instances. Database data and log files were stored
on separate EBS volumes attached to each server instance.
The EBS volumes were not provisioned with the IOPS
feature, to minimize the tuning parameters used in each test
configuration. The test client was also executed on an
“m1.large” instance. The servers and the test client both used
the CentOS operating system (http://www.centos.org). All
instances were in the same EC2 availability zone (i.e. the
same Amazon cloud data center).

B. Mapping the data model
Most of the prototyping effort was spent mapping the

application-specific logical data model onto the particular
data model, indexing, and query language capabilities of
each database to be tested.

We used the HL7 Fast Healthcare Interoperability
Resources (FHIR)1 as the logical data model for our analysis
and prototyping. The set of all test results for a patient, were
modeled using the “FHIR Patient Resources” (e.g.,
demographic information such as names, addresses, and
telephone numbers) along with “FHIR Observation
Resources” (e.g., test type, result quantity, and result units).
There was a one-to-many relation from each patient to the
associated test results. Although this was a relatively simple
model, the internal complexity of the FHIR Patient
Resource, with multiple addresses and phone numbers, along
with the one-to-many relation from patient to observations,
required a number of data modeling design decisions and
tradeoffs in the data mapping.

The most significant data modeling challenge was the
representation of the one-to-many relation from patient to lab
results, coupled with the need to efficiently access the most-
recently written lab results for a particular patient. Zola has
analyzed the various approaches and tradeoffs of
representing the one-to-many relation in MongoDB [11]. We
used a composite index of ⟨��������	
�������������	
⟩ for
lab result records, and also indexed by the lab result date-
time stamp. This allowed efficient retrieval of the most
recent lab result records for a particular patient.

1 http://www.hl7.org/implement/standards/fhir/

A similar approach was used for Cassandra. Here we
used a composite index of ⟨�������	
�����������������������
�����⟩. This caused the result set returned by the query to
be sorted by the server, making it efficient to retrieve the
most recent lab records for a particular patient.

In Riak, representing the one-to-many relation was more
complicated. Riak’s key-value data model provides the
capability to retrieval a value, given a unique key. Riak also
provides a “secondary index” capability to avoid a full scan
when the key is not known. However, each node in the
cluster stores only the secondary indices for those shards
stored by the node. A query to match a secondary index
value causes the request coordinator to perform a “scatter-
gather”, asking each node for records with the requested
secondary index value, waiting for all nodes to respond, and
then sending the list of keys for the matching records back to
the requester. The requester must then make a second request
with the list of keys, to retrieve the record values.

 The latency of the “scatter-gather” to locate records and
the need for two round trips to retrieve the records had a
negative impact on Riak’s performance for our data model.
Since there is no mechanism in Riak for the server to filter
and return only the most recent observations for a patient, all
matching records must be returned and then sorted and
filtered by the client.

MongoDB and Cassandra both provided a relatively
straightforward data model mapping and both provided the
strong replica consistency needed for this application. The
data model mapping for MongoDB seemed more transparent
than the use of the Cassandra Query Language (CQL), and
the indexing capabilities of MongoDB were a better fit for
this application.

C. Generate and load data
A synthetic data set was used for testing. This data set

contained one million patient records, and 10 million lab
result records. The number of lab results for a patient ranged
from 0 to 20, with an average of 7.

D. Create load test client
We used the YCSB framework [8] as the foundation for

the test client, to manage test execution and test
measurement. For test execution, we replaced YCSB’s very
simple default data models, data sets, and queries with
implementations specific to our use case data and requests.

YCSB’s built-in capabilities allow specification of the
total number of operations and the mix of read and write
operations in a workload. Our customer specified that the
typical workload for the EHR system was 80% read and 20%
write operations. For this operation mix, we implemented a
read operation to retrieve the five most recent observations
for a single patient, and a write operation to insert a single
new observation record for a single existing patient.

In order to investigate using the NoSQL technology as a
local cache (described in §II.A, above), we implemented a
write-only workload that represented a daily operation to
load a local cache from a centralized primary data store with
records for patients with scheduled appointments for that
day. We also implemented a read-only workload that

528528

represented flushing the cache back to the centralized
primary data store.

The YCSB measurement framework measures operation
latency as the time from when the request is sent to the
database until the response is received back from the
database. The YCSB reporting framework aggregates latency
measurements separately for read and write operations.
Latency distribution is a key scalability metric for big data
systems [9][10], so we recorded both average and 95th

percentile values.
We extended YCSB to report Overall Throughput, in

operations per second. This was the total number of
operations performed (reads plus writes) divided by the
workload execution time (from the start of the first operation
to the completion of the last operation in the workload
execution, and not including initial setup and final cleanup
times).

E. Define and execute test scripts
For each database and configuration, every workload was

run three times, to minimize the impact of transient events in
the cloud infrastructure. The standard deviation of the
throughput for any three-run set never exceeded 2% of the
average.

YCSB can use multiple execution threads to create
concurrent client sessions, so for each of the three test runs,
the workload execution was repeated for a defined range of
test client threads (1, 2, 5, 10, 25, 50, 100, 200, 500, and
1000), which created a corresponding number of concurrent
database connections. Post-processing of test results
averaged measurements across the three runs for each thread
count.

NoSQL databases are not typically designed to operate
with a large number of concurrent database client sessions.
Usually, clients connect to a web server tier and/or an
application server tier, which aggregates the client operations
on the database using a pool of roughly 16-64 concurrent
sessions. However, since this customer was modernizing a
system that used thick clients with direct database
connections, they wanted to understand the feasibility of
retaining the thick client architecture.

Since there were multiple concurrent connections to the
database, we had to define how these were distributed across
the server nodes. MongoDB uses a centralized router node,
so all clients connected to that single router node.
Cassandra’s data center aware distribution feature created
three sub-clusters of three nodes each, and client connections
were spread uniformly across the three nodes in one sub-
clusters. In the case of Riak, the product architecture only
allowed client connections to be spread uniformly across the
full set of nine nodes.

IV. PERFORMANCE AND SCALABILITY TEST RESULTS
We report here on results for the nine-node configuration

that reflected a typical production system (described in
§III.A above). Other tested configurations included running
on a single server. The single-node configuration’s
availability and scalability limitations make it unfeasible for
production use, and so we do not present performance

comparisons across databases for this configuration.
However, in the following discussion, we compare the single
node configuration for a particular database to its distributed
configuration, to provide insights into the efficiency of
distributed coordination mechanisms and guide tradeoffs to
scale up by adding more nodes versus using faster nodes
with more storage.

This EHR application required strong replica
consistency. These results are reported first, below. This is
followed by a comparison of strong replica consistency to
eventual consistency.

A. Performance Evaluation – Strong Consistency
The database configuration options to achieve strong

replica consistency are summarized in TABLE I. . For
MongoDB, these settings cause all writes to be committed on
the primary server, and all reads are from the primary server.
For Cassandra, the effect is that all writes are committed on a
quorum formed on each of the three sub-clusters, while a read
required a quorum only on the local sub-cluster. For Riak, the
effect is to require a quorum on the entire nine-node cluster
for both write operations and read operations.

TABLE I. SETTINGS FOR REPRESENTATIVE PRODUCTION CONFIGURATION

Database Write Options Read Options
MongoDB Primary Acknowledged Primary Preferred
Cassandra EACH_QUORUM LOCAL_QUORUM
Riak quorum Quorum

The throughput performance for the representative

production configuration for each of the workloads is shown
in Figs. 2, 3, and 4.

Fig. 2. Throughput, Representative Production Configuration, Read-Only

Workload (higher is better)

In every case, Cassandra provided the best overall
performance (peaking at approximately 3500 operations per
second), with read-only workload performance
approximately 10% better than the single node configuration,
and write-only and read/write workload performance
approximately 25% higher than the single node

529529

configuration. In moving from single node to a distributed
configuration, we gain performance from decreased
contention for storage I/O and other per-node resource. We
also lose performance, due to the additional work of
coordinating write and read quorums across replicas and data
centers. For Cassandra, the gains exceeded the losses,
resulting in net higher performance in the distributed
configuration.

Fig. 3. Throughput, Representative Production Configuration, Write-Only
Workload

Fig. 4. Throughput, Representative Production Configuration, Read/Write
Workload

Furthermore, Cassandra’s “data center aware” features
provide some separation of replication configuration from
sharding configuration. In these tests, compared to Riak, this
allowed a larger portion of the read operations to be
completed without requiring request coordination (i.e. peer-
to-peer proxying of the client request),.

Riak performance in this distributed configuration is
approximately 2.5x better than the single node configuration.
In test runs using the write-only workload and the read/write
workload, our Riak client had insufficient socket resources to
execute the workload for 500 and 1000 concurrent sessions.

These data points are hence reported as zero values in Figs. 3
and 4. We later determined that this resource exhaustion was
due to ambiguous documentation of Riak’s internal thread
pool configuration parameter, which creates a pool for each
client session and not a pool shared by all client sessions.
After determining that this did not impact the results for one
through 250 concurrent sessions, and given that Riak had
qualitative capability gaps with respect to our strong
consistency requirements (discussed below), we decided not
to re-execute the tests for those data points.

MongoDB’s single node configuration performance was
nearly 8x better than the distributed configuration. We
attribute this to two factors: First, the distributed
configuration is sharded, which introduces the router and
configuration nodes into the MongoDB deployment
architecture. The router proxies each request to the
appropriate shard, using the key mapping stored in the
configuration node. In our tests, the router node became a
performance bottleneck. Figs. 5 and 6 show read and write
operation latency for the read/write workload, with nearly
constant average latency for MongoDB as the number of
concurrent sessions is increased, which we attribute to rapid
saturation of the single router node.

The second factor affecting MongoDB performance is
the interaction between the sharding scheme used by
MongoDB and the write-only and read/write workloads that
we used. Both Cassandra and Riak use a hash-based sharding
scheme, which provides a uniformly distributed mapping
from the range of keys onto the physical nodes. In contrast,
MongoDB used a range-based sharding scheme with
rebalancing2.

Fig. 5. Read Latency, Representative Production Configuration,

Read/Write Workload

Our workloads generated a monotonically-increasing key
for new records to be written, which caused all write
operations to be directed to the same shard, since all of the
write keys mapped into the range stored in that shard. This is

2 http://docs.mongodb.org/v2.2/core/sharded-clusters/

530530

a typical key generation approach (e.g., the SQL
“autoincrement” key types), but in this case, it focuses the
write load for all new records onto a single node and thus
negatively impacts performance. A different indexing
scheme was not available to us, as it would impact other
systems that our customer operates. (We note that MongoDB
introduced hash-based sharding in v2.4, after our testing had
concluded.)

Fig. 6. Write Latency, Representative Production Configuration,

Read/Write Workload

Our tests also measured latency of read and write
operations. While Cassandra achieved the highest overall
throughput (approximately 3500 operations per second), it
also delivered the highest average latencies (indicative of high
internal concurrency in request processing). For example, at
32 client connections, Riak’s read operation latency was 20%
of Cassandra (5x faster), and MongoDB’s write operation
latency was 25% of Cassandra’s (4x faster). Figs. 5 and 6
show average and 95th percentile latencies for each test
configuration.

B. Performance Evaluation – Eventual Consistency
We also performed tests to quantify the performance cost

of strong replica consistency, compared to eventual
consistency. These tests were limited to the Cassandra and
Riak databases – the performance of MongoDB in the
representative production configuration was such that no
additional characterization of that database was warranted
for our application. The selected write and read options to
achieve eventual consistency are summarized in TABLE II. .
The effect of these settings for both Cassandra and Riak was
that writes were committed on one node (with replication
occurring after the operation was acknowledged to the
client), and read operations were executed on one replica,
which may or may not return the latest value written.

TABLE II. SETTINGS FOR EVENTUAL CONSISTENCY
CONFIGURATION

Database Write Options Read Options
Cassandra ONE ONE

Riak noquorum noquorum

For Cassandra, at 32 client sessions, there is a 25%

reduction in throughput going from eventual consistency to
strong consistency. Figure 7 shows throughput performance
for the read/write workload on the Cassandra database,
comparing the representative production configuration with
the eventual consistency configuration.

The same comparison is shown for Riak in Figure 8.
Here, at 32 client sessions, there is only a 10% reduction in
throughput. (As discussed above, test client configuration
issues resulted in no data recorded for 500 and 1000
concurrent sessions.)

Fig. 7. Cassandra – Comparison of strong and eventual consistency

Fig. 8. Riak – Comparison of strong and eventual consistency

In summary, the Cassandra database provided the best
throughput performance, but with the highest latency, for the
specific workloads and configurations tested here. We
attribute this to several factors. First, hash-based sharding
spread the request and storage load better than MongoDB.
Second, Cassandra’s indexing features allowed efficient
retrieval of the most recently written records, particularly
compared to Riak. Finally, Cassandra’s peer-to-peer

531531

architecture and data center aware features provide efficient
coordination of both read and write operations across
replicas and data centers.

V. LESSONS LEARNED
Product evaluation of NoSQL databases presents a

number of challenges that we had to address in the course of
this project. Our lessons learned fall in two broad categories:
The first category includes issues related the essential
complexity of evaluating NoSQL products, and the second
category includes issues that arose from the accidental
complexity of the available tools and technologies.

A. Essential Issues
1) Defining selection criteria

This technology selection decision must be made early in
the design cycle, and may be difficult and expensive to
change Error! Reference source not found.. The selection
must be made in a context where the problem definition may
not be complete, and the solution space is large and rapidly
changing as the open source landscape continues to evolve.

We found that principal decision drivers were the size
and growth rate of the data (number of records and record
size), the complexity of the data model including the
relations and navigations to support the use cases, the
operational environment including system management
practices and tools, and user access patterns including
operation mix, queries, and number of concurrent users. We
used quality attribute scenarios [12] to elicit these
requirements, followed by clustering and prioritization.
There were diverse stakeholder concerns, and identifying
“go/no-go” decision criteria helped to focus the evaluation.

2) Configuration tuning
There are many configuration tuning parameters

available, at the database, operating system, and EC2 level.
We minimized changes to default configurations for two
reasons. First, tuning can be a lengthy process, balancing
interactions between settings within a layer and across
layers. Second, our workload and data set were
representative of, but not identical to, our production system
and so optimization for our test workload would not
necessarily apply to the production system. We found
significant performance differences between products that
would not be eliminated by tuning, and these were sufficient
to make a selection.

3) Quantitative selection criteria
Quantitative selection criteria with hard thresholds were

problematic to validate through prototyping. There are a
many parameters that can be tuned to affect performance, in
the infrastructure, operating system, and database product
itself. While the final target system architecture must include
that tuning, the testing space can quickly explode during
selection. We found it useful to frame the performance
criteria in terms of the shape of the performance curve. For
example, is there a linear increase in throughput as the load
increases? If not, are there discontinuities or inflection points
within the input range of interest? Understanding the
sensitivities and trade offs in a product’s capabilities can be

sufficient to make a selection, and also provides valuable
information to make downstream architecture design
decisions regarding the selected product.

4) Screening candidate products to prototype
We used architecturally significant requirements to

perform a manual survey of product documentation to
identify viable candidates for prototyping. The manual
survey process was slow and inefficient; as noted earlier, the
solution space is large and rapidly changing. We began to
collect and aggregate product feature and capability
information into a queryable, reusable knowledge base,
which included general quality attribute scenarios as
templates for concrete scenarios, and linked the quality
attribute scenarios to particular product features. This
knowledge base was reused successfully for later projects,
and is an area for further research.

5) Tradeoff between evaluation cost and fidelity
Any COTS selection process must balance cost (in time

and resources) against fidelity (along dimensions such as
data set size, cluster size, and exact configuration tuning),
and the rapid changes in NoSQL technology exacerbate
these issues. During the course of our evaluation, each of the
candidate products released at least one new version that
included changes to relevant features, so a lengthy evaluation
process is likely to produce results that are not relevant or
valid. Furthermore, if a public cloud infrastructure is used to
support the prototyping and measurement, then changes to
that environment can impact results. For example, during our
testing process, Amazon changed standard instance types
offered in EC2. Our recommendation is to limit prototyping
and measurement to just two or three products, in order to
finish quickly and produce results that are both valid and
relevant in this evolving context.

B. Accidental Issues
1) Choosing between manual and automated testing

The prototyping and measurement reported here used the
Amazon cloud, which enabled efficient management and
execution of the tests. Our peak utilization was more than 50
concurrently executing server nodes (supporting several
product configurations), which is more than can be
efficiently managed in physical hardware environments.

We had constant tension between using manual processes
for server deployment and management, and automating
some or all of these processes. While repeating manual tasks
goes against software engineering best practices such as
“don’t repeat yourself”3, in retrospect we think that the
decision to make slow, but constant, forward progress, rather
than stopping to introduce automation, was appropriate. In
organizations that have an automation capability and
expertise in place may reach a different conclusion. We did
automate test execution and data collection, processing, and
visualization. These tasks were performed frequently, had
many steps, and had to be repeatable.

3 http://c2.com/cgi/wiki?DontRepeatYourself

532532

2) Initial database loading
Evaluation of a big data system requires that the database

under test contains a large data set. Our read-intensive use
cases required populating the database test execution. We
found that bulk or batch loading of NoSQL databases
requires special attention; each database product had specific
recommendations and special APIs for this function. For
example, recommendations like “pre-splitting” the data set
significantly improved bulk load performance (e.g., for
MongoDB). In other cases, we found that following the
recommendations was absolutely necessary to avoid failures
due to resource exhaustion in the database server during the
load processing. We recommend that if bulk load is not one
of your selection criteria, consider taking a brute force
approach to load the data once, and then use database
backups, or virtual machine or storage volume snapshots to
return to the initial state as needed.

3) Deleting records at completion of a test
All of our tests that performed write operations ended the

test by restoring the database to its initial state. We found
that deleting records in most NoSQL databases is a very
slow operation, taking as much as 10 times longer than a
read or write operation. In retrospect, we would consider
using snapshots to restore state, rather than cleaning up using
delete operations.

4) Measurement framework
It is necessary to understand the measurement framework

used in the test client. Although YCSB is the de facto
standard for NoSQL database characterization, the 95th and
99th percentile measurements that it reports are incorrect
under certain latency distribution conditions. The YCSB
implementation could be modified to extend the validity of
those measurements to a broader range of latencies, or
alternative metrics can be used for selection criteria.

VI. FURTHER WORK AND CONCLUSIONS
Ultimately, technical capabilities and performance are

just one input to a software technology selection decision.
Non-technical factors such as development and operational
cost, schedule, risk, and alignment with organizational
standards are also considered, and may have more influence
on the final decision. However, a rigorous technical
evaluation, based on prototyping and measurement, provides
important information to assess both technical and non-
technical considerations.

We have described a systematic method to perform this
technology evaluation for NoSQL database technology, in a
context where the solution space is broad and changing fast,
and the system requirements may not be fully defined. Our
approach was to evaluate the products in the specific context
of use, starting with elicitation of key requirements to
capture architecture drivers and selection criteria. Next,
product documentation is surveyed to identify viable
candidate technologies, and finally, rigorous prototyping and
measurement is performed on a small number of candidates
to collect data to make the final selection.

We described the execution of this method to evaluate
NoSQL technologies for an electronic healthcare system, and

present the results of our measurements of performance,
along with a discussion of alignment of the NoSQL data
model with system-specific requirements. We presented
lessons learned from our experience on this project.

Our experience identified the benefits of having a trusted
knowledge base that can be queried to discover the features
and capabilities of particular NoSQL products, and
accelerate the initial screening to identify viable candidate
products for a particular set of quality attribute scenario
requirements. This is an area for further research.

ACKNOWLEDGMENT
This material is based upon work funded and supported

by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a federally
funded research and development center.
References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer,
or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by Carnegie
Mellon University or its Software Engineering Institute.
This material has been approved for public release and
unlimited distribution. DM-0002241.

REFERENCES
[1] P. J. Sadalage and M. Fowler, NoSQL Distilled. Addison-Wesley

Professional, 2012.
[2] I. Gorton and J. Klein, “Distribution, Data, Deployment: Software

Architecture Convergence in Big Data Systems,” IEEE Software, vol.
32, no. 3, pp. 78-85, May/June 2015. doi: 10.1109/MS.2014.51

[3] S. Comella-Dorda, J. Dean, G. Lewis, et al., “A Process for COTS
Software Product Evaluation.” Software Engineering Institute,
Technical Report, CMU/SEI-2003-TR-017, 2004.

[4] J. Zahid, A. Sattar, and M. Faridi. "Unsolved Tricky Issues on COTS
Selection and Evaluation." Global Journal of Computer Science and
Technology, 12.10-D (2012).

[5] Becker, C., Kraxner, M., Plangg, M., & Rauber, A. “Improving
decision support for software component selection through systematic
cross-referencing and analysis of multiple decision criteria.” In Proc.
46th Hawaii Intl. Conf. on System Sciences (HICSS), 2013, pp. 1193-
1202.

[6] Y. Liu, I. Gorton, L. Bass, C. Hoang, & S. Abanmi. “MEMS: a
method for evaluating middleware architectures.” In Proc. 2nd Int’l
Conf. on Quality of Software Architectures (QoSA), 2006, pp. 9-26.

[7] A. Liu and I. Gorton. 2003. Accelerating COTS Middleware
Acquisition: The i-Mate Process. IEEE Software. 20, 2 (March 2003),
72-79.

[8] B. F. Cooper, A. Silberstein, E. Tam, et al., “Benchmarking Cloud
Serving Systems with YCSB,” in Proc. 1st ACM Symposium on
Cloud Computing (SoCC '10), 2010, pp. 143-154. doi:
10.1145/1807128.1807152

[9] G. DeCandia, D. Hastorun, M. Jampani, et al., “Dynamo: Amazon's
Highly Available Key-value Store,” in Proc. 21st ACM SIGOPS
Symp. on Operating Systems Principles (SOSP '07), Stevenson,
Washington, USA, 2007, pp. 205-220.

[10] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of
the ACM, vol. 56, no. 2, pp. 74-80, February 2013. doi:
10.1145/2408776.2408794

[11] W. Zola. 6 Rules of Thumb for MongoDB Schema Design: Part 1
[Online]. http://blog.mongodb.org/post/87200945828/6-rules-of-
thumb-for-mongodb-schema-design-part-1 (Accessed 18 Sep 2014).

533533

[12] M. R. Barbacci, R. J. Ellison, A. J. Lattanze, et al., “Quality Attribute
Workshops (QAWs).” Software Engineering Institute, Technical

Report, CMU/SEI-2003-TR-016, 2003.

534534

