
D. Uhler, K. Mehta, and J.L. Wong (Eds.): MobiCase 2012, LNICST 110, pp. 44–63, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

A Reference Architecture for Group-Context-Aware
Mobile Applications

Grace Lewis, Marc Novakouski, and Enrique Sánchez

CMU Software Engineering Institute
4500 Fifth Ave. Pittsburgh, PA 15213 USA

{glewis,novakom,eysanchez}@sei.cmu.edu

Abstract. Handheld mobile technology is reaching first responders and soldiers
in the field to help with mission execution. A characteristic of mission
execution environments is that people are typically deployed in teams or groups
to execute the mission. Most commercially-available context-aware mobile
applications are based on context expressed mainly as location and time of an
individual device plus the device user’s preferences or history. This work
extends context to consider the group that the individual is a part of and
presents a reference architecture for group-context-aware mobile applications
that integrates contextual information from individuals and nearby team
members operating to execute a mission. The architecture is highly extensible
to support changes in context data models, context data storage mechanisms,
context reasoning engines and rules, sensors, communication mechanisms and
context views. A prototype implementation was built to demonstrate the
validity and extensibility of the reference architecture.

Keywords: context-awareness, mobile applications, Android, software
architecture, reference architecture.

1 Introduction and Motivation

Handheld mobile technology is reaching first responders and soldiers in the field to
help with mission execution. These individuals operate at the tactical edge, which is a
term used to describe hostile environments with limited resources, from disaster relief
areas in countries like Haiti and Japan, to war zones in Afghanistan.

A major challenge at the tactical edge is getting relevant information at the time it
is needed. Causes include reliance on easily misplaced paper reports, one-way
information flow (up the chain of command but not down), and the lack of network
bandwidth and handheld devices to access information. Improved bandwidth and new
devices can improve reporting and increase the volume of information, but these
advances will also create information overload.

An important characteristic of mission execution environments is that people are
typically deployed in teams or groups to execute the mission. For example, first
responders in disaster areas cannot effectively pursue humanitarian tasks without
coordination. Similarly, squads of warfighters in theater must coordinate very closely
in order to accomplish missions, perform peacekeeping tasks, or even stay alive.

 A Reference Architecture for Group-Context-Aware Mobile Applications 45

Imagine a scenario where each first responder is given a mobile device with
applications and information that will help them execute their mission. What will
happen over time is that as first responders move away from the base, the information
that is critical is determined by what the individuals and the group as a whole feel,
see, hear, smell, or even by situations they cannot directly sense, such as high levels
of radiation [1]. In addition, because of the type of work executed by first responders,
especially in emergency situations, they are not in position to search for information,
or scroll through multiple screens on a device to display the appropriate data when it
is needed most. What they need is a capability that can sense as much of the emerging
group context as possible, apply that context to share data with the group, and filter
data such that only the most relevant information is shared and displayed.

The work presented in this paper is a reference architecture for group-context-
aware mobile applications that enables the integration of contextual information from
individuals, nearby team members, and potentially the enterprise to support a team
executing a mission. Specific innovations of this work include consideration of a wide
range of contextual information, including the dynamics of a group operating to
achieve a common mission goal. In order to better interact with collaborators and
quickly incorporate technological advances, the architecture is highly extensible to
support changes in context data models, context data storage mechanisms, context
reasoning engines and rules, sensors, communication mechanisms and context views.
Section 2 introduces the concept of group context awareness as related to mobile
applications at the tactical edge. Section 3 presents the reference architecture. Section
4 presents the architecture decisions and tradeoffs to support extensibility. Section 5
presents a prototype implementation for task management on the Android platform
that validates the reference architecture. Section 6 provides a summary of related
work. Finally, Section 7 presents conclusions and future work.

2 Group Context Awareness

There are many definitions of context related to context-aware applications
[2][3][4][5][6][7][8][9][10][11][12]. Based on a synthesis of available definitions, we
define context as any information that can be used to characterize an entity — person,
place, or object — such as its properties, behavior, and surrounding environment. We
define a context-aware application as an application that uses contextual information
to modify its behavior, adapt its user interface, or filter data accordingly.

Most commercially-available context-aware mobile applications (apps) are based
on context expressed mainly as location and time of an individual device plus the
device user’s preferences or history. For example, an app recommends a list of
restaurants close to the current location of a user and orders them according to user
cuisine preferences combined with the type of cuisine selected in the past by that user.

The guest editor introduction to a recent special issue on context-aware computing
presents a challenge for context-aware system developers to work beyond search and
location-based services to consider a larger set of context entities in order to improve

46 G. Lewis, M. Novakouski, and E. Sánchez

their value [13]. Consistent with this statement, the work presented in this paper
extends context beyond location and time of an individual user to consider the context
of the group that the individual is a part of (e.g. a rescue team). A group-context-
aware mobile app first considers individual user context and then relates that
information to the group context, thereby helping users understand both their own
state as well as the state of the group in which they participate. Desired capabilities of
group-context-aware mobile applications in hostile environments include

• Capture and store context information on a mobile device in a non-intrusive
manner to reduce cognitive overload and without imposing an unreasonable
burden on handheld device resources

• Disseminate context information to group members using whatever
communications mechanisms are available at the moment

• Integrate local and group context information to improve mission effectiveness
by only sharing and displaying information that is relevant to the individual
and mission according to configurable rules

The following section presents a reference architecture for implementing group-
context aware mobile applications that enables these capabilities.

3 Reference Architecture

The development of any software architecture should start with a definition of
business drivers [14]. Given the early stages of the research project, as well as the fast
speed at which technology is changing in the mobile space, we defined the following
business drivers

1. Opportunistic integration of new technology
2. Ease of integration with components produced by collaborators
3. Applicability of architecture to different edge-enabled applications

To meet business drivers we defined extensibility as the main architectural driver,
expressed as eight scenarios, as shown in Table 1. A sample scenario description,
documented according to [14], is shown in Table 2.

Table 1. Extensibility scenarios

Name Attribute Concern
1 Add a new sensor Separation of concerns
2 Add a new sensor Modifiability
3 Add a new communication mechanism Separation of concerns
4 Add a new communication mechanism Modifiability
5 Add a new content event/action Separation of concerns
6 Add a new content event/action Modifiability
7 Add a new context view Separation of concerns
8 Add a new context view Modifiability

 A Reference Architecture for Group-Context-Aware Mobile Applications 47

Table 2. Scenario 3: Add a new communication mechanism

Scenario Add a new communication mechanism

Attribute Extensibility

Attribute
concern

Separation of concerns

Scenario
refinement

Stimulus Developer

Stimulus
source

Developer identifies a communication
mechanism that can be used to share context
data with other mobile devices

Environment Developer is sufficiently comfortable with
application to make changes in a reasonable
amount of time

Artifact Communications Manager of the context-
aware application

Response Communications Manager is changed to
implement message passing using the new
communication mechanism

Response
measure

Aside from communication-mechanism-
specific code, only the Communications
Manager is changed to accommodate the new
communications mechanism

The reference high-level architecture for group-context-aware mobile applications

is a layered architecture as shown in Fig. 1. The architecture follows the basic
architecture for context-aware mobile applications proposed in [2] that divides the
architecture into context capture, context reasoning/aggregation and context
visualization. This architecture also follows the common model-view-controller
(MVC) pattern. The model is the App Data in the I/O layer, the controller is the
Application Layer, and the view is the User Interface Layer.

3.1 User Interface Layer

The User Interface Layer is the collection of views of context data. The views register
an interest in events produced by the system and display data accordingly. The views
can also input context data from the user.

3.2 Application Layer

The Application Layer is the core of the system. The components in this layer are
responsible for managing context and creating events based on individual and group
context.

The Application Manager is the central hub for all system activity.
The Context Engine is the central processor for all context information used by the

application. As device sensors report new data and context data is received from

48 G. Lewis, M. Novakouski, and E. Sánchez

group members, all data is passed through the engine so that new events are detected
as they occur. Events are sent to the Application Manager for distribution to
components that are interested in the events.

The Sensor Manager accepts data from sensors on the mobile device, such as
position sensors, movement sensors, light and proximity sensors, etc. The Sensor
Manager also controls sampling rate and change thresholds (the minimum variation in
value to report a change) for each sensor.

The Communications Manager acts as the gateway for all external
communications. Any messages to and from other devices are passed through the
Communications Manager. It supports multiple communication mechanisms.

The Data Manager performs all CRUD (create, retrieve, update, delete) operations
on context data and app data, and manages all access to the sensor configuration file
and the context rule sets.

Fig. 1. Reference architecture for group-context-aware mobile applications

3.3 I/O Layer

The I/O Layer contains components that interact directly with device I/O elements
such as files, databases, sensors and communication services.

 A Reference Architecture for Group-Context-Aware Mobile Applications 49

Sensor Config is a file that contains default sensor configuration information for all
active sensors such as sampling rates and change thresholds.

Rule Sets are files that contain rules that the context engine reasons about. There is
a default rule set that is generic to all group-context aware mobile applications.
Mission-specific rule sets can be created, added and swapped as needed.

App Data is the physical storage for the context model and app-specific data.
Sensor 1 to Sensor N correspond to the components that receive data from sensors.

They all implement the same interface so that sensors can be easily added to the
system.

Comms Mech 1 to Comms Mech N correspond to the communication mechanisms
that are used to send to and receive data from other members of the group. They all
implement the same interface so that communication mechanisms can be easily added
to the system. Each communication mechanism has a configuration file that
corresponds to communication-mechanism-specific information such as local
addresses, server/router addresses, predefined user names-device pairings, ports, and
security keys.

4 Architecture Decisions

There were several architecture decisions that were made to support the required
capabilities listed in Section 2 and the extensibility scenarios presented in Section 3.
Even though some of these decisions were made using Android-specific programming
constructs and technologies, we argue that they can be implemented using equivalent
technologies on other platforms.

4.1 Context Model “At the Center”

Given the need to support easy addition of sensors, communication mechanisms,
events, and views, a decision was made to place the context model “at the center.”
This means that the context engine, views, sensors and communication are all based
on producing and consuming context data defined by the context model as well as
events that are generated based on changes in context data.

The goal established for the context model was to be generic and extensible in
order to handle a wide range of situations, environments, and data.

Logical Data Model. The logical data model, or form and structure of the context
model, is based on the definition of context provided in Section 2. This work expands
the definition of an entity — originally stated as a person, place or object — to
include three group-related entities: people (individuals, groups, and organizations),
activities, and events. The high-level context model is shown in Fig. 2.

People. The novel contribution of this work is the expansion of the scope of context
from the user to the group. As mentioned earlier, in tactical settings individuals rarely

50 G. Lewis, M. Novakouski, and E. Sánchez

work alone. In most cases, groups of varying size collaborate on tasks to achieve
group-level goals (i.e., missions). Therefore, supporting this coordination requires
effective sharing of context data between group members.

In the proposed group-context model, the Person entity is changed to People and
divided into three subcategories: Individual, Group and Organization. This allows
more fine-grained control over how to process each subcategory. Similarly, this
breakdown allows further decomposition into different types of groups or
organizations.

Fig. 2. Group context model

Activities. Activities are what individuals are doing, either on their own or as part of a
group. Activities have status (complete, not started, in progress, on hold, etc.) that can
be used to model task flow, react to changes in activity status, suggest or assign new
activities, and provide information relevant to current activities.

Mandatory Activities are activities that are assigned to an individual and that must
be completed (i.e., a task). Optional Activities are activities that an individual is
performing that do not necessarily require status reporting. This differentiation can be
used for tracking activities in a group that are part of a larger mission.

Events. Events are notifications related to changes in context data. Defined Events are
set, known events that can either be detected programmatically because of changes in
context data that generate the events, or input by users as an external event that can
only detected by humans. The application has pre-defined responses for these events.
For example, views can subscribe to these pre-defined events or the application may
determine that a certain event has to be communicated to other members of the group.

 A Reference Architecture for Group-Context-Aware Mobile Applications 51

Undefined Events are random events that can only be identified organically by users,
and do not have pre-defined responses (e.g., a falling building). As such, they are
considered to be informational only and users must respond to them manually.

Physical Data Model. Two options were considered for persisting context data:
tables using a standard SQL-based approach, and objects using an OODB (object-
oriented database) or ORM (object-relational mapping) approach. This is an
important decision because it affects a number of quality attributes, including data
model extensibility, performance, power consumption, and scalability.

Fig. 3. Context model decomposition for Devices

Data model extensibility is better promoted by an OODB/ORM approach because
tables do not need to be created or modified in order to support new types of context
data. An OODB/ORM approach would either automatically create tables or eliminate
them altogether, limiting the effort of extending the data model to that required to add
the new context data element within the application. An example of an additional
level of decomposition of the context model is shown in Fig. 3. Adding new devices
would be a matter of adding a new subclass of Devices. All existing methods that
operate on Devices would be applicable to the new class of device as well.

52 G. Lewis, M. Novakouski, and E. Sánchez

Performance and power consumption can be considered together because tests
show that they scale together. In performance testing1, results showed that an OODB
implementation (Perst on Android [15]) performs orders of magnitude faster in most
tests than an SQL-based implementation (SQLite on Android [16]), as shown in Fig.
4. As a result, less power is used by the OODB implementation, resulting in a
correlation between increased performance and reduced battery consumption, as
shown in Fig. 5.

Fig. 4. Performance testing results for SQLite and Perst

The decision was therefore to implement the physical data model using an OODB
because of the importance of supporting data model extensibility, given the
expectation that the data model will change and evolve for the unique and varied
situations first responders and warfighters might encounter at the tactical edge.
Similarly, battery power is considered to be a key quality attribute at the tactical edge
due to limited resources. The main tradeoff in this decision is scalability because in
an OODB implementation most of the data is held in memory. Memory scalability is
a concern because a large amount of data is captured by the mobile device sensors and
shared between members of a group. The strategy for managing this concern is to
limit data capture by disabling or throttling sensor usage as needed and limiting data
sharing between group members to only relevant data and events.

1 Tests were executed on the Android 2.3.4 platform with records of size 172 bytes.

 A Reference Architecture for Group-Context-Aware Mobile Applications 53

Fig. 5. Energy consumption for 1000-record benchmark

4.2 Context Sensors

To most effectively leverage context, it is important to capture as much of it as
possible. As such, the architecture must not only support all available sensors
currently onboard the mobile device, but also addition of new ones. To promote the
extensibility scenarios related to sensors shown in Table 1, we adopted two
architectural tactics: standardized interfaces and decoupling.

Mobile devices currently support a variety of sensors, from light and motion, to
orientation, location, and proximity. As mobile devices grow more powerful and
hardware components for new sensors become smaller and can be integrated into
mobile devices, there will be a continuing need to integrate the inputs from new
sensors into the application. To minimize the amount of effort to do so, we designed
a standardized interface that any onboard sensor can use to report data to the
application, as shown in Fig. 6. This limits the application effort to integrate a new
sensor to the development of the sensor control logic (a single file), a few lines of
code in the application itself (to add the new sensor and sensor value type, if
previously undefined), and a new line in a configuration file (to set sensor defaults).
We recognize, however, that as the number of sensors increases on mobile devices, so
does the demand on device resources such as CPU, memory, and bandwidth if all
sensors are capturing data. Therefore, we employed two approaches to limit the
impact of sensor status reporting.

First, we implemented a sensor management capability to enable, disable, and
throttle sensor status reporting as needed. This capability can be invoked from a user
view or as needed by the application (e.g., based on context rules). Second, we

54 G. Lewis, M. Novakouski, and E. Sánchez

implemented a strict decoupling paradigm. All sensors are started as Android
Remote Services (bound services) [17], which act as entirely separate background
“applications” with their own memory space. This means that the processes gathering
sensor information are decoupled from the main application while following
Android’s defined service life cycle [18]. Therefore, even if one or more sensor
services are stalled due to high capture rates, the Android process management
infrastructure will constrain the impact to the service and limit the resource impact
on the primary application. In addition, it enables multiple consumers to use the
same source of sensor information leading to an increase in flexibility in the layers
above.

Fig. 6. Sensor service interface

The tradeoffs of this decision are added complexity, increased resource utilization,
and performance overhead. Inter-process communication is done using an AIDL
(Android Interface Definition Language) interface [19], which is an extra layer of
infrastructure. This inherently increases the complexity of the system, making it
harder to maintain. It also increases resource usage because the operating system is
spawning an entirely separate process for each sensor. However, testing of the
prototype with large workloads has shown performance and memory usage to be
within acceptable parameters. With respect to maintainability, while this is a
legitimate concern as the application evolves, we consider it to be a less important
quality to promote than extensibility given the architecture drivers.

 A Reference Architecture for Group-Context-Aware Mobile Applications 55

4.3 Context Dissemination

As important as it is to gather contextual data, group-context-aware mobile
application requires robust context sharing capabilities. Because at the tactical edge it
is difficult to predict what communication infrastructure will be available, the goal of
the architecture is to support any available communication mechanism in a
standardized way.

The architecture decision for enabling addition of new communication mechanisms
is very similar to the architecture decision that supports adding new sensors: a
standardized interface to easily integrate new communication mechanisms as they
become available. The common service interface shown in Fig. 7 provides generic
communication methods and callbacks that individual protocols can adapt as
necessary. This approach enables the application to use any available communication
channels as needed. If multiple channels are available, context information can be
used to determine which channels are used and how.

The tradeoff of using a standardized interface for all communication mechanisms is
that it implements the lowest common denominator of communication mechanism
capabilities. For example, a connection-based protocol establishes communications
and controls data transfer in a very orderly, systematic way. A connection-less
protocol is much more ad-hoc and cannot be restricted to a specific sequence of
events. Therefore, the interface has to support a very general connection process that
can allow any sequence of communication events.

Legend

Class References

Communications
Manager

Point-to-
Point

Protocol

Hub-and-
Spoke

Protocol

Connectionless
Protocol

Communication
Service Interface

Implements

connect()
disconnect()

getState()
initialize()

sendData()
sendDataToAll()

start()
stop()

Communication
Manager
Callback

reportConnectionAttemptFailed()
reportConnectionDisabled()
reportConnectionEnabled()
reportMessageReceived()
reportNewUser()

Contains

Fig. 7. Communication service interface

56 G. Lewis, M. Novakouski, and E. Sánchez

Another tradeoff is that in order to intelligently share context data, the application
requires the ability to send data to specific users, regardless of the underlying
protocol. For connectionless protocols, this could be difficult to support because the
underlying protocol may have no knowledge of which user or device is the source of a
particular message. It may also lose track of the message target status and actual data
might get lost because message transmission is not guaranteed.

4.4 Context Engine

A challenge for any context-aware application is that for any given user, the relevance
of any piece of contextual information entirely depends on the situation of the user.
For example, the contextual information that a person cares about while at work is
significantly different than the information they care about while they are at home, on
vacation, playing sports, spending time with family, etc. Therefore, in order to
construct a general-purpose group-context aware application, its architecture needs to
enable the application to easily switch between different situations so that the
relevance of a given piece of contextual data can be tailored to the user as well as the
situation that the user is in.

A decision was made to encode all rules in external XML files (rule sets). The set
of rules that the context engine reasons about can be changed by loading a different
rule set, either at design time or runtime, the latter reflecting the reality of changing
situations. A sample rule is shown in Fig. 8.

<Rule
 RuleName = “LocationUpdate”
 TriggerDataType = “GPSSensorDataUpdateEvent”
 Conditionals = “”
 Actions = “DECLARE PrimaryDeviceLocationUpdateEvent”
/>

Fig. 8. Sample context rule based on a location update event

Each rule in the rule set is evaluated only against a specific type of data item (or
subscription object). The triggering data type is specified in the rule by the
TriggerDataType field. Thus, when a data item is passed to the context engine for
processing, only rules that are triggered by the data type of the data item are
executed.

Evaluation of the rule is based on the evaluation of conditional statements included
in the Conditionals field of the rule. The convention of a simple, semi-colon-
delimited string is used so that rules can contain an arbitrary number of conditionals
in any combination. Evaluations currently supported by the engine include the
standard mathematical operators >, <, >=, <=, =, and /=. Conditionals support

 A Reference Architecture for Group-Context-Aware Mobile Applications 57

comparison to a specific value, written in the rule as a number, or to a field of another
object, such as the object that triggered the rule.

The last part of the rule is the Action field. There are different types of actions that
an application could take if a rule is evaluated to be true based on the receipt of a new
data item. For example, the application might need to send data to one or more users
in the current group. Alerts might be displayed to users based on the criticality of the
information. It is also possible to change the current active rule set so that the
application can react to significantly different situations.

As an example, the rule in Figure 8 is called LocationUpdate and states that if a
local location update is passed to the application by the onboard GPS sensor (this is
indicated by the receipt of a data item of type GPSSensorDataUpdateEvent) then in
ALL situations (no conditionals are evaluated) the application should declare a new
event to indicate that the location of the device has changed. The action is that a
PrimaryDeviceLocationUpdateEvent object is created, containing the new GPS
coordinates, and this data is forwarded to all external connections (the encoding of the
action is included at the end of the rule set file).

Another example of rule that can be expressed using the same XML structure is
shown in Fig. 9. In this rule, called BatteryLow, the battery sensor reports that there
has been a change in battery level by triggering a BatterySensorDataUpdateEvent.
The rule looks at the batteryCharge field of this event to check if it is less than (LT)
30%. Of this is the case, two actions are taken: one is to create an ALERT 1 and the
other is to declare a BatteryLowEvent (as with the previous example, the encoding of
the action as well as the alert is included at the end of the rule set file). The full
context rule notation and context rule engine implementation is the topic of an
upcoming paper.

<Rule
 RuleName = “BatteryLow”
 TriggerDataType = “BatterySensorDataUpdateEvent”
 Conditionals = “TRIGGER.batteryCharge LT 30”
 Actions = “ALERT 1; DECLARE BatteryLowEvent”
/>

Fig. 9. Sample context rule based on a change in battery level

5 Prototype Implementation

To demonstrate the validity and extensibility of the reference architecture, we built a
prototype application on the Android platform that implements a group context-aware
mobile application for first responder task management. The concrete architecture is
shown in Fig. 10.

58 G. Lewis, M. Novakouski, and E. Sánchez

Fig. 10. Architecture for first responder task management prototype implemented on Android

5.1 Views

All views are implemented as Android activities. There are currently three views that
we envision would be found in any group-context-aware mobile application:

• User View: Displays the list of users that are currently part of the group, as well
as any relevant status or other contextual information. This view subscribes to
events that indicate user list changes, such as connection events or group
addition/modification events.

• Context Data View: Displays all relevant context data for a selected member of
the group. It is invoked by the User View when a user is selected. Data for this
view is retrieved from the App Data store.

• Alert View: Displays alerts to the user. This view subscribes to alert-reporting
events.

The Sensor Management View was created as part of the prototype to enable manual
adjustment of sensor sampling rates and understand the effects of changes in sampling
rates. It also serves as an example of a view that changes context data that could also
be changed programmatically by a rule (e.g. reduce sampling rates for all sensors
when battery <=20%).

The Task View is an application-specific view. Groups of first responders are
commonly task-based. That is, a leader of the group assigns a task to members of the

 A Reference Architecture for Group-Context-Aware Mobile Applications 59

group and members report on the status of the tasks assigned to them. This view
displays task-related information and responds to task-related events, such as new
tasks or task status changes.

5.2 Sensors

Battery, GPS, and the Set of Android Sensors [20] were added by implementing the
Sensor Service Interface. The context data elements that map to the information
coming from these sensors were added to the context data model. Sensors report
changes to their corresponding context model elements. The effort required to add
new sensors proved to be as expected (see Section 4.2).

5.3 Communication Mechanisms

Bluetooth and TCP/IP communication was added by implementing the
Communication Service Interface. To test the extensibility of the architecture and its
applicability to connectionless protocols, we successfully integrated a Mediated
Broadcast protocol implemented by research collaborators at George Mason
University (GMU)2. Effort was within the parameters defined by the corresponding
scenario.

5.4 Context Engine and Rules

Tasks were created as Mandatory Activities in the context model. Mandatory
Activities have six fields/attributes: name, participants, sub-activities, status,
assigners, and assignees. In addition to the Default Rule Set that applies to the three
default views (User, Context Data, and Alert), a rule set was created for task
management to react to task creation as well as changes in task status (App-Specific
Rule Set). As new tasks were created these were assigned and sent to appropriate
group members. As task status was updated, events were triggered to communicate
status updates. An example of an app-specific rule for this application is to evaluate
the status of any parent activities of the sub-activity that was completed: if all sub-
activities are complete, then set the state of that parent activity should be set to
complete as well.

6 Related Work

There is a large amount of work related to architecture and design of mobile context-
aware applications. The most-referenced publication in this area is by Dey et al [2].
This work presents a Context Toolkit that supports common features required by

2 The GMU Mediated Broadcast is a location-based ad hoc networking mechanism. It was

selected to accommodate situations in which messages are targeted at a specific location
rather than an individual (e.g., alert everyone to a disaster situation coming to the area). The
mobile devices along the path serve as re-transmitters for the message. This work will be
published in an upcoming joint report.

60 G. Lewis, M. Novakouski, and E. Sánchez

context-aware applications: capture and access of context, storage, distribution, and
independent execution from applications. Our work extends the definition of context
to include group-related entities as well as the capabilities of the main components of
the toolkit (widgets, interpreters and aggregators) to process this group context. It also
adds a context dissemination component to share context with group members.
Baldauf et al [10] conducted a survey of multiple approaches for architecting context-
aware systems and determined that it largely depends on how the system captures
context data. It also claims that separation of detecting and using context is necessary
to improve extensibility and reusability of a system. The proposed reference
architecture is consistent with these two statements. Most other research in this area
presents ideas and frameworks for designing context-aware systems, but is limited to
individual context [3][7][9][12][24][25]. For example, Cagalaban and Kim [9] present
an architecture of a context-aware system that includes web services, mobile devices,
smart homes, and the different responsibilities in a health care context. The use of a
rule engine is discussed for processing context in an individual system. As another
example, Henricksen and Indulska [12] propose a notional layered architecture that
uses separation of concerns, synchronous and asynchronous communications, and
other architectural constructs to manage the capture and processing of contextual
information in an individual system setting.

Commercial, location-based apps running on smartphones can filter information
based on a user's current position, but do not use other information useful in tactical
environments such as the state of individuals or their devices. Work in the
commercial sector is just beginning to use richer context information from multiple
individuals to inform handheld users and make recommendations (e.g., finding a
possible restaurant for a group lunch) but do not treat the group as a collaborating
resource. In addition, as with the related research, context is mainly limited to
location and interests as part of social networks. Examples include SocialFusion [21],
CenceMe [22] and Serendipity [23].

7 Conclusions and Future Work

Handheld mobile technology is reaching first responders and soldiers in the field to
help with mission execution. Using this technology to sense as much of the
environment as possible, share this information with members of a group, and reason
about the group context can improve the effectiveness of the mission and optimize
resources. In this paper we have described a highly-extensible reference architecture
for group-context-aware mobile applications that integrates the contextual
information from individuals with that of nearby team members.

Context is extended beyond the location and time of an individual to consider
group context elements such as activities and events. A variety of sensors and
communication mechanisms can be integrated into the architecture to account for the
variability in devices as well as communication mechanisms that are available. A
context engine based on mission-specific rule sets enables applications to reason
about context and make decisions on what information to show to individuals, what

 A Reference Architecture for Group-Context-Aware Mobile Applications 61

information to share with the group, and optimize individual and group resources. The
next step is to implement a disaster recovery scenario and corresponding rule set in
which resource-poor first responders are able to coordinate their efforts by sensing
and sharing context information that is automatically filtered based on mission
parameters. Once the scenario implementation is stable we will attend
experimentation events where we will be able to test the architecture in a simulated
setting and see how the architecture behaves under close-to-real infrastructure and
data rates.

One of the more interesting results of this work has been the ability to leverage the
architecture to support collaboration. By identifying extensibility scenarios early on in
the design process, we were able to construct an architecture that supports multi-
organizational collaboration to construct and evaluate different pieces of the
architecture. This has allowed us to reach out to researchers from multiple universities
and industry, resulting in synergistic research and development, furthering the goals
of all participants.

Current and future work includes:

• Group context-aware resource optimization: use group context information to
optimize battery consumption, bandwidth and computation resources of a group.
Examples include the use of device status to assign computation-intensive tasks
to devices with the most resources; adjustment of sensor input rates depending
on battery level; and selection of appropriate communication mechanisms for
context dissemination depending on comms status, information sensitivity and
battery level.

• Minimizing user interaction for context capture: exploit device sensors to
capture context information in a non-intrusive manner such that there is
minimum disruption to the user’s attention and activities. An example includes
the use of the accelerometer.

Acknowledgements. This material is based upon work funded and supported by the
Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally funded
research and development center. This material has been approved for public release
and unlimited distribution (DM-0000029).

References

1. Alabaster, J.: Japan’s Softbank to offer world’s first phone with radiation detection (2012),
http://www.itworld.com/278997/japans-softbank-offer-worlds-
first-phone-radiation-detection

2. Dey, A.: Understanding and using context. In: Personal and Ubiquitous Computing, vol. 5,
pp. 4–7. Springer-Verlag London Ltd. (2001)

3. Godbole, A., Kim, S.-Y.: User centered design of context aware cell phones in human-
centric systems. In: 2010 IEEE International Conference on Information Reuse and
Integration (IRI), August 4-6, pp. 189–194 (2010)

62 G. Lewis, M. Novakouski, and E. Sánchez

4. Chen, H., Finin, T.: An ontology for context-aware pervasive computing environments. In:
Proc. IJCAI Workshop on Ontologies and Distributed Systems, IJCAI (2003)

5. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Proceedings
of IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz,
California, pp. 85–90 (December 1994)

6. Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Van Laerhoven, K., Van de
Velde, W.: Advanced Interaction in Context. In: Gellersen, H.-W. (ed.) HUC 1999. LNCS,
vol. 1707, pp. 89–101. Springer, Heidelberg (1999)

7. Malek, J., Laroussi, M., Derycke, A., Ghezala, H.B.: Model-driven development of
context-aware adaptive learning systems. In: Proc. 2010 10th IEEE International
Conference on Advanced Learning Technologies, pp. 432–434 (2010)

8. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Dartmouth
Computer Science Technical Report. TR2000-381 (2000)

9. Cagalaban, G., Kim, S.: Context-Aware Service Framework for Decision-Support
Applications Using Ontology-Based Modeling. In: Kang, B.-H., Richards, D. (eds.)
PKAW 2010. LNCS (LNAI), vol. 6232, pp. 103–110. Springer, Heidelberg (2010)

10. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. International
Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

11. Weerasinghe, T., Warren, I.: Odin: context-aware middleware for mobile services. In:
Proc. 2010 6th World Congress on Services, pp. 661–666 (2010)

12. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications:
models and approach. Pervasive and Mobile Computing 2(1), 37–64 (2006) ISSN 1574-
1192, doi:10.1016/j.pmcj.2005.07.003

13. Mehra, P.: Context-aware computing: beyond search and location-based services. IEEE
Internet Computing, 12–16 (March/April 2012)

14. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison
Wesley SEI Series in Software Engineering (2003)

15. McObject, Embedded Database for Android – Perst Small Footprint DBMS (2012),
http://www.mcobject.com/android

16. SQLite.org, SQLite Home Page (2012), http://www.sqlite.org/
17. Android Developers, Bound Services | Android Developers (2012),

http://developer.android.com/guide/topics/fundamentals/bound
-services.html

18. Android Developers, Services | Android Developers, (2012), http://developer.
android.com/guide/topics/fundamentals/services.html#Lifecycle

19. Android Developers, Android Interface Definition Language (AIDL) | Android Developers
(2012),
http://developer.android.com/guide/developing/tools/aidl.html

20. Android Developers, Sensor | Android Developers, (2012), http://developer.
android.com/reference/android/hardware/Sensor.html

21. Beach, A., Gartrell, M., Xing, X., Han, R., Lv, Q., Mishra, S., Seada, K.: Fusing mobile,
sensor, and social data to fully enable context-aware computing. In: Proceedings of the
Eleventh Workshop on Mobile Computing Systems Applications (HotMobile), Annapolis,
MD (February 2010)

22. Miluzzo, E., Lane, N., Fodor, K., Peterson, R.A., Lu, H., Musolesi, M., Eisenman, S.B.,
Zheng, X., Campbell, A.T.: Sensing meets mobile social networks: the design,
implementation and evaluation of the CenceMe application. In: Proc. of 6th ACM
Conference on Embedded Networked Sensor Systems (SenSys 2008), Raleigh, NC, USA,
November 5-7 (2008)

 A Reference Architecture for Group-Context-Aware Mobile Applications 63

23. Eagle, N., Pentland, A.: Social serendipity: mobilizing social software. IEEE Pervasive
Computing 4(2), 28–34 (2005)

24. Li, X., Lin, J., Li, L.: On the design of a mobile agent environment for context-aware m-
commerce. In: 2010 3rd IEEE International Conference on Computer Science and
Information Technology (ICCSIT), July 9-11, vol. 3, pp. 176–180 (2010)

25. Hsu, H.J., Wu, S.Y., Wang, F.J.: Methodology to developing context-aware pervasive
applications. In: Proc. Fifth IEEE International Symposium on Service Oriented System
Engineering, pp. 206–213 (2010)

	A Reference Architecture for Group-Context-Aware Mobile Applications
	Introduction and Motivation
	Group Context Awareness
	Reference Architecture
	User Interface Layer
	Application Layer
	I/O Layer

	Architecture Decisions
	Context Model “At the Center”
	Context Sensors
	Context Dissemination
	Context Engine

	Prototype Implementation
	Views
	Sensors
	Communication Mechanisms
	Context Engine and Rules

	Related Work
	Conclusions and Future Work
	References

