
5th Annual Software Engineering Institute
Team Software Process Symposium

www.sei.cmu.edu/tspsymposium

September 20-23, 2010 • Omni William Penn Hotel, Pittsburgh, Pennsylvania

TSP SYMPOSIUM 2010
CHANGING THE WORLD OF SOFTWARE ENGINEERING

The following authors granted special permission to
reproduce the following documents:

How to Teach Programming – Proposal for Introducing
PSP into a University Curriculum
©Barry Dwolatzky

Introducing PSP/TSP Massively in Mexico
©Héctor Joel González Santos

Will TSP Shape the Future of Software Development
in South Africa?
©Barry Dwolatzky, Lisa Lyhne, Tamasin Bossert, Alok Goswami

Illuminating the Intersection of TSP and CMMI
High Maturity Process Performance Models
©Robert Stoddard, Shigeru Sasao, Dave Webb, Jim VanBuren

New Team Software Process Paths: Systems
Engineering Team Uses TSP
©Daniel M. Wilson

Achieving Academic Success Using the Team Software Process
©Berin Babcock-McConnell, Saurabh Gupta, Jonathan Hartje,
Marsha Pomeroy-Huff, Shigeru Sasao, Sidharth Surana

AIM Case Study: Moving from TSP to CMMI ML3
©Oscar A. Mondragón, Edgar D. Fernandez

The ideas and findings in this publication should not be
construed as an official U.S. Department of Defense (DoD)
or Carnegie Mellon position. It is published in the interest of
scientific and technical information exchange.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY
THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON
AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PUR-
POSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY
OF ANY KIND WITH RESPECT TO FREEDOM FROM PAT-
ENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any
way to infringe on the rights of the trademark holder.

This work was created in the performance of Federal
Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research
and development center. The Government of the United
States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and
in any manner, and to have or permit others to do so, for
government purposes pursuant to the copyright license
under the clause at 252.227-7013.

Requests for permission to reproduce this document or pre-
pare derivative works of this document should be addressed
to the SEI Licensing Agent at permission@sei.cmu.edu.

Trademarks and Service Marks
Carnegie Mellon Software Engineering Institute (stylized),
Carnegie Mellon Software Engineering Institute (and de-
sign), and the stylized hexagon are trademarks of Carnegie
Mellon University.

® Capability Maturity Model, Carnegie Mellon, CMM, and
CMMI are registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

SM CMM Integration, Personal Software Process, PSP,
SCAMPI, SCAMPI Lead Appraiser, SEPG, Team Software
Process, and TSP are service marks of Carnegie Mellon
University.

For information and guidelines regarding the proper
referential use of Carnegie Mellon University service marks
and trademarks, see Trademarks and Service Marks at
www.sei.cmu.edu/legal/marks.

1

T
S

P
 S

Y
M

P
O

S
IU

M
 2

01
0

Team Software Process Symposium Proceedings

TSP Symposium 2010 Program Committee . . 2

How to Teach Programming – Proposal for Introducing PSP into a University Curriculum 3

Introducing PSP/TSP Massively in Mexico. . 6

Will TSP Shape the Future of Software Development in South Africa?. . 9

Illuminating the Intersection of TSP and CMMI High Maturity Process Performance Models. 15

New Team Software Process Paths: Systems Engineering Team Uses TSP . . 29

Achieving Academic Success Using the Team Software Process. . 32

AIM Case Study: Moving from TSP to CMMI ML3 . . 39

Editor’s Note
The experiences and ideas presented in these papers are those of the authors, and not
necessarily of the SEI. Most individuals and teams customize the Team Software Process
(TSP) and the Personal Software Process (PSP) to best fit their own needs. The processes
were designed to be flexible and support customization. As always, use judgment before
following advice from others. Take special caution when modifying basic principles of the
PSP and the TSP. Examples include the use of personal data for anything besides personal
improvement and providing team status.

2

T
S

P
 S

Y
M

P
O

S
IU

M
 2

01
0

TSP Symposium 2010 Program Committee

William Nichols, Software Engineering Institute
TSP Symposium 2010 Technical Chair

		 Lana Cagle, U.S. Navy

Tim Chick, Software Engineering Institute

David Saint Amand, U.S. Navy

Rafael Salazar, Tec de Monterrey

Rajan Seriampalayam, Oracle Corporation

Karen Smiley, ABB Inc.

Kathy Smith, HP Enterprise Services

David Webb, U.S. Air Force

3

H
ow

 to

 T

each

 P
r

o
g

r
ammin

g

 –
 p

r
oposal

fo

r
 int

r

o
d

ucin

g

 P
S

P
 into

 a

 uni

v
e

r
sity

 cu

r
r

iculum

How to Teach Programming – Proposal for Introducing PSP into a University
Curriculum

Barry Dwolatzky, JCSE at Wits University, South Africa

1.1	 Introduction
In this paper I propose a change in the way that university
students are taught to write computer programs. The impetus
for proposing this change arises from my own first-hand
experience in learning PSP. In October 2009 I attended the
“PSP Fundamentals” course presented in Johannesburg
by the SEI as part of a TSP adoption programme in South
Africa. I followed this up with the “PSP Advanced” course in
December 2009 and PSP Instructor training in January 2010.

After having read and heard about PSP over the past few
years, it took the experience of actually learning PSP myself to
convince me that the way in which my colleagues and I have
been teaching programming at South African Universities for
several decades needs to undergo a radical re-think.

1.2	� Lessons learned in my own
PSP training

I wrote my first computer program in 1971 in Fortran IV. It ran
on an IBM 360 mainframe, and had to be submitted as a batch
job on a stack of punched cards. The results were collected
a day later as a printout. In the 40 years since writing that
first program I’ve written many programs, large and small,
in a range of different programming languages, individually
and in teams. I’ve also taught programming to generations of
university students.

With 4 decades of programming experience under my belt it
is not surprising that I thought of myself as a “good,” even an
“excellent” programmer. With a high level of self-confidence I
started the first program of the PSP training in October 2009.

As part of the PSP training, I kept a careful record of the
actual time taken to write the program. The time log was
broken down into several component phases:

Phase Actual time
[Minutes]

Percent of
total

Plan 3 1.8 %

Detailed Design 5 2.9 %

Code 97 53.1 %

Compile 27 14.8 %

Unit Test 49 26.8 %

Post Mortem 1 0.7 %

TOTAL 182 100.0 %

I was interested to note that 94% of the 182 minutes it took
to write this program was spent on three phases – code,
compile and test. I became aware that these three phases
were not distinct activities, but were carried out as one
“super phase” in which the cycle: codecompiletest was
repeated many times.

Before writing “Program 2” I was required to use the PSP
tool to estimate the size (in lines-of-code [LOC]) of the final
program. As an input to this estimation I developed an initial
design of my program. Based on this design, the PSP tool
required me to enter the number of “parts” (i.e. functions,
classes, etc.) that would be needed, and an estimate of the
complexity of each “part.” Using this information the PSP
tool estimated the size of the program, and the time required.

The estimates of size and time, based on my initial design,
were as follows:

Estimate of size for “Program 2” 135 LOC

Estimate of development time for
“Program 2”

240 minutes

As it turned out, both of these estimates were substantially
inaccurate. My actual size and time data on completion of
“Program 2” were as follows:

Actual size of “Program 2” 361 LOC

Actual development time for
“Program 2”

530 minutes

As with the first program, in developing “Program 2,”
the vast majority of my time (91%) was spent repeating
the cycle: codecompiletest. This cycle is, in fact,
a combination of iterative design and debugging. I also
observed that this cycle is extremely inefficient and
unpredictable.

Writing Programs 1 and 2 provided me with a “baseline.”
I believe that my behaviour in writing these programs
accurately represented the way I have worked for nearly
40 years. The PSP Training aims to change the behaviour
I demonstrated in Programs 1 and 2. Did it achieve this
change?

In terms of estimation, my data at the end of the training (i.e.

for “Program 7”) were as follows:

Estimate Actual Error [%]

Size [LOC] 126 118 -6.4 %

Development
Time [minutes]

176 242 37 %

4

H
ow

 to

 T

each

 P
r

o
g

r
ammin

g

 –
 p

r
oposal

fo

r
 int

r

o
d

ucin

g

 P
S

P
 into

 a

 uni

v
e

r
sity

 cu

r
r

iculum

More important than the accuracy (or lack thereof) of my
predictions is the fact that the estimates for “Program 7”
were not based on “engineering judgement,” or on standard
historical data stored in the PSP tool, but on a careful
analysis of my own historical data, collected from Programs
1 to 6. This certainly represents both a change and a
significant improvement in my behaviour!

The other key lesson became evident when I analysed how
I developed “Program 7.” When one breaks the 242 minutes
spent in developing the program into distinct phases the data
are as follows:

Phase Actual time
[Minutes]

Percent of
total

Plan 10 4.1 %

Detailed Design 45 18.6 %

Design Review 21 8.7 %

Code 79 32.6 %

Code Review 21 8.7 %

Compile 22 9.1 %

Unit Test 32 13.2 %

Post Mortem 12 5.0 %

TOTAL 242 100.0 %

In writing “Program 7” I spent only 55% of my time in
the code, compile and test phases. These phases were now
distinct and separate. All the rest of the time was spent
planning, designing, and reviewing – in other words thinking
about what I was going to do, and checking what I had done.
Before the PSP training I had spent less than 10% of my time
on these activities.

1.3	 Quality: The secret ingredient
Forty years of writing programs taught me that software
always has bugs. Some are found during unit testing, others
during system testing and (worst of all) are those that appear
“in the field” after the development has been completed.
In my experience programmers learn to accept that, since
programming is a complex and difficult task, there will
always be some defects that cause programs to function
incorrectly in certain circumstances. What did the PSP
training teach me about this received wisdom?

In writing all seven programs, I recorded every defect that
I found – no matter how minor. For each defect I specified
where in the development process it was injected and where
it was removed. The training taught me that by dealing in a
careful and coordinated way with defects, and by finding and
removing them as soon as possible, PSP has the potential
to help me remove the major source of uncertainty in the
development process. By examining my own data I’ve
understood that locating defects during unit testing is a
slow, unpredictable, frustrating and wasteful activity. Most
importantly, I’ve also understood that this waste of time
and effort is not necessary. Although I didn’t, during the
PSP training, achieve the level of performance in defect

removal that I should be capable of, I certainly gained a
clear understanding of how defects affect productivity and
predictability.

The PSP training taught me that early and efficient defect
removal is not only the key to good quality. It is also the
best way to ensure that time estimates are far more accurate.
Quality certainly is the secret ingredient in PSP!

1.4	 Teaching students to program
In universities around the world students are taught to
program. The ability to write a computer program in some
general-purpose language is a skill required in science,
engineering and other academic disciplines. Many students
also go on to write software professionally. There is an
ongoing debate at universities and, more generally in the
Information and Communication Technology (ICT) sector,
on how to teach programming.

The most common approach in teaching students to program
is to focus on language syntax, algorithmic skills and
abstraction mechanisms. In 2001 the two major professional
bodies in the ICT sector, the Institute of Electrical and
Electronic Engineers (IEEE) and the Association for
Computing Machinery (ACM) set up a large international
“Joint Task Force” that developed a “Guide to undergraduate
degree programs in computing.” This document includes
suggestions on how to teach programming. In one of the
components of this guide [ACM/IEEE 2001] the authors
state that “concentrating on the mechanistic details of
programming constructs often leaves students to figure out
the essential character of programming through an ad hoc
process of trial and error. Such courses thus risk leaving
students who are at the very beginning of their academic
careers to flounder on their own with respect to the complex
activity of programming.”

By the end of the PSP training I felt inspired to bring the
lessons I had learnt into my own teaching of Electrical
Engineering students at Wits University and to influence
some of my colleagues at other South African Universities
to do the same. We have certainly been guilty of “leaving
students … to flounder on their own” when it comes to the
aspects of programming that I learnt on the PSP training. A
simple solution would be to incorporate the “standard” PSP
training as a stand-alone module in the existing curriculum.
I wanted, however, to explore ways of radically re-thinking
how I teach students to program.

In contemplating a radical re-think in how we teach
programming I remembered how I had learnt 40 years
ago. As I mentioned earlier, my first experience in writing
programs involved punch-cards and batch processing. One
of the good things I learnt about how to program was that I
paid dearly for defects that escaped into the compile and test
phase. Each defect in compile or test cost me a day or more
in turn-around time. This taught me to review my design and
my code before I submitted my deck of cards. This is the
same lesson that Watts Humphrey incorporated into PSP.

5

H
ow

 to

 T

each

 P
r

o
g

r
ammin

g

 –
 p

r
oposal

fo

r
 int

r

o
d

ucin

g

 P
S

P
 into

 a

 uni

v
e

r
sity

 cu

r
r

iculum

If I learnt to program in this way why have I not retained
this discipline? The answer is simple: I became lazy and
was seduced by the apparent ease of working within an
interactive environment.

The question then is how to encourage, or even force,
students to follow the principles of PSP and then stick to this
way of working? I believe that the answer lies in the only
currency that students respect, namely grades awarded in
assessment.

My proposal is that learning to program should proceed in
four stages:

•	 Stage 1- Learn the syntax of a language. This is covered
in a typical introductory programming course. The focus
will be on syntax, algorithmic skills and abstraction
mechanisms. It is essential that the student is able to
write a simple program in a general purpose language
before PSP concepts are introduced. While the focus is
on learning the language, something must be done at this
early stage to resist the onset of bad process habits. This
should take the form of a code review step before the
compiler is run. This could be supported by providing the
student with a “standard checklist” that she/he can modify
to reflect some individual typical defects. To encourage the
use of code reviews students should receive bonus marks
in assessment of laboratories and tests if the first compile
results in less than a specified number of compile errors.

•	 Stage 2 – Advanced programming, using a process and
collecting data: This should cover advanced programming
concepts together with the introduction of a PSP-like
process and collection of time and defect data. While
the focus is still on developing good algorithmic and
syntax skills, process and data should become important.
Again marks awarded in assessment should reinforce
the adherence to process and accurate collection of data.
It is important that in assessing work, the content of the
data should not be examined. All that is required is that
data must be collected. Defect information must be used
by students to develop their own design review and code
review checklists.

•	 Stage 3 – Formal PSP training: In Stages 1 and 2 the
student should have become a competent enough
programmer to gain maximum benefit from PSP training.
In this stage the full 7 or 8 program PSP course should be
taught. The focus is on estimation based on personal data,
design and design review, and developing and improving
one’s own personal process.

•	 Stage 4 – a team-based capstone project using TSP: The
capstone project should introduce TSP concepts and
should reinforce PSP principles.

1.5	 Conclusion
This paper presents a high-level proposal for introducing
PSP-like principles into a sequence of programming courses
within a university curriculum. It still remains for this
proposal to be incorporated within an actual curriculum and
then piloted. I believe very strongly that there is something
fundamentally wrong in the way students are taught to
program, and that the solution lies in making significant
changes in existing courses and curricula.

Reference
ACM/IEEE 2001
“Computing Curricula 2001: Computer Science,” Final
Report, Dec. 15, 2001, ACM/IEEE, p. 27.

BIOGRAPHY
Barry Dwolatzky
Barry is Professor of Software Engineering at the University
of the Witwatersrand, or Wits, in Johannesburg, South
Africa. He is also Director and CEO of the Joburg Centre for
Software Engineering (JCSE) at Wits.

Barry graduated as an Electrical Engineer from Wits in 1975.
He stayed on to complete his PhD in 1979. Between 1980
and 1989 he lived in the United Kingdom working as a post-
doctoral research associate at the University of Manchester
Institute of Science and Technology (UMIST) and Imperial
College, London. He joined the company GEC-Marconi as a
researcher in 1985 and left in 1989 to return to South Africa.
Since returning to Wits he has been on the staff of the School
of Electrical and Information Engineering.

Barry has published extensively in academic journals, has
presented at conferences and has successfully supervised 5
PhD’s and over 30 MSc research students. His major current
interest is in promoting the growth and competitiveness
of the South African and African software development
sector. He believes that this can be achieved by promoting
the adoption of sound software engineering principles and
practices.

He is chairman of the South African Chapter of the IEEE-
CS. He is also a certified CMMI and PSP Instructor.

6

Int

r
o

d
ucin

g
 P

S
P

/T
S

P
 M

assi

v

ely

 in
 M

é
x

ico

Héctor Joel González Santos, Kernel Technologies Group

How can Mexico’s SME (Small and Medium Enterprises)
accelerate their process maturity to achieve organizational
processes and quality? How can Mexican engineers be
prepared to compete on a global high competitive environment?
The answer is PSP and TSP, We are convinced that TSP is the
key to achieve process, product and quality maturity and first
we shall start by training our engineers.

The purpose of this proceeding is to show Kernel’s strategy
and results when implementing this first phase of our TSP
implementation in SME’s by training 250 engineers in diverse
companies (50 Mexican SMEs). These companies were
selected from a group which had already implemented the
Mexican standard for IT VSEs (MoProSoft), to help them
increase the performance of their development teams. We
will also present Kernel’s initiative to achieve at least 100
PSP Certified Developers; further we will demonstrate our
conclusions: benefits of the program, performance results from
the engineers, and challenges when implementing PSP training
massively.

Which are the next steps? How can the SEI help in the
implementation of TSP Projects in SMEs? What shall we do as
a SEI’s Partner?

1.1	�impo rtance on software
development and standards

Why is it important to verify and assure standards in the
software development process? Good practices in software
development and maintenance are the keystones on which the
organization involved in this IT Industry focus the achievement
of their business goals and strategies. It is important to certify
organizations that are capable of meeting quality and schedule
standards. Following these standards, clients are assured
that organizations are capable and properly comply with its
objectives in the development of software quality.

1.2	 Moprosoft Support
The Mexican government IT assessors, considered that none of
the international Process improvement models, such as CMMI
and ISO/IEC 12207/15504, were not suitable for SME’s. In
Mexico 83% of the IT Industry is very small, from 2 to 10
resources. In this environment, the Mexican government
decided to create MoProsoft, which is the Mexican model/
standard for software development process improvement.
MoProSoft is based on CMMI process areas levels 2 and 3
and inspired by the framework of ISO / IEC 15504 for its
evaluation. MoProSoft has adopted and included different
practices from PMI, CMMI and ISO 9001:2000 to provide a
model that fits Small and Medium IT Industry.

At this time we have 263 Clients (SME’s) who have
implemented MoProsoft model. Kernel is positioned as a
leader in its implementation, 65% of all certified companies
under a MoProSoft level have been implemented by
Kernel. Our clients are continuously improving and with
the support of the Mexican Government, PSP and TSP is
being introduced to accelerate process maturity and the
competiveness of SME’s in Mexico.

1.3	�st rategy for implementing and
maintaining tsp/psp

This year we offered our clients PSP and TSP together with
MoProsoft. Some companies, during their PSP training,
implemented PSP practices in their organizations and this
motivated them to accelerate their improvement process.

Kernel’s software factory tested a pilot, implementing TSP to
accelerate process maturity and achieve MoProsoft Level 2
with minimum effort. The project was successful since TSP
integrated perfectly with two of MoProsoft Roles (DMS-
Development and Maintenance Management and APE-
Project Management).

Support from SEI was great, we managed a Second
Amendment during this period which facilitated a discount
on the seats for each students enrolled in these PSP Courses.

SEI supported us with the development of two internal
testing centers and two proctors located at Mexico City
and at Monterrey, they provided us with discounts on the
purchase of two bundles of 100 exams.

1.4	� 109 mexican engineers psp
Certified

50 SME’s participated in this project; eight companies
from Queretaro, thirty one from Mexico City, and eleven
companies from Monterrey. Each of them sent around five
engineers to PSP training. Overall 250 Engineers were
trained from November 2009 through March 2010.

The course was structured depending on the location.
In Mexico City we created 5 groups each of around 30
Students. The five groups took the same lecture each week
in parallel. In took 2 months to teach PSP Week 1 and Week
2. In Monterrey and in Queretaro the courses were taught
continuously day by day.

Our team consisted on one onsite Instructor accompanied
by an Instructor assistant and three remote Instructors who
graded the students’ assignments.

Before the PSP Examinations, we reviewed the PSP Body of
Knowledge; 16 hours were dedicated to review all concepts.

Introducing PSP/TSP Massively in Mexico

7

Int

r
o

d
ucin

g
 P

S
P

/T
S

P
 M

assi

v

ely

 in
 M

é
x

ico

Sixty-four percent of the Students who took the exam
successfully achieved the certification. Figure 1 shows
the performance of those engineers who completed all
assignments throughout the course.

Currently from all PSP Certified Engineers in the world,
Kernel has contributed with the 20%.

1.4.1	 Lessons learned
During the course the following were some struggles we had to
confront to meet our objectives in achieving 109 certifications.

•	 Balance between high priority job activities and PSP
Assignments. VSEs engineers hardly submit assignments on
time; during lab sessions, on-site instructors pre-approved
students’ assignments.

•	 20% of the Students dropped from the course. Such
probability was given when the course was scheduled in a
long format course (one course day at a week).

•	 English language was a factor that in some cases was an
obstacle for the certification. During the PSP BOK review
sesión, we related PSP spanish terms to english languaje.
An spanish version of the exam would help achieve more
certifications.

•	 Limited availability of Testing Centers for students from
different regions. Kernel developed two authorized SEI-
Kryterion Testing Sites for students at Mexico City and
Monterrey. An opportunity would be to implement web-
proctored exams.

1.5	ne xt steps
Kernel Technologies is working along with the government to
raise grants for future projects. One of Kernel’s strategies is to
implement TSP to accelerate organizational maturity reaching
CMMi. We will focus on our clients who have adopted
MoProSoft and seek continuous improvement and growth.

With our current customers the next steps is to start a TSP
Pilot Project to achieve a higher maturity level in MoProSoft
or to implement CMMi in their organizations. Currently we
have several companies identified that are convinced that TSP
is the way to improve software quality and schedule prediction.
They plan to launch a TSP pilot project.

We are working to Implement PSP/TSP across Latin America
with CMMi organizations. We are partnering with local
organizations to provide TSP Product Internationally, currently
we are talking to organizations in Colombia, Chile, Argentina,
Perú and Ecuador.

We are seeking a Strategic Partnership with the SEI to address
the possibility to lower TSP implementation costs to enable
implementing TSP massively in small enterprises.

1.6	Refe rences/Bibliography
[2004] (Reporte PROSOFT 2004, Secretaría de Economía)

[2005] (Modelo de Procesos para la Industria de Software
versión 1.3, Agosto 2005, Hanna Oktaba)

[2010] (PSP Developers Listings, July 2010, SEI)

 SOFTWARE ENGINEERING INSTITUTE | 3

Figure 1: Performance of 54 Mexican Engineers who completed all PSP Course Assignments

Currently from all PSP Certified Engineers in the World, Kernel has contributed with the 20%.

1.4.1 Lessons learned

During the course the following were some struggles we had to confront to meet our objectives in
achieving 109 certifications.

• Balance between high priority job activities and PSP Assignments. VSEs engineers
hardly submit assignments on time; during lab sessions, on-site instructors pre-approved
students’ assignments.

• 20% of the Students dropped from the course. Such probability was given when the
course was scheduled in a long format course (one course day at a week).

• English language was a factor that in some cases was an obstacle for the certification.
During the PSP BOK review sesión, we related PSP spanish terms to english languaje.
An spanish version of the exam would help achieve more certifications.

• Limited availability of Testing Centers for students from different regions. Kernel devel-
oped two authorized SEI-Kryterion Testing Sites for students at Mexico City and Monter-
rey. An opportunity would be to implement web-proctored exams.

Figure 1:	 Performance of
54 Mexican Engineers who
completed all PSP Course
Assignments

8

Int

r
o

d
ucin

g
 P

S
P

/T
S

P
 M

assi

v

ely

 in
 M

é
x

ico

Biography
Héctor Joel González Santos
PSP Instructor
Kernel Technologies Group

Héctor González is a member of the process development staff
at Kernel Technologies. He was born in Monterrey Mexico.
He has a BS in software development engineering. He studied
mobile programming and criptology at University of Kuopio
in Finland and currently he studies a MS in Information
Technolgoies at Carnegie Mellon and ITESM in a dual degree
program. He has over 8 years’ experience programming
software application implementing languages such as Java and
.net in the IT Industry. He has developed as an analyst and has
developed 50KLOCs BPM applications with Savvion Process
Modeler and JBPM.

He is a certified PSP developer, PSP Instructor and Candidate
TSP Coach.

Prior to joining Kernel as a PSP Instructor and TSP Coach,
Héctor travelled to India along with the Mexican government
in a Faculty Enablement Program held at Infosys in Mysore
India. He studied India’s software development culture and
methodologies and implemented a similar framework in
Kernel’s Software Factory.

Héctor has also implemented MoProSoft in several
organizations. At CEIS Avance, when developing Kernel’s
Software Factory, he implemented TSP disciplines, MoProSoft
models and Agile methods to develop the software factory
development process. He accelerated the process of
certification for MoProsoft Level 2 through the implementation
of TSP.

As a PSP Instructor he has trained around 300 students.
Recently in a PSP Initiative held at Mexico City, Queretaro and
Monterrey, he trained 250 engineers in PSP and TSP practices.

Actually, Héctor is working on a strategy to implement PSP/
TSP massively in Latin America.

9

W
ill

T

S
P

 S
hape

 the

 F
utu

r
e

 of

S
oftwa

r

e
 De

v

elopment

 in

 S
outh

 A

fr
ica

?

Prof Barry Dwolatzky, JCSE, Wits University, South Africa
Lisa Lyhne, Dariel Solutions, South Africa
Tamasin Bossert, Nedbank, South Africa
Alok Goswami, Nedbank, South Africa

1.1	�o verview of the SA ICT and
software development sector

Since the dawning of the Information Age in the 1950’s South
Africans have had a deep and active fascination with digital
technology. A measure of the level of interest in computers
in those early days is the fact that the “Computer Society of
South Africa” (CSSA) was established in 1957 to serve the
interests of “computer professionals.” This makes the CSSA
only a few months younger than the world’s oldest organisation
representing IT professionals, namely the British Computer
Society.

In the 1950’s and 60’s South Africans notched up several
“world firsts,” finding ways to use computers to automate
processes in mining, manufacturing, financial services and
government. As was the case in other parts of the world, most
of this early software was developed in-house to meet specific
requirements.

In the 1970’s and 80’s enforced racial segregation in South
Africa, under the government of the day’s Apartheid policies,
met with a coordinated response from the international
community. This resulted in South Africa being isolated
economically and politically. Trade sanctions were imposed and
multinational corporations disinvested from the South African
economy. Many of the formal commercial links between
South African and international companies in the Information
Technology (IT) sector were cut. Companies like Unisys, IBM,
DEC and others withdrew from the South African market,
while newer companies (such as Apple) decided not to enter.

The South African IT sector, however, responded
enthusiastically to international sanctions! Software developers
were given the green light to engage in the activity that
software developers do best – they re-invented the wheel!
“Reverse engineering” as a means of “sanctions busting”
became the mode of operation for the South African software
industry. Sanctions also meant that local developers weren’t
required to compete with their international peers in securing
contracts from South African companies. Nor were they
required to measure their quality and performance against
international best practice standards.

In April 1994, after the negotiated end to Apartheid, Nelson
Mandela became the first democratically elected President of
the “new” South Africa. International sanctions ended and,
after nearly 20 years of working in isolation, the South African
ICT (“Information and Communication Technology)” sector

Will TSP Shape the Future of Software Development in South Africa?

suddenly found itself needing to integrate into the highly
competitive international industry.

1.2	� Challenges faced by the South
African ICT sector

The ICT sector in South Africa has a number of strengths
when compared to its international competitors. It is relatively
large – valued at US$ 28 billion in 2009. It is diverse –
covering a broad range of sectors and technologies. It is
innovative – for example: South African IT entrepreneur Mark
Shuttleworth developed the certificate-based internet security
protocols that support modern e-commerce1 transactions, and
South African company, Vodacom, was the first in the world to
pioneer the pre-payment concept in the cell phone industry.

The South African ICT sector also has a number of significant
weaknesses. These include a lack of process maturity resulting
in an inability to deliver software projects predictably and
with high levels of quality. In an attempt to deal with these
weaknesses, the “Joburg Centre for Software Engineering”
(JCSE) located at the University of the Witwatersrand (or
“Wits”) in Johannesburg, embarked on a programme in
2006 aimed at promoting process improvement within the
South African ICT sector. With support from the South
African Government, through its Department of Trade and
Industry (the dti), the JCSE became a transition partner of
the Software Engineering Institute (SEI) at Carnegie Mellon
University, USA. The SEI is a world leader in the field of
process improvement, having developed frameworks like
the Capability Maturity Model Integration (CMMI), and
methodologies like the Team Software Process (TSP) and
Personal Software Process (PSP). A programme was launched
to “Bring CMMI to South Africa.”

While the JCSE met with some success in persuading South
African companies to consider CMMI adoption, a significant
concern amongst these companies was the length of time and
effort required in moving from one maturity level to the next.
There clearly was a need to fast-track process improvement so
that the benefits of higher maturity could be realised as soon
as possible. With this in mind the JCSE began to investigate
the adoption of TSP and PSP in South Africa.

In 2008 the JCSE organised a study tour to Mexico and
the USA. The delegation, lead by the JCSE’s Director, was
accompanied by the SEI, and consisted of representatives from
two companies, two universities and government. The aim was
to observe at first hand organisations that had adopted TSP and
to understand the lessons – positive and negative – that had
been learnt.

1	 Shuttleworth’s company Thawte developed technology that was
acquired by Verisign in 1999.

10

W
ill

T

S
P

 S
hape

 the

 F
utu

r
e

 of

S
oftwa

r

e
 De

v

elopment

 in

 S
outh

 A

fr
ica

?

1.3	�Re view of benefits expected
from TSP adoption

From information gleaned on the Mexico/USA study tour in
2008, together with published data and information provided
by the SEI, a very compelling argument emerged for TSP
adoption. The case supporting TSP adoption is summarized
in the following:

•	 Software development projects are completed within 10%
or less of the scheduled date. The industry benchmark is in
the range 27% to 112%

•	 The final cost of development projects is within 5% or less
of the original budget. The industry benchmark is in the
range 17% to 85%.

•	 Released code is likely to have 0 to 0.2 defects per 1,000
lines of source code. The industry benchmark is 1 to 7
defects per 1,000 lines of source code.

•	 System testing requires between 2% and 7% of the overall
effort (time or cost) associated with a development
project. The industry benchmark is typically 40%.

•	 Companies using TSP are able to accelerate CMMI
adoption dramatically. Some organisations have
progressed from maturity level 1 to 4 in less than 2 years.
The normal time taken is 5 years or more.

There is a further advantage of TSP adoption that is less
easy to quantify precisely: members of TSP teams and their
managers really like using it! In meeting with TSP/PSP
practitioners in both Mexico and the USA the delegation
heard many positive comments about the way in which
TSP teams worked. Many said that their work-life balance
had improved significantly and that TSP helped them feel
empowered. One senior manager said that adopting TSP had
been the best decision he had ever made.

While the delegation was convinced that TSP adoption had
certainly resulted in significant benefits at those companies
visited, the question that remained was whether it would have
similar positive results in South Africa. The JCSE decided to
initiate a pilot TSP adoption programme in South Africa.

The pilot programme started in July 2009, and this paper is
the first feedback on the results that have been achieved and
the lessons that have been learnt.

1.4	� The pilot TSP adoption
programme in South Africa

In planning the pilot TSP adoption programme in South
Africa the JCSE identified three primary objectives. These
were:

a)	to gain experience in using TSP in software
development projects that are sufficiently
representative of the types of projects undertaken by
South African development teams;

b)	to assess whether the benefits derived from TSP

adoption by organisations elsewhere in the world are
likely to be experienced in South Africa;

c)	to use the pilot programme to train the first group of PSP
instructors and TSP coaches in South Africa.

The following were the role-players in the pilot TSP
programme:

•	 The Software Engineering Institute (SEI) at Carnegie
Mellon University: The SEI is the developer of the PSP
and TSP methodologies. The SEI provided TSP and
PSP training and coaching to the pilot companies. It
also provided training to candidate South African PSP
instructors and TSP coaches. The other key role for the SEI
was to quality assure the pilot, i.e. to ensure that the PSP
and TSP practices were applied correctly and completely.

•	 The Joburg Centre for Software Engineering (JCSE) at
Wits University: The JCSE coordinated the TSP pilot. It
appointed candidate coaches and instructors to be trained
as part of the pilot. The objective was for the JCSE to have,
by the end of the pilot, the capacity to train and launch new
TSP teams at other companies. An additional role for the
JCSE was to evaluate the pilot programme and to draw
conclusions as to its success or otherwise.

•	 The Department of Trade and Industry (the dti): The
“Electrotechnical Unit” of the dti is the entity within the
South African government that is responsible for promoting
the success, both locally and internationally, of the ICT
sector. the dti secured funding to cover part of the costs
required in running the TSP pilot. A research report
evaluating the pilot will be written by the JCSE at the end
of the pilot and presented to the dti so that it can be used in
guiding government policies and programmes to support
the ICT sector.

•	 The Group Technology (GT) division of Nedbank: Nedbank
is one of South Africa’s four major banks. The GT division
is responsible for IT systems within the bank. It employs
over 2,000 IT professionals and runs hundreds of software
development and maintenance projects each year. Nedbank
sent a representative on the study tour to Mexico and
the USA. After receiving a report from the study tour
Nedbank’s CIO agreed to participate in the TSP pilot by
running two development projects using TSP. Nedbank
also nominated two candidate TSP coaches who would
use the pilot projects to gain experience and receive coach
training. Nedbank covered most of its own TSP training and
coaching costs.

•	 Dariel Solutions: Dariel is a medium-sized software
development company. It undertakes complex and
innovative projects for clients in a number of sectors.
Dariel agreed to run one development project as part of the
TSP pilot. Like Nedbank, Dariel covered most of its own
training and coaching costs. There were no provisions made
in the pilot to train an internal coach for Dariel.

11

W
ill

T

S
P

 S
hape

 the

 F
utu

r
e

 of

S
oftwa

r

e
 De

v

elopment

 in

 S
outh

 A

fr
ica

?

•	 The Central University of Technology (CUT): CUT is
located in Bloemfontein, South Africa. The School of
Information Technology graduates about 150 software
developers per year. Many of these seek employment after
graduating in the Johannesburg area. CUT joined the pilot
to explore ways of incorporating PSP training into its
curriculum. CUT’s aim in the pilot was to train two faculty
members as PSP instructors.

The TSP Pilot was launched towards the end of July 2009
once funding from the dti had been secured and Nedbank had
selected 2 development projects. The SEI sent two members of
its TSP team to South Africa (Bill Nichols and Jim McHale)
to conduct training and launch both Nedbank projects. The
following training courses were presented:

•	 TSP Executive overview (1-day)

•	 Leading Development Teams (3-days), and

•	 PSP Fundamentals (5-days)

After providing training and launching the two Nedbank
teams in South Africa, the SEI provided remote coaching (via
telephone). SEI coaches also visited periodically to conduct
checkpoints, postmortems and relaunches. They also provided
mentorship to candidate coaches.

In October 2009 the SEI presented the PSP Fundamentals
course for the Dariel team and launched their TSP project. The
“PSP Advanced” course was also presented by the SEI for the
candidate coaches and instructors in December 2009, followed
by TSP coach training. PSP Instructor training was presented
in January 2010 in Johannesburg by the SEI. This was
followed by PSP Fundamentals training for a third Nedbank
team. This team’s project was launched by one of the candidate
Nedbank coaches, observed by an SEI coach.

Both of the initial Nedbank projects had their final post-
mortem in May 2010. Candidate PSP instructors wrote their
PSP Certification exams in May and June 2010 as their final
step in completing their training.

1.5	Results of the TSP Pilot
As will be seen from the description given above, there was
a great deal of TSP-related activity in South Africa from July
2009 to May 2010. Members of the SEI’s TSP team visited
frequently to provide training, coaching and mentorship.
Four teams gained experience working on TSP projects
and candidate instructors and coaches notched up the pre-
requisites for certification.

In this section we outline at a high level the outcomes of the
pilot TSP adoption programme from the perspective of each of
the key roleplayers.

a)	 JCSE at Wits University

In its role as coordinator of the pilot the JCSE’s first objective
was to ensure that the programme of activities ran as smoothly
as possible. The JCSE also needed to position itself to be able

to continue driving TSP adoption in South Africa beyond the
pilot phase. The third objective of the JCSE was to carry out
a detailed assessment of the pilot and to report its findings to
Government (via the dti) and to the ICT sector in general.

The first of these objectives was certainly achieved. The pilot
ran smoothly and all required activities were completed as
planned.

In terms of the second objective, the pilot programme has
resulted in 5 candidate TSP coaches and 5 candidate PSP
instructors completing all pre-requisite training. By the end
of May 2010 there were still a few outstanding requirements
in terms of completion of certification exams and elements
of TSP coaching experience. These should, however, be
completed soon allowing all of these candidates to begin
training and coaching independently.

This paper represents part of the JCSE’s third objective,
namely to report results of the TSP pilot. Various other reports
and presentations have been, or soon will be, completed and
delivered.

The pilot has therefore been a great success for the JCSE.

b)	 Nedbank

Like any large organisation that has its own internal capacity
to run software development projects, Nedbank faces
many challenges. There is a need to ensure that projects are
completed on time and within budget, while ensuring that the
software produced is of the highest possible quality. Nedbank
management are also eager to foster motivated and cohesive
teams – Fred Swanepoel, Nedbank’s Chief Information Officer
(CIO), is particularly focused on achieving a positive work-life
balance for his IT staff.

With strong sponsorship from Fred Swanepoel, Nedbank
joined the TSP pilot as a way of evaluating how TSP may
support its ongoing efforts to change both the processes and
culture of the organisation.

Two projects were initially selected for TSP pilot
implementation. A third project was launched in February
2010. By June 2010, Nedbank management had reached the
decision to initiate a roll-out of TSP into Nedbank’s Group
Technology (GT) division. This decision was based on
management’s conclusion that the pilot was a success. Why
did Nedbank management consider the pilot to be successful?

There were a number of reasons:

•	 Availability and quality of data: For the first time ever, GT
projects were able to collect detailed and accurate data
at an individual developer level that, when “rolled up”
to a project level, helped in understanding the following:
time spent on specific tasks; defect injection and removal
rates from detailed design onwards; earned value; and
process efficiency. Data was also being collected to support
estimation of specific tasks and measuring the effectiveness
of code reviews. A Benford analysis of time data from

12

W
ill

T

S
P

 S
hape

 the

 F
utu

r
e

 of

S
oftwa

r

e
 De

v

elopment

 in

 S
outh

 A

fr
ica

?

the pilot teams showed a high level of data accuracy
(estimated to be better than 90%).

•	 Improved performance: The first two pilot teams
significantly exceeded the 10% targets for improved time
on project tasks and earned value performance by a factor
of 3 or more. Figure 1 shows the task hour and earned
value performance over time for one of the pilot projects.
This team began with a substantial variance from plan but
achieved the planned level through increased task hours
and consistent re-planning.

•	 Improved quality: One of the pilot projects recorded
a dramatic reduction in defects detected in system
testing and after deployment. The first release had a
small number of defects found in production and none
in system test. One of these production defects was
traced to a configuration problem. In later releases, no
further production defects were found.. Indications are
that similar quality improvements would be achieved in
Nedbank’s other pilot projects, although detailed system
testing has not yet been done. Measured defect densities in
one of the pilot projects were as follows: code review - 5
defects /KLOC; unit test – 5 defects /KLOC; inspection -
7 Defects /KLOC. Sixty percent of modules were free of
defects in unit test. This is surprisingly high considering
the size of the modules. Figure 2 shows the scatter plot of
size versus defect counts for modules developed in this
project. The graph shows a 2.5 defects/KLOC trend line.

•	 Estimation and planning: There was a significant
improvement in the ability of the pilot teams to estimate
effort, to plan and to track progress. There was also a
reduction in the amount of re-work done.

•	 Team dynamics and positive response of team members:
As would be expected, when the pilot started in July 2009,
many staff at Nedbank, both those directly involved and
others, expressed misgivings about TSP and its adoption
at Nedbank. By June 2010 these doubts had disappeared.
Many participants in the pilot were interviewed by
researchers from the JCSE, and there was a unanimous
view from team members that they had gained another
dimension in which to think and plan the work of a
project, and to perform better. Everyone had found the
experience positive and was keen to continue using TSP
and learning more about it. TSP’s emphasis on developing
self-directed teams also gave developers an opportunity to
grow professionally. One of the project teams expressed
disappointment at the prospect of the team members being
redeployed to other (non-TSP) projects once the TSP pilot
was completed. We therefore conclude that the process
succeeded in building cohesive jelled teams.

TSP adoption in Nedbank was challenged by implementation
and organizational issues, nonetheless, the teams managed to
demonstrate success in both of the completed projects. The
project teams developed plans, established planning baseline
data, and improved development processes. Repeated

use of TSP over several iterations on one of the projects
demonstrated the ability of the team to improve process
adherence, improve their planning, and improve the delivered
quality. Towards the end of the TSP pilot in June 2010, the
pull to implement TSP in the wider Group Technology (GT)
Division has been significant. The sponsor, management, and
other project teams are extremely eager to implement TSP
throughout Nedbank GT. An aggressive rollout plan has been
approved.

c)	 Dariel Solutions

The pilot project at Dariel Solutions started late in 2009 and
has been finding it challenging to apply TSP correctly and
collect useful data. The following have been some of the
challenges:

•	 The project selected by Dariel is a new development using
a technology stack and architecture that is relative new
to the developers and the company. This has meant that
software development has been done in combination with
a great deal of research and investigation, making data
collection and strict adherence to process very difficult;

•	 As a relatively small and busy company it has been
difficult to retain all of the team members on the project
since some have been needed to join other teams. This
has led to a situation where only two of the original team
members are still part of the 6-person team;

•	 Coaching has been difficult. In the case of Nedbank TSP
coaching was done by internal candidate coaches with an
SEI coach regularly available via a teleconference link.
Dariel also had to rely on a remote SEI coach, but had no
internal candidate coach. The JCSE’s candidate coach was
available but not as frequently and spontaneously as Dariel
required.

•	 The lack of immediacy in coaching has meant that it has
been hard for this new team to “own the process,” and feel
entitled to adapt it as required. The team initially tried to
implement the PSP process as it was taught in the training
course. Some aspects of this process were inappropriate
and the team lacked the confidence and experience to
adapt it. This created significant difficulties.

All of the above factors have made understanding TSP,
following process and collecting data extremely difficult.
Various corrective actions have been recently put in place.
The team have defined a less ambitious implementation of
TSP and PSP, which will allow for learning and constant
improvement. As a target this is far more achievable and is
already showing real value to the organisation.

In spite of the difficulties, developers and management at
Dariel remain committed to the TSP pilot, and are keen to
begin training a second team.

13

W
ill

T

S
P

 S
hape

 the

 F
utu

r
e

 of

S
oftwa

r

e
 De

v

elopment

 in

 S
outh

 A

fr
ica

?

1.6	 Conclusions
This report on the South African TSP adoption pilot has
presented largely a qualitative account of the objectives and
some of the outcomes. In many ways the pilot has succeeded
in growing experience, training local TSP expertise and
understanding more clearly some of the “non-TSP”
challenges associated with TSP adoption.

Earned Value Trend
y = -0.0054x + 217.2

R2 = 0.8066

-1
-0.8
-0.6
-0.4
-0.2
0

0.2
0.4
0.6
0.8
1

20
09
/0
8/
31

20
09
/0
9/
07

20
09
/0
9/
14

20
09
/0
9/
21

20
09
/0
9/
28

20
09
/1
0/
05

20
09
/1
0/
12

20
09
/1
0/
19

20
09
/1
0/
26

20
09
/1
1/
02

20
09
/1
1/
09

20
09
/1
1/
16

20
09
/1
1/
23

20
09
/1
1/
30

Weeks

A
he

ad
 o

f S
ch

ed
ul

e

 -

B
eh

in
d

Sc
he

du
le

Earned Value Trend

Linear (Earned Value
Trend)

Figure 1: Earned Value Trend for one of Nedbank’s Pilot Projects

Figure 2: Defect Counts per module versus size for one of Nedbank’s Pilot Projects

As the adoption of TSP grows in South Africa the JCSE will
be collecting and analysing quantitative data that will lead to
a more objective data-driven assessment of the ongoing TSP
pilot.

All role-players are, however, unanimous in believing that
TSP and PSP are destined to shape the future of software
development in South Africa.

14

W
ill

T

S
P

 S
hape

 the

 F
utu

r
e

 of

S
oftwa

r

e
 De

v

elopment

 in

 S
outh

 A

fr
ica

?

Biography
Barry Dwolatzky
Barry is Professor of Software Engineering at the University
of the Witwatersrand, or Wits, in Johannesburg, South
Africa. He is also Director and CEO of the Joburg Centre for
Software Engineering (JCSE) at Wits.

Barry graduated as an Electrical Engineer from Wits in 1975.
He stayed on to complete his PhD in 1979. Between 1980
and 1989 he lived in the United Kingdom working as a post-
doctoral research associate at the University of Manchester
Institute of Science and Technology (UMIST) and Imperial
College, London. He joined the company GEC-Marconi as a
researcher in 1985 and left in 1989 to return to South Africa.
Since returning to Wits he has been on the staff of the School
of Electrical and Information Engineering.

Barry has published extensively in academic journals, has
presented at conferences and has successfully supervised 5
PhD’s and over 30 MSc research students. His major current
interest is in promoting the growth and competitiveness
of the South African and African software development
sector. He believes that this can be achieved by promoting
the adoption of sound software engineering principles and
practices.

He is chairman of the South African Chapter of the IEEE-
CS. He is also a certified CMMI and PSP Instructor.

Tamasin Bossert
Tamasin is a Business Improvement Executive in the
Nedbank banking group, accountable for a spectrum
of initiatives encompassing Software and Systems
engineering process domains. Tamasin has led and
managed a multitude of key strategic initiatives for the
bank. Tamasin’s experience ranges across various domains
from Process Analysis, Strategic Analysis, Governance,
Software and Systems Lifecycle Management, Process
Re-engineering, Project & Portfolio Management, and
Change Management through Senior Executive Management
equivalent roles. Tamasin has helped various senior
management teams to develop and implement cross-
functional process improvement opportunities.

Tamasin holds a specialisation in Commerce and her
knowledge expertise cuts across frameworks like the
Capability Maturity Model Integrated (CMMI), IDEAL, ISO
9001, PMBOK, Business Process Maturity Model (BPMM),
Six Sigma, ITIL, PMBOK etc amongst others.

Alok Goswami
Alok Goswami is a Process Portfolio Manager at Nedbank,
South Africa. Alok’s forte is in Process Excellence and
Initiatives based on international best practice frameworks.
A Business Management graduate (MBA), Alok holds a
spectrum of accredited and certified qualifications in various
frameworks and methodologies some of which include being
an SEI authorized SCAMPI B&C Team Leader (CMMI),
Instructor for CMMI (Dev), EXIN certified ITIL Service
Manager, Juran certified Six Sigma Green Belt, Internal
Auditor for ISO 9001-2000, PMI certified PMP etc amongst
others.

Alok has been a part of the core teams responsible for
implementing TSP, CMMI, Six Sigma and PCMM
frameworks. He has also been a trainer for various
programmes in Quality Management Frameworks. As
a certified Coach, Alok has facilitated development of
effective leadership skills in the candidates being groomed
for leadership positions at Nedbank. Alok has also published
and presented papers on Process Engineering at various
conferences.

Lisa Lyhne
Lisa Lyhne is the Operations Executive Director at Dariel
Solutions, which is a medium-sized software development
company focused on bespoke developments for corporate
customers in Java and .Net. She has a passion for process
improvement and software development methodologies.
She has introduced CMMi and subsequently TSP to the
company. She has over 20 years experience in the software
development industry, working in South Africa, the UK
and in Denmark. She has worked in many roles, including
technical and management roles, for a variety of clients and
in a variety of industries, including banking and financial,
resources, medical and several others.

Lisa holds a bachelor’s degree in Commerce from the
University of Cape Town.

15

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

Robert W. Stoddard, Software Engineering Institute
Shigeru Sasao, Carnegie Mellon University
Dave Webb, U.S. Air Force
Jim VanBuren, U.S. Air Force

1.1	 Introduction
This paper will illuminate the intersection of the Team
Software Process methodology and the CMMI High Maturity
concepts of process performance baselines and models.
Experience with both CMMI High Maturity organizations
and TSP projects have enabled this discussion to progress
to the point where a body of knowledge related to the
intersection is now possible. An earlier publication by the
Software Engineering Institute (SEI) Software Engineering
Measurement and Analysis (SEMA) team [Tamura 09]
began this discussion with high level concepts of process
performance models in a TSP environment. This paper and
associated presentation ventures much deeper into the topic
by discussing the detailed leading indicators found in the TSP
body of knowledge related to leading TSP teams [Humphrey
06a]. This paper includes a very brief conceptual overview
of both: 1) the TSP measures and models, and 2) the concept
of CMMI Process Performance models, to set the context
disregarding the reader’s historical orientation. As such, it is
hoped this paper and presentation will serve to motivate a
number of pilots of process performance modeling within the
TSP domain, as well as, pilots within CMMI High Maturity
organizations not currently implementing TSP. Apart from
motivating these varied pilots, the authors also hope to record
the adoption and deployment experience of the pilots as a
means to test the hypothesis that adoption of TSP does in
fact accelerate accomplishment of CMMI High Maturity and
does in fact produce superior results to CMMI High Maturity
implementations without TSP.

The crux of this paper will be the discussion of the possible
outcomes or performance measures that would be reasonably
valuable in planning, tracking, and controlling software
projects and software teams. This discussion will also include
the space of interim outcomes, in addition to final project
outcomes, available in TSP implementations. With the
outcomes fully defined, the subsequent discussion will be on
the potential “x” factors that may be logically inferred within
the TSP implementation and which may serve as significant
factors in predicting the different outcomes discussed. At this
point, the reader will realize that much of the published work
on leading and coaching TSP teams inherently identifies
a rich set of factors which can be operationally defined as
measures to participate in process performance modeling,
disregarding whether the modeling is statistical, probabilistic,

or simulation in nature. A fuller treatment of this subject with
detailed models, example data sets, scenario usage of the
process performance models, etc… will follow in a future SEI
Technical Report.

1.2	� TSP Measures, Quality Profiles,
and Prediction Modeling

The Team Software Process (TSP) is a software engineering
process designed to enable engineering teams to build
software-intensive products more predictably and effectively
[Humphrey 10]. It provides a framework for teams to plan and
track their work, and to tailor their processes for continuous
improvement. The TSP provides a rich set of forms and
scripts, generally in a form of a software tool, to allow teams
to gather data about their project. A large portion of the data is
populated during the project planning session called the TSP
launch, and the remainder of the data is collected throughout
the project.

The TSP launch is conducted during the first week of a project.
The TSP launch is a series of meetings where team members
elicit the management’s goals for the project, generate a plan
reflecting those goals, and receives agreement and go-ahead
from the management. The following is a summary of the data
collected during the TSP launch:

1.	 Basic project information such as project name, team
name and start date

2.	 Team members, contact information, and their roles
3.	 Management and team goals, along with risks

associated with those goals, classified by their impact
and likelihood

4.	 Output products (e.g. software artifacts,
documentation), along with estimated sizes and
estimated number of defects injected

5.	 Estimated schedule information and available
resources (hours per week)

6.	 A task list with estimated hours per task along with
measures required for Earned Value Analysis (EVA)

7.	 Quality goals and possible defect types

After agreement is made over the plan, the team members
begin to execute the plan. During this period, each team
member collects data about their work. The base measures
collected in TSP can be largely divided into two areas:
planning and tracking, and quality. For planning and tracking,
each team member records in a time log the following
information for each task that is being executed:

1.	 Start and stop time
2.	 Interrupt time
3.	 Delta time
4.	 Task completion date

Illuminating the Intersection of TSP and CMMI High Maturity Process
Performance Models

16

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

Each task in TSP is associated with an output product and a
phase. Therefore, derived measures such as time in phase can
be calculated by simply collecting the above data. Also, the
data collected in the time log drives the Earned Value Analysis
used to track the project’s schedule performance.

In terms of quality, the team members record the following
information into the defect log:

1.	 Date recorded
2.	 Defect ID
3.	 Output product
4.	 Type of defect
5.	 Injection and removal phase
6.	 Fix time
7.	 Fix reference, in case a defect is introduced while

fixing another defect
8.	 Description

In addition, the actual sizes of the output products are recorded
as they are completed. Using the data from the time log, defect
log and size, various derived measures can be calculated for the
project. Some of the important measures include:

1.	 Process yield (the efficiency with which defects are
removed from products)

2.	 Defect injection and removal per phase
3.	 Defect density (Defects per KLOC, defects per page)
4.	 Time in phase

Teams review their data during weekly team meetings and
postmortem sessions to analyze how their process can be
improved. For example, if many of the defects are being found
in system test and the time in phase and/or yield is low for
reviews, team members can increase the time spent in reviews
and/or the review yield to try to catch defects at earlier stages.
Thus, the data used in TSP are most often used as lagging
indicators, compared to leading indicators for predictive
modeling.

One example of predictive modeling in TSP is the PROxy-Based
Estimating (PROBE) method. PROBE uses a linear regression
model with size as the independent variable to estimate the effort
of developing an output product [Humphrey 95].

1.3	� CMMI Process Performance
Baselines and Models

Discussion of the “healthy ingredients” of CMMI process
performance models began in 2007 with SEI presentations
at SEPG conferences and was amplified in the SEI course
“Understanding CMMI High Maturity Practices (UCHMP).”
The healthy ingredients were first elaborated dynamically,
during the conduct of SEI measurement courses in 2006 and
2007, as a means of communicating what process performance
models were in concrete, practical terms. The ingredients
are derived from a holistic understanding of the intent of the
CMMI models. The precise nature of several of the ingredients
also comes from training, experience, and practice within
the Six Sigma arena. The healthy ingredients of process
performance models are briefly summarized below for the
benefit of the reader, as published in an earlier technical report
by the SEI Software Engineering Measurement and Analysis
Team [Stoddard, Goldenson 09].

1.3.1	 The model is statistical, probabilistic, or
simulation-based.

This particular ingredient emphasizes the logical consistency
of two CMMI process areas: Quantitative Project Management
(QPM) and Organizational Process Performance (OPP). QPM
stresses the need for understanding statistical variation of
process performance factors. Additionally, QPM reinforces
the need to separate assignable, special cause variation from
inherent common cause variation to help understand what
actions to take with respect to each type of variation. This
healthy ingredient emphasizes the need for process performance
models to model the uncertainty of the predictive factors and
their resulting impact on the uncertainty of the behavior of the
outcome factor. For this reason, deterministic models that merely
perform mathematical calculations on point estimates fall short
of the superior information achievable from models that are
statistical, probabilistic, or simulation in nature.

1.3.2	 The model predicts interim and/or final
project outcomes.

This ingredient derives more from practical experience and
management’s need for real-time cycles of learning within a
given project or program. To maximize real-time cycles of
learning within a given project or program, managers need
to predict interim performance outcomes in addition to the
traditional end-of-project performance outcomes.

1.3.3	 The model uses controllable predictive
factors that are directly tied to
subprocesses or work activities.

This healthy ingredient focuses on the need for process
performance models to be actionable. From that standpoint,
if a model does not have at least one controllable predictive
factor, it does not directly promote insight of action to influence
the undesirable predicted outcome. This may be a fine nuance,
but project forecasting models that model only uncontrollable
factors make predictions that offer little help or insight into
the actions to be taken to drive a more desirable predicted
outcome. Additionally, this ingredient highlights the need for the
controllable factors to be detailed enough to show a clear link
to a specific subprocess or work activity. This clear link enables
proactive management responses.

1.3.4	 The model quantitatively characterizes
and models the variation of the predictive
factors and describes the predicted
range, uncertainty, or variation of the
outcome performance measures.

This ingredient is a chief overlap of CMMI high maturity and
Six Sigma concepts. Recognizing that variation (i.e., risk) may
very well be unbalanced and significant in the real world, the
models account for this by modeling the uncertainty of the
predictive factors. Numerous examples exist in industry in
which analysis using only the mean or average estimate rather
than the distributional information caused serious problems in
predictions of schedule, performance, and other modeled factors.

17

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

1.3.5	 The model enables “what-if” analysis
for project planning, dynamic re-
planning, and problem resolution
during project execution.

This ingredient builds on language in the CMMI
Organizational Process Performance (OPP), Quantitative
Project Management (QPM), Organizational Innovation and
Deployment (OID), and Causal Analysis and Resolution
(CAR) process areas related to the use of process
performance models to support “what-if ” and sensitivity
analysis. The idea is that decision makers will be able to use
process performance models to analyze alternative courses
of action and alternative improvement ideas. Again, this
highlights a capability intended to be exercised within a
given project or program execution.

1.3.6	 The model connects upstream activity
with downstream activity.

This particular ingredient emphasizes the intent of process
performance models to enable decision-makers to observe
a prediction of the consequences of decisions made
earlier in the life cycle or process. Indeed, this ingredient
highlights the practical use of process performance models
for transitions from phase to phase, hand-offs from one
group to another, and so on. This particular ingredient
enables the establishment and enforcement of interface
agreements between internal groups and/or external groups
by providing models that predict the readiness and maturity
of an artifact or work product to proceed to the next step.
For example, many organizations employ such models to
predict defects entering system test while the code is still
with the development team. Others use models to predict
readiness of design or code to enter an inspection. Still other
organizations use models in this fashion to determine if
product and software re-quirements are sufficiently mature
and stable to begin intense development.

1.3.7	 The model enables projects to achieve
mid-course corrections to ensure
project success.

This ingredient highlights a very significant aspect that may
be read into the usage of process performance models in
CMMI. Specifically, within the QPM process area, process
performance models may be used to anticipate undesirable
performance with enough lead time to proactively influence
the situation toward a successful outcome. Industry
experience with this aspect is quite strong, especially in the
use of critical parameter management in the Design-for-Six
Sigma (DFSS) community. The notion is that models of
critical parameters of the product design foster early insight
into issues in products and processes enabling management
to take corrective and preventive action. For this reason,
organizations employ a collection of process performance
models to cover their needs throughout the project life cycle.

1.4	� Potential Interim and Final
Performance Outcome Measures
to be Predicted

Identifying the performance outcome measures to be predicted
remains a critical first step, and often the most challenging
step, in process performance modeling. Projects need to begin
with a complete understanding of the organizational goals and
objectives, in addition to the goals and objectives at the project
level which are often heavily influenced by specific project
stakeholder and customer needs. Essentially, the performance
outcome measures must be aligned and traceable to higher
level goals and objectives to ensure that the subsequent
process performance models focus on predicting high-value
performance outcomes. Generally, performance outcomes
related to cost, schedule, and quality rank high in the list of
outcomes to predict. Additionally, other outcome measures
may be important to predict including: productivity, customer
satisfaction, revenue, market share, customer loyalty, brand
image, etc. Figure 1 depicts many industry-proven outcome
measures at the project and/or organizational level.

31
Kevin Schaaff, Robert Stoddard
Rusty Young, Dave Zubrow
© 2008 Carnegie Mellon University

2009 SEPG NA

Examples of Outcomes

Progress*

Rework

Figure 1: Examples of Outcome Measures

Many of these outcome measures may also be defined in more
granular terms and for use during the development lifecycle.
For example, quality may be further defined to be a measure
of the number of defects by type entering system test. In this
example, such models provide the system test group with
invaluable information prior to the commencement of system
test, thereby informing the nature and sequence of testing,
as well as, an expectation of the needed duration and effort
of system testing. System test groups may also use such a
prediction model as a screen to determine if the software
is in sufficient condition to enter system test. As such, the
prediction model becomes a handshake contract between the
software developers and system testers, so that software is not
prematurely cast into the system test cycle.

As such, outcome measures for TSP software teams could
include any predicted information items that would be useful
to the TSP team, the TSP leader or the TSP coach during the
conduct of the software development lifecycle in support
of project monitoring, controlling, analyzing, correcting,
preventing and reporting.

18

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

1.5	� Leading Indicators and other
Causal Factors Predicting
Outcomes

The crux of this paper rests with the rich ideas of leading
indicators that arise from reading Watts Humphrey’s books
on leading and coaching TSP teams. [Humphrey 06a]
[Humphrey 06b] Conference presentations and training by
the SEI measurement team have outlined sets of potential
leading indicator measures that have served well in process
performance models at both the project and organizational
level. These measures may be seen in the following 6 figures,
which are slide extractions from previous SEI CMMI High
Maturity presentations.

34
Kevin Schaaff, Robert Stoddard
Rusty Young, Dave Zubrow
© 2008 Carnegie Mellon University

2009 SEPG NA

Examples of Controllable People x factors

Traits

Communication Mechanisms

Interruptions

Nature of Leadership

Figure 2: Examples of Controllable People Factors

35
Kevin Schaaff, Robert Stoddard
Rusty Young, Dave Zubrow
© 2008 Carnegie Mellon University

2009 SEPG NA

Example of Controllable Environmental x
Factors

Nature of work facilities

Accomodations for specific needs

Degree of Security Classification

Figure 3: Examples of Controllable Environmental Factors

36
Kevin Schaaff, Robert Stoddard
Rusty Young, Dave Zubrow
© 2008 Carnegie Mellon University

2009 SEPG NA

Example of Controllable Technology x Factors
Mature tools

Availability of equipment, test stations

Newness of Technology

Availability of Technology

Programming Language Used

Technology Trends

Technology Roadmap

Figure 4: Examples of Controllable Technology Factors

37
Kevin Schaaff, Robert Stoddard
Rusty Young, Dave Zubrow
© 2008 Carnegie Mellon University

2009 SEPG NA

Example of Controllable Process x Factors

Efficiency of a work task
Compliance of a work task

Quality of a work task
Timeliness of a work task

Difficulty of a work task

Number of people involved with a work task

Degree of Job Aids, Templates, Instructions

Quality of artifacts
(Input to or Output from

a work task)
Timeliness of Artifacts

Complexity of Artifacts
Readability of Artifacts

Any of the criteria for
good reqts statements

Any of the criteria for
good designs

Code measures
(Static and Dynamic)

Peer Review Measures
Test Coverage
Measures

Resolution time of technical inquiries

Measures of bureaucracy

Task Interdependence

Resource contention between tasks

Choices of subprocesses

Modifications to how work
Tasks are performed

Figure 5: Examples of Controllable Process Factors

38
Kevin Schaaff, Robert Stoddard
Rusty Young, Dave Zubrow
© 2008 Carnegie Mellon University

2009 SEPG NA

Example of Controllable Customer, Supplier
and Other Stakeholder x Factors

“Maturity” assessment

Health of relationship

Degree of communication

Speed of feedback loops

Trust

Degree of partnership, collaboration

Degree of Documentation
of Expectations

Image and Perceptions

Complexity of relationship
such as simultaneously a

competitor and partner
and supplierStyle

Bias on Quality vs Schedule
Culture

Tradeoffs, Compromises, Optimization

Figure 6: Examples of Controllable Customer, Supplier
and Other Stakeholder Factors

19

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

However, in addition to the above potential leading indicators, the authors believe a rich set of untapped leading indicators
may be derived directly from the two books written by Watts Humphrey on leading and coaching TSP teams [Humphrey
06a] [Humphrey 06b]. The following table summarizes these categories of leading indicators as referenced by corresponding
chapters in the “TSP Leading a Development Team” book [Humphrey 06a].

TSP Topic
“TSP Leading a Development
Team” Reference Chapter Rationale for the Leading Indicators

Leadership Chapter 2 The attributes of the leadership of TSP teams and of organizations possessing TSP
teams may be significantly predictive of the performance of the TSP teams.

Team Attributes Chapter 3 The attributes and nature of self-directed teams may also correlate and provide
leading insight to the performance of TSP teams.

Team Motivation Chapter 4 The specific aspects and components of motivation of individuals and teams also may
correlate and provide leading insight to the performance of TSP teams.

Building Teams Chapters 5-7 The manner in which software teams are formed and launched may also correlate and
provide leading insight to the performance of TSP teams.

Teamworking Chapters 8-11 The manner in which software teams manage their work to the plan, deal with
changing requirements, track progress, overcome obstacles, follow their processes
and manage quality, collectively, may correlate and provide leading insight to the
performance of TSP teams.

Relating to Management Chapters 12-14 The degree and character of management support for software teams, as well as the
nature and health of the relationship of the software teams to upper management, may
also correlate and provide leading insight to the performance of TSP teams.

Maintaining the Team Chapters 15-18 The specific aspects and attributes associated with developing and coaching
software teams and individuals may also correlate and provide leading insight to the
performance of TSP teams.

Table 1: Categories of TSP Leading Indicators

The above 7 categories of potential leading indicator measures are now separately defined in the following 7 tables in
which specific example candidate leading indicator measures are identified, along with one or more potential approaches
to operationally measuring each candidate. At this time, the column depicting the outcome measure(s) to be predicted
is intentionally left blank to depict the work in progress. On-going work with TSP teams creating process performance
models with these leading indicators will help identify the beneficial outcomes to be predicted. It is hoped that the reader
will now grasp the rich ideas for leading indicators arising out of the body of knowledge related to the TSP, and would
be able to hypothesize which of the leading indicators, listed here, might be most promising and measurable in their own
software team environments.

20

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

Table 2 below discusses ideas for additional leading indicators for the Leadership category. Although this table reflects
the operational measures at a conceptual level, the next step would be to more fully populate a template such as the SEI
Indicator template and/or a TSP script to support the necessary detail for consistent and repeatable implementation.

Candidate Leading Indicators Potential Operational Measures

Effective and timely decision-
making

Number of missed or late decisions; Impact of missed or late decisions

Leadership Vision Vision articulated and communicated; Percentage of team unsure of vision; Percentage of stakeholders unsure of vision

Setting Direction via Goals Goals clearly articulated and communicated; Percentage of team unsure of goals; Percentage of stakeholders unsure of
goals

Leadership Motivation Survey result of team members motivation by the team leader; Team Leader’s self assessment of success of motivating
team

Leadership Personal
Commitment & Enthusiasm

Survey result of team members and stakeholders assessing the team leader personal commitment and enthusiasm;
Survey and/or interview results of senior management assessment of the team leader personal commitment and
enthusiasm

Leadership Taking Charge Degree of well-organized and well-run team meetings; Degree of team crises embraced immediately by the team leader;
Survey results of perceived leadership “take-charge” attribute

Leadership Leveraging
Expertise within their team

Number of missed opportunities by the team leader to leverage expertise within the team; Degree to which team
members perceive their expertise is not leveraged

Table 2: Factors related to Leadership

The next table, Table 3, discusses ideas for leading indicators related to the attributes of the TSP team itself. Depending
on the situation and specific TSP team, different subsets of these attributes may be more indicative of team performance
outcomes.

Candidate Leading Indicators Potential Operational Measures Potential Outcomes to be
Predicted (work in progress)

Common Goal Degree to which all team members understand and can state the team common goal

Well defined team member
roles

Degree to which team members perceive team member roles are well defined; Number
of issues occurring due to a lack of well defined team member roles

Team trust and cohesion Survey results of individual team members with regards to team trust and cohesion;
Number of issues arising from insufficient team trust and cohesion

Sense of membership Degree of positive feelings of team members regarding their team membership; Team
member attrition initiated by the individual team member

Ownership of the process and
plan

Survey results of team members evaluating their ownership of the process and plan;
Number of team member unresolved issues voiced about the team process and plan;
Degree to which team members feel free to voice dissent regarding the process and
plan

Skill to make a plan Number and percentage of team members skilled at making a team plan; A quantified
total team experience level in years at making team plans

Discipline to follow the plan Number of instances in which team members do not follow the plan; Degree to which
team members exert peer pressure on other members to follow the plan

Dedication to excellence Degree to which team members overtly subscribe to a dedication to excellence;
Degree to which team members can quantify their personal improvement in the past
6-12 months

Team member training Degree to which team member skills do not match their work assignments; Number of
days of professional development achieved by team members during a given year

Table 3: Factors related to Team Attributes

21

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

The next table, Table 4, discusses ideas for leading indicators related to the motivation within the team. Again,
depending on the situation and nature of the specific TSP team, different subsets of these leading indicators will be
significant.

Candidate Leading
Indicators

Potential Operational Measures Potential Outcomes to be
Predicted (work in progress)

Team placement on Maslow’s
Hierarchy of Needs

Position to which team members, the team leader and the team coach place the team
on Maslow’s hierarchy of needs; Degree to which non-self-fulfillment activity occupies
the team member’s focus, energy and time

Cognitive Dissonance Survey result of team members; Evaluation results of external team coach

Feedback provided to team
members

Survey result of team members; Number of improvement actions initiated by team
member feedback

Fear and greed vs
commitment, as motivation

Team member self evaluation via survey; team leader independent assessment;
external coach assessment

Degree of negotiation within
team

Team member self evaluation via survey; team leader independent assessment;
external coach assessment; degree of time to reach team consensus; team members’
attitudes toward negotiation

Degree of Agreement within
team

Team member self evaluation via survey; team leader independent assessment;
external coach assessment; Degree of issues resulting from a lack of team agreement

Degree of Performance within
the team

Various objective measures of performance to include quality, schedule, budget, 360
degree evaluations

Voluntary team member
commitment

Degree to which open discussion occurs leading up to commitment; body language as
assessed by team leaders and coaches

Visible team member
commitment

Pro-active actions by team members exhibiting individual commitment; Degree to
which team members help build commitment in each other

Credible team member
commitments

Team member self evaluation via survey; team leader independent assessment;
external coach assessment

Individual team member
ownership of the plan

Degree to which team members exhibit ownership of the plan; Degree to which team
members communicate and sell the plan to other stakeholders

Convert milestones into
inchstones

Number or percentage of milestones that are planned with predecessor inchstones

Identify steps for each
inchstone

Number or percentage of inchstones planned with further detail of steps of work

Regularly review team’s
progress against plan

Frequency of team progress reviews; Actions recorded by analyzing progress to plan;
Survey of team members indicating satisfaction of frequency of reviews

Provide regular feedback on
inchstones

Frequency of inchstone reviews; Actions recorded by analyzing progress to plan of
inchstones; Survey of team members indicating satisfaction of frequency of reviews of
inchstones

Take action to keep team
perception that commitment is
achievable

Coach evaluation of team leaders actions on this; Team leader self assessment of
this; Survey results of team members satisfaction of team leader’s actions to convince
them the commitment is achievable; Number of times that the team perceives the
commitment is not achievable

Table 4: Factors related to Team Motivation

22

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

The next table, Table 5, consists of a lengthy list of ideas for leading indicators of team performance related to aspects of
the process and effectiveness of the team building. Abundant literature from the self-directed and self-managed domains
exists substantiating that this category seems to have the greatest potential for leading indicators of team performance.
Consequently, organizations implementing self-directed or self-managed teams invest significant time and resources into
team building activities, not only during initial team formations but on a continuous basis to sustain team operations.

Candidate Leading Indicators Potential Operational Measures Potential Outcomes to be
Predicted (work in progress)

Secure Management
Agreement to needed
resources

Degree of management agreement to needed resources perceived by the team leader;
by the coach; by other stakeholders

Identify technical skills needed
on team (Application domain,
Product technology, Tools and
Methods)

Degree to which the necessary skills for the project are identified in advance; Number
of times the team finds itself short-handed from a skills standpoint; Impact of skills gap
with the project needs in terms of budget, schedule, quality, etc…

Identify teamwork skills
needed on team (Estimating
and Planning, Quality
Management, Interpersonal
Behavior)

Degree to which the team leader assesses the teamwork skills needed on the team
(percentage from a standard list of skills); Number of teamwork shills identified as a
source of problems later in the lifecycle

Recruitment of team members
with necessary skills

Degree to which recruitment of new team members is based on a skills checklist;
Team member perceptions of skills match of new recruits; Recruit’s reflections of their
knowledge of the needed skills for the open position

Performance of Launch step
1: Establish Product and
Business Goals

Process compliance checklist; Survey participants and stakeholders for evaluation
of the step; Number of actions arising from the launch step; Number of outstanding
actions from previous launch steps when conducting this launch step; Coach
evaluation of launch step

Performance of Launch step 2:
Assign Roles and Define Team
Goals

Process compliance checklist; Survey participants and stakeholders for evaluation
of the step; Number of actions arising from the launch step; Number of outstanding
actions from previous launch steps when conducting this launch step; Coach
evaluation of launch step

Performance of Launch step
3: Produce Development
Strategy

Process compliance checklist; Survey participants and stakeholders for evaluation
of the step; Number of actions arising from the launch step; Number of outstanding
actions from previous launch steps when conducting this launch step; Coach
evaluation of launch step

Performance of Launch step 4:
Build Overall and Next Phase
Plans

Process compliance checklist; Survey participants and stakeholders for evaluation
of the step; Number of actions arising from the launch step; Number of outstanding
actions from previous launch steps when conducting this launch step; Coach
evaluation of launch step

Performance of Launch step 5:
Develop the Quality Plan

Process compliance checklist; Survey participants and stakeholders for evaluation
of the step; Number of actions arising from the launch step; Number of outstanding
actions from previous launch steps when conducting this launch step; Coach
evaluation of launch step

Performance of Launch
step 6: Build Detailed and
Consolidated Plans

Process compliance checklist; Survey participants and stakeholders for evaluation
of the step; Number of actions arising from the launch step; Number of outstanding
actions from previous launch steps when conducting this launch step; Coach
evaluation of launch step

Performance of Launch step 7:
Conduct Risk Assessment

Process compliance checklist; Survey participants and stakeholders for evaluation
of the step; Number of actions arising from the launch step; Number of outstanding
actions from previous launch steps when conducting this launch step; Coach
evaluation of launch step

Performance of Launch step 8:
Prepare Management Briefing
and Launch Report

Process compliance checklist; Survey participants and stakeholders for evaluation
of the step; Number of actions arising from the launch step; Number of outstanding
actions from previous launch steps when conducting this launch step; Coach
evaluation of launch step

Performance of Launch step 9:
Hold Management Review

Process compliance checklist; Survey participants and stakeholders for evaluation
of the step; Number of actions arising from the launch step; Number of outstanding
actions from previous launch steps when conducting this launch step; Coach
evaluation of launch step

23

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

Candidate Leading Indicators Potential Operational Measures Potential Outcomes to be
Predicted (work in progress)

Performance of the Launch
Postmortem

Timeliness of the launch postmortem; Participation in the postmortem; number of
issues and actions identified in the postmortem; degree to which lessons learned are
ignored and re-experienced; impacts of not adhering to previous lessons learned

Team Performance of Data
Gathering

Number or percentage of data gathering issues; degree of data quality issues;
timeliness of data gathering within the team

Team Performance of Plan
Tracking

Degree to which the plan is tracked against actual team performance; Survey results
of satisfaction of team members and team leader with respect to this

Team Performance of Team
Feedback

Frequency and quality of feedback provided to the team from external stakeholders;
frequency and quality of feedback provided among team members

Team Performance of Load
Balancing

Degree to which load balancing occurs or re-occurs; Number of team member
complaints about load balancing issues; Degree to which load imbalances cause
issues (qty and impact)

Team Performance of
Replanning

Degree to which replanning occurs; Time since the last replan; time since the last
request for a replan by a team member or stakeholder

Team members trained in PSP Number or percentage trained in PSP; Number of years PSP experience within the
team as a whole

Quality of the Team Member
Selection Process

Degree to which existing team members participated in the team member selection
process; degree to which the selection process was objective; degree to which a large
net was cast in search of new team members; stability and longevity of team members
once selected; new team member reaction to the selection process

Degree of trust built up when
leader inherits a team

Degree to which the new leader builds trust with the team; Amount of face time a new
leader has with the inherited team; Surveyed self assessments of trust from both the
leader and the team members; Number of actions that exhibit trust

Team Member Skills Assessed Degree to which skill assessment or testing is used; Degree to which solid references
of skill performance are researched

Team Member Aptitudes
Assessed

Degree to which team member aptitude is assessed; Degree to which solid references
of individual aptitudes are researched

Team Member Interests
Assessed

Degree to which team member interests are assessed; Degree to which solid
references of individual interests are researched

Degree of cooperation among
team members

Team leader and team member individual survey results of satisfaction of existing team
member cooperation; number or percentage of time team member cooperation doesn’t
exist; number or percentage of issues caused by internal team cooperation issues

Degree to which leadership
develops team members

Degree of 1-1 face time between team leaders and team members; number of
development actions communicated to team members from team leaders; degree to
which team member development is funded and supported

Degree to which team
members are promoted and
advanced

Degree to which team members are promoted or advanced as compared to filling
with external candidates; time since last promotion or advancement of team members
(individually and/or collectively); Degree of team member expression of dissatisfaction
related to promotion or advancement; attrition rates related to this issue

Degree to which team building
exercises used when needed

Number and type of team building exercises used within a team; survey results from
team members on their satisfaction of sufficient team building exercises; number of
times that lack of teaming is brought up as an issue during the lifecycle

Degree to which the team
receives timely and effective
coaching

Periodicity of feedback from a coach; quality of the feedback; corrective actions
enabled from such feedback; team member assessment of the value of the coaching

Table 5: Factors related to Building Teams

24

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

In the next table, Table 6, a number of ideas for leading indicators of team performance related to teamworking are listed.
As opposed to the formation and building of teams, this category includes leading indicators from the on-going operation
of the team.

Candidate Leading Indicators Potential Operational Measures Potential Outcomes to be
Predicted (work in progress)

Process compliance under
stress

Number of process steps sacrificed during the lifecycle; during times of stress; impact
of such violations

Dynamic planning when
needed

Degree to which replanning is implemented when needed; Degree to which current
plan is perceived by team members to be unrealistic due to lack of replanning

Impact analysis for all req’ts
changes

Number or percentage of req’ts changes that are not accompanied by an impact
analysis; Number of times that project issues arise due to improperly handled req’ts
changes

Progressive elaboration of
plans

Degree to which underplanning and overplanning are minimized in accordance with the
principle of progressive elaboration; Number of points in which progressive elaboration
occurs; the effort and time incurred with replanning due to lack of progressive
elaboration

Workload balancing within the
team

The number of times that workload imbalances cause team disruption, conflict or poor
team performance; time required to rebalance the team; resistance of team members
to workload balancing; number of times the team takes the initiative to look at workload
balancing

Tracking team progress with
EV and task hours

Degree to which EV and task hours are not used to track team progress; Degree
to which lack of team progress information prevented timely team leader and/or
management action to prevent undesirable outcomes

Obtaining help for the team Number of times or situations in which the team needs help; Number of times that help
is acquired; Number of times that requested help is not provided

Definition of Success by the
team

Survey results of team members, leader and coach regarding the satisfactory definition
of Success by the team

Setting and Maintaining
Priorities

Number or percentage of the time that priorities are not set; Number or percentage of
the time that team members perceive that priorities are not established

Establishing Short Term Goals Number of Long term goals without corresponding short term goals; Degree to which
team members, leader and coach do not perceive adequate short term goals in place

Overcoming Obstacles Number and percentage of documented obstacles encountered by the team and
overcome

Changing Direction The number of times that the team leader worked to change direction of the team when
needed; The number of times that the direction was changed unnecessarily

Involving the Customer The amount of customer involvement, via face time, meeting time, telecons, number of
inquiries or consults, technical inquiries with the customer

Process Fidelity (accuracy of
following the process)

Using checklists, the number or percentage of items faithfully followed; Impact of
negative outcomes resulting from process infidelity

Handling Process Problems Number and percentage of process problems successfully handled monthly or per
lifecycle phase; age of open process problems; time to resolve a process problem

Quality as top priority Number and percentage of decisions in which quality was sacrificed or traded off;
survey results of team member and leader perception of quality as top priority

Measurement of quality Number and percentage of time that quality measures are not collected

Individual ownership of quality Degree to which individuals on the team collect their own personal quality data and
take action based on the analysis

Team ownership of quality Degree to which the team collects quality data and takes action based on the analysis

Quality reviews planned The number and percentage of quality reviews planned vs total possible; The degree of
time planned for each team member to participate in quality reviews

Design and Coding Standards
Used

The degree the standards are trained, communicated, used, monitored and updated

Quality reviews held The number and percentage of quality reviews held; the number and type of actions
resulting from the quality reviews

Defect reviews of test results The number, type and percentage of defects found in testing; The number and type of
defects predicted to be latent in the code

Quality analysis conducted The frequency and completeness of quality analysis throughout the lifecycle; The
number and percentage of effort hours expended on quality analysis; The number of
actions resulting from the quality analysis

Reporting of Quality Data The degree and timeliness to which quality data and results are reported to
stakeholders; The frequency of the reporting; The stakeholder feedback on the
usefulness of the reporting

Table 6: Factors related to Teamworking

25

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

In the next table, Table 7, a number of ideas for leading indicators of team performance related to the interface with
management are presented. Even the best of self-directed teams may be negatively impacted by an unhealthy relationship
with management. Management support and advocacy remains important, and as such, this relationship must be
developed, nurtured and maintained. First-hand experience by the authors confirms that self-directed teams may often be
more at risk and impacted by unhealthy relationships with management than other organizational structures. As such, this
category should not be neglected in the quest for leading indicators for team performance.

Candidate Leading
Indicators

Potential Operational Measures Potential Outcomes to
be Predicted (work in
progress)

Management Perception of
Loss of Control over TSP team

Survey results from both team leaders and managers regarding the health of the
relationship; The degree of friction or conflict between the team and the management

Management perception of
insufficient resources

The degree of resources needed vs currently in place; the probability of the team
exceeding the resource request; the track record for TSP team resource overruns in
the past; the difficulty in attracting additional resources when needed

Management support for PSP
training

The number and percentage of team members not trained in PSP; the training budget
allocated for the team; the number of days per year allocated for team member training

Networking as a mechanism to
resolve management issues

The number and percentage of significant issues that the team leader communicates
and/or solves via networking within the organization; Number of issues not solved via
networking

Management communication
of team goals

The face time of management communicating with the team; The degree to which
management communicates the importance of the team goals to the organization;
Survey results on the team member evaluations of management communication

Management trust of the
software team

Survey of management’s trust in the software team; The number of times that
management expresses a lack of trust in the software team; Survey results from the
organization regarding management’s trust in the software team

Periodic reports to
Management

The number, frequency, timing, quality and usefulness of periodic reports to
management

Communicating solutions
corresponding to problems

The number and percentage of the problem situations when a problem is
communicated without an accompanying proposed solution

Reports to Management meet
their needs

Survey results of management satisfaction of team reports; Actions and decisions
facilitated by the team’s reports

Management requests are
handled properly by the team

The number of management requests placed on the team; the number handled vs
not handled; the impact of servicing the dynamic requests; the degree to which
management or the team leader suffered a surprise

Multi-tasking imposed on team
members

The number of tasks handled on average by the team members; The number of changed
tasks in a given work day; the estimated amount of lost time due to changing tasks

Team member training
available and utilized

The amount of training afforded to team members internally vs externally on an annual
basis

Workspace The degree to which team members raise complaints about the workspace; the lost
time, rework, etc… resulting from workspace issues; the attrition of team members due
to workspace issues; the cycle time required to remedy a workspace issue; the degree
of preventive measures taken related to carpal tunnel syndrome, etc…

Data Confidentiality The amount of training related to data confidentiality; the amount of process addressing
data confidentiality; the number of breaches or misuses of data; team member
perception of the degree of data confidentiality or lack thereof

TSP Leader balances priorities The analysis of the coach and team members of the team leader’s ability to balance
priorities; the number and percentage of the time that the team leader fails to balance
priorities; the impact of unbalanced priorities; the degree that the team leader seeks
help to balance priorities

Table 7: Factors related to Relationship with Management

26

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

In the last table, Table 8, ideas for leading indicators of team performance related to the maintenance of the team
are listed. This list supplements the previous lists associated with building, motivating and operating teams. Team
maintenance remains a significant need and challenge. The authors have witnessed organizations so sensitive to this
issue, that they enforced a policy of off-site team building activities any time the membership of the leadership team
occurred. Although sometimes expensive, this policy ensured leadership teams operated in a healthy fashion and
prevented the significant negative consequences and business down-turns due to dysfunctional leadership teams.

Candidate Leading Indicators Potential Operational Measures Potential Outcomes to be
Predicted (work in progress)

Team reassessments of
common sense of membership

The frequency of revisiting the common sense of membership via survey or interview
of team members; the degree to which signs exist of a lack of common sense of
membership

Team Communication The frequency and nature of team communications; the degree to which urgent vs
non-urgent communication is conducted; the degree to which miscommunications
disrupt team operations and cause conflict; the time spent by team members each day
in communication

Frequent Team Meetings The planning, efficient conduct and results of team meetings

Team Openly Resolving Issues The number and percentage of issues not resolved after the first team meeting
discussing the specific issues

Common Workspace The degree that the team is collocated; sharing facilities; using common platforms and
technology; the degree that workspace issues cause problems with the team operation
and performance

Team reassessments of team
goals

The frequency and need to reassess team goals; team member perceptions that team
goals are overdue for reassessment

SMART and visual goals The degree to which the team goals meet or don’t meet the SMART criteria; The degree
to which the team goals are depicted with status in a visual way, in the team work area

Team reassessments of team
ownership

The frequency with which the team conducts a reassessment; the degree of team
member perception that the reassessment is overdue

Team reassessments of team
planning

The frequency with which the team conducts a reassessment; the degree of team
member perception that the reassessment is overdue

Team reassessments of team
quality commitment

The frequency with which the team conducts a reassessment; the degree of team
member perception that the reassessment is overdue

Interest and Competence The team leader and/or coach determination of the degree to which team member
interest and competence remain high

Burnout The degree of team member overtime; the degree to which team members eat meals in
the office; the degree of team member attrition due to workload; the degree of stress
that team members appear to be suffering; the degree to which abnormal and/or simple
errors are made

Challenging Work Survey results of team members depicting the degree to which their work challenges
them; The degree of challenging tasks that team members assume outside of the
current team’s responsibilities

Professional Discipline The degree to which team members view software engineering as a discipline; the
degree to which team members participate in professional societies

Fairness Survey result of perception from team members

Evaluations based on task and
relationship maturity

From the coach and team member standpoint, the degree to which the team leader
uses the proper style based on the task and relationship maturity of the situation

Individual measurement
causing counterproductive
behavior

The degree of counterproductive behavior occurring due to unwise or ill conceived
measurement; the degree to which planned measures are subject to an FMEA analysis
or Poka Yoke mistake proofing analysis

Coaching provided to
individuals

Survey results from team members indicating their satisfaction of coaching provided by
the team leader

Difficult team members
properly handled

The effort and time expended to deal with difficult team members; the delay in dealing
with difficult team members; the degree of successful conclusions in dealing with
difficult team members

Handling poor performers The degree of time that poor performers are dealt with properly by the team leader

Setting team improvement
goals

The degree of participation of team members in establishing improvement goals; the
freshness vs stagnation of improvement goals; the degree to which improvement goals
challenge and stretch the team

Adopting a team improvement
strategy and process

The degree of definition, documentation, communication, training and use of a team
improvement strategy and process

27

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

Candidate Leading Indicators Potential Operational Measures Potential Outcomes to be
Predicted (work in progress)

Developing a team
improvement plan with
resources

The degree to which a team improvement plan has measureable and testable criteria;
the degree to which the improvement plans are resourced and successfully achieve
their goals; the degree to which management and the team willingly invest resources in
future improvement plans

Providing team improvement
measures and feedback

The degree that the improvement measures address the critical improvement needs;
the clarity and timeliness of feedback such that team members may take early action;
the degree to which the feedback is compelling and specific and actionable

Team benchmarking
(measures, dynamic)

The frequency and target of benchmarking to meet organizational and team needs; The
degree that benchmarking positively motivates the team and their performance

Strength of the Team Leader Survey results of the team coach and team members; the track record of the team
leader in leading successful projects; the difficult experiences that the team leader has
under his/her belt

Table 8: Factors related to Maintaining the Team

1.6	� Call for Action via Pilots of
Process Performance Models
within the TSP Domain

The authors would like to solicit TSP teams’ collaboration
and participation in the pilot measurement of some of
these leading indicators and in the formulation of process
performance models that would enable more precise and
timely prediction of both interim and final project outcomes.
The SEI measurement team and Hill Air Logistics Center
have already embarked on this activity and have numerous
statistical regression models which use observations of
one or more leading indicators to predict outcomes such
as quality and cycle time. However, greater participation
and publication of such modeling would enable the TSP
community to share what worked and didn’t work as leading
indicators of performance outcomes of the TSP teams. The
authors additionally remain excited about the opportunity to
use this modeling to further cement the connection between
TSP team performance and the overall organizational and
business outcomes.

1.7	 Conclusion
We hope the reader gained a greater appreciation for
the nature of possible leading indicators that may be
easily collected as part of the existing TSP process and
implementation. Additionally, the authors hope that
this paper and presentation may motivate existing TSP
coaches, leaders and teams to participate in the piloting
and sharing of data for these leading indicators. The TSP
team implementations, compared to traditional software
development structures, appear better positioned to
implement these types of leading indicators and benefit
from the richer experience of such a toolkit of process
performance models of interim and final team performance
outcomes. Lastly, we believe that the lists of potential leading
indicators discussed in this paper, indeed, represent the most
likely controllable factors for TSP team performance. The
authors must give credit to Watts Humphrey’s insight of these
leading indicators as discussed in his book on Leading TSP
Teams [Humphrey 06a]. In this paper, we merely proposed
potential operational measures of these leading indicators

and described their use within the current body of knowledge
of CMMI process performance models. The authors plan
a subsequent paper and presentation, similar to this paper,
but at the level of the Personal Software Process in which
leading indicators at the individual level will be discussed.
Additionally, the complete treatment will be published in a
future SEI Technical Report.

1.8	Refe rences/Bibliography
[Humphrey 95] A Discipline for Software Engineering, by
Humphrey, Watts, Addison-Wesley, 1995.

[Humphrey 06a] TSP Leading a Development Team, by
Humphrey, Watts, Pearson Publishing, 2006.

[Humphrey 06b] TSP Coaching Development Teams, by
Humphrey, Watts, Pearson Publishing, 2006.

[Humphrey 10] Team Software Process (TSP) Body of
Knowledge (BOK), by Humphrey, Watts S.; Chick, Timothy
A.; Nichols, William; Pomeroy-Huff, Marsha, CMU/SEI-
2010-TR-020, Carnegie Mellon University, 2010.

[Stoddard, Goldenson 09] Approaches to Process
Performance Modeling: A Summary from the SEI Series
of Workshops on CMMI High Maturity Measurement and
Analysis, by Stoddard II, Robert W.; Goldenson, Dennis R.,
CMU/SEI-2009-TR-021, 2010.

[Stoddard 10] Approaches to Process Performance
Modeling: A Summary from the SEI Series of Workshops
on CMMI High Maturity Measurement and Analysis, by
Stoddard II, Robert W.; Goldenson, Dennis R., CMU/SEI-
2009-TR-021, 2010.

[Tamura 09] Integrating CMMI and TSP/PSP: Using TSP
Data to Create Process Performance Models, by Tamura,
Shurei, CMU/SEI-2009-TN-033, 2009.

28

Illuminatin

g

 the

 Inte

r
section

 of

T

S
P

 an

d
 C

M
M

I H
ig

h
 M

atu

r

ity

 P
r

ocess

 P

e
r

fo
r

mance

 M

o
d

els

Biography
Robert W. Stoddard
Robert Stoddard currently serves as a Senior Member of
the Technical Staff within the Carnegie Mellon University
Software Engineering Institute (SEI), after 24 years
leadership in Software Quality and Reliability with both
Texas Instruments and Motorola. Robert is responsible for the
development and delivery of advanced training on software
measurement and analysis, specifically in regards to CMMI
High Maturity performance modeling. Robert continues
to promote the integrated use of Six Sigma and CMMI as
exemplified in a 2008 published book entitled “CMMI and Six
Sigma: Partners in Process Improvement” by Addison Wesley.
Robert holds certifications with the ASQ on five topics
including Six Sigma Black Belt, Reliability Engineering,
Quality Engineering, Software Quality Engineering and
Quality Audits. Robert became a Motorola-certified Six
Sigma Black Belt in 1993 and Master Black Belt in 2003.
Robert earned a B.S in Finance and Account-ing from the
University of Maine, an M.S. in Systems Management from
the University of Southern California, and has com-pleted
most course work towards a PhD in Reliability Engineering
from the University of Maryland at College Park.

Shigeru Sasao
Shigeru Sasao is a research associate at Carnegie Mellon
University (CMU). Before joining CMU, Sa-sao was a
software engineer for Deutsche Bank in Tokyo. There, he was
responsible for developing and maintaining fixed in-come
trading systems used across major financial cities in Asia.
Sasao holds a Master of Software Engineering (MSE) degree
from CMU.

Dave Webb
David R. Webb is a Technical Director for the 520th Software
Maintenance Squadron of the 309th Software Maintenance
Group at Hill Air Force Base in Utah, a CMMI Level 5
software organization. David is a project management and
process improvement specialist with 23 years of technical,
program management, and process improvement experience
on Air Force software. He is a SEI authorized instructor of the
Personal Software Process, a certified Team Software Process
launch coach, and he has worked as an Air Force manager,
SEPG member, systems software engineer, lead software
engineer and test engineer. He is a frequent contributor to
technical journals and symposiums. David holds a degree in
Electrical and Computer Engineering from Brigham Young
University.

Jim VanBuren
 Jim Van Buren is a Program Manager for the Charles Stark
Draper Laboratory currently supporting the Modular Control
Equipment (MCE) project team at Hill Air Force Base. He is a
SEI authorized PSP instructor and TSP coach. He holds a BS
in Computer Science from Cornell University and has over 30
years of software development and management experience.

29

N
ew

 T

eam

 S

oftwa

r
e

 P
r

ocess

 P

aths

: S
ystems

 E

n
g

inee

r

in
g

 T
eam

 U
ses

 T
S

P

Daniel M. Wilson, Wyle Laboratories, Inc.

The E-2C Systems Engineering Team launched a Team
Software Process (TSP) project in March 2009, to develop
Systems Engineering test documentation and to support the
software development to integrate Automatic Identification
System (AIS) onboard the E-2C aircraft. We worked in parallel
with the Advanced Control Indicator Set (ACIS) software
development team, to create the AIS software package
Graphical User Interface (GUI) development. Our tasking
was separate with a different lower-management structure;
however we contributed into the same weekly rollup and shared
an integrated team meeting. Additionally, we worked with the
Mission Computer (MC) team although we did not share any
meetings and the communication with them was far less. The
software development teams are made up of a mix of different
contractors as well as many Government employees. The goal
was to find out if there was a productivity benefit to a systems
engineering team utilizing TSP.

1.1	 E-2C Systems Engineering Team
Our Systems Engineering (SE) team consists of 12 engineers,
made up of mostly Wyle employees, with the majority having
more than 10 years experience in the E-2C community, and
more than 15-20 years experience in system test and evaluation.
Most of our systems engineers are former Navy personnel
which gives them operational knowledge of military software
as well as the tactical significance. Planning and developing
software test products that exercise these different areas
of experience is very familiar to this experienced group of
professionals. Traditionally the E-2C used informal processes
to develop test procedures. All were unique for obvious
reasons, yet the systems engineers required little direction
and were comfortable working autonomously. Their work has
consistently been highly rated by the customer and they are
known for getting the job done.

1.2	 Previous Method
In past development, our systems engineers did not become
involved with a new project until the Preliminary Design
Review (PDR) for that project. After PDR the software
developers would invite systems engineering to Meeting 1
and 9 as they launched the development phase. The systems
engineers would then start reading requirements and preparing
for the first release of software, at which point they could begin
to capture the steps required to test the functionality. We were
often faced with limited functionality, usually playing catch-
up when it came to bringing our Software Test Document
to maturity prior to the Functional Evaluation Test and the
Acceptance Test events.

1.3	 TSP Experience
Prior to launching our own product development project,
our systems engineers had worked on an integrated TSP
requirements development team made up of themselves, the
ACIS and Mission Computer (MC) teams. One engineer
had performed the quality role even though it was our first
TSP participation. Our tasks were limited to higher-level
requirement writing and inspection of the lower-level
requirements. The team we participated with had a great deal
of experience using TSP and they provided a key formative
role in developing our own systems engineering specific
processes. With this experience we began gaining knowledge
about TSP though it was a challenging learning curve.

1.4	 The Launch
Planning for our project was challenging as expected in a
first-time launch. The lack of historical data referenced by
the TSP techniques, lead to some difficulties. We had to
figure out how to divide the tasking between two systems
engineers for our physical product – the Software Test
Description (STD). In the past, this was usually written by
one engineer with the other engineer(s) offering suggestions,
etc. We did, however, have the advantage that we had
previously participated in the requirements development
with an experienced TSP team – the ACIS team. Testing
has a natural fit with the GUI interface and this allowed us
to define our tasks along the same lines. We divided the
STD into individual test cases and defined those test cases
by the same divisions we had used in the requirements
development. We were then able to generate an accurate
number of requirements per test case and therefore define a
size estimate for each one. We didn’t realize it at the time,
but this methodology would result in huge benefits down the
road.

Next, we had to give serious thought to what we would
use as a measure. As systems engineers, we don’t usually
utilize Source Lines of Code (SLOC) as a unit of measure.
We ended up choosing the number of pages per test case
for sizing. The most challenging decision was defining the
non-product tasks such as Bench Testing time. We arbitrarily
chose a Bench Testing task to validate the STD after final
integration of the individual test cases.

Our launch was challenging because we had to rely on
unsupported estimation for most aspects of the project due
to a lack of historical documentation for sizing and level of
effort. We took the divisions used during the requirements
development, calculated the percentage of the total then
applied that percentage to the time we previously would have
estimated to develop the STD. Surprisingly, our estimates
proved to be fairly accurate and we made very few changes

New Team Software Process Paths: Systems Engineering Team Uses TSP

30

N
ew

 T

eam

 S

oftwa

r
e

 P
r

ocess

 P

aths

: S
ystems

 E

n
g

inee

r

in
g

 T
eam

 U
ses

 T
S

P

to our workbooks overall. The hidden benefit in this was that
the tasks in our workbooks ended up mimicking the ACIS
group’s development tasks almost identically. This kept both
teams in parallel and made questions between the teams
more manageable due to similar project information being
“fresh” in the minds of each team.

1.6	 Execution
The development of our product worked extremely well
in the first half of our project. Having fully participated in
the requirements development as inspectors, we each had
valuable insight and knowledge of the developing software
that we had never enjoyed before. Furthermore, software
engineers would seek clarification of requirements with
our engineers as a courtesy. We had built a team trust that
crossed group boundaries and opened up communication that
simply had not existed previously in a software development
phase. As mentioned earlier, our test cases followed the same
divisions as the software development. Each group invited
the other to product and code inspections which led to the
test cases being developed in parallel with the code that it
was designed to verify. This made our tests more accurate
and produced more robust software as a result. Each group’s
expectations of how something worked was corrected early
and often, preventing defects from being found later in more
costly phases of production. We also noted in the combined
team meetings that many tasks assigned to each team,
were worked on simultaneously. TSP is very linear in its
orientation with the focus being completing tasks and then
moving on. Our test cases needed to be built simultaneously
with a portion of the simulation scenario that catered to
it. This opened the scenario task earlier than anticipated
and kept it open for a longer period of time. We were also
challenged by inspecting the scenario. We could not quantify
inspection criteria and we basically verified that it worked
with the test cases and therefore needed no changes.

1.7	 Problems
TSP has an entire infrastructure that needs to be supported.
We did not have any of the products needed to conduct the
analysis and inspections that are necessary.

As our first review approached, we realized that we didn’t
have a personal inspection criteria sheet or an inspection
spreadsheet. We had never developed a software test
description in pieces as a team, therefore, we had to design
our criteria “on the fly” to make sure we could assemble the
pieces as far as content and structure. The test cases had to
conform or we risked having a final disjointed and dissimilar
document. We had to produce a personal review, inspection
form, and a template for the test case level of a Software Test
Description. We also realized we would need an additional
personal review for the Software Test Description once we
integrated the test case into the single document. A great
deal of off-task time was incurred building the TSP support
structure that had not been foreseen.

The next issue we encountered was that our SE team
consisted of two people for this project. The TSP roles

outnumbered us four-to-one. With the additional task of
building the TSP support products along the way, we were
simply unable to accomplish the roles in a meaningful way.
This was offset somewhat by sharing the weekly meeting with
the ACIS team. They performed their roles as experienced
professionals and provided the necessary insight into the
project as a whole. The lack of role fulfillment will hurt
us more in planning for the next project. It is worth noting
that as TSP branches into other territories beyond software
engineering, the same volume of personnel may not be
available to fully staff the TSP roles on smaller projects.

Finally, we found the timeline of our development shifted
drastically due to the efficiency of TSP and aligning ourselves
with the software developers. We completed our test cases
prior to the first drop of software, therefore putting us ahead of
schedule and having to wait for the MC team before moving
forward. We had never before completed the test cases that
early and our next tasks required testing the software and
using our test cases. We found ourselves with a five-week
gap waiting for the software development teams to complete
the first builds. They weren’t behind; we were simply that far
ahead. We made use of the time by moving our simulations
scenario task ahead and we also spent many off task hours
supporting the MC team with iterative non formal testing. This
helped them to achieve their release date and helped us get an
earlier look at the software. In hindsight, we also should have
moved development of some training materials we normally
produce at the end of a project to this point in the process.
You have to be flexible and willing to disregard all previous
expectations and adapt to unforeseen success.

1.8	Results
Systems Engineering:

•	 Produced test cases months earlier than with previous
methods

•	 Forced a standardization of our products with templates and
review criteria

•	 Formalized our processes

•	 Increased the buy-in of all engineers on a product by giving
each a portion to develop

•	 Systems engineers obtained an outstanding awareness of the
implementation schedule

Integrated Team:

•	 Increased communication, knowledge and trust, by having
an integrated Team meeting and forced an alignment of
effort that reduce responses to questions

•	 Had only two System Trouble Reports (STR) with our
first configured release of software – an astonishingly low
number

There is no doubt about the results. TSP usage by a systems
engineering team can not only improve productivity and
quality internally, but carry those same gains throughout the
entire software organization involved in software development.

31

N
ew

 T

eam

 S

oftwa

r
e

 P
r

ocess

 P

aths

: S
ystems

 E

n
g

inee

r

in
g

 T
eam

 U
ses

 T
S

P

Biography
Daniel M. Wilson
Systems Engineer
Wyle
Supporting PMA 231

Daniel Wilson is a Wyle Employee and a member of the
systems engineering staff in the Product Support Activity
(PSA) for the E-2C Hawkeye aircraft, supporting NAVAIR
PMA 231 in Patuxent River, Maryland.

Wilson also is a member of the SEPG board within that
organization. Before Joining Wyle and the PSA, Wilson was
in the fields of CBT programming, Systems Training, and a
former U.S.Navy Aircrewman.

Wilson is new to TSP, having participated in one launch as a
member of a team that has done TSP for 7 years.

- - - - - - - - -

NAVAIR Public Release 10-(882)

Distribution: Statement A- “Approved for public release;
distribution is unlimited”

32

A
chie

v
in

g
 A

ca

d
emic

 S
uccess

 U

sin

g
 the

 T
eam

 S
oftwa

r

e
 P

r
ocess

Achieving Academic Success Using the Team Software Process

Berin Babcock-McConnell, Carnegie Mellon University
Saurabh Gupta, Carnegie Mellon University
Jonathan Hartje, Carnegie Mellon University
Marsha Pomeroy-Huff, Software Engineering Institute
Shigeru Sasao, Carnegie Mellon University
Sidharth Surana, Carnegie Mellon University

Abstract
Team VdashNeg, a student group in the Master of Software
Engineering program at Carnegie Mellon University, was
tasked to build software to autonomously control a robot for
a real-world industry project. The team was having difficulty
creating a project plan which could effectively track their
progress, and decided to try the Team Software Process
(TSP). By using TSP, the team delivered the product to the
clients a week ahead of schedule, with only two documented
defects at system test in over 20K LOC. Most importantly,
TSP taught the team how the software engineering puzzle fits
together, and helped the team to mature as engineers.

1.1	 Introduction
The Master of Software Engineering (MSE) degree is a
sixteen-month graduate program offered at Carnegie Mellon
University. The curriculum consists of five core software
engineering courses, four electives, and the studio project,
and prepares graduates to enter the software engineering
field as project managers and software architects. In
the core courses, students learn techniques in formal
models, requirements gathering, project management,
and architecture design, among other topics in software
engineering. For example, during the Management of
Software Development class, students may learn how to
construct a work breakdown structure, conduct estimation,
and use earned value analysis to track project progress
[Pressman 05], [Tsui 07]. These techniques can be applied
directly to the studio project, which runs continuously
throughout the duration of the MSE program and provides
students with a practical workspace on an actual industrial
software engineering project provided by corporate sponsors.
Studio teams consist of four or five students each who work
with their project customer to analyze, design, implement,
and deliver a working solution to the customer’s business
needs. Coupled with support, feedback, and critical analysis
from the MSE faculty, the studio project provides students
with a supportive environment in which to organize and
practice their software engineering craft without the
pressures or consequences brought on by real-world business
markets. Faculty, customers and students alike often cite
the studio project as the cornerstone of the MSE program
and believe it is largely responsible for the high quality
performance of its graduates.

The VdashNeg team operated during the August
2008-December 2009 academic cycle, and was composed
of five individuals with diverse professional and academic
backgrounds. Their studio project, which was sponsored
by the Software Engineering Institute (SEI), required the
team to create a reference implementation demonstrating
the capabilities of an SEI technology called Predictable
Assembly from Certifiable Components (PACC) [Hissam
04]. The PACC technology enables developers to create
software components that are predictable in both behavior
and performance. These components then can be combined
to create a system that also exhibits predictable behavior and
performance. The clients asked the student team to use the
PACC technology in building a software system that could
autonomously control a commercially-available robot called
the SRV-1 Surveyor Robot [SRV1 10]. This posed a major
challenge to the team, since none of the team members
had prior experience with the key technologies used in the
project, which were robots, image processing, and the PACC
technology. Another challenge was that the client had no firm
requirements for tasks that the robot would perform, so the
team also had to establish its own set of project requirements.
The team decided to build a “search and destroy” mission
controller for the SRV-1 robot.

Four months into the project, after several failed attempts at
using different planning techniques, the team was still having
difficulty creating a project plan which could effectively
track their progress. The team heard that the Team Software
Process (TSP) might address many of the issues that they
were facing, so they decided to try applying TSP to their
project.

1.2	use of THE tsp
The major issues that led the team to choose TSP as their
development process were as follows.

•	 Inability to map team goals and milestones to tasks:
At the beginning of both the fall 2008 and spring 2009
semesters, the team decided on a series of goals for
that semester, and those goals were further divided
into milestones. However, the team had difficulty
decomposing the milestones into a more granular list of
subordinate tasks. For example, one of the semester goals
was to develop a system prototype. To develop a useful
prototype, the team needed to refine the requirements and
comprehensively study the domain. These sub-goals were
used as high-level milestones, but the team did not know
how to convert those milestones into tasks that could be
mapped to a weekly or daily schedule. This difficulty
caused the team to struggle with their project planning and
tracking.

33

A
chie

v
in

g
 A

ca

d
emic

 S
uccess

 U

sin

g
 the

 T
eam

 S
oftwa

r

e
 P

r
ocess

•	 Incomplete software process: The team had selected the
Architecture-Centric Design Methodology (ACDM) as its
guiding process [Lattanze 08]. ACDM is a methodology
for developing a software design, but it provides no
detailed guidance in the areas of planning, tracking, risk
management, and quality control. The team selected
different techniques that they learned in the core courses
to address these missing areas. However, because they
had no comprehensive framework for the whole project
lifecycle, the team struggled to tie together the different
pieces to create one cohesive process.

Once these problems were recognized, the team decided to
use TSP because the members agreed that it could provide
a comprehensive process framework for the project, as well
as detailed planning and tracking mechanisms. One of the
team’s mentors, a certified TSP coach, agreed to coach the
team and guided them through the week-long launch process
in the middle of the spring 2009 semester.

The launch helped the team to reevaluate and clarify the
project goals. Instead of having a comprehensive “laundry
list” of goals, the goals were divided into subsets of client
goals, team internal goals (specific to processes, team
performance, and the like), and team external goals (specific
to meeting the clients’ stated and implied goals). Because
these goals were achievable, measurable, and had deadlines
associated with them, they helped to form the skeleton for
the rest of the project plan. In the remainder of the launch,
the team made a detailed task list that could be accomplished
in the budgeted available time and balanced the workload
equally among the team members. Each task on the list had
an associated estimate for completion date. The task/schedule
list, when coupled with earned value analysis and dynamic
plan rebalancing during the TSP weekly meetings, enabled
the team to effectively track their progress over the remainder
of the project.

Prior to using TSP, risks were identified and documented
but not well managed. Mitigating strategies had not been
documented, and risks were not being effectively assessed,
or, if necessary, mitigated. After the switch to TSP, the team
actively tracked the issues and risks in the Issues and Risk
Tracking Log (IRTL). Due to the prescriptive and active risk
tracking system, the team became very effective in tracking,
mitigating, and managing risks that might have endangered
or derailed the project if they had occurred before the switch
to TSP.

TSP also helped the team to be more organized. TSP has
team manager roles with very specific responsibilities and
minimal overlap between them. Using the roles prescribed
by TSP ensured that the responsibilities were shared equally
among the team members and were promptly addressed. The
team also used the TSP meeting scripts to make their weekly
team meetings more focused and productive than before.

The most significant changes after the switch to TSP
were in the team’s planning and tracking process and the
quality control. These changes are discussed in detail in the

subsequent sections.

1.3	pR OJECT Planning and tracking
Before using TSP, team members did not know which tasks
to complete in a given week, nor did they have any idea
as to when the remaining tasks would be accomplished.
As mentioned above, this issue was the main reason that
the team decided to switch to TSP. After the first launch
in February 2009, the team had a shared understanding of
the project goals, a list of risks evaluated by impact and
likelihood, a set of tangible outputs to be produced for the
project, and most importantly, a detailed and balanced plan
that could be used to track the progress of the work. The
important lesson learned from the launch was that there
is a process that needs to be followed in order to create a
high-quality project plan. First, the team must understand
the business goals of the client. Second, the team must
understand their own goals, which are derived from the
business goals. Third, the team must identify both the
tangible outputs that correspond to the team goals and the
processes that will be used to produce those outputs. Finally,
the team can create a task list, determine the tasks’ feasibility
in relation to the team’s available resources, identify which
goals can be reasonably achieved within the parameters
of identified assets and constraints, and refine the plan as
necessary. The plan must also include steps to help to ensure
high product quality by including reviews and inspections at
appropriate times during product development. This project
planning process, which is documented in detail in the TSP
launch scripts, was key to creating the high-quality plan that
enabled the success of the project.

The term “period of uncertainty” is defined as the time spent
in the project prior to establishing a software architecture
[Lattanze 08]. Until the end of the spring 2009 semester, the
team was in the period of uncertainty. The team finalized
the software architecture at the end of the spring semester
and entered the period of certainty at the beginning of the
summer semester, following the team relaunch in mid-May.
The nature of the plans before and after the completion
of the architecture was drastically different. While the
spring semester plan concentrated on finalizing the detailed
requirements and eliciting architectural drivers such as
quality attributes and technical constraints, the summer
semester plan was focused on implementing the product. The
conceptual design used to build the summer semester plan
was based on the dynamic view of the software architecture,
which is shown in Figure 1. The assemblies in the TSP’s
Form SUMS were mapped directly to the architectural
components in the diagram.

The summer implementation work was divided into
four iterations of three weeks each to allow the team to
continuously reflect and improve their plans, estimations, and
processes. During the first iteration, the team noticed that
tasks assigned to different team members were more highly
interdependent than had been the case during the spring
semester. For example, Team Member A needed to complete
coding a particular component before the team could conduct

34

A
chie

v
in

g
 A

ca

d
emic

 S
uccess

 U

sin

g
 the

 T
eam

 S
oftwa

r

e
 P

r
ocess

the code inspection of that component. Therefore, the
team developed a custom dependency-tracking process to
supplement the planning and tracking done using the SEI-
developed TSP tool. The team developed what they called
“the matrix,” a table in which the architectural components
were shown as rows and the development phases as columns.
As team members completed tasks (such as the design
review for component A), they marked the completion of that
task in the table by filling in the appropriate cell. The matrix
was posted in the common working area and served as a
notice board, signaling other team members when they could
begin work on their dependent tasks.

The following sections will discuss estimation and project
tracking during the summer period.

1.3.1	 Estimation
The team overestimated the schedule for the project work
during the summer semester. This is in contrast to the
common notion that engineers tend be overly optimistic
about their productivity and therefore usually underestimate
the time needed for the work [Buehler 94], [Jorgensen 07].
Because the team was newly formed, they had no historical
data on which to base their estimates. Also, the project
required the use of a proprietary programming language
called CCL, which made it difficult to use industry data for
estimating. Therefore, the effort estimations for the first two
iterations of the summer semester were conducted using
Wideband Delphi estimation. Wideband Delphi is an expert
judgment estimation technique, which attempts to reduce

variations in estimations from individual team members
by having multiple rounds of estimation [Humphreys 95].
During the first two iterations, the team overestimated their
development tasks by 134%.

For the third iteration, the team chose to use PROBE
estimation, using historical data from the first two iterations.
PROBE is a parametric estimation technique using linear
regression [Humphreys 95]. The sizes of the architectural
components were used as the dependent variable for
predicting effort. The team created several linear regression
models using a combination of physical lines of code (LOC)
or logical LOC. Out of the 16 components developed in
the first two iterations, 14 data points were used for the
model and 2 were set aside for validation. The team chose
the physical LOC model excluding one outlier point, which
produced the best validation result and the highest linear
correlation.

After the model was created, the team conducted a Wideband
Delphi for the sizes of the components to be developed in
iteration 3. These size estimates were used as inputs into
the model to estimate the development effort for individual
components. However, the team was risk averse and decided
(against their coach’s advice) to pad the estimates produced
by the model. At the end of iteration 3, the padded estimates
from the PROBE model were 52% higher than the actual
component sizes, representing a significant improvement
over the 134% overestimation in the first two iterations.
However, if the team had used the output from the PROBE

	

Figure 1:	 Dynamic perspective of the software architecture

35

A
chie

v
in

g
 A

ca

d
emic

 S
uccess

 U

sin

g
 the

 T
eam

 S
oftwa

r

e
 P

r
ocess

model without padding, the estimation would have been too
high by only 19%.

1.3.2	 Earned Value Analysis
Figure 2 shows the earned value chart for the summer
semester. The 10% earned value gained in the first week
includes the TSP launch. Figure 3 shows the actual and
planned effort per week for the same period. While the small
deviation between the lines in Figure 2 show that the team
was able to meet their weekly planned values, Figure 3 shows
that the team spent less effort than planned to complete their
tasks. This can be attributed to two factors:

•	 The team spent most of their available effort resource of
12 hours per person per week during the spring semester
on on-task time. When the available resources for effort
increased in the summer semester to 48 hours per person
per week, the team’s plan used the same assumption
that 100% of the time available hours would be spent on
project tasks.

•	 As mentioned above, the team overestimated the effort
required for implementation tasks.

The team used the earned value (EV) analysis effectively to
track the team’s progress during the summer semester. Each
week, the team held a status meeting using the TSP weekly
meeting script. During the meeting, the team discussed both
the individual EV status and the consolidated earned value
for the team, along with any risks that threatened to impact
the team goals. Because of their attention to maintaining
progress against the schedule and quality plans and the
timely mitigation of risks, the team beat its projected
schedule and actually delivered the product one week earlier
than planned.

1.4	quality
1.4.1	Data from the Summer 2009 Semester
Because the metrics used to guide the quality decisions are
primarily lagging indicators, the team spent the first iteration
somewhat in the dark as to its quality performance. However,
at the conclusion of the first iteration, some quality data
started to become available and the team’s quality profile
began to emerge. Because of the short time available for
the project iteration and the fast pace required to meet the
schedule goals, the relevant phase of the work was often
complete by the time that clear quality trends became
visible. Even with the limited timeframe, however, it was still
possible to analyze the data and use the results to improve
some of the team’s processes. Notably, the team was able to
refine the checklists used for design and code reviews and
inspections.

1.4.2	 The Filters
At the conclusion of the summer semester, a clear image of
the team’s quality profile became visible. A portion of this
profile is discussed below.

Table 1 describes the summer cycle defect data. The data
show that 54 defects were injected during the detailed design
phase, and none were removed during the detailed design
phase; therefore, 54 defects remained at the end of detailed
design. During the detailed design review phase, no defects
were injected and 31 defects were removed; thus, at the
conclusion of the detailed design review phase, the defect
total had dropped to 23 defects remaining in the product.
This table also shows that 85 defects were injected during
detailed design and code, and all 85 defects were removed by
the end of the system test phase.

	
 	

Figure 2:	 Earned value chart for summer 2009 semester Figure 3:	 Planned vs actual hours per week for summer

2009 semester

36

A
chie

v
in

g
 A

ca

d
emic

 S
uccess

 U

sin

g
 the

 T
eam

 S
oftwa

r

e
 P

r
ocess

Phase Defects In Defects Out Running

Net Total

Detailed Design 54 54

DLD Review 31 23

DLD Inspection 11 12

Code 31 3 40

Code Review 14 26

Code
Inspection

12 14

Unit Test 10 4

Build & Int. Test 2 2

System Test 2 0

Total 85 85 0

Table 1:	 Defect data for summer 2009 semester

Based on the defect data shown in Table 1, phase and process
yields for the summer cycle were calculated. These are
shown in tables 2 and 3.

DLD Review 57%

DLD Inspections 48%

Code 7%

Code Review 35%

Code Inspection 46%

Unit Test 71%

Build and Integration Test 50%

System Test 100%

Table 2:	 Phase yields for summer 2009 semester

% Before Compile 69%

% Before Unit Test 84%

% Before Build & Int. Test 95%

% Before System Test 98%

% Before Acceptance Test 100%

Table 3:	 Process yields for summer 2009 semester

Table 2 shows the phase yields for the summer cycle. For
example, the detailed design review phase captured 57% of
the defects present at the beginning of that phase. Table 3

	

Figure 4:	 Phase time percentages

37

A
chie

v
in

g
 A

ca

d
emic

 S
uccess

 U

sin

g
 the

 T
eam

 S
oftwa

r

e
 P

r
ocess

shows the process yields for the summer cycle. For example,
69% of the defects were removed prior to the compile
phase. Taken together, these two tables clearly illustrate the
defect-filtering effect of the TSP phases. As the defects flow
through the process, each phase removes a percentage of the
defects (phase yield), resulting in an increasingly defect-free
product (process yield). The effectiveness of these filters is
highlighted by Table 3, which shows a process yield of 100%
before acceptance test. No defects have been reported by the
clients after delivery. It is established in literature that it is
cheaper to catch defects earlier in the lifecycle, and defects
found in later stages such as system test take more work to
fix [Humphreys 95]. The filtering effect of the TSP phases
resulted in only 2 defects remaining in system test; the
attention to product quality contributed greatly to the team
delivering one week ahead of schedule.

1.4.3	 Time in Phase / Focus on Detailed Design
Although the team released the product with zero defects, the
team’s phase and process yields were below the TSP quality
planning guidelines. In the postmortem, the team examined
the time-in-phase data as a way to find areas for improvement
in its phase and process performances.

Figure 4 shows the percentage of the total summer cycle
hours spent in each phase. The phases have been arranged
from left to right in descending order. This makes it easy to
see the relative amounts of time consumed by each phase.
For example, the Management and Miscellaneous phase
consumed the most time, which represents 46.0% (630.7
hours) of the total hours (1372 hours) used in the summer
cycle.

Table 2 shows that the phase yield for the detailed design
review phase was 57%; however, the TSP quality planning
guidelines suggest a phase yield of 70%. As shown in Figure
4, the percentage of time spent in the detailed level design
review phase was significantly lower that the time spent in
the detailed level design phase. The team spent 199 hours in
the detailed level design phase and 31.3 hours in the detailed
level design review phase. This yields a DLD Review-to-
Detailed-Design ratio of 0.16. However, the TSP quality
planning guidelines suggest a ratio of 0.5 or greater. Thus,
in the future, the team might consider spending more time
in the detailed level design review phase, with the goal of
improving both the phase yield for the detailed design review
phase and the team’s overall process.

1.5	 Conclusions
In their journey through the studio project, the team felt that
TSP was not only a valuable process management tool, but
also a powerful method for showing them how the pieces of
the software engineering puzzle fit together. TSP provided
multiple techniques in one cohesive package, allowing the
team members to understand software engineering at a much
deeper level. For example, TSP showed the team how and
where they could gather data and how they could analyze
that data to improve their process. Because these metrics are
lagging indicators, the team did not always find it possible to
improve their process within the bounds of the twelve-week

implementation cycle. However, the TSP has provided the
team with concrete data which they can use to improve their
process for future cycles.

The team also delivered the software product to their clients
a week ahead of schedule. During final system testing, the
system had only two documented defects in system test
over 20K LOC. The team also eliminated maintenance
costs because there were no enhancements or bug fixes to
be made. By contrast, the other teams in the MSE studio
program spent an additional two months in the fall 2009
semester on bug fixes and enhancements. The TSP enabled
Team VdashNeg to turn a struggling project into a well-
planned, well-managed learning experience in which the
team members could see how the engineering principles and
methods presented in their core courses could be meshed
into a cohesive process framework in which a high-quality
software product was developed on time and within budget.

1.6	Refe rences
[Buehler 94]
Buehler, Roger, Exploring the “Planning Fallacy”: Why
People Underestimate Their Task Completion Times,
American Psychological Association, Inc. 1994.

[Hissam 04]
Hissam, Scott; Klein, Mark; Lehoczky, John; Merson,
Paulo; Moreno, Gabriel; & Wallnau, Kurt, Performance
Property Theories for Predictable Assembly from Certifiable
Components (PACC), CMU/SEI-2004-TR-017, Carnegie
Mellon University, 2004.

[Humphreys 95]
Humphrey, Watts S., A Discipline for Software Engineering,
Addison-Wesley, 1995.

[Jorgensen 07]
Jorgensen, Magne; Faugli, Bjorn; & Gruschke, Tanja,
Characteristics of Software Engineers with Optimistic
Predictions, Journal of Systems and Software, 2007.

[Lattanze 08]
Lattanze, Anthony J., Architecting Software Intensive
Systems: A Practitioner’s Guide, Boca Raton: Auerbach,
2008.

[Pressman 05]
Pressman, Roger S., Software Engineering: A Practitioner’s
Approach, R.S. Pressman and Associates, 2005.

[SRV1 10]
http://www.surveyor.com/SRV_info.html, Surveyor
Corporation, 2010.

[Tsui 07]
Tsui, Frank; & Karam, Orlando, Essentials of Software
Engineering, Jones and Bartlett Publishers, Inc., 2007.

38

A
chie

v
in

g
 A

ca

d
emic

 S
uccess

 U

sin

g
 the

 T
eam

 S
oftwa

r

e
 P

r
ocess

Biography
Berin Babcock-McConnell
Berin Babcock-McConnell is a graduate of the Master of
Software Engineering (MSE) program at Carnegie Mellon
University.

Before joining the MSE program, Babcock-McConnell
was a software engineer for NEC Communication Systems
in Tokyo. There he was involved in the development of
application software for third generation cell phones. His
responsibilities covered a broad range from requirements
analysis to architecture design to implementation and testing.

Babcock-McConnell holds a BS in Computer Science from
Rutgers University and an MSE from Carnegie Mellon
University.

Saurabh Gupta
Software Engineer
Nextag Inc
Saurabh Gupta is a software engineer at Nextag Inc.

Saurabh holds a Master of Software Engineering degree
from Carnegie Mellon University and his bachelor’s degree
in Computer Science and Engineering from Jawarlal Nehru
Technological University, India.

Prior to Carnegie Mellon, he worked for 2 years at Adea
Inc. as a software engineer. He was involved in developing
software through the stages of the SDLC.

Jonathan Hartje
Project Manager
Applied Research Laboratories: The University of
Texas at Austin
Jonathan Hartje is a Project Manager and Software Architect
at The Applied Research Laboratories: The University of
Texas at Austin (ARL:UT).

Hartje is responsible for designing large-scale, distributed
software systems for acoustic signal processing, scientific
and autonomous behavior computing. He manages the
software engineering personnel and activities at ARL:UT
resulting in the design, implementation, testing and
integration of multiple U.S. Navy Sonar programs hosted on
manned and autonomous underwater vehicles.

Hartje holds a B.S. in Computer Science from the University
of Texas at Austin and an M.S.E from Carnegie Mellon
University.

Marsha Pomeroy-Huff, Ed.D.
Member of the Technical Staff
Software Engineering Institute
Dr. Marsha Pomeroy-Huff joined the SEI in 1992 and
is currently a member of the Professional Certification
Program, where she oversees the SEI’s TSP Mentor Coach
Certification program. She also serves as an adjunct lecturer,
studio team mentor, and TSP Coach for student teams in
Master of Software Engineering program at CMU.

As a member of the PSP/TSP Initiative Team from 1997
to 2007, she coordinated and contributed to planning,
developing, and maintaining the various courses in the PSP
and TSP product suite. Dr. Pomeroy-Huff is the primary
author of PSP Body of Knowledge and a co-author of
the TSP Body of Knowledge and the TSP Mentor Coach
Guidebook. She holds a doctorate degree in instructional
design from the University of Pittsburgh and is an SEI-
Certified PSP Developer and SEI-Certified TSP Coach.

Shigeru Sasao
Research Associate
Carnegie Mellon University
Shigeru Sasao is a research associate at Carnegie Mellon
University (CMU).

Before joining CMU, Sasao was a software engineer for
Deutsche Bank in Tokyo. There, he was responsible for
developing and maintaining fixed income trading systems
used across major financial cities in Asia.

Sasao holds a Master of Software Engineering (MSE) degree
from CMU.

Sidharth Surana
Member of Technical Staff
VMware Inc.
Sidharth Surana is a Member of Technical Staff at VMware,
Inc (NYSE: VMW)

Before joining VMware, Surana was a lead software engineer
for ExpenseAnywhere Inc. in Monroeville, PA. There, he
was responsible for leading the product development team
developing the next generation expense management solution
for the company.

Surana holds a Master of Software Engineering (MSE)
degree from Carnegie Mellon University.

39

A
IM

 C
ase

 S
tu

d

y
: M

o
v

in
g

 f
r

om

 T
S

P
 to

 C

M
M

I M
L3

Oscar A. Mondragón, ITESM Mexico
Edgar D. Fernández, SILAC

This paper describes the experience of a small Mexican
company, SILAC, which is using the Team Software Process
(TSP) as the foundation for implementing the Capability
Maturity Model Integration (CMMI) [CMMI Product Team,
2006] through Maturity Level 3 (ML3). The company is
working with the Software Industry Excellence Center
(SIE Center) of Tecnológico de Monterrey (Tec) and the
Software Engineering Institute (SEI) to pilot the Accelerated
Improvement Method (AIM), a formalization of methods
used by SEI customers to combine the best of two great
technologies. The main idea behind this approach is to
decrease the time to reach CMMI ML3 by obtaining the
synergy of combining both methodologies: self directed
teams, focus in strong personal quality, strong commitments
from engineers, short testing cycles, high performance,
organizational process assets, and managing continuous
process improvement.

The scope of the project is to achieve CMMI ML3 processes
through the use of Team Software Process (TSP) as a
foundation. As a result, a guiding principle was established:
missing processes should be developed, modified, or refined
using the TSP philosophy and resources. A process group
was created to handle this software process improvement
project and this group had to be managed as a TSP team.
This paper describes the project context, current project
status, managing the process group, the implementation
strategy for missing processes, the high-level- design
document and lessons learned. The paper mainly addresses
the first two project cycles describing activities, problems,
and opportunity areas.

1.1	 Project context
SILAC began operations in May 2006 in Zacatecas, Mexico.
Its main business was customizing web applications
for administrative domains, for government and private
customers. A typical software project last between 6 and 12
months, has a team of 4 and 7 full time engineers, and has
5,000 to 13,000 Software Lines of Code (SLOC) in size.
SILAC began using Personal Software Process (PSP) trained
developers in June 2006, and began implementing TSP in
December 2007. Regarding organizational assets, SILAC
did not have an Organizational Set of Standard Processes
(OSSP). Nowadays, SILAC has 15 people including 10
full time engineers. Mainly, one TSP software development
project is implemented at a time.

The AIM project started in November 2009 with the launch
of the SILAC’s Process Group (PG) using the “TSP 2009.09”
release and process elements from the unreleased “TSPm
2008.09.” TSPm is a TSP version for managing projects
with multiple teams. TSPm also considers the constitution
of a process group and defines new roles to handle these
new responsibilities. TSPm have also included new process
elements that address some CMMI practices for process
areas such as configuration management, organizational
process focus, organizational training, risk management,
and organizational process definition. These new process
elements are the main reason for using the TSPm as starting
point to reach CMMI ML3.

For this project, the PG defined four implementation cycles
(around 3 months each) and the following goals: a Standard
CMMI Appraisal Method for Process Implementation
(SCAMPI) B and a TSP evaluation in June 2010, and
SCAMPI A [SCAMPI Upgrade Team, 2006] ML3 in
September 2010. A TSP evaluation has an organizational
scope and characterizes aspects such as: the ratio of PSP-
trained engineers; TSP project quality results; and customer
reviews to TSP projects. Figure 1 shows the project cycles
and milestones.

AIM Case Study: Moving from TSP to CMMI ML3

Figure 1: Project cycles and milestones.

40

A
IM

 C
ase

 S
tu

d

y
: M

o
v

in
g

 f
r

om

 T
S

P
 to

 C

M
M

I M
L3

This paper describes the work accomplished through the
first two cycles. The project includes two TSP teams: one
Process Group (PG) team with four people with different time
availability and a Software Development (SD) team with six
full time engineers working in an 8 months project. SILAC
was using the Process Dashboard tool [The Software Process
Dashboard Project Team, 2010] for its TSP projects.

1.2	 SILAC TSP Background
SILAC started up with two programmers having no process
for doing software development. Projects were web-based and
mid-sized having lots of defects in user acceptance test. The
small team has code control by allowing only one developer
accessing the code at a time. After the first PSP training,
SILAC found a major change in the way it was doing things.
Schedules began to shrink and quality improved. There was one
PSP-trained developer and the code was kept under control.
SILAC growth its expectations so that new developers should
keep the quality and control of the code. Even though SILAC
found PSP training very valuable, it needed team discipline and
coordination. SILAC was also interested in achieving a process
certification. One of the stated requirements for SILAC was to
establish a process without lacking flexibility. That is having a
process without excessive bureaucracy. SILAC found TSP as a
natural step for achieving this.

1.3	 Project status
At the beginning of the AIM project, it was assumed that TSP
process elements were fully deployed in the organization. There
was a strong belief that software engineers and PG Members
understood and used TSP and PSP processes (scripts, forms,
and role descriptions); therefore, the selected strategy was to
build a plan based on the SEI TSP to CMMI mapping [McHale
2005].

Regarding personnel skills, some engineers were new to the
organization, with less than two months in the job. Some
experienced engineers had PSP training, but most of them had

not completed the PSP for Engineers course. Two members
of the PG team had no software engineering background and
the other two had it. Although PG members have been trained
in TSP, they did not fully understand many of the technical
vocabulary. There were English language barriers (most of the
engineers speak very little English). Furthermore, it was a lack
of documented guidelines - tools and policies- where engineers
could map TSP concepts to their daily activities. Everything was
well known only by two staff members who had the expertise
in processes and tools. Unfortunately, they left this knowledge
neither documented nor communicated.

Regarding the coaches, the project started with one internal
TSP coach, one external TSP coach, one CMMI consultant
and the SEI support for piloting TSPm. SILAC had an internal
TSP Certified Coach, who offered coaching services to
the development teams. He was the Coach for the software
development team which was launched using the “TSP
2009.09” release two months after the PG team was launched.
For the AIM project, SILAC internal coach was intended to
assist TSP teams for pilots. A second external coach was also
participating with the PG team. This coach started the project by
launching the PG team in November 2009 with SEI assistance
and he was responsible for guiding and coaching the process
group during the project. The external coach remotely attended
weekly PG meetings. Because of the existence of an internal
coach in the organization, it was unclear, for some months,
which one should provide post-launch coaching. As a result,
the PG team was left almost alone. Coaches did not schedule a
checkpoint during cycle one.

Two months after the PG launch in November 2009, the CMMI
consultant did an informal SCAMPI B ML3 to get an idea of
SILAC processes being used. The software development team
and the process group were interviewed during 2 days. A major
outcome was found: SILAC engineers did not understand
several TSP process elements and the gap to fulfill CMMI
ML3 appeared bigger than initially expected. Figure 2 shows
SCAMPI B ML3 findings.

SG1 SG2 SG3 GG2 GG3

R A R
A V V A R
V A A R
A V A R
V A R R R
A A A R
NA NA NA NA NA
V A A A R
A V A A R
A V A A R
A V A A R
A R A R
A V R A R
R A R
R R R R
R V A R
A A A A R
R R R

Process Areas Characterization

Validation
Organizational Process Focus
Organizational Process Definition
Organizational Training

Requirements Development
Technical Solution

Process Area
Requirements Management
Project Planning

Supplier Agreement Management

Configuration Management
Process and Product Quality Assurance

Project Monitoring and Controling
Measurment and Analysis

Integrated Project Management

Product Integration
Verification

Risk Management
Decision Analysis and Resolution

Figure 2: SCAMPI B ML3 findings

41

A
IM

 C
ase

 S
tu

d

y
: M

o
v

in
g

 f
r

om

 T
S

P
 to

 C

M
M

I M
L3

While TSP coaches did not have a deep understanding of the
CMMI model, the CMMI consultant did not have any TSP
knowledge. Therefore, CMMI consultant started training
in December 2009 and it was decided that he would be the
new PG coach after cycle one. The PG team was relaunched
in February 2010 by the new external coach (the CMMI
consultant). The new external coach assigned his effort to
train the PG in both: CMMI process areas and managing
organizational change concepts. The internal coach helped
PG members to: use the dashboard tool, capture task data,
and to consolidate calendars for weekly meetings. Although
both coaches were attending PG weekly meetings, none of
them provided enough post-launch coaching. As a natural
consequence, PG members were having troubles in both:
meeting weekly task hours and finishing assigned tasks.

Two months after the PG relaunch (April 2010, cycle 2),
the new external coach decided to perform a checkpoint to
the PG team. Results shows a calendar slip (as illustrated in
Figure 3) due to the following factors:

•	 Misunderstanding of TSP: PG members deviated
constantly from TSP scripts.

•	 Lack of Software Engineering background: Two of the
original Sr. technical members left the process group and
they were replaced by two junior-technical members with
very little or no development experience.

•	 Not enough TSP post launch support to PG members:
Coaches were not giving enough time.

•	 Poor management involvement: management did not
request any formal project status. SEI neither checked
coaches’ activities nor checked project status.

The external coach recommendation was to relaunch. He
also started providing the required post launch coaching to
the PG members.

Monitoring problems in cycle one and two could have be-
ing mitigated with proper coaching and proper pilot support.
Similarly, some PG performance problems could have being
mitigated with proper coaching and proper training.

1.4	 Managing the PG
An important aspect of TSPm 2008.09 is the institution of a
process group to handle software process improvement (SPI)
activities at the organizational level. The PG is launched as a
TSP team with the main purpose that SPI activities received
the same rigor as any TSP team. TSPm also includes process
elements for launching a process group as a TSP team and
new roles for managing the process group. The new roles have
responsibilities for creating and managing the organization’s
set of standard processes (OSSP), reporting process non-
conformance issues, organizational training, tracking coaching
activities, and other related issues. Having a process group is
a good common practice for managing process improvement
projects [McFeeley, 1996]; for instance, implementing CMMI
or managing the organizational assets for TSP projects.

There are new roles for the process group: Coaching Manager,
Process Asset and Data Repository Manager (PADRM),
Training Manager. Additionally, there are new responsibilities
for the Team Leader, Support Manager, and Quality Manager.
Both quality and support managers provide an alternative
reporting chain to management of non-compliance issues
that are not being directly addressed and resolved by the team
or team leader during operations. Support manager is the
configuration management coordinator for the OSSP. PADRM
is responsible for establishing and maintaining all aspects of the
Project Notebook, which is stored as part of the OSSP.

The initial staffing of the PG included two people with non-
software management skills and two part-time technical
people. During the first cycle, time was allocated to: become
familiar with TSP process elements; provide training in process
improvement and some CMMI process areas; and conduct an
informal SCAMPI B with the software development team and
the PG team. It was assumed that the PG team understood PSP,
TSP and SILAC software development processes. Although
the external coach participated in several weekly meetings, no
post-launch training was provided to the PG members. The
PG team had problems with the tool and members were not
properly following TSP scripts. During preparation for the post
mortem, the internal coach found that quality data and size data
was poorly collected.

For the second cycle, there was no historical data for the
quality plan and problems with gathering other project data
prevented the team in having better estimates. The SCAMPI

Figure 3: TC-AIM Earned Value
and Effort

42

A
IM

 C
ase

 S
tu

d

y
: M

o
v

in
g

 f
r

om

 T
S

P
 to

 C

M
M

I M
L3

B findings were used to make effort estimates. Regarding
the PG staffing, the two technical experts left the project
and two junior technical staff members were assigned to the
project. A new team leader for the PG was also assigned.
The training for the process areas selected for this cycle was
provided by the CMMI consultant. The project progress
started to fall behind. The PG had problems developing the
High Level Design (HLD) documentation to comply with
CMMI process areas. The structure of the HLD document is
described later on in this paper. Some HLD documents were
redone several times and others got in limbo. The PG did not
know SILAC software processes and they could not determine
if the SCAMPI B findings were really missing processes in
SILAC or just the lack of experience from the interviewed
engineers. The PG was also getting behind their task hours.
A checkpoint conducted by the new external coach made it
clear that PG was having problems understanding PSP and
TSP as well as SILAC software development processes. As
a checkpoint recommendation, management provided a PSP
review and a talk explaining how TSP is being applied and or
modified in their software development processes. In addition,
the SILAC technical expert was trained in the CMMI process
areas covered in cycle 1 and 2. He also reviewed the SCAMPI
B results and the design documents with PG members. Other
corrective actions that resulted from the checkpoint were to
relaunch cycle 2 and to provide post-launch coaching to the
process group.

1.5	the implementation strategy
The scope of the project is the implementation of CMMI
ML3 processes using TSPm process elements as a foundation.
Therefore, a guiding principle was established: missing
processes should be developed, modified, or refined using the
PSP/TSP philosophy and resources. A PG team was created
to handle this SPI project and it should be managed as a TSP
team. To address this project, four cycles were identified:

a.)	 Building the infrastructure: The first step was to provide
basic training in process improvement projects and
CMMI. The standards to define/modify process elements
were established as well as naming conventions. A
repository for the PG was created and the tool for
publishing the OSSP was identified. A spreadsheet for
handling launch forms was also developed.

b.)	 Process and project management process areas: The
second step was to relaunch the operations team using
TSPm scripts and the spreadsheet. The PG started the
implementation of the Organizational Process Definition
(OPD) and the Organizational Process Focus (OPF)
Process Areas (PA) to help it manage the SPI project. The
process to define and refine processes was documented
and the priority for implementing processes was
established. Similarly, the PG started the Organizational
Training (OT) PA to handle training needs and register
training records. Project management PAs (Project
Planning –PP, project monitoring and controlling –
PMC, and Risk Management –RSKM), needed small
refinements. Integrated Project Management (IPM) PA

helps TSP teams using and maintaining the OSSP. The
Requirement Management (REQM) PA was reviewed
and a tool was identified. For the support category, the
Process and Product Quality Assurance (PPQA) and
the Configuration Management areas were included in
this cycle. PPQA was reviewed from both perspectives:
as a process area and as a generic practice. In CM, the
new TSPm scripts and forms were reviewed and some
CM tools for handling the configuration management
system were identified. In addition, TSP processes
elements were captured in the OSSP tool.

c.)	 Engineering and advance project management process
areas: The third step was to pilot new process elements
from step 2 and to continue with the engineering and
remaining process areas. These PA have major gaps
in TSP implementations and require a major effort;
therefore, they were left last to allow the PG mature
their skills, infrastructure and communication channels.
The Requirements Development (RD), Technical
Solution (TS), Product Integration (PI), Verification
(VER) and Validation (VAL) PAs are to be reviewed
with the REQ, DEV, HLD, IMP, TEST1..3, and INS
scripts. The scripts are to be updated to reflect SILAC
operations and to add missing processes. The Decision
Analysis and Resolution (DAR) PA helps TSP team
members to take informed decisions of mayor project
problems. The Measurement and Analysis (MA)
PA helps developing indicators to fulfill project and
organizational information needs. Some indicators
needed to be documented and others to be developed.
This cycle should finish covering all the PAs at CMMI
ML3.

d.)	 Maturing and refining processes: The fourth step
was to pilot new process elements from step 3 and to
conduct both an SCAMPI B and a TSP Evaluation
of the company. Areas of opportunity and Process
Improvement Proposals (PIPs) resulting from both
evaluations shall be addressed in this cycle so that a
SCAMPI A can be conducted.

1.6	the high level design document
There is a need to identify and register required changes to
TSP process elements as a result of fulfilling the gaps with
CMMI ML3. It is also useful to document TSP-process-
elements relationships with a CMMI process area as well
as the relations among these process elements. A custom
High Level Design (HLD) template was developed to
capture these needs and the design rational. There must be
a HLD document for each of the process areas at CMMI
ML 3. The HLD template includes sections to specify:
process-area practices and any finding registered during the
informal SCAMPI B (CMMI gap analysis); a description
of the association between a TSP process element within
a TSP life cycle, a description of the association between
a TSP process element (role, script, form, specification,
guideline, checklist) and the process-area practices; a
change description for each identified TSP process element;

43

A
IM

 C
ase

 S
tu

d

y
: M

o
v

in
g

 f
r

om

 T
S

P
 to

 C

M
M

I M
L3

a description for a new process element if need it; and a flow
diagram describing relations among TSP process elements.
Fulfilling this document allows people to identify relations
considering several points of views and to attain a major
understanding of TSP process elements and CMMI process
area objectives.

1.7	 Lessons learned
In order to be successful with an AIM implementation the
following aspects should be considered:

Process group membership: it must include process
people with experience in implementing software process
improvement initiatives. Also, it must include expert-technical
people that make use of company processes. They can provide
value added amendments to current processes.

Process group training: members must have hands on
experience in both TSP processes and company-software-
development processes. Some members must have prior
software development experience. Members must have being
trained in the CMMI process model. Additionally, training in
managing software process improvement projects is highly
recommended.

Coach training: it is highly recommended that the process-
group coach has previous hands-on-experience in coaching
TSP teams. Similarly, the process-group coach should have
previous hands-on-experience implementing CMMI process
improvement projects. Having this mixed expertise allow
keeping to the principles of TSP while both fulfilling CMMI
requirements and adding value to the organization with the
new process elements.

Handling internal and external coaches: Coaching
responsibilities must be explicit and documented at the
beginning of the project. Coaches should have frequent status
meetings. Cross checkpoints among TSP teams should also be
considered.

AIM Implementation: A TSP evaluation and a SCAMPI
B shall be conducted as first steps of the project. These
assessment findings provide a real and current status of the
organizational-process use as well as the bases to estimate the
effort to comply with both reference models: TSP and CMMI.
In our case, it was assumed that TSP was fully implemented
and project plans were made using this incorrect assumption.
High Level Design (HLD) Document: this document
addresses several important factors before you modify or add
process elements: process needs or new process requirements;
TSP life cycle phase where the new process need will be
used, the process element where the new process need will be
implemented, the relations among affected process elements, a
change description on how process elements will be modified.
Before the process group modify current process elements,
the HLD document is a good mean to ensure that the process
group understands both CMMI process needs and TSP current
processes.

Post Launch Coaching: New process groups are exposed
to PSP, TSP, CMMI, and process improvement concepts. If

some members of the process group are new to any of these
technologies, then they need a lot of support in using the
tool; registering task, effort, and defect data; following roles
responsibilities; balancing personal calendars; conducting
weekly meetings; doing management status reports;
conducting inspections; doing postmortems; interpreting
project data; establishing and maintaining a process
asset library; managing an organizational change; and
understanding and interpreting the CMMI model and process
areas.

AIM or TSPm support: SEI should provide implementation
guidelines for these pilots as well as a close monitoring
to avoid or mitigate potential problems. The essence of
the TSP process elements should be documented so that
CMMI people trying to understand the TSP philosophy
can have a guiding document, avoiding misinterpretations
and duplication of tasks when implementing AIM to reach
CMMI ML3.

TSP and CMMI are complementary technologies that
combined provide an amazing synergy. Combining both
technologies is not an easy task, though. When practitioners
of one technology try to assimilate the other technology, they
can get confuse and may misunderstand the concepts and
philosophies behind the technology. This issue may be true
especially for TSP coaches or CMMI consultants trying for
first time the other technology. Because these technologies
are sometimes perceived as opponent technologies; proper
objective support is need it to overcome this issue.

References
McHale, Jim and Wall S., Daniel (2005). Mapping TSP to
CMMI (CMU/SEI-2004-TR-0014), Pittsburgh, PA: Carnegie
Mellon Software Engineering Institute.

SCAMPI Upgrade Team (2006). Standard CMMI Appraisal
Method for Process Improvement (SCAMPI) A, Version 1.2:
Method Definition Document (CMU/SEI-2006-HB-002),
Pittsburgh, PA: Carnegie Mellon Software Engineering
Institute.

CMMI Product Team (2006). CMMI for Development,
Version 1.2 (CMU/SEI-2006-TR-008), Pittsburgh, PA:
Carnegie Mellon University. Available at: http://www.sei.
cmu.edu/pub/documents/06.reports/pdf/06tr008.pdf

McFeeley, Bob (1996), IDEAL: A User’s Guide for Software
Process Improvement (CMU/SEI-96-HB-001), Pittsburgh,
PA: Carnegie Mellon Software Engineering Institute.

The Software Process Dashboard Initiative (2010).
Downloaded in May 2010 at http://www.processdash.com/
home.

44

A
IM

 C
ase

 S
tu

d

y
: M

o
v

in
g

 f
r

om

 T
S

P
 to

 C

M
M

I M
L3

Biography
Oscar A. Mondragón
Oscar A. Mondragon is a member of the technical staff at the
SIECenter – ITESM Mexico since May 2004. Mondragon
works as a sr. consultant for software quality models and
process improvement methods. Mondragon is a SEI Certified
instructor for the Intro to CMMI DEV, a PSP professional,
and recently a TSP coach . In Latin American, Mondragon
guides companies in their software process improvement
projects using the CMMI model, develops SCAMPI B,
prepares EPGs, and evaluates pilots. Before joining the
SIECenter, Mondragon was as a research assistant at the
System and Software Engineering Affinity Laboratory at
the University of Texas at El Paso (UTEP), had two research
appointments at the Real-time System Lab at the University
of Pennsylvania and an internship at the AT&T labs at
Middletown. Also, Mondragon was a research professor
at ITESM where he customized seminars for Mexican
companies in quality assurance, independent verification
and validation, and software testing; tought undergraduate
courses in Software Engineering; and did join research with
the Electrical and Engineering department at UTEP. Dr.
Mondragon holds a Ph.D. degree in Computer Engineering
from UTEP and a Masters degree in Computer Science
with a specialization in Software Engineering from the
California State University at Sacramento. He did his master
and doctoral studies as a Fulbright and CONACYT grantee,
respectively. Dr. Mondragon is an IEEE Certified Software
Developer Professional (CSDP) and a member of the core
committee for CSDA/CSDP. Dr. Mondragon has published
journals and articles in formal specification, verification
& validation, requirements engineering, and process
improvements in small settings.

Edgar D. Fernandez
Edgar D. Fernandez is SILAC co-founder and Operations
Manager since May 2006. Fernandez is a PSP Certified
Developer and TSP Certified Coach. As a developer,
Fernandez was part of two important projects for Mexico’s
and Zacatecas’ Government, using PHP, MySQL and
Open Source platforms. Fernandez was part of Zacatecas’
Government IT program, by participating in conferences
and PSP/TSP diffusion. Fernandez is also BPoC for the SEI
TSP Suite, and offers PSP/TSP services in Mexico and Latin
America. Fernandez has also a Master Degree in Software
Engineering by CIMAT. Fernandez participates, nowadays,
as a TSP Coach for SILAC development teams and process
mentor for the EPG, who is implementing TC-AIM method
into the organization, and offers Team Leader and Coaching
services for Quarksoft S. A., a mexican software company.

www.sei.cmu.edu/tspsymposium

