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Abstract. Handheld mobile technology is reaching first responders and soldiers 
in the field to help with mission execution. A characteristic of mission 
execution environments is that people are typically deployed in teams or groups 
to execute the mission. Most commercially-available context-aware mobile 
applications are based on context expressed mainly as location and time of an 
individual device plus the device user’s preferences or history. This work 
extends context to consider the group that the individual is a part of and 
presents a reference architecture for group-context-aware mobile applications 
that integrates contextual information from individuals and nearby team 
members operating to execute a mission. The architecture is highly extensible 
to support changes in context data models, context data storage mechanisms, 
context reasoning engines and rules, sensors, communication mechanisms and 
context views. A prototype implementation was built to demonstrate the 
validity and extensibility of the reference architecture.  
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1 Introduction and Motivation 

Handheld mobile technology is reaching first responders and soldiers in the field to 
help with mission execution. These individuals operate at the tactical edge, which is a 
term used to describe hostile environments with limited resources, from disaster relief 
areas in countries like Haiti and Japan, to war zones in Afghanistan.  

A major challenge at the tactical edge is getting relevant information at the time it 
is needed. Causes include reliance on easily misplaced paper reports, one-way 
information flow (up the chain of command but not down), and the lack of network 
bandwidth and handheld devices to access information. Improved bandwidth and new 
devices can improve reporting and increase the volume of information, but these 
advances will also create information overload.  

An important characteristic of mission execution environments is that people are 
typically deployed in teams or groups to execute the mission. For example, first 
responders in disaster areas cannot effectively pursue humanitarian tasks without 
coordination.  Similarly, squads of warfighters in theater must coordinate very closely 
in order to accomplish missions, perform peacekeeping tasks, or even stay alive.  
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Imagine a scenario where each first responder is given a mobile device with 
applications and information that will help them execute their mission.  What will 
happen over time is that as first responders move away from the base, the information 
that is critical is determined by what the individuals and the group as a whole feel, 
see, hear, smell, or even by situations they cannot directly sense, such as high levels 
of radiation [1]. In addition, because of the type of work executed by first responders, 
especially in emergency situations, they are not in position to search for information, 
or scroll through multiple screens on a device to display the appropriate data when it 
is needed most. What they need is a capability that can sense as much of the emerging 
group context as possible, apply that context to share data with the group, and filter 
data such that only the most relevant information is shared and displayed. 

The work presented in this paper is a reference architecture for group-context-
aware mobile applications that enables the integration of contextual information from 
individuals, nearby team members, and potentially the enterprise to support a team 
executing a mission. Specific innovations of this work include consideration of a wide 
range of contextual information, including the dynamics of a group operating to 
achieve a common mission goal. In order to better interact with collaborators and 
quickly incorporate technological advances, the architecture is highly extensible to 
support changes in context data models, context data storage mechanisms, context 
reasoning engines and rules, sensors, communication mechanisms and context views. 
Section 2 introduces the concept of group context awareness as related to mobile 
applications at the tactical edge.  Section 3 presents the reference architecture. Section 
4 presents the architecture decisions and tradeoffs to support extensibility. Section 5 
presents a prototype implementation for task management on the Android platform 
that validates the reference architecture. Section 6 provides a summary of related 
work. Finally, Section 7 presents conclusions and future work. 

2 Group Context Awareness 

There are many definitions of context related to context-aware applications 
[2][3][4][5][6][7][8][9][10][11][12]. Based on a synthesis of available definitions, we 
define context as any information that can be used to characterize an entity — person, 
place, or object — such as its properties, behavior, and surrounding environment. We 
define a context-aware application as an application that uses contextual information 
to modify its behavior, adapt its user interface, or filter data accordingly. 

Most commercially-available context-aware mobile applications (apps) are based 
on context expressed mainly as location and time of an individual device plus the 
device user’s preferences or history. For example, an app recommends a list of 
restaurants close to the current location of a user and orders them according to user 
cuisine preferences combined with the type of cuisine selected in the past by that user.  

The guest editor introduction to a recent special issue on context-aware computing 
presents a challenge for context-aware system developers to work beyond search and 
location-based services to consider a larger set of context entities in order to improve  
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their value [13]. Consistent with this statement, the work presented in this paper 
extends context beyond location and time of an individual user to consider the context 
of the group that the individual is a part of (e.g. a rescue team). A group-context-
aware mobile app first considers individual user context and then relates that 
information to the group context, thereby helping users understand both their own 
state as well as the state of the group in which they participate. Desired capabilities of 
group-context-aware mobile applications in hostile environments include 

• Capture and store context information on a mobile device in a non-intrusive 
manner to reduce cognitive overload and without imposing an unreasonable 
burden on handheld device resources 

• Disseminate context information to group members using whatever 
communications mechanisms are available at the moment 

• Integrate local and group context information to improve mission effectiveness 
by only sharing and displaying information that is relevant to the individual 
and mission according to configurable rules 

The following section presents a reference architecture for implementing group-
context aware mobile applications that enables these capabilities. 

3 Reference Architecture 

The development of any software architecture should start with a definition of 
business drivers [14]. Given the early stages of the research project, as well as the fast 
speed at which technology is changing in the mobile space, we defined the following 
business drivers 

1. Opportunistic integration of new technology 
2. Ease of integration with components produced by collaborators 
3. Applicability of architecture to different edge-enabled applications 

To meet business drivers we defined extensibility as the main architectural driver, 
expressed as eight scenarios, as shown in Table 1.  A sample scenario description, 
documented according to [14], is shown in Table 2. 

Table 1. Extensibility scenarios  

# Name Attribute Concern 
1 Add a new sensor Separation of concerns 
2 Add a new sensor Modifiability 
3 Add a new communication mechanism Separation of concerns 
4 Add a new communication mechanism Modifiability 
5 Add a new content event/action Separation of concerns 
6 Add a new content event/action Modifiability 
7 Add a new context view Separation of concerns 
8 Add a new context view Modifiability 
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Table 2. Scenario 3: Add a new communication mechanism 

Scenario Add a new communication mechanism 

Attribute Extensibility 

Attribute 
concern 

Separation of concerns 

Scenario 
refinement 

Stimulus Developer 

Stimulus 
source 

Developer identifies a communication 
mechanism that can be used to share context 
data with other mobile devices 

Environment Developer is sufficiently comfortable with 
application to make changes in a reasonable 
amount of time 

Artifact Communications Manager of the context-
aware application 

Response Communications Manager is changed to 
implement message passing using the new 
communication mechanism 

Response 
measure 

Aside from communication-mechanism-
specific code, only the Communications 
Manager is changed to accommodate the new 
communications mechanism 

 
The reference high-level architecture for group-context-aware mobile applications 

is a layered architecture as shown in Fig. 1. The architecture follows the basic 
architecture for context-aware mobile applications proposed in [2] that divides the 
architecture into context capture, context reasoning/aggregation and context 
visualization. This architecture also follows the common model-view-controller 
(MVC) pattern. The model is the App Data in the I/O layer, the controller is the 
Application Layer, and the view is the User Interface Layer. 

3.1 User Interface Layer 

The User Interface Layer is the collection of views of context data. The views register 
an interest in events produced by the system and display data accordingly. The views 
can also input context data from the user. 

3.2 Application Layer 

The Application Layer is the core of the system. The components in this layer are 
responsible for managing context and creating events based on individual and group 
context. 

The Application Manager is the central hub for all system activity. 
The Context Engine is the central processor for all context information used by the 

application.  As device sensors report new data and context data is received from 
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group members, all data is passed through the engine so that new events are detected 
as they occur.  Events are sent to the Application Manager for distribution to 
components that are interested in the events. 

The Sensor Manager accepts data from sensors on the mobile device, such as 
position sensors, movement sensors, light and proximity sensors, etc.  The Sensor 
Manager also controls sampling rate and change thresholds (the minimum variation in 
value to report a change) for each sensor. 

The Communications Manager acts as the gateway for all external 
communications.  Any messages to and from other devices are passed through the 
Communications Manager. It supports multiple communication mechanisms. 

The Data Manager performs all CRUD (create, retrieve, update, delete) operations 
on context data and app data, and manages all access to the sensor configuration file 
and the context rule sets. 

 

 

Fig. 1. Reference architecture for group-context-aware mobile applications 

3.3 I/O Layer 

The I/O Layer contains components that interact directly with device I/O elements 
such as files, databases, sensors and communication services.  
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Sensor Config is a file that contains default sensor configuration information for all 
active sensors such as sampling rates and change thresholds.   

Rule Sets are files that contain rules that the context engine reasons about. There is 
a default rule set that is generic to all group-context aware mobile applications. 
Mission-specific rule sets can be created, added and swapped as needed.  

App Data is the physical storage for the context model and app-specific data.  
Sensor 1 to Sensor N correspond to the components that receive data from sensors. 

They all implement the same interface so that sensors can be easily added to the 
system. 

Comms Mech 1 to Comms Mech N correspond to the communication mechanisms 
that are used to send to and receive data from other members of the group. They all 
implement the same interface so that communication mechanisms can be easily added 
to the system. Each communication mechanism has a configuration file that 
corresponds to communication-mechanism-specific information such as local 
addresses, server/router addresses, predefined user names-device pairings, ports, and 
security keys. 

4 Architecture Decisions 

There were several architecture decisions that were made to support the required 
capabilities listed in Section 2 and the extensibility scenarios presented in Section 3. 
Even though some of these decisions were made using Android-specific programming 
constructs and technologies, we argue that they can be implemented using equivalent 
technologies on other platforms. 

4.1 Context Model “At the Center” 

Given the need to support easy addition of sensors, communication mechanisms, 
events, and views, a decision was made to place the context model “at the center.” 
This means that the context engine, views, sensors and communication are all based 
on producing and consuming context data defined by the context model as well as 
events that are generated based on changes in context data. 

The goal established for the context model was to be generic and extensible in 
order to handle a wide range of situations, environments, and data. 

Logical Data Model. The logical data model, or form and structure of the context 
model, is based on the definition of context provided in Section 2. This work expands 
the definition of an entity — originally stated as a person, place or object — to 
include three group-related entities: people (individuals, groups, and organizations), 
activities, and events. The high-level context model is shown in Fig. 2. 

People. The novel contribution of this work is the expansion of the scope of context 
from the user to the group.  As mentioned earlier, in tactical settings individuals rarely  
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work alone. In most cases, groups of varying size collaborate on tasks to achieve 
group-level goals (i.e., missions). Therefore, supporting this coordination requires 
effective sharing of context data between group members.  

In the proposed group-context model, the Person entity is changed to People and 
divided into three subcategories: Individual, Group and Organization.  This allows 
more fine-grained control over how to process each subcategory. Similarly, this 
breakdown allows further decomposition into different types of groups or 
organizations. 

 

 

Fig. 2. Group context model 

Activities. Activities are what individuals are doing, either on their own or as part of a 
group. Activities have status (complete, not started, in progress, on hold, etc.) that can 
be used to model task flow, react to changes in activity status, suggest or assign new 
activities, and provide information relevant to current activities.  

Mandatory Activities are activities that are assigned to an individual and that must 
be completed (i.e., a task). Optional Activities are activities that an individual is 
performing that do not necessarily require status reporting. This differentiation can be 
used for tracking activities in a group that are part of a larger mission. 

Events. Events are notifications related to changes in context data. Defined Events are 
set, known events that can either be detected programmatically because of changes in 
context data that generate the events, or input by users as an external event that can 
only detected by humans. The application has pre-defined responses for these events. 
For example, views can subscribe to these pre-defined events or the application may 
determine that a certain event has to be communicated to other members of the group.   
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Undefined Events are random events that can only be identified organically by users, 
and do not have pre-defined responses (e.g., a falling building).  As such, they are 
considered to be informational only and users must respond to them manually. 

Physical Data Model. Two options were considered for persisting context data: 
tables using a standard SQL-based approach, and objects using an OODB (object-
oriented database) or ORM (object-relational mapping) approach.  This is an 
important decision because it affects a number of quality attributes, including data 
model extensibility, performance, power consumption, and scalability. 

 

Fig. 3. Context model decomposition for Devices 

Data model extensibility is better promoted by an OODB/ORM approach because 
tables do not need to be created or modified in order to support new types of context 
data.  An OODB/ORM approach would either automatically create tables or eliminate 
them altogether, limiting the effort of extending the data model to that required to add 
the new context data element within the application. An example of an additional 
level of decomposition of the context model is shown in Fig. 3. Adding new devices 
would be a matter of adding a new subclass of Devices. All existing methods that 
operate on Devices would be applicable to the new class of device as well. 
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Performance and power consumption can be considered together because tests 
show that they scale together. In performance testing1, results showed that an OODB 
implementation (Perst on Android [15]) performs orders of magnitude faster in most 
tests than an SQL-based implementation (SQLite on Android [16]), as shown in Fig. 
4.  As a result, less power is used by the OODB implementation, resulting in a 
correlation between increased performance and reduced battery consumption, as 
shown in Fig. 5. 

 

 

Fig. 4. Performance testing results for SQLite and Perst 

The decision was therefore to implement the physical data model using an OODB 
because of the importance of supporting data model extensibility, given the 
expectation that the data model will change and evolve for the unique and varied 
situations first responders and warfighters might encounter at the tactical edge.  
Similarly, battery power is considered to be a key quality attribute at the tactical edge 
due to limited resources.  The main tradeoff in this decision is scalability because in 
an OODB implementation most of the data is held in memory. Memory scalability is 
a concern because a large amount of data is captured by the mobile device sensors and 
shared between members of a group.  The strategy for managing this concern is to 
limit data capture by disabling or throttling sensor usage as needed and limiting data 
sharing between group members to only relevant data and events. 

                                                           
1 Tests were executed on the Android 2.3.4 platform with records of size 172 bytes. 
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Fig. 5. Energy consumption for 1000-record benchmark 

4.2 Context Sensors 

To most effectively leverage context, it is important to capture as much of it as 
possible. As such, the architecture must not only support all available sensors 
currently onboard the mobile device, but also addition of new ones.  To promote the 
extensibility scenarios related to sensors shown in Table 1, we adopted two 
architectural tactics:  standardized interfaces and decoupling.   

Mobile devices currently support a variety of sensors, from light and motion, to 
orientation, location, and proximity.  As mobile devices grow more powerful and 
hardware components for new sensors become smaller and can be integrated into 
mobile devices, there will be a continuing need to integrate the inputs from new 
sensors into the application.  To minimize the amount of effort to do so, we designed 
a standardized interface that any onboard sensor can use to report data to the 
application, as shown in Fig. 6.  This limits the application effort to integrate a new 
sensor to the development of the sensor control logic (a single file), a few lines of 
code in the application itself (to add the new sensor and sensor value type, if 
previously undefined), and a new line in a configuration file (to set sensor defaults). 
We recognize, however, that as the number of sensors increases on mobile devices, so 
does the demand on device resources such as CPU, memory, and bandwidth if all 
sensors are capturing data.  Therefore, we employed two approaches to limit the 
impact of sensor status reporting. 

First, we implemented a sensor management capability to enable, disable, and 
throttle sensor status reporting as needed.  This capability can be invoked from a user 
view or as needed by the application (e.g., based on context rules).  Second, we  
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implemented a strict decoupling paradigm. All sensors are started as Android 
Remote Services (bound services) [17], which act as entirely separate background 
“applications” with their own memory space.  This means that the processes gathering 
sensor information are decoupled from the main application while following 
Android’s defined service life cycle [18].  Therefore, even if one or more sensor 
services are stalled due to high capture rates, the Android process management 
infrastructure will constrain the impact to the service and limit the resource impact 
on the primary application. In addition, it enables multiple consumers to use the 
same source of sensor information leading to an increase in flexibility in the layers 
above.  

 

 

Fig. 6. Sensor service interface 

The tradeoffs of this decision are added complexity, increased resource utilization, 
and performance overhead.  Inter-process communication is done using an AIDL 
(Android Interface Definition Language) interface [19], which is an extra layer of 
infrastructure.  This inherently increases the complexity of the system, making it 
harder to maintain. It also increases resource usage because the operating system is 
spawning an entirely separate process for each sensor. However, testing of the 
prototype with large workloads has shown performance and memory usage to be 
within acceptable parameters. With respect to maintainability, while this is a 
legitimate concern as the application evolves, we consider it to be a less important 
quality to promote than extensibility given the architecture drivers. 
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4.3 Context Dissemination 

As important as it is to gather contextual data, group-context-aware mobile 
application requires robust context sharing capabilities.  Because at the tactical edge it  
is difficult to predict what communication infrastructure will be available, the goal of 
the architecture is to support any available communication mechanism in a 
standardized way.    

The architecture decision for enabling addition of new communication mechanisms 
is very similar to the architecture decision that supports adding new sensors: a 
standardized interface to easily integrate new communication mechanisms as they 
become available.  The common service interface shown in Fig. 7 provides generic 
communication methods and callbacks that individual protocols can adapt as 
necessary. This approach enables the application to use any available communication 
channels as needed. If multiple channels are available, context information can be 
used to determine which channels are used and how. 

The tradeoff of using a standardized interface for all communication mechanisms is 
that it implements the lowest common denominator of communication mechanism 
capabilities. For example, a connection-based protocol establishes communications 
and controls data transfer in a very orderly, systematic way.  A connection-less 
protocol is much more ad-hoc and cannot be restricted to a specific sequence of 
events.  Therefore, the interface has to support a very general connection process that 
can allow any sequence of communication events. 

 

Legend
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Fig. 7. Communication service interface 
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Another tradeoff is that in order to intelligently share context data, the application 
requires the ability to send data to specific users, regardless of the underlying 
protocol.  For connectionless protocols, this could be difficult to support because the 
underlying protocol may have no knowledge of which user or device is the source of a 
particular message. It may also lose track of the message target status and actual data 
might get lost because message transmission is not guaranteed. 

4.4 Context Engine 

A challenge for any context-aware application is that for any given user, the relevance 
of any piece of contextual information entirely depends on the situation of the user.  
For example, the contextual information that a person cares about while at work is 
significantly different than the information they care about while they are at home, on 
vacation, playing sports, spending time with family, etc. Therefore, in order to 
construct a general-purpose group-context aware application, its architecture needs to 
enable the application to easily switch between different situations so that the 
relevance of a given piece of contextual data can be tailored to the user as well as the 
situation that the user is in. 

A decision was made to encode all rules in external XML files (rule sets). The set 
of rules that the context engine reasons about can be changed by loading a different 
rule set, either at design time or runtime, the latter reflecting the reality of changing 
situations. A sample rule is shown in Fig. 8.  

<Rule 
 RuleName = “LocationUpdate” 
 TriggerDataType = “GPSSensorDataUpdateEvent” 
 Conditionals = “” 
 Actions = “DECLARE PrimaryDeviceLocationUpdateEvent” 
/> 

Fig. 8. Sample context rule based on a location update event 

Each rule in the rule set is evaluated only against a specific type of data item (or 
subscription object). The triggering data type is specified in the rule by the 
TriggerDataType field. Thus, when a data item is passed to the context engine for 
processing, only rules that are triggered by the data type of the data item are 
executed.   

Evaluation of the rule is based on the evaluation of conditional statements included 
in the Conditionals field of the rule.  The convention of a simple, semi-colon-
delimited string is used so that rules can contain an arbitrary number of conditionals 
in any combination.  Evaluations currently supported by the engine include the 
standard mathematical operators >, <, >=, <=, =, and /=.   Conditionals support  
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comparison to a specific value, written in the rule as a number, or to a field of another 
object, such as the object that triggered the rule. 

The last part of the rule is the Action field.  There are different types of actions that 
an application could take if a rule is evaluated to be true based on the receipt of a new 
data item.  For example, the application might need to send data to one or more users 
in the current group.  Alerts might be displayed to users based on the criticality of the 
information.  It is also possible to change the current active rule set so that the 
application can react to significantly different situations. 

As an example, the rule in Figure 8 is called LocationUpdate and states that if a 
local location update is passed to the application by the onboard GPS sensor (this is 
indicated by the receipt of a data item of type GPSSensorDataUpdateEvent) then in 
ALL situations (no conditionals are evaluated) the application should declare a new 
event to indicate that the location of the device has changed. The action is that a 
PrimaryDeviceLocationUpdateEvent object is created, containing the new GPS 
coordinates, and this data is forwarded to all external connections (the encoding of the 
action is included at the end of the rule set file).  

Another example of rule that can be expressed using the same XML structure is 
shown in Fig. 9. In this rule, called BatteryLow, the battery sensor reports that there 
has been a change in battery level by triggering a BatterySensorDataUpdateEvent. 
The rule looks at the batteryCharge field of this event to check if it is less than (LT) 
30%. Of this is the case, two actions are taken: one is to create an ALERT 1 and the 
other is to declare a BatteryLowEvent (as with the previous example, the encoding of 
the action as well as the alert is included at the end of the rule set file). The full 
context rule notation and context rule engine implementation is the topic of an 
upcoming paper. 

<Rule 
 RuleName = “BatteryLow” 
 TriggerDataType = “BatterySensorDataUpdateEvent” 
 Conditionals = “TRIGGER.batteryCharge LT 30” 
 Actions = “ALERT 1; DECLARE BatteryLowEvent” 
/> 

Fig. 9. Sample context rule based on a change in battery level 

5 Prototype Implementation 

To demonstrate the validity and extensibility of the reference architecture, we built a 
prototype application on the Android platform that implements a group context-aware 
mobile application for first responder task management. The concrete architecture is 
shown in Fig. 10. 
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Fig. 10. Architecture for first responder task management prototype implemented on Android 

5.1 Views 

All views are implemented as Android activities. There are currently three views that 
we envision would be found in any group-context-aware mobile application:   

• User View: Displays the list of users that are currently part of the group, as well 
as any relevant status or other contextual information.  This view subscribes to 
events that indicate user list changes, such as connection events or group 
addition/modification events. 

• Context Data View: Displays all relevant context data for a selected member of 
the group. It is invoked by the User View when a user is selected. Data for this 
view is retrieved from the App Data store. 

• Alert View: Displays alerts to the user. This view subscribes to alert-reporting 
events. 

The Sensor Management View was created as part of the prototype to enable manual 
adjustment of sensor sampling rates and understand the effects of changes in sampling 
rates. It also serves as an example of a view that changes context data that could also 
be changed programmatically by a rule (e.g. reduce sampling rates for all sensors 
when battery <=20%).  

The Task View is an application-specific view. Groups of first responders are 
commonly task-based. That is, a leader of the group assigns a task to members of the 
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group and members report on the status of the tasks assigned to them. This view 
displays task-related information and responds to task-related events, such as new 
tasks or task status changes. 

5.2 Sensors 

Battery, GPS, and the Set of Android Sensors [20] were added by implementing the 
Sensor Service Interface. The context data elements that map to the information 
coming from these sensors were added to the context data model. Sensors report 
changes to their corresponding context model elements. The effort required to add 
new sensors proved to be as expected (see Section 4.2). 

5.3 Communication Mechanisms 

Bluetooth and TCP/IP communication was added by implementing the 
Communication Service Interface. To test the extensibility of the architecture and its 
applicability to connectionless protocols, we successfully integrated a Mediated 
Broadcast protocol implemented by research collaborators at George Mason 
University (GMU)2. Effort was within the parameters defined by the corresponding 
scenario. 

5.4 Context Engine and Rules 

Tasks were created as Mandatory Activities in the context model.  Mandatory 
Activities have six fields/attributes: name, participants, sub-activities, status, 
assigners, and assignees. In addition to the Default Rule Set that applies to the three 
default views (User, Context Data, and Alert), a rule set was created for task 
management to react to task creation as well as changes in task status (App-Specific 
Rule Set). As new tasks were created these were assigned and sent to appropriate 
group members. As task status was updated, events were triggered to communicate 
status updates. An example of an app-specific rule for this application is to evaluate 
the status of any parent activities of the sub-activity that was completed: if all sub-
activities are complete, then set the state of that parent activity should be set to 
complete as well. 

6 Related Work 

There is a large amount of work related to architecture and design of mobile context-
aware applications. The most-referenced publication in this area is by Dey et al [2]. 
This work presents a Context Toolkit that supports common features required by 

                                                           
2 The GMU Mediated Broadcast is a location-based ad hoc networking mechanism. It was 

selected to accommodate situations in which messages are targeted at a specific location 
rather than an individual (e.g., alert everyone to a disaster situation coming to the area). The 
mobile devices along the path serve as re-transmitters for the message. This work will be 
published in an upcoming joint report. 
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context-aware applications: capture and access of context, storage, distribution, and 
independent execution from applications. Our work extends the definition of context 
to include group-related entities as well as the capabilities of the main components of 
the toolkit (widgets, interpreters and aggregators) to process this group context. It also 
adds a context dissemination component to share context with group members. 
Baldauf et al [10] conducted a survey of multiple approaches for architecting context-
aware systems and determined that it largely depends on how the system captures 
context data. It also claims that separation of detecting and using context is necessary 
to improve extensibility and reusability of a system. The proposed reference 
architecture is consistent with these two statements. Most other research in this area 
presents ideas and frameworks for designing context-aware systems, but is limited to 
individual context [3][7][9][12][24][25]. For example, Cagalaban and Kim [9] present 
an architecture of a context-aware system that includes web services, mobile devices, 
smart homes, and the different responsibilities in a health care context. The use of a 
rule engine is discussed for processing context in an individual system. As another 
example, Henricksen and Indulska [12] propose a notional layered architecture that 
uses separation of concerns, synchronous and asynchronous communications, and 
other architectural constructs to manage the capture and processing of contextual 
information in an individual system setting. 

Commercial, location-based apps running on smartphones can filter information 
based on a user's current position, but do not use other information useful in tactical 
environments such as the state of individuals or their devices. Work in the 
commercial sector is just beginning to use richer context information from multiple 
individuals to inform handheld users and make recommendations (e.g., finding a 
possible restaurant for a group lunch) but do not treat the group as a collaborating 
resource. In addition, as with the related research, context is mainly limited to 
location and interests as part of social networks.  Examples include SocialFusion [21], 
CenceMe [22] and Serendipity [23]. 

7 Conclusions and Future Work 

Handheld mobile technology is reaching first responders and soldiers in the field to 
help with mission execution. Using this technology to sense as much of the 
environment as possible, share this information with members of a group, and reason 
about the group context can improve the effectiveness of the mission and optimize 
resources. In this paper we have described a highly-extensible reference architecture 
for group-context-aware mobile applications that integrates the contextual 
information from individuals with that of nearby team members.   

Context is extended beyond the location and time of an individual to consider 
group context elements such as activities and events. A variety of sensors and 
communication mechanisms can be integrated into the architecture to account for the 
variability in devices as well as communication mechanisms that are available.  A 
context engine based on mission-specific rule sets enables applications to reason 
about context and make decisions on what information to show to individuals, what 
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information to share with the group, and optimize individual and group resources. The 
next step is to implement a disaster recovery scenario and corresponding rule set in 
which resource-poor first responders are able to coordinate their efforts by sensing 
and sharing context information that is automatically filtered based on mission 
parameters. Once the scenario implementation is stable we will attend 
experimentation events where we will be able to test the architecture in a simulated 
setting and see how the architecture behaves under close-to-real infrastructure and 
data rates. 

One of the more interesting results of this work has been the ability to leverage the 
architecture to support collaboration. By identifying extensibility scenarios early on in 
the design process, we were able to construct an architecture that supports multi-
organizational collaboration to construct and evaluate different pieces of the 
architecture. This has allowed us to reach out to researchers from multiple universities 
and industry, resulting in synergistic research and development, furthering the goals 
of all participants. 

Current and future work includes: 

• Group context-aware resource optimization: use group context information to 
optimize battery consumption, bandwidth and computation resources of a group. 
Examples include the use of device status to assign computation-intensive tasks 
to devices with the most resources; adjustment of sensor input rates depending 
on battery level; and selection of appropriate communication mechanisms for 
context dissemination depending on comms status, information sensitivity and 
battery level. 

• Minimizing user interaction for context capture: exploit device sensors to 
capture context information in a non-intrusive manner such that there is 
minimum disruption to the user’s attention and activities. An example includes 
the use of the accelerometer. 
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