
Evolutionary Improvements of
Cross-cutting Concerns: Performance in Practice

Stephany Bellomo, Neil Ernst, Robert L. Nord, and Ipek Ozkaya
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

{sbellomo, nernst, rn, ozkaya}@sei.cmu.edu

Abstract—As industry continues to embrace incremental
software development, many projects run into the challenge of
incrementally evolving cross-cutting concerns such as
performance. To better understand how projects are handling
this challenge in practice, we captured experiences from two
financial services that made a series of performance
improvements over several months. We discovered some
commonality in how these projects refine the work, enabling
incremental requirements analysis and allocation of work. In this
paper, we describe two key aspects of this evolution: refining the
concern by breaking it into its constituent parts to drive design
tasks and allocating the parts to iterations as the software
evolves. Two practices we observed that support this evolution
include ratcheting broadened to conceptually describe the
refinement approach in dimensions of response to stimuli in a
given context and analysis conducted concurrently and loosely
coupled from implementation work. This refinement supports
ongoing exploration of the problem and solution, and
evolutionary development, such as course changes, when new
information is acquired.

Keywords—performance; quality attribute; requirements;
cross-cutting concerns; refinement; allocation; evolution;
maintenance; incremental iterative development

I. INTRODUCTION
A worst-case scenario for any project under frequent

delivery pressure is to discover an impactful requirement late,
after it has become a significant impediment to the user, with
no ability to break the work into manageable chunks to quickly
resolve the problem. Cross-cutting concerns such as
performance, security, and availability are particularly hard to
break apart into smaller increments since, by their nature, they
impact many aspects of the system. Why is it that some
projects sustain their established cadence when faced with this
situation and others do not?

Determining satisfaction criteria, development effort, and
value is a fundamental activity in managing the scope of
functional requirements for iterations during evolutionary
development. The requirements analysis process involves
refining and separating abstract stakeholder concerns into
constituent parts and understanding their interrelationships so
they can be allocated to iterations in the software development
process.

What makes this a particularly hard problem is that cross-
cutting concerns (such as quality attribute or non-functional
requirements) and the work associated with them are not as
independent as features. Dependencies between other software
elements must be considered in packaging the pieces into units
that must be treated together or sequenced over iterations.

We describe examples from two financial services projects
making performance improvements as the systems evolved.
The paper is structured around our exploration of these two
questions: (1) How do these projects parse important tangible
constituent parts of the cross-cutting performance concern? (2)
How do the parts get sequenced as the software evolves?

II. EXPLORATORY STUDY
In this paper, we explore two examples of system evolution

captured through semi-structured interviews with the technical
leads of the projects. We began each interview by collecting
background information to establish project context and then
asked the interviewees to describe examples in which their
teams evolved a quality attribute requirement. After the first
round of interviews, we analyzed the results and selected a
commonly shared concern, performance, for deeper
exploration. We collected further details via additional
interviews, emails, and phone calls.

A. Project A
Project A develops financial support software for a mid-

size firm. The software supports the buying and selling of
financial securities. Performance is a key concern, particularly
at the close of the financial day. Customers may have to pay
interest if they have to borrow a large sum of money to hold
sell orders overnight if they were not processed by the close of
trading. Project A described its performance evolution as a set
of state transitions. The software was used for weeks or months
at a time between these states while customers provided
feedback to the developers that informed the work in the
subsequent state. State transitions included analysis, design,
and implementation work described as user stories below.

A-S1: Baseline financial order. This is the baseline state in
which orders are manually submitted and processed.
A-S2: Autopilot feature. Customers voiced a concern that
transactions processed near the close of the financial day are
not acknowledged fast enough by the system. The team

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.91

546

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.91

545

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.91

545

2014 IEEE International Conference on Software Maintenance and Evolution

1063-6773/14 $31.00 © 2014 IEEE

DOI 10.1109/ICSME.2014.91

545

determined that automating user interaction will improve
order throughput. The autopilot solution was implemented.
A-S3: Data caching. Customers reported latency issues with
individual order processing. The team added data caching to
reduce latency of database read and write operations.
A-S4: Data write delay. Customer feedback showed that
latency was still an issue. Rather than requesting to reduce
latency, the business articulates a measurable response that
order processing must be completed in less than one second.
The team’s analysis revealed that one cause of latency was the
time spent updating the database with post-transaction results.
The team implemented an enhancement to delay writing data
to the database until after the orders were processed.
A-S5: Prioritize transactions. Analysis of production logs
revealed that transactions for smaller amounts were
acknowledged before transactions for larger amounts. The
team added a feature to prioritize messages by highest dollar
value so that those have a higher probability of getting
processed.

1) Refining Requirements into Constituent Parts: Each
state transition was a performance improvement to the basic
order-processing capability. Improvement was measured by
the criteria in Table I. The performance requirement was
refined enough to determine satisfaction and value. The
associated work was refined enough to determine effort. The
effort for each state varied depending on the time needed to do
the work to show something of value to the customer. The
states were broken down into smaller internal iterations for
allocation (not shown in Table I).

In the quality attribute requirement (QAR) parsing column
in Table I, we capture the requirements at each state along
three dimensions summarized from the quality attribute
scenario: Stimulus, Context, and Response [3]. The stimulus
dimension describes the action that initiates the system
response, the context dimension describes the evolving
environmental condition (e.g., increasing number of users), and
the response dimension describes how the system responds to
the stimulus and may include a response measure. We analyzed
how Project A evolved its performance requirements using
these dimensions to understand how it parsed work into
constituent parts. Examples are described below.

� Stimulus: A-S4 to A-S5 illustrates refinement in the
stimulus dimension, moving from a single- to multi-user
perspective. A second example is A-S2 to A-S3, which
illustrates moving from batch processing to individual
transaction processing.

� Context: The initial requirement focused development on
the system behavior (simple baseline case) to test ideas
before dealing with complexities and uncertainties of the
environment. A-S1 to A-S2 illustrates refinement in the
context dimension, moving from manual processing to the
autopilot solution, by adjusting the boundary of the
system with respect to its environment, including the
user’s role. Moving from A-S4 to A-S5 accounts for the
complexities of the rotary algorithm in the environment.

� Response: A-S3 to A-S4 illustrates refinement in the
response dimension by ratcheting the response measure
[2]. The response measure value was refined to less than 1
second for processing individual transactions.

These states are not a linear progression toward a
predefined goal. The evolution of the quality attribute
requirement is driven by feedback given by the development
team and the business owners/users (e.g., concern that design
won’t scale, users get impatient with single-order latency). The
team analyzes this feedback and, in some cases, the work is
prioritized, divided into smaller pieces, and parsed into
reasonable chunks through trade-offs. With three dimensions to
adjust (stimulus, context, response), ratcheting in one
dimension may require easing up on another to make progress.

2) Allocating Performance Work to Increments: Project A
explained that separating performance-related from feature-
related requirements in the backlog or when planning and
allocating work to iterations was not useful. Project A
followed evolutionary incremental development by doing
performance-related analysis work concurrently and loosely
coupled from implementation sprint work (Fig. 1). This is a
practice that we observe in industry [1]. This ongoing analysis
helps break up the problem so that the implementation sprint

TABLE I. PROJECT A PERFORMANCE IMPROVEMENT EVOLUTION

 QAR Parsing Value Effort

A-
S1

Stimulus: Customer initiates
process (multi-user)
Context: Users processing
transactions with system; deadline
approaching
Response: Process volume of
transactions

Baseline order
feature 1x

A-
S2

Stimulus: Customer initiates
automated process
Context: System processing
transactions (single-user)
Response: Process volume of
transactions; new time less than
current time

Enhanced
“Autopilot”
feature with
performance
focus to reduce
batch processing
latency

3x

A-
S3

Stimulus: Order process initiates
transaction
Context: System processing
transaction; deadline approaching
(single-user)
Response: Process individual
transaction; new time less than
current time

Improved
individual order
capability with
reduced latency

1x

A-
S4

Stimulus: Order process initiates
transaction
Context: System processing
transaction; deadline approaching
(single-user)
Response: Process individual
transaction; processing time less
than or equal to 1 s

Improved
individual order
capability with
further reduced
latency

2x

A-
S5

Stimulus: Customer submits
orders
Context: System processing
transactions; rotary algorithm;
deadline (multi-user) approaching
Response: Process and prioritize
transactions

Enhanced batch-
level
prioritization
feature with
performance
focus on reducing
batch-latency

1x

547546546546

work can proceed at a more uniform cadence. As analysis was
completed, work was allocated to sprints (shown with arrows
in Fig. 1). Well-understood changes refining features, such as
A-S2 and A-S3, were allocated to implementation sprints with
minimal analysis. However, in cases where significant
analysis was needed (e.g., A-S4), the team created a prototype
to explore the problem and investigate alternative solutions
while continuing to mature the system and implement ongoing
requirements. For A-S4 the changes were more substantial, so
the work was allocated to multiple sprints.

B. Project B
Coincidentally, Project B, from a different company than

Project A, was also a financial system with very stringent
performance requirements. The system functionality included
high-speed stock order processing. Like Project A, the
performance iterations are described as state transitions. This
project was in the pre-release phase, focusing on evaluating the
design to ensure it could meet requirements. The team used a
scenario-driven approach to investigate performance risks.
Output of scenario analysis is input to the evolving system
design and architecture of the next state, as described below.

B-S1: Create order. Baseline state.
B-S2: Order-processing algorithm improvement. During
scenario-based design review, a concern surfaced over the
uncertainty of whether the algorithms were fast enough in all
situations, so peak load was identified to process 10,000
orders in 0.1 millisecond (ms). In response, the Java
algorithms were improved for processing orders.
B-S3: Queue latency improvement. Queues were incorporated
into the design to improve performance in response to latency
concerns. The question addressed in this state was “How much
overhead does the queuing approach generate?”
B-S4: Queue limitation exploration. An exploratory
requirement of processing stock orders for larger
organizations drove further investigation of the single-server,
multi-core design. The analysis increased understanding of
feature limitations under stress to improve the design or plan
for mitigation options. In this case, the team determined the
design change would be too impactful, so they planned for the
mitigation option to buy another server and distribute the load.

B-S5: Garbage collection investigation. After discovering a
problem during testing, the team investigated how the system
runs when garbage collection is turned off.

1) Refining Requirements into Constituent Parts: Table II
summarizes the evolution states of Project B.

The analysis of this example also shows changes to the
stimulus, context, and response, as summarized below.

� Stimulus: BS-3 shows variations in the stimulus with the
artifact changing to focus on a specific part of the system,
the queue.

� Context: B-S2 shows variations in the context by
increasing the concurrently processed orders to 1,000
orders while maintaining response time at 0.1 ms.

� Response: The response goal remained consistent at 0.1
ms throughout all the state transitions. This was a target
that they reached over several rounds of tweaking the
design, analyzing the response under increasingly
stringent conditions, such as described in B-S2, and
making incremental improvements.

2) Allocating Performance Work to Increments: Project B
did not separate feature-related and performance-related
requirements in their software development lifecycle either.
Like Project A, they conducted exploratory performance
analysis and design work concurrently with maturing other
features and continuing implementation. Work was integrated
into implementation sprints as it became better defined

TABLE II. PROJECT B PERFORMANCE IMPROVEMENT EVOLUTION

 QAR Parsing Value Effort

B-
S1

Stimulus: Order request
Context: System operating
under normal conditions
(under 10,000 orders)
Response: Process order less
than 0.1 ms

Baseline order
feature 1x

B-
S2

Stimulus: Order received by
system
Context: System (specifically
Java algorithms) operating at
peak load (over 10,000 orders)
Response: Process order under
0.1 ms

Improved order-
processing feature
with reduced
latency

0.1x

B-
S3

Stimulus: Order submitted
Context: Artifact focus is
queue
Response: Queue overhead
should allow for same response
measure as 0.1 ms

Improved
confidence that
order-processing
feature will hold up
under strenuous
circumstances

2x

B-
S4

Stimulus: Order
Context: More orders than
core/queue architecture allows
Response: Process order under
0.1 ms

Increased
understanding of
feature limitations
under stress (to
improve or plan for
mitigation options)

0.5x

B-
S5

Stimulus: Order submission
Context: Garbage collection
turned off
Response: System runs during
trading hours maintaining
response of 0.1 ms

Improved order
feature performance
(with garbage
collection off)

0.2x

Fig. 1. Evolutionary incremental development.

548547547547

through analysis of design artifacts, prototyping, or both. We
see the challenge of managing dependencies during allocation
in this example. In B-S4, a concern was identified in which
the stock for an initial public offering could potentially have
too many orders against it, which could push the design
beyond its limits to scale and maintain throughput and latency.
The team explored solutions, and refactoring involved changes
to multiple interdependent system components. Ultimately, the
team determined they could not afford to disrupt cadence and
stop delivery of features. They decided not to fix the problem.
The mitigation plan was to purchase a second server if this
problem emerges and redesign at that time.

III. DISCUSSION
Ultimately the purpose of refining cross-cutting concerns is

to decompose a stakeholder need or business goal into
iteration-sized pieces. Allocation then takes those pieces and
determines when to work on them. This is both an analysis and
a design activity: refinement and allocation are explorations of
the problem and solution spaces, and evolutionary, iterative
development allow for course changes when new information
is acquired. Developers work toward satisfying cross-cutting
concerns in the context of the effort and ultimate value.

We observed in these projects that developers refined
performance requirements using a feedback-driven approach.
The analysis approach used by the teams allowed them to parse
the evolving performance requirement to meet increasing user
expectations over time (expressed as state transitions). Within
each state transition, developers refine cross-cutting concerns
into requirements by breaking them into their constituent parts
in terms of the scope of the system and response to stimuli in a
given context. The system and cross-cutting performance
requirements evolve as stimuli, context, and response are
ratcheted. The concerns that drove performance improvements
became regression tests in subsequent states to ensure that
changes did not increase latency.

We see these projects using exploratory analysis techniques
to elicit, refine, and evolve emerging requirements in an
integrated manner. In addition to obtaining user feedback, they
investigated anticipated questions and concerns using analysis
and design spikes. They allocated work to iterations by
considering dependencies and conducting analysis concurrent
with implementation to keep up the cadence. Project A
mentioned that they had redesigned early in the project to
promote modularity. This raises the question whether modular
architecture may have been an enabler for allocating work to
complement the exploratory analysis techniques in the software
development and evolution process.

The projects were successful in breaking the challenging
cross-cutting concerns into smaller pieces. However, the reality
of such requirements is that they cannot always be refined into
chunks of equal size as required by software development
processes such as Scrum that enforce fixed iteration lengths.
The examples demonstrate varying efforts that span multiple
iterations. Exploratory analysis techniques help to some extent,
but challenges remain to further smooth the process.

IV. CONCLUSION
Incorporating cross-cutting concerns such as quality

attributes throughout the software development and
sustainment lifecycle is not always a straightforward process.
One challenge is a refinement problem: to correctly specify the
quality attribute requirement to a level of detail that is
measurable and valuable and then find design fragments that
can be completed within the release cadence. Another
challenge is an allocation problem: to correctly allocate design
fragments to iterations to optimize the relationship between
cost and value. This relationship is a complex one. In some
situations, needless over-preparation defers implementation
that may lead to cost of delay. In other situations, expedient
implementation choices made to meet the constraints may
make the system less adaptable and lead to costly rework.

We see evidence of projects that are better able to sustain
their cadence with a combination of refinement and allocation
techniques guided by measures for requirement satisfaction,
value, and development effort. As we retrospectively analyzed
these examples, we found that these teams did not follow a
formal technique; however, they did have common elements in
how they refined the work into smaller chunks, enabling
incremental requirements analysis and allocation of work into
implementation increments.

Fowler describes ratcheting performance thresholds in
terms of tightening the threshold over time to improve the
value of a response measure [2]. Based on what we have
learned by examining these examples, we suggest that this
ratcheting concept can be broadened to conceptually describe
the refinement approach in other dimensions. For example,
changes in the evolving context, such as increasing the number
of orders to be processed or reducing the performance
threshold for a single order, allow for breaking a cross-cutting
concern to a reasonably sized chunk of work for analysis,
allocation, or testing. We suggest that these examples, which
demonstrate ratcheting in multiple dimensions, could be useful
for teams struggling with how to break up and evolve cross-
cutting concerns during iterative and incremental development.

ACKNOWLEDGMENT
We acknowledge Felix Bachmann, Luis Carballo, and Salient Federal

Solutions for their technical contribution to this paper.

This material is based upon work funded and supported by the Department
of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally
funded research and development center. This material has been approved for
public release and unlimited distribution. DM-0001452.

REFERENCES
[1] S. Bellomo, R. Nord, and I. Ozkaya, “Elaboration on an integrated

architecture and requirement practice: prototyping with quality attribute
focus,” International Confereence on Sofware Engineering, Twin Peaks
Workshop, San Fransisco, CA, May 2013.

[2] M. Fowler, “An appropriate use of metrics,” website posting
http://martinfowler.com/articles/useOfMetrics.html#MetricsAsARatchet

[3] I. Ozkaya, L. Bass, R. L. Nord, and R. S. Sangwan, “Making practical
use of quality attribute information,” IEEE Software, vol. 25, no. 2, pp.
25–33, March/April 2008.

549548548548

