Global Adversarial Capability Modeling

Jonathan Spring®*, Sarah Kern*T, Alec Summers*
*CERT® Program, Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA, USA
Email: netsa-contact@cert.org
tSchool of Information Sciences
University of Pittsburgh

Abstract—Intro: Computer network defense has models for
attacks and incidents comprised of multiple attacks after the
fact. However, we lack an evidence-based model the likelihood
and intensity of attacks and incidents.

Purpose: We propose a model of global capability advance-
ment, the adversarial capability chain (ACC), to fit this need.
The model enables cyber risk analysis to better understand
the costs for an adversary to attack a system, which directly
influences the cost to defend it.

Method: The model is based on four historical studies of
adversarial capabilities: capability to exploit Windows XP, to
exploit the Android API, to exploit Apache, and to administer
compromised industrial control systems.

Result: We propose the ACC with five phases: Discovery,
Validation, Escalation, Democratization, and Ubiquity. We use
the four case studies as examples as to how the ACC can be
applied and used to predict attack likelihood and intensity.

Keywords-incident response, intrusion detection, intelligence,
computer network defense, CND, modeling, security, cyberse-
curity

I. INTRODUCTION

The number of adversaries, and their skill level, attacking
a network defender are key informational components to
defensive planning. However, estimating the extent of ad-
versarial capability has historically been difficult, especially
in the cyber domain. This paper describes a model to better
estimate and reason about global adversarial capability and
the landscape of computer network attacks (CNA). The
model identifies and clarifies trends in the progression of
adversary capabilities and provides a clearer view of the
global threat landscape.

Inspired by the intrusion kill chain of individual CNA
[1], the Adversarial Capability Chain (ACC) model describes
the progression of expertise in conducting CNA much more
generally. The ACC models adversarial competency in a spe-
cific capability against a particular system. Understanding
the state of the capability against a particular technology
can help guide risk-based assessments about the wisdom
of deploying that particular technology and decide what
defenses can be considered adequate to resist an adversary’s

In Tenth Symposium on Electronic Crime Research (eCrime) 2015

capabilities. The ACC model defines “adversarial capability”
and “system” carefully to optimize intelligibility, usefulness,
and reliability.

The ACC model organizes adversarial capability into five
phases: Discovery, Validation, Escalation, Democratization,
and Ubiquity. Since adversarial capability is not directly
observable, the analyst tracks status by observing symptoms
that correspond to the phases. The symptoms have been
derived both heuristically from cybersecurity expert opinion
and analytically from economic and criminological princi-
ples.

Since each software system is idiosyncratic and there
are relatively few such globally important systems, corre-
lations cannot be derived experimentally. Therefore, this
paper derives the ACC model from a series of case studies
of existing systems. Four such case studies are included:
Windows XP, Android user-facing application programming
interface (API), Apache web server, and industrial control
systems (ICS). The first three case studies explore and model
the adversarial capability of system exploitation to gain
unauthorized control over the software system in question.
The ICS case study does not focus on a particular software
system; instead, it focuses on the adversarial capability
to leverage cyber-physical systems more generally rather
than focusing on the exploitation capability of a particular
software system.

The ACC is a chain in the same way that the intrusion
kill chain is a chain—adversarial progress per system is
unidirectional (i.e., monotonically increasing). Discovery
of vulnerabilities in a particular system is inherently so;
exploits are never forgotten. This one-way movement makes
the capability chain easier to interpret. The rankings given
are minimums until further observations ratchet the adver-
sarial capability up the chain. The complex state of software
systems muddies this issue somewhat. More than one system
protects any individual information item, so multiple adver-
sarial capabilities against multiple systems impact how well
a target is protected. The model and framework presented
here can be used to clarify this complex ecosystem; however,
the model is not an automatic solution to this highly complex

978-1-4799-8909-6/15/$31.00 ©2015 IEEE

problem. The model provides a tool to improve analyst
conclusions and help reduce error.

The expected gains from employing ACC modeling of
threats to defender systems is primarily to extend the time
window in which accurate predictions can be made about
cyber events and capabilities. This is a critical computer
network defense (CND) planning function; if an expected
system lifetime is five years, it should be deployed with the
ability to defend against the expected adversarial capabilities
in that time frame, not the present adversarial capabilities.
At present, reliable predictions about global adversarial
capabilities are much shorter than expected system lifetimes,
and this makes such forward-thinking planning impractical.
The ACC model helps reverse that trend.

II. MOTIVATION

There exists a theme in the historical progression of
attacks against software systems. It is not a matter of if any
particular attack capability becomes widely accessible after
it is first developed, but when. Different software systems
are usually attacked in idiosyncratic ways, so extracting the
consistent elements from the examples is challenging. Yet
if the patterns within the historical progression could be
extracted, analysts could improve their understanding of how
adversarial capability progresses and better inform decision
makers in deploying technologies and defenses. Adversarial
capability to attack a software system is proportional to the
amount of effort a defender must spend to prevent the system
from being compromised.

The purpose of modeling is to provide a useful repre-
sentation of reality that improves analyst performance [2].
In doing so, some simplifications are necessary; otherwise
the model becomes as useless as a 1:1 map. Models in-
volving engineered mechanisms such as computer systems
are difficult due to their dynamic and complex nature [3].
The Adversarial Capability Chain (ACC) model is coarse
grained, so some stark simplifications must be made. How-
ever, one benefit of abstraction is to move far enough
from specific software systems to avoid the changeable
nature of software and model something more constant:
human expertise, expertise growth, human communities, and
economic drivers. These concepts are roughly what the ACC
models as adversarial capability when paired with a specific
capacity, such as system exploitation. (See Section IV-A for
a more precise definition of adversarial capability.)

Although the ACC models human capability, it is inti-
mately tied to a software system. The adversarial capability
to affect a particular software system does not directly
transfer to another system. Therefore, the definition of what
is considered one “system” is critically important. The rough
heuristic the model uses defines a system as the unit of code
that can be exploited. This definition is made more precise
in Section IV-C.

Once concepts are adequately defined, the remainder of
Section IV fleshes out the model. Section IV-D explains
the organization of the model and specifies the five phases
of adversarial capability: Discovery, Validation, Escalation,
Democratization, and Ubiquity. Section IV-E introduces and
defines the method for visualizing the ACC.

There exist processes for creating a resilient risk-
management capability within an organization [4]. There
are many different definitions of risk, and evaluating and
communicating risk can be challenging [5]. In general an
adversary needs both access and capability to execute an
attack; a traditional risk assessment estimates risk of attack
as a function of both. With the global connectivity of the
Internet, any addressable system can access any other. Thus
the risk of some attack is primarily a function of only
adversarial capability, since all relevant adversaries have
access. Thus the ACC helps start an accurate process for a
principled risk assessment of an Internet-connected system.

The ACC model has been derived both heuristically from
cybersecurity expert opinion and analytically from economic
and criminological principles, including our prior models
of malicious Internet behavior [6, 7, 8]. These derivation
methods are informed by detailed case studies of adversarial
capability against different software systems. Section VI
includes several case studies using the ACC model; these
case studies are presented to demonstrate the validity of the
model and provide an example of how to apply the ACC to a
given software system. The systems subject to case study are
Windows XP, Android user-facing application programming
interface (API), Apache web servers, and industrial control
systems (ICS).

ITII. RELATED WORK

Several models of attacker behavior and purported at-
tack prediction exist. They range widely in the subject
matter used to characterize attacks, and come from both
academic and industry sources. Watters et al. developed
a Cyber Attacker Model Profile (CAMP) to characterize
and predict cyber attacks via social characteristics within
different cultures [9]. Qin and Lee presented an approach
to predict short-term attack strategies by clustering and
correlating IDS alerts [10]. The anti-virus company Sophos
has researched the exploit skills of specific malware author
groups, providing insight into individual attacker groups
[11]. The ACC offers a complementary view of attack
prediction by modeling global adversary capability that is
at once technically grounded and broad-scope.

The ACC model enhances the existing analytical tool box.
The current tool box for a computer network operations
(CNO) analyst includes a common language for computer
security incidents [12], intrusion kill chain models [1], and
the diamond model of intrusion analysis [13]. The existing
models provide fine-grained or narrowly scoped intrusion
and attribution analysis. However, there is no wide-lens,

context-based perspective model of the whole adversarial
ecosystem. The ACC proposed here fills this gap. The results
of ACC modeling provide higher level conclusions appro-
priate for decision makers as well as context for analysts
using the more fine-grained analytical tools.

IV. ADVERSARIAL CAPABILITY CHAIN

The ACC describes, analyzes, and models the state of
global capabilities for CNO against a particular software
system. The ACC provides a method for articulating global
security policy goals as well as organizational technical
controls. For example, national security interests may make
it important to delay or prevent the development of cer-
tain capabilities against certain technologies that would
be especially pernicious if available to particular kinds of
adversaries.

The state of global adversarial capability to accomplish
any particular task is a complex information item. The ACC
model breaks down this complex concept with specific de-
scriptions of what is being modeled by “actors,” “adversarial
capability,” and “software systems.” The model draws on
existing definitions as much as possible; however these terms
do not have satisfactory existing definitions, so they are

elaborated in Sections IV-A through IV-C.

Section IV-D describes the ACC model, which is or-
ganized into five phases that indicate a certain level of
adversarial capability: Discovery, Validation, Escalation, De-
mocratization, and Ubiquity. Each phase is indicated and
established by the observation of particular symptoms. Sec-
tion IV-E explains the method of visualizing the progression
of these phases and symptoms over time for a particular
software system. Example graphics are included in the
appendix.

The ACC was informed by heuristic expert opinion de-
veloped through analysis of years of public reporting about
computer security. After hypothesizing the model based on
expert opinion, it was applied to several case studies to test
its robustness and usefulness. These varied case studies have
generally upheld the model and seem to indicate it is not
biased to any particular software system (see Section VI).
However, we offer a note about potential bias: Windows XP
holds a special place in this model’s development. Since
so much of the security history of the last decade revolves
around Windows XP machines, that system directly and
indirectly influences expert opinion. Model development
addresses this by explicitly considering XP as a key case
study. However, the goal of the ACC is to find insights that
are constant across software systems, not just to model what
happened to XP. Therefore, additional case studies were vital
in demonstrating the external validity and generalizability of
the ACC.

A. Actors

In the model, the word adversary does not refer to any
particular actor. The goal of the model is to be agnostic in
terms of particular adversaries. Since attribution of cyber-
attacks is so difficult, this approach helps a defender devise
defenses according to a principled risk assessment without
needing to know a specific adversary, and with only having
to know the state of adversarial expertise globally.

The model accounts for the creation of expertise and the
transfer of expertise to other actors groups. For example,
when expertise becomes accessible to rogue nation-states or
organized crime, a progression in the adversarial capability
model reflects that. “Adversarial capability” is defined in
the following section. When new adversaries gain access
to particular capabilities, it changes the global character of
attacks using that capability (such as the capability to exploit
a particular software system).

Although it is not the primary goal of the model, the ACC
can assist attribution. In some cases, actor intent or identity
may be inferred from the existing global capability. The
model can identify when only well-funded, well-organized
actors have a particular capability, for example. Therefore,
if a defender notes an attack utilizing such a capability, it
helps identify the adversary as well resourced.

B. “Adversarial Capability”

A capability is the synthesis of expertise and physical
resources. A mechanic only has the capability to fix a vehicle
if she has both the knowledge and the tools to fix it, not just
one or the other. Adversaries may have many capabilities,
and each is separable from the others. The ability to exploit
a particular system does not necessarily include the ability
to covertly administrate that system or to use it to extract
and launder money. Therefore, to maintain clarity and intel-
ligibility, the ACC only models one adversarial capability at
a time.

For an analyst to investigate correctly, one must know
the capability benchmarks for which to look. The ACC can
model any particular adversarial capability that is properly
specified, but it is tailored for one in particular: the capability
to exploit and gain unauthorized control of a given software
system, as defined in Section IV-C.

The ACC is tailored toward system exploitation for two
reasons. First, unauthorized control and use of a software
system (i.e., an “unauthorized result”) is a necessary com-
ponent of any computer security incident [12], and it is what
the intrusion kill chain identifies as the critical step in any
incident [1]. Therefore, a model of exploitation capability
will be relevant to all computer security events. Second,
there are many different software systems, and the capability
to exploit each is separable; that is, if an adversary has
the capability to exploit Windows XP it does not directly
impact the ability to exploit Apache or Android. Therefore,
the seemingly simple capability of system exploitation is

frequently reused and re-specified for different software
systems. It is sensible to tailor the model to such a frequently
exercised use case.

For example, the case studies in Section VI examine four
distinct global adversarial capabilities: exploiting Windows
XP, exploiting Android user-facing API, exploiting Apache
web servers, and exercising remote control of cyber-physical
systems such as ICS. Note the fourth capability does not
address exploitation, but addresses control of a class of
system after exploitation of the specific software system has
occurred, demonstrating the flexibility of the ACC model.

C. “Software Systems” and Scope

Defining what counts as a single software system has
been the most difficult modeling choice. This difficulty is
exacerbated by the lack of consensus on a precise definition.
Some examples considered include:

e “A system of intercommunicating components based
on software forming part of a computer system (a
combination of hardware and software) [14, 15].”

o A software system “consists of a number of separate
programs, configuration files, which are used to set up
these programs, system documentation, which describes
the structure of the system, and user documentation,
which explains how to use the system [16].”

However, none of these definitions are suitable in describing
what software system means as the target of adversarial ex-
ploit and control. To capture the relevant modeling aspects,
the ACC model uses the following definition for software
system: the set of software instructions that executes in an
environment with a coherent function and set of permissions.

A couple key aspects of this definition are essential to
successful modeling within the ACC. A software system
executes; that is, it takes actions. Execution is a critical
component because these actions are what the adversary
manipulates. The software system resides in a particular
environment; this helps scope the system down to a man-
ageable size and place. A software system has a coherent
functionality, or particular purpose; this purpose is often
what the adversary is attempting to co-opt. Most importantly,
a software system executes with a logical set of permissions
that mark the system off as a related bundle of code that
is permitted to act in a specified space. In the context of
adversarial exploitation, this emphasis on coherent permis-
sions means that if an adversary escalates privileges through
an attack, they have moved into a new software system.

Examples of different software systems include the Win-
dows XP operating system, the Android user-facing API, the
Android kernel, the programmable logic controllers (PLC)
on microcontrollers in cyber-physical systems, Cisco 10S
running on networking devices, the Linux OS, Firefox or
Chrome web browsers, standardized Internet protocols such
as TLS or DNS, database user-space, database administrator
space, and applications such as Apache or BIND.

The peculiar status of Windows XP as a unitary system
deserves comment. Since XP is an important case study,
any oddities within it could inadvertently corrupt the model.
However, unlike most other operating systems, the compro-
mise of an application with user privileges for all intents
and purposes also compromises the operating system. That
is, all functions on an XP machine run with the same set
of permissions. This permission configuration is not true
on other modern operating systems. Therefore the analysis
of capability to exploit XP is oddly simplified in that any
common user-space application feeds in to expertise to
compromise the OS; this is not the case for most systems.
A second peculiarity is that Internet Explorer, though a web
browser, “is a Windows feature, [so] you can’t uninstall it
[17].” Thus, successful attacks against IE are simultaneously
attacks against the operating system itself. This fits with
the definition of software system used above and throughout
the model, but it may be counterintuitive or surprising for
analysts that whether a web browser is part of the software
system depends on which operating system and browser are
involved.

Systems on the Internet are rarely independent, and so ad-
vances against one system may also create advances against
other systems. These interdependencies make it difficult to
tease apart an accurate adversarial capability model. The
focus is on a system at the appropriate level of granularity,
“Windows XP,” not “Windows.” In some cases, Windows has
had defensive systems introduced, such as Address Space
Layout Randomization (ASLR) [18] and Data Execution
Prevention (DEP) [19], and one could view the procession
of adversarial capability against these particular system
overlays as distinct from that of Windows itself. Although
this adds some complexity in multiple, overlapping, concur-
rent systems being tracked, it creates additional explanatory
power because it clearly demonstrates the one-way, incre-
mental increases against each system. Instead of modeling
that introducing ASLR rolls back the adversarial capability
against Windows, the adversarial capability against ASLR
starts fresh and develops as any other system. The success of
a single adversary against an information target is a function
of the adversarial capability against all software systems in
between the adversary and the information target. Estimating
this function is an area for future work in risk assessment.

D. Phases of Adversarial Capability

The ACC consists of a series of five phases: Discovery,
Validation, Escalation, Democratization, and Ubiquity. The
phases indicate what kinds of actors and expertise are
available in the world with the capability in question. The
phases should begin in sequence; this has been observed in
each case study completed so far, and the model posits that
this sequencing will hold for the analyses of other software
systems. Each earlier phase beginning is a prerequisite for
the following phase to begin.

To better track and predict time to the next phase, the
model uses multiple symproms as indicators of a phase.
These are common observables that indicate that a specific
adversarial capability exists at a certain point in time. A
phase begins once one symptom is observed. After all
symptoms in a phase are observed, the phase is established.
The prior phase need not be established before the next phase
begins; however, if a phase is established, the following
phase is more likely to begin sooner than would otherwise
be the case—if it has not started already.

The phases do not end per se; the expertise signaled
by a particular phase remains when the next phase begins.
The subsequent phases indicate an expansion of expertise
and actors with it. The time between the beginning of any
particular phase and the next one is elastic and may change
depending on the software system and incentives for the
adversary community.

There are several possible explanations for failure to
observe a symptom. Simply, the symptom may not have
occurred. More likely, the lack of observation may be due
to the covert nature of adversaries and the difficulties of
detection. Moreover, the date of symptomatic actions may
only become known well after the fact. Symptoms are
imperfect indicators, as knowing a symptomatic event may
depend on defender detection and public reporting, both of
which are imperfect.

One goal of providing several past case studies is to
improve future prediction of the rate of adversarial capability
growth. Using past history of the rate at which phases are
established, an analyst can predict future progression of
symptoms and phases. Although such predictions of future
development are difficult, the ACC provides a framework
for the evidence-based estimation that is currently lacking.

Table I summarizes the phases and their symptoms. The
detailed definitions and implications of each phase follow
along with recommendations for detecting their symptoms.

1) Discovery: The initial phase of the ACC model is
characterized by the observance of two symptoms:

« First Published Vulnerability/Exploit of the Software
System

o Targetability
There is typically little to no economic gain in successful
exploitation at the Discovery stage, however reputation gain
is a common incentive. Defenders should expect target
systems to be chosen opportunistically.

Since computer security has industrialized and infor-
mation technology has become more widespread, this
phase tends to be short. Further shortening this phase in
exploitation-related capabilities, researchers have enumer-
ated the classes of information system weaknesses [20],
making discovery easier for adversaries.

The first symptom is self-explanatory; the first known vul-
nerability and the first known exploit are clearly a symptom

of discovery of adversarial capability to exploit the system.
The other symptom in this phase is the extent to which a
software system is a target. The targetability of a system
is the ability of adversaries to target a system with the
developed exploits. Targetability covers the general concept
that a vulnerability is not a threat unless an adversary has a
genuine ability to make use of the vulnerability [21].

Targetability is a flexible concept that can apply usefully
across different software systems. For example, Apache web
servers must listen for web requests from the general Internet
and therefore can be targeted via automated scanning. Al-
ternatively, the Android user API is targeted via leveraging
user action since it is primarily user-facing.

Targetability is related to the number of users of a system:
if a system is used by few, then there is little to target.
Targetability also relates to whether the software system
is deployed in an environment to which an adversary can
effectively deliver the available exploits.

2) Validation: The validation phase is concerned with
demonstrations that developing the capability in question
is worthwhile or material (i.e., “of serious or substantial
import; significant, important, of consequence” [22]). The
following phase is partly indicated by the formation of
organized, well-funded actors and efforts to deploy the
capability for profitable endeavors. Validation is indicative of
adversarial capability development because material benefit
from developing a capability, such as exploiting a particular
software system, needs to be demonstrated and validated
before adversaries will spend the effort to develop and plan
the capability.

Sometimes, dates of occurrence can only be estimated in
retrospect due to the secretive nature of development in this
phase. The first public disclosure may be both the first time
evidence has come to light and contain all the information to
the signal the phase is established. Defenders should expect
“important” assets to be targeted, though unimportant assets
are likely not targeted at all. Politically sensitive or otherwise
high-value targets will be targeted persistently by highly
motivated adversaries during this phase. This phase consists
of three symptoms:

o Ability to Inflict Electronic or Physical Damage or

Disruption

o Monetary Gains

« Ability to Conduct Economic or Government Espi-

onage

3) Escalation: In this phase, various actors recognize the
value of the pursuit of exploits sufficiently such that well-
funded organizations may advertise their intent to acquire
expertise in a particular software system. While there may
be evidence of increased reporting of CNA against a system
from an increased number of actors, the results of any
development done during this pursuit are generally not
public. Moreover, techniques and methods of exploitation
are difficult to obtain outside of well-funded and organized

Table T
PHASES AND SYMPTOMS IN THE ADVERSARIAL CAPABILITY CHAIN (SYMPTOMS ARE NOT EXPECTED TO HAPPEN SEQUENTIALLY.)

[Phase [Symptom I [Symptom IT [Symptom III |
Discovery First Vulnerability/Exploit Targetability N/A
Validation Disruption Abilities Monetary Gain Espionage Abilities
Escalation Indefensible Attacks Observed Remote/Automated Attacks | Well-Funded, Organized Actors
Democratization | Cheap Exploits & Attack Delivery Cheap Control Software Cheap Infected Infrastructure
Ubiquity Open Source Attacks Open Source Control End of Support

actors. The economic viability of earning profit from ex-
ploitation of the software system is tested during the Esca-
lation phase, and defenders should expect “important” assets
to be targeted relentlessly. Economic assets will be targeted
opportunistically. There are three symptoms observed in this
phase:

e Observation of Indefensible Attacks (e.g., zero-day
exploits)

« Remote/Automated Control Available (at any cost)

« Existence of Well-Funded, Organized Actors

These symptoms are not always indicated by a single event.
What makes an actor group “well-funded” and “organized”
is a matter of degree. There are several other symptoms
that are a matter of degree in the following phases. Such
symptoms should be supported by multiple corroborating
events, rather than a single point event.

4) Democratization: The technology for CNO against a
software system becomes widely available during this phase,
although its possession is generally illegal or otherwise
discouraged. Exploitative technology is of sufficient value
that it must be purchased, but the price has dropped to what
is feasible for a middle-class individual. The social struc-
tures from which to acquire the resources are sufficiently
permeable that they can be found and integrated into CNO
without much prior knowledge. CNO against the software
system in question can range from aiming to settle petty
disputes to directed use for more wanton acts. There are no
longer relevant central points of control for dissemination
and development of exploits and expertise. The economic
viability of profit via CNO against the software system is
proven, and defenders should expect economic assets to be
targeted relentlessly. There are three symptoms in this phase,
and they are defined by falling costs in three areas:

e “Cheap” Exploits & Attack Delivery

e “Cheap” Control Software

e “Cheap” Infected Infrastructure

5) Ubiquity : In this phase, proven economic value of
CNO against the target software system leads to widespread
exploitation and viable economies in support of activity.
Specialization occurs within the adversary community as
management of assets for CNO grows beyond the scope
of individuals. Malicious software is freely available while
specialized support and management services are not; this is
analogous to any other economic growth. Defenders should
expect the software system to be compromised simply for

the sake of being compromised; the actors often seek to
simply spread their malicious software and sell access to
the compromised hosts as a general purpose service in their
own right. The defender will likely find it impossible to
resist any well-funded adversary, and even poorly resourced
actors will provide significant challenges. There are three
symptoms detected in this phase:

« Open Source (i.e., free and easily accessible) Attacks

e Open Source (i.e., free and easily accessible) Control
or Bot Software

o End of Support & Security Updates

E. Visualization

For a better understanding and application of the model,
the symptoms and phases of capability are illustrated in a
timeline. A visual representation of the ACC provides a
clear reference for understanding the trajectory of capability
growth, as well as the scaffolding nature of incremental
developments against a particular software system.

Each symptom in the model is visualized by a box that
transitions from white (no observed evidence) to dotted gray
(moderately observed) to solid gray (significant evidence
of a symptom), where most of the symptoms are (1) sig-
nificantly represented by a single event and (2) skip the
moderately observed period altogether. The final symptom
observed in a phase is colored dark gray, signaling that the
phase is established. After this time, all symptoms of that
phase are colored dark gray.

The charts also display the market share held over time
for the XP, Android, and Apache models. The market share
data is represented as a percentage of the total market as
reported in public sources over time. The charts include the
market data to indicate the popularity and deployment of
the software systems in question. Popularity and deployment
are tangentially related to some symptoms and phases. For
example, it is necessary but not sufficient for targetability
that targets are deployed.

At this time, we have not found a direct correlation
between market share and advancing phases of adversar-
ial capability reached. However, it is also not clear that
market share or total deployed instances does not influence
progression. Therefore, market share is included in the
visualizations to inspire questions and future work. Global
market share data for Windows XP machines comes from
Tech Talk [23], OneStat [24], NetMarketShare [25], and

Net Applications [26]. Android smartphone global mar-
ket share data comes from Canalys [27], Gartner [28],
International Data Corporation (IDC) [29], and Strategy
Analytics [30]. Apache market share for all sites is gathered
from Netcraft [31].

The appendix contains visualizations of the heuristic
assessment for each software system assessed.

V. BENEFITS OF THE ACC

The ACC provides a new perspective on the threat land-
scape by focusing on trends in adversarial capability growth
throughout the lifetime of a software system. The ACC
contributes a wide-lens, context-based perspective model of
the whole adversarial ecosystem. Actor capability is shown
to develop in a pattern of phases and competency passes
from skilled and well-financed adversaries to those with
fewer resources.

A new context is developed that supports CND decision
making by viewing these developments as trends instead of a
series of individual efforts from specific actors. The patterns
within the historical progression improves analysts’ under-
standing of how adversarial capability progresses and in turn,
their capacity to inform decision makers in deploying tech-
nologies and defenses. Evidence-based predictions improve
risk-based assessments in defensive planning by extending
the time frame of reliable predictions about adversary ca-
pabilities. Integrating the analysis results and timeline of
actor development from the ACC model improves analysts’
abilities to forecast capability growth, and thus the threats
they will face in the near and long term.

The ACC model is intended for application in the evalu-
ation of expected adversarial capability. While it is helpful
to understand the present adversarial capability related to
a technology, the level of capability cannot be reversed. A
technology may be patched to stop exploitation of a specific
vulnerability, but it does not reverse the capability level
reached, and the effects of an exploit cannot be erased. This
continual adversary improvement makes defense difficult,
but at least defensive measures should be based on the fore-
seen adversarial capability for the lifetime of a technology.

To reduce an adversary’s abilities to target defender
resources, additional technologies can be deployed. As dis-
cussed in Section IV-C, ASLR and DEP are changes to
the Windows operating system that helped resist adversary
attacks. This is modeled by considering DEP and ASLR as
different software systems that the adversary must build ca-
pability against. So while the adversaries’ capability against
Windows XP is very advanced, if the system properly imple-
ments DEP and ASLR then the adversary’s ability to achieve
their ultimate goal is reduced. The likelihood that adversaries
will achieve their objectives! is a function of the minimum of
the capability against any of the software in the actual attack

'We follow Howard and Longstaff [12] in our definition of objectives.

path. Therefore, the likelihood an adversary succeeds may be
reduced by adding defense in depth; however the adversarial
capability level cannot be reversed or erased for any specific
software system. Thus introducing defenses and removing
highly targeted software are both effective methods for
increasing CND readiness. ACC analysis improves the time
horizon at which these predictions can be made reliably, thus
increasing the time window for preparing a defense.

VI. CASE STUDIES

By utilizing the ACC model, assessments can be devel-
oped regarding the state of the threat landscape against
various software systems. The following assessments are
qualitative and are supported by observational evidence in
reputable public reporting. Although the model can apply
to the capability to exploit all software systems, space is
limited, so case studies have been carefully selected to
provide key insights. The four software systems selected
provide insight into contrasting states of actor capability,
from widely accessible to actively developing to highly spe-
cialized. This broad spectrum provides many key strategic
examples on which the model is informed and demonstrates
the external validity and generalizability of the ACC model.
The case studies present a study of exploitation capability
against Windows XP, Android user-space applications, and
Apache web servers; and a study of control capability of
embedded cyber-physical systems in ICS.

A. Windows XP

For the majority of its supported lifetime, Windows XP
was the market leader in desktop operating systems. In 2006,
five years after its initial release, it controlled over 85% of
the market [32]. XP is examined in detail because it has
completed its entire life cycle and it has been highly targeted
by adversaries. This case study provides a clear picture of
the ACC framework in its entirety and can provide clues to
the path that other systems will take as adversarial capability
increases.

1) Discovery: Windows XP, released by Microsoft to the
public in October 2001, initially shipped with vulnerabilities
that carried over from code shared with its predecessors. The
first example of this was the Universal Plug and Play (UPnP)
vulnerability that was reported in December 2001 [33] and
was followed quickly by the public release of an exploit
for it in January 2002 [34]. These events signify the “First
Vulnerability & Exploit” symptom.

In December 2001, the Goner worm targeted Windows
machines, including XP [35]. While no significant damage
was done, Goner shows evidence of “Targetability” of XP
because so many devices were able to be targeted and in-
fected automatically. Evidence of this symptom established
the Discovery phase.

2) Validation: In August and November of 2002, reports
revealed the first evidence of sophisticated actors pursuing
CNO against Windows XP for monetary gain. The rise of
Shadowcrew, a criminal gang focusing on the stealing and
selling of customer credit data [36], occurred in August
2002, though it was not well reported until after it was
taken down by the United States Secret Service (USSS) in
October 2004 . The disclosure of this criminal gang shows
partial evidence of the “Monetary Gains” symptom of the
Validation phase.

The Russian Business Network (RBN), a malicious ISP
with alleged ties to the Russian government [37, 38], began
operations in November 2002. The operation of multiple
criminal actors around the Windows XP exploitation ecosys-
tem provides strong proof of worth in attacking the system,
thus existence of the RBN further evidences the “Monetary
Gains” symptom.

In August 2003, the Blaster Worm demonstrated adver-
saries’ ability to build a botnet that could disrupt system
availability [39]. The functionality of this worm indicates the
“Damage” symptom. There is no evidence that the Blaster
Worm was deployed for more sophisticated attacks than
denial of service, thus the assessment of its significance is
limited to proof of disruption.

In September 2003, the first evidence surfaced detailing a
Chinese espionage campaign [40]. The adversaries infiltrated
the U.S. Department of Defense and several of their major
contracting partners. According to a source list from a U.S.
Army memorandum, the National Security Agency (NSA)
had version 1.1 of a guide to securing Windows XP in
December 2003 [41]. Due to the sensitive nature of the
incident, the systems involved are not certain; however, since
the military was using XP, it is plausible and likely that XP
was compromised in this attack. Evidence of this campaign
represents the “Espionage” symptom, and establishes the
Validation phase.

3) Escalation: The growth of the Zombie King botnet
(via XP vulnerabilities) and its sale on underground e-
markets in mid-2004 illustrates specialization of actor ex-
pertise and a specialized economy [42, 43]. The launch
of the ZeuS malware in June 2006 further demonstrated
this as well [44]. These two events evidence the symptom
“Remote/Automated Control.”

In August 2005, open source reporting showed the spread
of a keylogging malware via a zero-day exploit of Windows
Internet Explorer versions 6, 7, and 8 (version 6 was standard
with XP) [45]. The software used in this attack is believed to
have been professionally designed. Since Internet Explorer
is built in to Windows systems (see Section IV-C) and XP
controlled the majority of PC market share at the time, it is
deduced that this event represents the “Indefensible Attacks
Observed” symptom in this phase.

The beginning of APT1 in January 2006 shows arising
evidence of the symptom, “Well-Funded, Organized Actors.”

This adversary was shown to have targeted XP [46] and
exhibited a high level of sophistication [47].

In October 2007, it was reported that the RBN had been
advertising hosting services for $600 (versus the industry
standard at the time: $60) [48]. This illustrates the will-
ingness by malicious individuals/organizations to pay more
for hosting services that disregarded nefarious activity, and
thus shows additional observation of the “Well-Funded,
Organized Actors” symptom, establishing the Escalation
phase.

4) Democratization: In May 2008, open source reporting
showed black market forums were offering the ZeuS code
for hire [49]. This provided middle-class actors the tools
needed to perform advanced attacks, thus allowing for wide-
spread commercialization of expertise against XP [50]. In
addition, the SpyEye banking Trojan emerged in January
2009, with over half of the computers it infected running
XP [51]. These two events in conjunction with one another
represent evidence of “Cheap Control Software.”

In October 2008, the Conficker Worm gathered any victim
machines that could possibly contribute to a botnet [52].
This gathering of infected machines shows evidence of
the symptom “Cheap Infected Infrastructure.” Furthermore,
Conficker indicated a shift to low-value targets being pur-
sued relentlessly, as opposed to opportunistically.

In August 2010, the Blackhole Exploit Kit (BEK) surfaced
and could be leased to deliver malicious payloads toward
Windows systems and applications [53, 54]. For a relatively
low price, the toolkit provided an easy way to carry out an
attack and offered capability for customization. Thus, the
existence of the BEK evidences “Cheap Exploits & Attack
Delivery,” establishing the Democratization phase.

5) Ubiquity : The Ubiquity phase is characterized by
freely available malicious software and widespread exploita-
tion. In May 2011, the ZeuS code was first made pub-
lic [55, 56]. This event indicates the “Open Source Control”
symptom.

Seven months later, the Metasploit framework was re-
leased publicly [57], allowing for non-skilled and low-
funded actors to carry out sophisticated attacks easily. This
event indicates the symptom, “Open Source Attacks.”

The phrase “End of Support” refers to when a technol-
ogy’s maintenance and support system stops operation. In
the case of XP, Windows stopped supporting it in April
2014 [58]. At this point, CNA against the system completely
lack response, and updates for zero-day exploits remain
unpatched. The Ubiquity phase is completely established.
Adversarial capability is essentially complete against Win-
dows XP.

B. Android

Android user-facing API malware has become well de-
veloped in the past few years, and is probably tracking
to Windows XP PCs circa early 2009. Many exploits are

opportunistic attacks that require the user to be fooled into
installing something malicious. This approach is fruitful, and
the adversaries appear to profit from the endeavor. Since the
Android platform has proven some profit potential in the
underground economy, it is probable that it will experience
increased focus by adversaries, just as XP did, until the
point where Android user-space malware is much more
pernicious. This development of global adversarial capability
can probably be expected within one or two years, since the
progression of CNA capability against Android user-space
has generally progressed faster than it did against Windows
XP PCs.

1) Discovery: In October 2008, within a week of the
Android OS launch, the first vulnerability was discovered.
When exploited, the buffer overrun flaw afforded adversaries
the capability to hijack a mobile device’s web browser [59].
This flaw exhibits “First Vulnerability & Exploit.”

The targetability of the Android user-space software sys-
tem is multi-faceted, although it was established in each of
these facets rather early. These targeting methods include
using the cell network, messaging services, and legitimate
apps in the application store.

In May 2009, two separate DoS issues exhibited capability
to disconnect devices from the cellular network and suddenly
restart devices, respectively [60]. These attacks represent the
ability to target phones remotely over the cell network to
cause the DoS condition.

Other phone software systems have been leveraged to
spread malware via MMS without human interaction, such
as Symbian in 2005 [61]. There is no evidence that Android
messaging apps were vulnerable in this way. In this case,
the software system is known to be targetable using the
messaging service; however, there is no known vulnerability
in this facet of targetability.

Android apps present a requested set of permissions to the
user on installation. This is problematic because applications
may be granted excessive permissions by naive users. Fur-
ther, the app store approval process did not pre-screen apps
for malicious content until 2012 [62]. In November 2010,
researchers demonstrated a flaw in the Android permission
granting process [63] that allows an application with justi-
fiable permissions to covertly download arbitrary apps with
any permissions without requiring any user interaction [64].
The new apps then have ability to steal contacts, send
premium rate SMSs, and more. This proof-of-concept app
demonstrates the Android user-facing system is targetable
via apps and the app store.

The combination of these “Targetability” symptoms
demonstrate that the system was thoroughly targetable by
November 2010, though it had been targetable in some
ways for much longer. This combination of exploits and
targetability evidence indicates the Discovery phase was
firmly established by late 2010.

2) Validation: When exploited, the previously mentioned
DoS flaws demonstrated ability to damage Android de-
vices [65]. In addition, the launch of a DoS tool utilizing
Android phones in October 2011 showed that defenders
could simulate these types of attacks on web servers via
phones as well [66]. These two events are sufficient for the
“Damage” symptom.

In August 2010, the first SMS trojan was found on
Android phones [67]. Disguised as a media player app, the
malware surreptitiously sent SMSs to premium rate num-
bers, transferring money from the user to the cybercriminals.
This trojan represents “Monetary Gains.”

In March 2011, the first major malware was found in-
side the Android Marketplace [68, 69]. Embedded within
seemingly legitimate apps, was malicious software capable
of stealing sensitive information and relaying it back to
command and control servers. In addition, in June 2011,
it was discovered that malware on alternative app markets
showed escalation of privilege capability for gaining root
access on Android phones and also showed bot-like func-
tionality [70, 71]. These two events exhibit “Espionage” and
establish the Validation phase.

3) Escalation: In March 2011, it was reported that
Android devices were being compromised with a mobile
version of the SpyEye malware [72]. This malware partially
represents the “Well-Funded, Organized Actors” symptom.
In addition, the Zitmo Trojan, a mobile variant of ZeuS,
was found on Android devices in July 2011 [73, 74]. Zitmo
shows evidence of “Remote/Automated Control” and com-
bined with SpyEye, evidences the “Well-Funded, Organized
Actors” symptom for Android.

In November 2011, zergrush, a zero-day buffer overflow
exploit, was discovered and exclusively targeted the Android
user-space [75]. While a patch was quickly released, the
exploit was posted online for others to target unpatched
devices. This event indicates “Indefensible Attacks,” estab-
lishing the Escalation phase.

4) Democratization: AndroRAT, the first reported open
source RAT (Remote Access Trojan) for Android, was
released in November 2012 [76, 77]. AndroRAT allowed less
capable actors to automate the infection process and control
Android devices remotely. AndroRAT represents “Cheap
Control Software.”

Also in November 2012, the Android Framework for
Exploitation (AFE) was launched [78, 79]. Like Metasploit
for Windows XP, AFE was a framework for compromising
a technology in an open source manner. Initially, no exploits
came with the framework; however, automated exploits have
been publicly uploaded since. While AFE will certainly lead
to symptoms of “Open Source Attacks” in the Ubiquity
phase, at the time, it indicates “Cheap Exploits & Attack
Delivery.”

As of yet, there has not been public reporting of the sale
or rental of botnets made up of Android phones. At that

occurrence, the Democratization phase will be established.
5) Ubiquity: Android user-space API has not evidenced
any symptoms of this phase.

C. Apache

The Apache web server is the longest running technology
for which we performed a case study. It has been the world’s
most popular web server for the majority of its lifetime,
hosting more websites than any other system every year
since 1996. While its market dominance has begun to shrink
in recent years [31], it remains a viable target for CNA. This
case study explores the development of adversarial capability
against Apache web servers, and estimates that its life cycle
is tracking to Windows XP around 2007.

1) Discovery: In March 1996, the first publicly reported
Apache web server vulnerability and exploit emerged [80].
Due to an input validation error, the vulnerability allowed
unauthorized read access to files on the server [81]. This
event indicates the symptom, “First Vulnerability & Exploit.”

Web servers are fundamentally designed to be searchable
and to “listen” for incoming requests. With the presence of
known vulnerabilities, the development of tools to quickly
scan for vulnerable web servers would indicate the capability
to target the software system. In a 2007 paper, researchers
showed a dramatic increase of scanning traffic in early 1998
in their data set of web logs collected at the border of a na-
tional laboratory address space between 1995 and 2007 [82].
Nmap, released in September 1997, was an attempt to collate
the efforts of various developers of port scanners around
this time into a flexible, open-source scanning tool [83]. We
judge that these events indicate “Targetability” of Apache
web servers, and thus establish the Discovery phase.

2) Validation: From June to August 2002, two malicious
worms were discovered: Scalper and Slapper [84, 85]. Each
malware family exploited a vulnerability in Apache web
servers and sought to establish remote control capability. Ad-
versary intentions are mixed, and these efforts show evidence
of two symptoms in this phase: “Damage” and “Espionage.”
Moreover, the exploit code to capitalize on the Apache
vulnerability that Scalper leveraged was posted online by
a security group after they grew frustrated with the lack of
response on their discovery [86, 87]. While this is a single
event of cheap exploits, it does not show advancement of
adversarial capability typical of the Democratization phase.

We judge that Scalper and Slapper indicate the symptom
of “Monetary Gains,” although not directly as observed and
reported. It has been reliably reported that web servers
are commonly compromised to host illegal content for
profit [88, 89]. Unfortunately, due to both the relatively
large amount of elapsed time since the late 1990s and
probable reluctant victim reporting, there is no reliable,
concrete public reporting on this subject from this time
period. However, it is reasonable to impute that illegal
hosting was ongoing in the late 1990s and early 2000s. There

certainly was adult content for sale on the Internet in the
late 1990s. There is no indication that the “business model”
of hosting questionable or illegal content on compromised
web servers is a new invention. Therefore, we judge that this
behavior started sometime in the late 1990s, with the rest of
the dotcom bubble, and thereby corroborated the monetary
value of exploiting Apache.

Direct observation of several worms exploiting Apache
web servers combined with reasonable after-the-fact rea-
soning about illegal content hosting determine that the
Validation phase was established by the end of the 2002
calendar year.

3) Escalation: Public reporting in June 2002 revealed
that the Scalper worm had the potential to set up a back-
door component that allowed for remote control of the
worm [90, 84]. There are no reports of widespread attacks
by the worm, so it is deduced that this is partial evidence
of “Remote/Automated Control.”

In January 2008, reports emerged citing a mass breach
of Apache web servers [91, 92]. A watering-hole attack
took place, where the altering of web server processes
had infected websites to spread malware to site visitors.
In addition, April 2011 marked the estimated start of the
Darkleech campaign of attacks [93]. These two examples
show “Well-Funded, Organized Actors.”

Efforts of the adversaries behind the Darkleech campaign
targeted Apache web servers numerous times. In August
2011, their Apache Killer malware was discovered, which
included a zero-day exploit [94]. This event shows evidence
of “Indefensible Attacks.”

In March 2013, another watering-hole style delivery of
attack was reported under the name Cdorked.A [95]. The
malware had remote command and control capability, so it
indicates additional evidence of “Remote/Automated Con-
trol,” establishing the Escalation phase.

4) Democratization: The state of adversarial capability
against Apache web servers is approaching the Democra-
tization phase; however, at this time, no symptoms have
been observed. At the same time, open source attacks are
currently taking place that leverage the way Apache handles
certain processes to capitalize on vulnerabilities in other
technologies, as in the case of Shellshock exploits [96].
For these reasons, we predict that multiple symptoms of the
Democratization phase for Apache web servers will occur
before the end of 2016.

D. Industrial Control Systems

The case analysis for capability growth against industrial
control systems (ICS) focuses on the control of a class
of system after exploitation has occurred, as opposed to
modeling the capability of exploitation itself. Given this,
the final case study represents a departure from the previous
three models and demonstrates the flexibility of the ACC
model.

Global adversarial capability against ICS and pro-
grammable logic controllers (PLCs) is considerably less
advanced than that against Android user-facing API and
Windows PCs. ICS life cycle is similar to Windows PCs
around 2003. ICS malware is still largely the purview of
nation-state adversaries, and quality exploits are expensive.
Moreover, expertise is difficult and expensive to obtain.
Still, adversarial capability has grown, but it is difficult to
measure since activity is hidden, less common, and rarely
publicly reported. Unfortunately, ICS devices are generally
hopelessly vulnerable if targeted, and the patch rate is
slow to nonexistent [97]. Thus, adversaries are expected to
progress in much the same manner, developing specialized
capabilities against particular targets of value. The expertise
for attacking ICS will grow slowly until it becomes more
publicly accessible, potentially as nation-state employees
move into private enterprise and disseminate their expertise
to the highest bidder. The ICS capability chain may be
presently turning this corner, and as such vulnerability
marketplaces for ICS are coming into existence [98].

1) Discovery: January 2008 marked the first reported
vulnerability in an ICS: a buffer overflow vulnerability in
ICS monitoring and control software with potential for
disruption to operations [99]. This event evidences the “First
Vulnerability & Exploit” symptom.

Reports suggest that the Stuxnet attack was in operation as
far back as June 2010. This event spans more than one phase,
given its specific focus and sophistication. In Discovery, it
indicates “Targetability” because of its ability to infect a
variety of remote systems automatically, and thus indicates
genuine threats to ICS [100].

2) Validation: The intent and result of the Stuxnet attack
was to damage machines at a nuclear material process-
ing facility. Thus, this event also evidences the ‘“Damage”
symptom in the Validation phase. A report in May 2014
highlighted two cases of compromise to public utilities that
occurred in the first quarter of that year [101]. Both incidents
indicated compromise to control systems’ networks, and
together they reveal the symptom of “Espionage.”

3) Escalation: ICS control has not evidenced any symp-
toms of the Escalation or subsequent phases.

VII. CONCLUSION AND FUTURE WORK

While Windows XP has completed its life cycle and
Android user-space adversarial capability is rapidly ap-
proaching the Ubiquity phase, the majority of technologies
for which the ACC model can be applied are at a point
where adversarial capability has been publicly demonstrated.
Yet malicious software is not open source or commonly
available. As new technologies emerge, the accessibility and
popularity of a technology directly relates to the speed of
travel through the model. The heuristic correlation between
market share and progression through the ACC in the

diagrams in the appendix demonstrates this. However more
empirical work is needed.

The ACC is an important advancement in tools for plan-
ning CND capabilities. Not only does the ACC help inform
current defense resourcing needs, but it helps CND plan
for one, two, and five years into the future as we begin
to get a feel for adversarial capability against a software
system—where it is now, and how quickly it can progress.
Understanding these broad-scope trending predictions of the
future has been a sore point for CND analysis. The ACC can
help address this in a principled and evidence-based manner.

More research is needed to complete assessments of the
state of the ACC for other software systems to have a more
thorough understanding of the landscape.

ACKNOWLEDGMENT

This material is based upon work funded and supported by
Department of Homeland Security under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research and
development center sponsored by the United States Department of
Defense.

References herein to any specific commercial product, process,
or service by trade name, trade mark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by Carnegie Mellon University or
its Software Engineering Institute.

This material has been approved for public release and unlimited
distribution.

Carnegie Mellon® and CERT® are registered marks of Carnegie
Mellon University. DM-0002036

REFERENCES

[1] E. M. Hutchins, M. J. Cloppert, and R. M. Amin,
“Intelligence-driven computer network defense in-
formed by analysis of adversary campaigns and in-
trusion kill chains,” Leading Issues in Information
Warfare & Security Research, vol. 1, p. 80, 2011.

[2] R. N. Giere, “How models are used to represent
reality,” Philosophy of science, vol. 71, no. 5, pp. 742—
752, 2004.

[3] E. Hatleback and J. M. Spring, “Exploring a mech-
anistic approach to experimentation in computing,’
Philosophy & Technology, vol. 27, no. 3, pp. 441-
459, 2014.

[4] R. A. Caralli, J. H. Allen, and D. W. White, CERT
Resilience Management Model: A Maturity Model for
Managing Operational Resilience. Addison-Wesley
Professional, 2010.

[5S] M. G. Morgan, Risk communication: A mental models
approach. Cambridge University Press, 2002.

[6] J. M. Spring, “Modeling malicious domain name take-
down dynamics: Why eCrime pays,” in IEEE eCrime
Researchers Summit, Anti-Phishing Working Group,
September 17, 2013.

[71 J. M. Spring, “Toward realistic modeling criteria of
games in internet security,” Journal of Cyber Security
& Information Systems, vol. 2, no. 2, pp. 2—11, 2014.

[8] L. B. Metcalf and J. M. Spring, “Blacklist ecosystem
analysis update: 2014,” Tech. Rep. CERTCC-2014-
82, Software Engineering Institute, CERT Coordina-
tion Center, Pittsburgh, PA, December 2014.

[91 P. A. Watters, S. McCombie, R. Layton, and
J. Pieprzyk, “Characterising and predicting cyber at-
tacks using the cyber attacker model profile (camp),”
Journal of Money Laundering Control, vol. 15, no. 4,
pp- 430441, 2012.

[10] X. Qin and W. Lee, “Attack plan recognition and pre-
diction using causal networks,” in Computer Security
Applications Conference, 2004. 20th Annual, pp. 370—
379, 1IEEE, 2004.

[11] G. Szappanos, “Exploit this: Evaluating the exploit
skills of malware groups,” 2015.

[12] J. D. Howard and T. A. Longstaff, “A common
language for computer security incidents,” Tech. Rep.
SAND98-8667, Sandia National Laboratories, Octo-
ber 1998.

[13] S. Caltagirone, A. Pendergast, and C. Betz, “The dia-
mond model of intrusion analysis,” tech. rep., Center
for Cyber Intelligence Analysis and Threat Research,
2013.

[14] S. Dalal and R. S. Chhillar, “Case studies of most
common and severe types of software system failure,”
International Journal of Advanced Research in Com-
puter Science and Softare Engineering, vol. 2, no. 8,
pp. 341-347, 2012.

[15] V. S. Chomal and J. R. Saini, “Cataloguing most
severe causes that lead software projects to fail,” In-
ternational Journal on Recent and Innovation Trends
in Computing and Communication, pp. 1143-1147,
May 2014.

[16] 1. Sommerville, What Is Software. International Com-
puter Science Series, 2007.

[17] Microsoft, Install or Uninstall Internet Explorer.

[18] Y. Yuval, “Method of relocating the stack in a com-
puter system for preventing overrate by an exploit
program,” Sept. 7 1999. US Patent 5,949,973.

[19] Microsoft, “A detailed description of the data execu-
tion prevention (dep) feature in windows xp service
pack 2, windows xp tablet pc edition 2005, and
windows server 2003, 2013. Article ID: 875352.

[20] MITRE, “Common weakness enumeration: A
community-developed dictionary of software
weakness types.” http://cwe.mitre.org, April 2, 2014.

[21] R. S. Ross, “Guide for conducting risk assessments,’
tech. rep., National Institute of Standards and Tech-
nology, 2012.

[22] Oxford English Dictionary, “material.” http://www.
oed.com/view/Entry/114923, 2014.

(23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]
(38]

[39]

Lyle, “Windows xp market share.” http://techtalk.
pepitstop.com/2005/12/27/windows-xp-market-share,
2005.

OneStat, “Microsoft’s global usage share.”
http://www.onestat.com/html/aboutus_
pressbox58-microsoft-windows-vista-global-usage-share.
html, 2008.

Gartner, “Desktop operating system market
share.” http://www.netmarketshare.com/
operating-system-market-share.aspx ?qprid=10&
gpcustomd=0, November 2014.

“Net applications.” http://netapplications.com, 2011.
Canalys, “Google’s android becomes the
world’s leading smart phone platform.”
http://www.canalys.com/newsroom/google\ %E2\
%80\ %99s-android-becomes-world\ %E2\ %80\
%99s-leading-smart-phone-platform, January 2011.
Gartner, “Gartner says worldwide mobile de-
vice sales grew 12.8 percent in second quar-
ter of 2010.” http://www.gartner.com/newsroom/id/
1421013, August 2010.

J. Yarow, “It’s official: Apple is just a niche player in
smartphones now.” http://www.businessinsider.com/
android-market-share-2012-11, November 2012.
Strategy Analytics, “Wireless smartphone strategies
reports.” http://www.strategyanalytics.com/default.
aspxTmod=saservice&a0=91&m=>5#1, 2014.
Netcraft, “May 2014 web server survey.”
http://news.netcraft.com/archives/2014/05/07/
may-2014-web-server-survey.html, 2014.

R. MacManus, “Microsoft has 97%
of 0s market, says onestat.com.”
http://www.zdnet.com/blog/web2explorer/
microsoft-has-97-of-os-market-says-onestat-com/
262, August 2006.

S. V. Hernan, “Vulnerability Note VU#411059: Mi-
crosoft windows universal plug and play (upnp) fails
to limit the data returned in response to a notify
message,” tech. rep., Software Engineering Institute,
2001.

SecuriTeam, “Upnp exploit code released.” http:
/Iwww.securiteam.com/exploits/5SP011560G.html,
January 2002.

F-Secure, “Threat description: Worm: W32/goner.”
https://www.f-secure.com/v-descs/goner.shtml, 2001.
S. Hilley, “Case analysis of the shadowcrew carding
gang,” Computer Fraud & Security, vol. 2006, no. 2,
p- 5, 2006.

R. Howard, Cyber Fraud: Tactics, Techniques and
Procedures. CRC Press, 2009.

B. Krebs, “Mapping the russian business network,”
Washington Post, October 2007.

C. Dougherty, J. Havrilla, S. Hernan, and M. Lindner,
“W32/blaster worm,” 2003.

[40] N. Thornburgh, “The invasion of the chinese cyber-
spies (and the man who tried to stop them),” Time
Magazine, 2005.

[41] United States Department of the Army, “Memo:
Army golden master waiver process,” 2006.

[42] FBI, “The case of the "Zombie King”: Hacker sen-
tenced for hijacking computers for profit,” 2006.

[43] R. Lemos, “Suspected bot master busted.” http://www.
securityfocus.com/news/11353/1, November 2005.

[44] B. Stone-Gross, “The lifecycle of peer-to-peer
(gameover) zeus,” tech. rep., Dell Secure Works,
2012.

[45] B. Krebs, “Hacking made easy,” Washington Post,
March 2006.

[46] D. Shick and A. Horneman, “Investigating advanced
persistent threat 1 (aptl),” tech. rep., CERT Division
Software Engineering Institute, 2014.

[47] Mandiant, “Aptl: Exposing one of china’s cyber es-
pionage units,” 2013.

[48] B. Krebs, “Shadowy russian firm seen as conduit for
cybercrime,” Washington Post, October 2007.

[49] J. Noble, “Media alert: Rsa afcc detects ’All-in—one’
zeus trojan package for sale,” CIO Magazine, 2008.

[50] L. Dignan, “The next big thing? crimeware-as-a-
service,” ZDNet, April 2008.

[51] J. E. Dunn, “Spyeye trojan stole $3.2 million from us
victims,” Tech World, September 2011.

[52] K. Burton, “The conficker worm,” 2010.

[53] A. Gololobov, “Blackhole exploit kit,” Web Sense,
February 2011.

[54] A. Larson and E. Gonzalez, “Six months after black-
hole: Passing the exploit kit torch,” 2014.

[55] P. Kruse, “Complete zeus sourcecode has been leaked
to the masses,” CSIS, 2011.

[56] D. Fisher, “Zeus source code leaked,” Threat Post,
May 2011.

[57] jeran, “20111205000001.” https://github.com/rapid7/
metasploit- framework/releases/tag/20111205000001,
December 2011.

[58] K. O’Flaherty, “The unlocked door: End-of-support
for windows xp,” SC Magazine, May 2014.

[59] C. Boulton, “Google scrambles to patch buffer over-
run exploit in android gl,” EWeek, October 2008.

[60] R. Naraine, “Google patches android dos vulnerabil-
ities,” ZDNet, October 2009.

[61] Y. Liu, “Symbos.commwarrior.a,” 2005.

[62] A. Greenberg, “Google gets serious about android
security, now auto-scans app market for malware,”
Forbes, February 2012.

[63] A. Greenberg, “When angry birds attack: New an-
droid bug lets spoofed apps run wild,” Forbes, 2010.

[64] ShmooConll, Team JOCH vs. Android: The Ultimate
Showdown, 2011.

[65] C. Miller and C. Mulliner, “#2009-014 android denial-

of-service issues,” 2009.

[66] M. Kumar, “Andosid the dos tool for android,” Hacker
News, 2011.

[67] Kaspersky Lab, “First sms trojan detected for smart-
phones running android,” 2010.

[68] Info Security, “Droiddream trojan is a nightmare for
thousands of android users,” Info Security, March
2011.

[69] T. Strazzere, “Update: Android malware droiddream:
How it works,” March 2011.

[70] X. Jiang, “Security alert: New android malware gold-
dream found in alternative app markets,” 2011.

[71] X. Jiang, “Security alert: New sophisticated android
malware droidkungfu found in alternative chinese app
markets,” 2011.

[72] F-Secure, “Trojan: Symbos/spitmo.a,” 2011.

[73] P. Roberts, “Zeus banking trojan comes to android
phones,” Threat Post, July 2011.

[74] P. Roberts, “Zitmo hits android,” July 2011.

[75] “Issue 21681: Cve-2011-3874 -libsysutils rooting
vulnerability (zergrush),” 2011.

[76] A. Lelli, “Remote access tool takes aim with android
apk binder,” Symantec, 2013.

[77] A. Neville, “Android.dandro,” 2013.

[78] A. Gupta, “Android framework for exploitation,” Club
Hack Mag, June 2013.

[79] XYSEC Labs, “Android framework for exploitation,
is a framework for exploiting android based devices,”
January 2013.

[80] mudge, “test-cgi vulnerability,” April 1996.

[81] CERT-SEI, “Vulnerability in ncsa/apache cgi example
code.”

[82] P. V. Allman, M. and J. Terrell, “A brief history of
scanning,” 2007.

[83] G. Lyon, Nmap Network Scanning: The Official Nmap
Project Guide To Network Discovery And Security
Scanning. Nmap Project, 2011.

[84] F-Secure, “Threat description: Scalper,” 2002.

[85] F-Secure, “Threat description: Worm: Linux/slapper,”
2002.

[86] Gobbles, “apache—nosejob.c —now with freebsd &
netbsd targets,” 2002.

[87] B. McWilliams, “Gobbles releases apache exploit,”
Security Focus, June 2002.

[88] T. Moore and R. Clayton, “Evil searching: Compro-
mise and recompromise of internet hosts for phish-
ing,” Financial Cryptography and Data Security,
pp. 256-272, 2009.

[89] J. Deahl, “Websites’ servers hacked to host child
abuse images,” BBC News, August 2013.

[90] McAfee for Consumer, “Virus
Bsd/scalper.worm,” 2002.

[91] J. Barr, “Mystery infestation strikers linux/apache web
sites,” January 2008.

profile:

[92] D. Jackson, “Dell SecureWorks Discovers Protection
Against Massive Website Attack Infecting 10,000
Linux/Apache Servers,” 2008.

[93] Symantec, “Trojan.apmod,” 2011.

[94] M. Prince, “Apache Killer Killed: Zero Day Exploit,
Zero Day Fix,” August 2011.

[95] P--M. Bureau, “Linux/cdorked.a: New apache back-
door being used in the wild to serve blackhole,” April
2013.

[96] D. Desaie, “Shellshock attacks spotted in wild,”
September 2014.

[97] Jackson Higgins, Kelly, “The scada patch problem,”
Dark Reading, January 2013.

[98] A. Manion, “A survey of vulnerability markets,” 2014.

[99] C. Taschner, “Vulnerability Note VU#308556,” 2008.

[100] N. Falliere, L. OMurchu, and E. Chien, “W32.stuxnet
dossier,” 2011.

[101] ICS-CERT, “Internet accessible control systems at
risk.” https://ics-cert.us-cert.gov/sites/default/files/
Monitors/ICS-CERT_Monitor_\%20Jan- April2014.
pdf, 2014.

APPENDIX

The following diagrams illustrate the phases and symp-
toms of the Adversarial Capability Chain models for Win-
dows XP, Android user-space, Apache web servers, and ICS.
The symptoms for each phase are illustrated as follows:

Table 1T
COLOR-CODING KEY FOR TIMELINES OF ACC SYMPTOMS

White fill indicates that evidence of this symptom has not
I:] been observed yet.

Dotted gray fill indicates partial evidence of this symptom.
(This is often skipped.)

Solid gray fill indicates significant evidence of this
symptom.

Dark gray fill indicates that there is significant evidence of
this symptom, and all other symptoms in the phase have
been clearly observed as well. All symptoms of an
established phase then have dark gray fill.

XP Adversarial Capability Timeline 2001 - 2008

Key [cvidence M “migeme.
Ubiquity D:D D:D D:D
Democratization D:D D:D D:D
Escalation D:D D:D |:|:D
Validation D:D m

Discovery -

| |
| |

Phase
established

1
1
1
I

\ i
v

v

—-AR=EEE

- HEE

a1 1 ISIS

|12/01 -1/02 8/02 11/02 8-9/03 6/04 6/06 10/07 |
UPnP ‘
Vul Shadowcrew
Blaster
UPnP Russian Worm Zombie IE 0-day, APT1 ZeuS Web Space for
Exploit Business King keylogger Begins ~ Launch Sale to Host
Goner Network DOD (RBN Cybercrime
Worm (RBN) Espionage network)
100 % of Windows XP Global Market Share
80 |
| |
- | |
60 | |
[[
- | |
40 | |
| |
| | | |
20 | | |
| | |
1 1]
10/01 5/03 8/06 12/07

XP Adversarial Capability Timeline mid 2008 — mid 2014

Key

Partial Significant

evidence

evidence

Phase
established

ubiuity [[[[[[][[]] 1] [{]] [[H
W I m m il
— o 11l
vassor [o 11l
ooy I B il
5/08 10/08 1/09 8/10 5/11 12/11 4/14					
Conficker Blackhole ZeusS code Metasploit					
ZeuS Code Exploit Kit released code released End of					
for Hire SpyEye . publicly Extended					
publicly Support					
for XP					
100 % of Windows XP Global Market Share					
80 -					
60 - :					
L I I - o					
40 I I I X					
I I I					
L	I				
20 I I I	I				
I I I	I				
		1			
3/08 12/09 711 712 12/13 4/14

Android Adversarial Capability Timeline 2008 — mid 2014

Partial Significant Phase
Key evidence . evidence established

Ubiquity D:D
Democratization D:D
Escalation D:D
validation [[T]

L L EE D T
L L EE D T
L1 (LT (17 (0 [e
(L (0] T N

CE T T T T
R R A A
Iy,

[| o

_
S
=
[\

|10/08 5/09 8/10 11/10 3/11 6-7/11 10-11/11
Zitmo ‘ ’
Droid .
Dream Droid Zergrush
First Vuln DoS FakePlayer KungFu AndroRAT AFE
Discovered bugs SpyEye
DoS
DoS POC Simulator
100 % of Android Smartphone Global
Market Share
80 - |
| | |
- | | |
60 | | |
[[[[[
- | | | | | |
40 | | | | | |
| | | | | |
L | | | | | | |
20 | | | | | | |
| | | | | | | |
1 1 1 1 1 1 1 1]
10/08 9/09 12/09 6/10 12/10 6/11 9/11 3/12 9/12 3/13 6/14

12/14

Apache Adversarial Capability Timeline mid 1995 - 2002

Phase

Partial Significant
Key evidence evidence . established

Ubiquity
Democratization
Escalation
Validation

Discovery

pm=I=ISISIS

= EEEE

| 3/96
First Vuln Web server
& Exploit scanning

100 | % of Apache Market Share for All Sites

8/95 8/96

8/97

8/98

8/99

8/00

8/01

1/02

Apache Adversarial Capability Timeline 2002 — mid 2008

Ke Partial Significant . Phase
y evidence evidence established
vswi [I1] (T il
Democratization |:|:D |:|:D |:|:D
Escalation I I
Validation N [1T]
Discovery - - -
I\ | |
I\ I |
I\ | |
| 6802 1202 1108 |
Scalper Slapper
Worm Worm
Web se.rve; Advanced
Cfilmpri)hmlss or Watering-hole
illegal hosting attacks
100 % of Apache Market Share for All Sites
80
L |
60 | | | T\T\\‘
| | | | |
L | I | | | | |
40 | I | | | | |
| I | | | | |
L | | | | | | |
20 | | | | | | |
| | | | | | |
I | I I I

2/02 8/02 8/03 8/04

8/07

6/08

Apache Adversarial Capability Timeline mid 2008 — mid 2014

Key esiadr:naie Sfi:%?;ggggt . estzgfaiZEed

Ubiquity |:|:D D:D |:|:D
Democratization |:|:D |:|:D |:|:D
Escalation -
Validation - - -
Discovery - - -

| | |

| | |

| | |

4/11 8/11 3/13
Darkleech
Campaign
Apache Cdorked.A
Killer
malware
100 % of Apache Market Share for All Sites
80 -
60 - |
I I I
L I I I
40 I I I I I
I I I I I I
L I I I I I I
20 I I I I I I
I I I I I I
| | | | | |

7/08 8/09 8/10 8/11 8/12 8/13 5/14

ICS Adversarial Capability Timeline 2008 — mid 2014

Partial Significant Phase
Key evidence evidence . established

Ubiquity []] 1] I
Democratization D:D D:D D:I] D:D
Escalation D:D D:D D:I] D:D
Validation D:D I:D I]
Discovery .:I - - -
7/ | \ |
// | \ |
V2 | | |
[1/08 ~6/10 -1-412014 |
] Public Utility
First Stuxnet Compromised
Reported Control
Vuln System

Hack

