
SiLK: A Tool Suite for Unsampled Network Flow
Analysis at Scale

Mark Thomas, Leigh Metcalf, Jonathan Spring, Paul Krystosek, Katherine Prevost
netsa-contact@cert.org

CERT® Coordination Center, Software Engineering Institute
Publication CERTCC-2014-24

This paper was published in the IEEE 3rd International Congress on Big Data

June 2014

Executive Summary
A large organization can generate over ten billion network flow records per day, a
high-velocity data source. Finding useful, security-related anomalies in this vol-
ume of data is challenging. Most large network flow tools sample the data to make
the problem manageable, but sampling unacceptably reduces the fidelity of ana-
lytic conclusions. In this paper we discuss SiLK, a tool suite created to analyze
this high-volume data source without sampling. SiLK implementation and archi-
tectural design are optimized to manage this Big Data problem. SiLK provides not
just network flow capture and analysis, but also includes tools to analyze large sets
and dictionaries that frequently relate to network flow data, incorporating higher-
variety data sources. These tools integrate disparate data sources with SiLK analy-
sis.

1 Introduction

SiLK (System for Internet-Level Knowledge) [1] is a comprehensive open-source
tool suite for storing and analyzing metadata on network traffic traces, called net-
work flow records. SiLK is optimized for security analysis. Today, large organi-
zations routinely generate over 10 billion network flow records daily, which sum-
marize 250-280 TB of network traffic. SiLK permits analysts to make relevant,

©2014 Carnegie Mellon University

mailto:netsa-contact@cert.org?subject=CERTCC-2014-24

SiLK: Analysis at Scale CERT/CC

reliable cyber-security conclusions about such traffic volumes efficiently across
years of historical data without sampling the traffic.

This paper presents an overview of the algorithmic and architectural designs
that enable analysis of such large data sets. Development work on SiLK began
in the early 2000s, and the first open-source version was published on December
22, 2003 by the CERT program of the Software Engineering Institute at Carnegie
Mellon University. Thus, this is an overview of over 10 years of development;
source code of all aspects discussed are available with documentation from http:

//tools.netsa.cert.org/silk.
The primary goal of the SiLK tools is enhancing the situational awareness of

the analyst and scaling to function on the largest instrumented networks, drawing
heavily on the UNIX philosophy of smaller tools flexibly interconnected to perform
complex tasks. This goal leads to practical requirements such as reduction of worst-
case analysis times, so arbitrary analyst queries can compute, for example.

Network routers create flow records by aggregating packets observed within a
certain time frame and the same values in the following fields: IP protocol, source
and destination IP address, and source and destination port—termed the five-tuple.
IP addresses are a key aspect of all network traffic, they are the globally-routable
identifier for endpoints. Packets with the same five-tuple represent one commu-
nication stream. Flow records contain summary data about the traffic stream, in-
cluding start time, duration, the five-tuple, TCP flag information, total bytes and
packets, some routing information and, optionally, application identifiers.

The paper describes our tools to work with this network flow data; it is orga-
nized as follows: Section 3 describes the challenges of data collection and stor-
age at scale and SiLK’s solutions to these challenges; Section 4 describes ana-
lytic goals, how SiLK is optimized to enable those goals, and presents some tim-
ing statistics compared to other common tools; Section 5 describes how SiLK
integrates certain heterogeneous data in network flow analysis and presents data
demonstrating SiLK’s rapid processing of large sets of IP addresses; and Section 6
presents concluding remarks.

2 Related Work

Network traffic analysis tools have a long history. The de facto tool for passive
packet capture is tcpdump [2], and the de facto human interface for full-packet
analysis is the open-source Wireshark [3]. Both of these tools provide full details of
the observed network traffic – which can quickly overwhelm storage and analysis
resources on large networks. SiLK data summarizes full packet capture, permitting
greater scale. Active analysis of networks is possible, via tools such as nmap [4],

CERTCC-2014-24 2

http://tools.netsa.cert.org/silk
http://tools.netsa.cert.org/silk

SiLK: Analysis at Scale CERT/CC

however SiLK is a passive network capture and analysis tool suite, and thus attacks
different questions than active tools.

There are other open-source passive capture tool suites, such as Argus [5].
Argus stores more data about a network flow than SiLK, and like SiLK provides
analysis capability as well as collection, however in order to calculate the additional
metadata an Argus sensor must see both incoming and outgoing communications
– that is, the routing must be symmetric. Internet routing is not guaranteed to
be symmetric; in fact, Internet architecture often encourages asymmetric routing.
Unidirectional flows are robust in case of asymmetric routing. Some formats create
unidirectional flows, like Cisco NetFlow v5, and some flowmeters, like Argus,
create bidirectional flows that describe both sides of the communication in one
record; some formats, like NetFlow v9, are configurable for either. One SiLK flow
record is strictly unidirectional, a second record is stored for the other side of the
communication, which provides robustness for more complex sensor networks.

There are also various proprietary solutions for passive network capture, no-
tably by Cisco, who inspired the standard IPFIX format [6, 7] – but also by most
routing hardware vendors. These solutions are embedded in routers, which reduces
flexibility: the SiLK suite flowmeter can collect data at more flexible sensor points.
These proprietary collection solutions generally do not provide tools for analysis.
The SiLK suite encompasses both collection and analysis, and the SiLK analysis
tools can ingest data from routers or the native SiLK flowmeter.

3 Data capture and storage

The data capture and storage solutions used in SiLK are designed to optimize anal-
ysis. The two primary features to support security analysis are unsampled traffic
data and time-centric queries. Within these constraints, SiLK is engineered to be
reliable despite the velocity and volume of network data that must be processed
and stored.

One central tenet of network security analysis, as opposed to traffic engineer-
ing, is that the analyst cannot use a statistical representation of the traffic. Traffic
engineers can sample packets at 1:1000 and make viable conclusions. Security
analysts do not have this luxury – we miss relevant attacks.1 Therefore, SiLK em-
phasizes unsampled network flow; we have achieved unsampled monitoring at 20
Gbps.

Data storage must be able to account for widely variable queries while con-
stantly ingesting new data. We have been able to design a storage solution capable

1E.g., 10 years of annual FloCon proceedings support this:
www.flocon.org/presentations.html

CERTCC-2014-24 3

www.flocon.org/presentations.html

SiLK: Analysis at Scale CERT/CC

of providing reliable query times even in the worst case while only requiring the
data to be written once. Time is an essential feature of network flow data analysis,
and we leverage this analysis goal in the storage solution.

3.1 Capture

There are many flowmeters which convert network traffic to many network flow
formats; SiLK then ingests network flow and makes SiLK-format records. In the
simplest case, SiLK runs on the same machine as the flowmeter; this is the case
we introduce here. There is a more complicated scenario in which multiple sensors
capture data in a distributed sensor network which transmit the data to a single
SiLK storage instance, for details see [8].

Running SiLK on a single machine uses the following configuration. The
rwflowpack daemon collects flow records, converts the foreign flow formats such
as NetFlow or IPFIX to the SiLK format (trimming some information to optimize
performance), and categorizes the SiLK flow records to determine where on disk
they will be stored. Finally, rwflowpack writes the SiLK records into binary flat
files where each file represents a specific category, sensor, and hour. This whole
process is referred to as packing [8]. Packing logic refers to the decision process
that rwflowpack uses to categorize a flow, described in Algorithm 1 [9].

Since SiLK handles only uni-flows, the system splits traffic into incoming-bins
and outgoing-bins. This partition helps match an incoming flow with the related
outgoing flow. Flows are further subdivided to assist analysis, storage, and trou-
bleshooting. The primary subdivisions break incoming and outgoing into unrouted
and blocked by ACL policy (innull, outnull), and by protocol/port combinations
(e.g., inweb, outicmp). For collectors on machines that act as both gateway and
internal router it is normal to observe internal to internal (int2int) traffic. Exter-
nal to external (ext2ext) traffic typically indicates a configuration error in SiLK or
upstream, and “other” traffic almost always represents a configuration error. The
packing logic is completely configurable using plug-ins, and so arbitrary types
could be used if desired.

SiLK can leverage our open-source YAF (Yet Another Flowmeter) [10] to pro-
duce network flows. YAF takes raw network traffic and converts it to the RFC-
standard flow format (IPFIX [6]); with some specialized hardware YAF can process
a 20 Gbps network connection without sampling. YAF is not technologically re-
quired, SiLK can ingest data from other source types. However, to our knowledge
20 Gbps is as fast as any existing open-source flowmeter can process unsampled
flow. Furthermore, the flowmeter is the limiting factor in collection – SiLK keeps
up with processing and storing the flows once they are produced.

CERTCC-2014-24 4

SiLK: Analysis at Scale CERT/CC

Algorithm 1 rwflowpack packing logic
if flow in discarded:
continue

elif source-network is external || sIP in external-ipblocks || in_interface in
external-interfaces:

if destination-network is null || dIP in null-ipblocks || out_interface in null-
interfaces:

pack as innull
elif destination-network is internal || dIP in internal-ipblocks || out_interface

in internal-interfaces:
pack as in, inicmp, or inweb by protocol/ports

elif destination-network is external || dIP in external-ipblocks || out_interface
in external-interfaces:

pack as ext2ext
else:
pack as other

elif source-network is internal || sIP in internal-ipblocks || in_interface in
internal-interfaces:

if destination-network is null || dIP in null-ipblocks || out_interface in null-
interfaces:

pack as outnull
elif destination-network is external || dIP in external-ipblocks || out_interface

in external-interfaces:
pack as out, outicmp, or outweb by protocol/ports

elif destination-network is internal || dIP in internal-ipblocks || out_interface
in internal-interfaces:

pack as int2int
else:
pack as other

else:
pack as other

3.2 Storage

SiLK data is stored simply but elegantly, providing good performance for both
storage and analysis. This section presents the storage decisions made, and then
the rationale. First we describe the record format, and then the on-disk file-storage
partitioning decisions.

The SiLK binary record format is optimized for network flow. A fully-expanded,

CERTCC-2014-24 5

SiLK: Analysis at Scale CERT/CC

standard SiLK record containing only IPv4 addresses is 52 bytes; with IPv6 each
record is 88 bytes. The full format is described in Table 1. To further reduce record
size, SiLK typically stores values in as few bits as possible and can remove fields
sent by third-party flowmeters which are not often used in security analysis, such
as SNMP interface or next-hop IP. Finally, standard compression (zlib, LZO) can
further reduce file size.

Table 1: SiLK default record format (IPv4 and IPv6) [11]
IPv4
Bytes

IPv6
Bytes

Field Description

0-7 0-7 sTime Flow start time as milliseconds since UNIX epoch

8-11 8-11 duration Duration of flow in milliseconds (max 49 days)

12-13 12-13 sPort Source port

14-15 14-15 dPort Destination port

16 16 protocol IP protocol

17 17 class,type flowtype

18-19 18-19 sensor Sensor ID as set by SiLK packer

20 20 flags Cumulative OR of all TCP flags

21 21 initialFlags TCP flags in first packet or 0

22 22 sessionFlags Cumulative OR of all TCP flags sans first packet or 0

23 23 attributes Various attributes of the record

24-25 24-25 application Guess as to the content the flow

26-27 26-27 n/a Unused

28-29 28-29 in Router incoming SNMP interface

30-31 30-31 out Router outgoing SNMP interface

32-35 32-35 packets Total packets in the flow

36-39 36-39 bytes Total bytes in the flow

40-43 40-55 sIP Source IP

44-47 56-71 dIP Destination IP

48-51 72-87 nhIP Router Next Hop IP

Each file of binary SiLK records has a small header, usually between 24 and
88 bytes. The file header can be longer if it contains metadata about the commands
used to create the file. Reading files in this binary format is efficient. For example,
as displayed in Figure 1 reading a sample file of 28,107,300 records takes a single
machine about 6 seconds for IPv4 addresses or 9.5 seconds if IPv6 is enabled.

CERTCC-2014-24 6

SiLK: Analysis at Scale CERT/CC

Format Compression File Size (B) B/sec Median t (s)
generic none 1,461,583,708 102,445,062 14.267
generic lzo 662,272,502 100,010,948 6.622
ipv6 none 2,473,449,352 83,166,314 29.741
ipv6 lzo 818,932,420 85,252,177 9.606

Figure 1: Median time to read and process one SiLK file of 28,107,300 records with
rwfilter, considering different file formats on a commodity RHEL5 machine with
4 3.10 GHz cores and 4 GB of RAM. Each test was run seven times, table reports
median time to completion as reported by time command build in to zsh 4.2.6.

Since the process is I/O bound, although compression uses processing resources it
is a net benefit to read time.

On disk, SiLK data is files organized via partition by type, time, and sen-
sor. Within the files, the records are stored in the order they arrived at the fi-
nal storage location. The storage hierarchy is configurable; the default form is
SILK_DATA_ROOTDIR/TYPE/YYYY/MM/DD/. TYPE is decided by the packing logic
in Algorithm 1 [8, p. A.4].

SiLK data is partitioned primarily by time because this organization supports
the majority of queries. Short term reviews of recent events are obviously useful.
Even for wide-ranging historical queries, the analyst is primarily interested in the
time period as the salient factor.

While there are a number of indexes that might be used effectively instead of
partitioning by type, time, and sensor, one drawback of any indexing scheme is
the overhead required to build and use indexes. Which dimensions of SiLK data
a query is based on varies widely, and many of these dimensions are rather well-
filled. For example, while TCP port numbers are useful analytically, almost all
TCP port numbers will appear in every hour of data in a sizable installation. With
a very large installation, even IP addresses have this problem. With such a large
installation, narrowing queries by specific internal network segments is a more
useful strategy. The hierarchy can be partitioned by sensor to this end while still
allowing unusual traffic to be observed, such as routing past unexpected sensors.

Because network flow data are spread fairly evenly within each partition, the
utility of indexes is decreased. Even when random access is possible, the cost of
accessing the index and randomly accessing the partition is considerable, and a full
scan of the partition has competitive performance.

This can be improved if the partitions are clustered on a specific field of interest,
but every additional clustering order requires another full copy of the data, limiting
the amount of archival data that may be stored. It is common for breaches to go

CERTCC-2014-24 7

SiLK: Analysis at Scale CERT/CC

unnoticed for months, if not years [12, 13], and so limiting archival data below this
threshold is not acceptable analytically if the data will maintain its utility.

All of these additions or indexes would increase the amount of overhead data
that must be processed and examined, both at the time new data arrives, and at the
time data is queried. By focusing instead of decreasing the overhead of the system,
SiLK makes it possible to optimize for near-real-time streaming processing of very
large amounts of uniform data, which is only ever written once.

One trade-off is that SiLK does not have especially fast access patterns for
any specific network flow query; however worst case performance is minimized.
Therefore, any query will run in predictable time, based on the duration of the net-
work traffic trace to be examined. Since queries tend to vary widely, it is especially
important to minimize worst-case query times. Furthermore, a rough index using
IP set files (see Section 5) for the source and destination IP addresses observed in
each hour’s worth of files can be used to limit full scans of files. Figure 3 demon-
strates that rwset can extract such IP sets quickly.

In summary, full scans of the data are generally considered resource intensive
compared to random access—but this is only true if queries are either highly se-
lective or highly predictable. In the environment of computer network security
analysis, for which SiLK is optimized, queries rarely have these properties. As a
result, the strategy of optimizing for full scans of the data partitioned by time range
has proved in our experience to be most usable for analysts and provided excellent
results. In contrast, traditional database engines usually focus on performance and
reliability when dealing with data that changes over time, and must be able to an-
swer predictable, highly-selective queries very quickly. As elaborated above, these
are not features of network security analysis of flow data.

4 Analyzing data

The CERT program has been analyzing network flow data for at least as long as we
have been writing SiLK. There is strong feedback between the tools’ capabilities
and the analysts’ needs. The handbook for SiLK analysis is large [14] – this section
only can highlight a few tools. For examples of operational analysis with SiLK, see
[15, 16]. This synergy between development and analysis has created an effective,
refined set of tools. There are dozens of specialized command-line tools for flow
analysis in the SiLK tool suite; we will focus on the central tool, rwfilter.

Most simply, rwfilter serves two purposes: an interface to the SiLK data
store for retrieving records, and to partition those records based on flexible input
criteria into “pass” and “fail” data streams. The high-level data flow through one
rwfilter call is described in Algorithm 2. The algorithms in rwfilter are not

CERTCC-2014-24 8

SiLK: Analysis at Scale CERT/CC

Algorithm 2 Basic rwfilter logic
select files to read([sensor],[date],[hour],[type],[file name])
read user partitioning criteria
read user output options([output_pass],[output_fail])
for file in files:
for records in file:
if record matches criteria:

output_pass.write(record)
else:

output_fail.write(record)

grep rwfilter

ru
nt

im
e

(s
ec

)
0

10
20

30
40

50
60 one IP address

IP set

Figure 2: Timing results for searching through 12,391,000 flow records for either
one IP address or a set of 43,096 random IP addresses, using rwfilter and grep

on the same machine (64 2 GHz processors, 192 GB RAM).

complex in themselves, but managing the efficient and robust implementation of
the 112 switches necessary to support even relatively simple analysis of network
flow at scale is not trivial.

The SiLK tools are much more efficient than the standard Linux text-based
software tools for analyzing network flow. Figure 2 displays the timing results for
searching through 12+ million flow records for both a single IP address and a set
of IP addresses. The SiLK tools not only are faster, they are much more consistent:
both queries take about two seconds. In the case of looking for just one IP, the
Linux tools take about 8 times longer to run. But as the query becomes more
complex, the optimizations for SiLK are more obvious, as the Linux tools take 28
times longer to run.

CERTCC-2014-24 9

SiLK: Analysis at Scale CERT/CC

In addition to improved performance, rwfilter also facilitates big analysis in
other ways: query metadata and iteration. rwfilter stores the commands used to
create the output in the header of the output file. These breadcrumbs are invaluable
for analysts to track their thought process. Network analysis is complex, and often
requires iteration. rwfilter results are frequently processed by further rwfilter
queries to refine results. The iterative characteristics of rwfilter are based on the
fact it both ingests and outputs SiLK binary files, and this feature permits the ana-
lyst to iteratively grow complex queries efficiently. The breadcrumbs in the query
metadata ensure the analyst remembers where they are in the iteration process.

The tool suite includes several other useful tools, such as rwstats, rwcut,
rwsort, and rwuniq. rwstats provides flexible summary statistics based on any
combination of fields in a SiLK record, helping answer such analysis questions as,
for example, which host IP address sent the most DNS traffic yesterday. rwcut pro-
duces human-readable output. rwsort sorts SiLK records based on user-supplied
fields. rwcut, rwsort, and rwuniq are analogous to the standard UNIX utilities
cut, sort, and uniq used for text processing. These SiLK tools support flexi-
ble, robust analysis of big network data while maintaining the practical focus by
keeping the data binary and compact as much as possible so the analysis is compu-
tationally practical.

The SiLK tool suite has a variety of tools for manipulating IP addresses, both
in respect to network flows and independently. These SiLK tools are often orders
of magnitude faster than text-processing tools. Figure 3 displays the completion
time for two different tasks. The left side is a command to extract all the unique
source IP addresses from 12,391,000 flow records; the same file and machine as for
Figure 2. Note the log scale – the SiLK tool rwset completes in 2.8 seconds, while
the other tools require 818 seconds (13+ minutes). On the right of Figure 3 SiLK
shows an even bigger advantage over the common tool tcpdump – 433 seconds for
SiLK versus 71242 (19+ hours) to extract and count the number of packets in a 39
GB file.

5 Additional Data Structures

Network flow analysis is the core competency of the SiLK tool suite, but SiLK’s
largest advantage may be the processing and integration of different data types
related to network flow. Since the SiLK capture and storage solutions do no sam-
pling, the tools to work with the related data must also be improved in order to cope
with the large data volumes. Primarily, these tools focus on IP address processing
and labeling such as sets and prefix maps. The IP set libraries are also available in
a stand-alone version that does not require the rest of the SiLK tool suite.

CERTCC-2014-24 10

SiLK: Analysis at Scale CERT/CC

extract IPs from file

ru
nt

im
e

(s
ec

)

1
5

10
50

50
0 SiLK

tools

*nix
tools

count sessions in 39GB file

1
10

0
10

00
0

SiLK
tools

*nix
tools

Figure 3: Two cases where SiLK tools are orders of magnitude more efficient than
non-specialized tools. Left side is time required to extract all the unique source
IP addresses from 12,391,000 flow records, using rwset or the *nix tools cut

| sort | uniq. Right side is rwp2yaf2silk versus tcpdump | wc in counting
packets/sessions in a large full packet capture file. Note the logarithmic scales.

SiLK IP sets are optimized in order to scale to Internet-sized sets of IP ad-
dresses while remaining practical both for long-term storage and when interacting
with other large sets or vast amounts of network flow. To this end, IP sets use
an in-memory data structure optimized for access speed and a different, on-disk
representation optimized for minimum size. The on-disk representation is partic-
ularly good for sparse sets; as of SiLK 3.7.0, version 4 IP set files can be created
with a slightly different format that is better suited for densely populated sets while
retaining most of the advantages for sparse sets in the version 2 IP set format.

In RAM, IP sets are initialized as an array of 65,536 (216) pointers, one for
each possible /16 CIDR block2 in IPv4 space. When the first address in a /16 is
loaded into memory, a bitmap of 65,536 bits is allocated to the pointer, where each
bit represents one of the addresses in the /16. The bitmap is represented as an array

2Classless Inter-Domain Routing (CIDR) prefixes note network size [17]. For a /n network, IPv4
size is 232−n and IPv6 size is 2128−n.

CERTCC-2014-24 11

SiLK: Analysis at Scale CERT/CC

Algorithm 3 Reading and writing IP sets
read(file.set):
for each cidr_24_block in file.set:
if cidr_16_block of cidr_24_block not seen:

allocate cidr_16_block in mem.set
for each 32_bit_word in cidr_24_block:

cidr_16_block[cidr_27_block] := 32_bit_word

write(file.set):
write(file_header)
for each cidr_16_block in mem.set:
data := read(8 cidr_27_blocks)
if data:

write(cidr_24_block)

of 2,048 32-bit unsigned integers, where each 32-bit integer is a bitmap of a /27
CIDR block.

However, on disk each populated /24 CIDR block (made up of 256 addresses)
is represented by a block of 9 32-bit words. The first word encodes the base IP
address (i.e., a.b.c.0 where 0≤ a,b,c≤ 255) and the other 8 words form a 256-bit
array to encode the 256 addresses in the /24; an IP address is in the set if its bit is
set. The functions for reading and writing IP sets handle the conversion between
these two formats, as described in Algorithm 3.

The disk format achieves size savings; the memory format improves access
speed. A sparse IP set size is reduced greatly by the on-disk format. There are
many 0’s in a sparse set; the disk format does not store these zeros, but is structured
in such a way that the information is retained.

On the other hand, while the initial (Version 2) IPset disk format is good for
sparse arrays and sets, it is bad for dense arrays, since a full /8 would have 65,536
/24s of 288 bits each. This can lead to unnecessarily large set files. Version 4 IPset
files (introduced in SiLK 3.7.0) attempt to fix the problems of storing dense IPsets
with the following rules:

• For CIDR blocks that contain 256 or more IPs, the new format contains the
IP and a single byte for the netblock (CIDR) prefix. Space savings are large:
“10.0.0.0/8” is reduced from more than 2×106 bytes to five.

• For smaller CIDR blocks, if noncontiguous IPs or CIDR blocks appear,
the file contains the base IP address, a special value for the prefix, and a
256-bit bitmap (similar to that in SiLK-2) indicating which IPs are active.
Thus, to store 10.11.12.13 and 10.11.12.15, the file contains the equivalent

CERTCC-2014-24 12

SiLK: Analysis at Scale CERT/CC

of “10.11.12.0 129”. The 129 indicates that a bitmap follows. Bits 13 and
15 are set in that bitmap.

• If a single IP or CIDR block appears in the IPv4/24, the file may use either
representation.

Algorithm 4 Basic set operations with SiLK IP sets
union(sets):
for each cidr_16_block in set1:
if cidr_16_block in set2:

for each bitmap in cidr_16_block:
set2[bitmap] |= set1[bitmap]

else:
memcpy(set2[bitmap], set1[bitmap])

output set2

intersect(sets):
for each cidr_16_block in set2:
if cidr_16_block not in set1:

free set2[cidr_16_block]
else:

has_content = 0
for each bitmap in cidr_16_block:
set2[bitmap] &= set1[bitmap]
has_content |= set2[bitmap]

if has_content == 0:
free set2[cidr_16_block]

output set2

difference(sets):
#compute set2 = set2 - set1

for each cidr_16_block in set2:
if cidr_16_block in set1:

has_content = 0
for each bitmap in cidr_16_block:
set2[bitmap] &= ~(set1[bitmap])
has_content |= set2[bitmap]

if has_content == 0:
free set2[cidr_16_block]

output set2

CERTCC-2014-24 13

SiLK: Analysis at Scale CERT/CC

Set math with these optimized data structures is much faster. The functions for
intersection, union, and set difference are described in Algorithm 4. The perfor-
mance for these operations on several sizes and heterogeneity of sets is displayed
in Figure 4 with detailed results displayed in Table 3. Each reports the mean and
median of seven runs of each operation. These tests use certain sets to test SiLK
tool performance which are defined in Table 2.

Table 2: Details of sets used in Figure 4 and Table 3
Name Description # of IPs file size (B)
odd x.x.x.y ∈ 0.0.0.0/0 : y%2 = 1 2,147,483,648 603,979,833
even x.x.x.y ∈ 0.0.0.0/0 : y%2 = 0 2,147,483,648 603,979,834
all x.x.x.y ∈ 0.0.0.0/0 4,294,967,296 603,979,833

rand randomly selected 43,096 1,549,393
10K randomly selected 10,000 variable
1M randomly selected 1,000,000 variable

RFC1918 unrouted IPs [18] 336,723,712 938

Prefix maps are a data format used by SiLK to map bit strings (usually IP
addresses) to an associated text value. The base of the format is the “trie” data
structure, “a tree for storing strings in which there is one node for every common
prefix” [19]. Bit strings are used because of their compact representation of the
data.

SiLK uses tries because they are efficient at storing data in which many keys
with the same prefix represent the same value. This is common for IP addresses
where large CIDR blocks, perhaps 224 IP addresses, may map to a single value. A
trie compactly represents this mapping as a single entry.

Algorithm 5 describes the method for creating a prefix map. The trie nodes are
stored as entries in a contiguous array of 32-bit integers, which reduces memory
allocation overhead. Every node is two 32-bit numbers, one for each the left and
right child of the node. If the most significant bit of this integer is 0, this value is
the array index of the child node in the trie. If the most significant bit of the number
is 1, the child is a leaf and the lower 31 bits are the integer value at the leaf. For
simplicity, the implementation assumes that the input keys are sorted from most
general to most specific.

When searching a prefix map for a key (e.g. IP address), the search starts from
the root node and the first bit of the key. The search follows the left branch if the
next bit is a zero and the right branch if it is a one. When the search finds a leaf,
the value of that leaf is returned—the leaf represents the value shared by all bit
strings which begin with the bits so far. Algorithm 6 describes the search process.
Finally the search may look up the integer value in the dictionary to produce the

CERTCC-2014-24 14

SiLK: Analysis at Scale CERT/CC

odd;even
all;even
all;rand
2x10K
2x1M

rand;RFC1918
128x10K

Median t (sec)
Mean t (sec)

Difference

0 2 4 6 8

odd;even
all;even
all;rand
2x10K
2x1M

rand;RFC1918
128x10K

Median t (sec)
Mean t (sec)

Intersect

0 2 4 6 8

odd;even
all;even
all;rand
2x10K
2x1M

rand;RFC1918
128x10K

Median t (sec)
Mean t (sec)

Union

0 2 4 6 8

Figure 4: Compute time (sec) of various set operations. Tests were run on a ma-
chine with 24 2.67 GHz processor cores and 64GB RAM. Seven runs per test.
128x10K means 128 sets each of 104 IP address; likewise 2x1M is two sets of 106

IP address each.

text value for that prefix. Finding the value for an n-bit key takes at most n steps;
this constrained maximum is in keeping with the design principle of predictable
and reasonable worst-case processing time.

This binary trie structure enables Internet-scale labeling of important analysis
features, such as Autonomous System Number (ASN), which indicates control of
the IP address announced via BGP [20]. The CERT program makes prefix maps of
this IP-ASN relationship freely available [21].

6 Conclusions

We have presented some important features of SiLK, a robust and efficient open-
source tool suite for analyzing big data related to network traffic analysis practi-
cally and without sampling. We know of no other tool suite with all these features.
The tools are under active development; substantive improvements to SiLK, such

CERTCC-2014-24 15

SiLK: Analysis at Scale CERT/CC

Table 3: Compute time (s) and memory usage (kB) of set operations
Sets Ops Mean

t
Median

t
Mean
RAM

Median
RAM

odd, even ∩ 3.104 2.87 1,049,737 1,049,737
odd, even ∪ 3.631 3.64 1,049,801 1,049,801
odd, even − 3.661 3.65 1,049,801 1,049,801
all, even ∩ 3.674 3.68 1,049,801 1,049,801
all, even ∪ 3.644 3.64 1,049,801 1,049,801
all, even − 3.660 3.68 1,049,801 1,049,801
all, rand ∩ 1.784 1.78 778,249 778,249
all, rand ∪ 2.446 2.43 778,249 778,249
all, rand − 2.449 2.43 778,249 778,249
2 x 10K ∩ 0.194 0.20 149,465 149,465
2 x 10K ∪ 0.357 0.36 213,089 213,089
2 x 10K − 0.230 0.23 149,529 149,529
2 x 1M ∩ 1.949 1.94 1,049,801 1,049,801
2 x 1M ∪ 2.170 2.18 1,049,801 1,049,801
2 x 1M − 2.114 2.14 1,049,801 1,049,801

128 x 10K ∩ 5.740 5.74 9,569,576 9,569,576
128 x 10K ∪ 8.180 8.23 10,019,576 10,019,576
128 x 10K − 6.090 6.14 9,569,640 9,569,640

rand, RFC1918 ∩ 0.313 0.31 295,073 295,073
rand, RFC1918 ∪ 0.467 0.47 316,441 316,441
rand, RFC1918 − 0.384 0.38 295,073 295,073

as for SiLK 4, would include support more flexible data types, back-end storage
flexibility, and improving parallelization.

From collection to storage to analysis, SiLK presents a coherent framework for
practical analysis on modern large networks. Researchers investigating phenomena
unrelated to network traffic traces may find use in the efficiency of set math and
prefix map capabilities for 32-bit and 128-bit integers (IPv4 and IPv6 addresses).
Those working with full-packet-capture network data will find network flow a use-
ful index into the data. Further details, including source code, are available from
http://tools.netsa.cert.org/silk.

Acknowledgment
This material is based upon work funded and supported by the Department of Defense

CERTCC-2014-24 16

http://tools.netsa.cert.org/silk

SiLK: Analysis at Scale CERT/CC

Algorithm 5 Creating and building a SiLK Prefix Map
insert(IP/cidr, value):
if (root == null):
root = new leaf()
root->value = default

node = root
n = 0
while (n < cidr):
++n
if (node->is_leaf == true):

make it an interior node
node->left = new leaf()
node->left->value = node->value
node->right = new leaf()
node->right->value = node->value
node->is_leaf = false

if (nth bit of IP == 0):
node = node–>left

else:
node = node–>right

if (node->is_leaf == false):
node->left = null
node->right = null
node->is_leaf = true

node->value = value

Algorithm 6 Searching a SiLK Prefix Map
search(IP):
node = root
n = 0
while (node–>is_leaf == false):
++n
if (nth bit of IP == 0):

node = node–>left
else:

node = node–>right
return node–>value

under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation

CERTCC-2014-24 17

SiLK: Analysis at Scale CERT/CC

of the Software Engineering Institute, a federally funded research and development center.
References herein to any specific commercial product, process, or service by trade

name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by Carnegie Mellon University or its Software
Engineering Institute.

This material has been approved for public release and unlimited distribution.
Carnegie Mellon®, CERT® and CERT Coordination Center® are registered marks of

Carnegie Mellon University.
DM-0001043

References

[1] CERT/NetSA at Carnegie Mellon University, “SiLK (System for Internet-
Level Knowledge),” [Accessed: Feb 4, 2014]. [Online]. Available:
http://tools.netsa.cert.org/silk

[2] Tcpdump/Libpcap, “TCPDUMP & Libpcap homepage,” [Accessed: Mar 24,
2014]. [Online]. Available: http://www.tcpdump.org/

[3] Wireshark Foundation, “Wireshark homepage,” [Accessed: Mar 24, 2014].
[Online]. Available: http://www.wireshark.org/

[4] G. Lyon, Nmap Network Scanning: The Official Nmap Project Guide To Net-
work Discovery And Security Scanning. Nmap Project, 2011.

[5] QoSient LLC, “Argus: Auditing Network Activity,” [Accessed: Mar 24,
2014]. [Online]. Available: http://qosient.com/argus/index.shtml

[6] B. Claise, “Specification of the IP Flow Information Export (IPFIX) Proto-
col for the Exchange of IP Traffic Flow Information,” RFC 5101 (Proposed
Standard), Tech. Rep. RFC 5101, Jan. 2008.

[7] B. Claise, P. Aitken, and N. Ben-Dvora, “Cisco Systems Export of Applica-
tion Information in IP Flow Information Export (IPFIX),” RFC 6759 (Infor-
mational), Tech. Rep. RFC 6759, Nov. 2012.

[8] CERT/NetSA at Carnegie Mellon University, “SiLK Installation Handbook;
SiLK-3.8.1,” Jan 30 2014, [Accessed: Feb 9, 2014]. [Online]. Available:
http://tools.netsa.cert.org/silk/install-handbook.pdf

[9] ——, “SiLK: rwflowpack man page – packing logic,” [Accessed: Feb 9,
2014]. [Online]. Available: http://tools.netsa.cert.org/silk/packlogic-twoway.
html#Packing-logic-code

CERTCC-2014-24 18

http://tools.netsa.cert.org/silk
http://www.tcpdump.org/
http://www.wireshark.org/
http://qosient.com/argus/index.shtml
http://tools.netsa.cert.org/silk/install-handbook.pdf
http://tools.netsa.cert.org/silk/packlogic-twoway.html#Packing-logic-code
http://tools.netsa.cert.org/silk/packlogic-twoway.html#Packing-logic-code

SiLK: Analysis at Scale CERT/CC

[10] C. M. Inacio and B. Trammel, “Yaf: Yet another flowmeter,” in Large
Installation Systems Administration (LISA). San Jose, CA: USENIX, 2010.
[Online]. Available: https://www.usenix.org/legacy/events/lisa10/tech/slides/
inacio.pdf

[11] CERT/NetSA at Carnegie Mellon University, “SiLK FAQ: SiLK Flow
file format,” [Accessed: Feb 9, 2014]. [Online]. Available: https:
//tools.netsa.cert.org/silk/faq.html#file-formats

[12] “2012 data breach investigations report (DBIR),” Verizon, Tech. Rep., 2012.
[Online]. Available: http://www.verizonenterprise.com/DBIR/2012/

[13] “2013 data breach investigations report (DBIR),” Verizon, Tech. Rep., 2013.
[Online]. Available: http://www.verizonenterprise.com/DBIR/2013/

[14] T. Shimeall, S. Faber, M. DeShon, and A. Kompanek, “Analysts’ handbook:
Using SiLK for network traffic analysis,” Software Engineering Institute,
CERT Program, Pittsburgh PA, Tech. Rep., 2010. [Online]. Available:
http://tools.netsa.cert.org/silk/analysis-handbook.pdf

[15] CERT/NetSA at Carnegie Mellon University, “Proceedings – FloCon,”
[Accessed: Feb 21, 2014]. [Online]. Available: http://www.cert.org./flocon/
proceedings.html

[16] A. Whisnant and S. Faber, “Network profiling using flow,” Software
Engineering Institute, CERT Program, Pittsburgh PA, Tech. Rep. CMU/SEI-
2012-TR-012, 2012. [Online]. Available: http://repository.cmu.edu/cgi/
viewcontent.cgi?article=1686&context=sei

[17] Y. Rekhter and T. Li, “An Architecture for IP Address Allocation with CIDR,”
RFC 1518 (Historic), Tech. Rep. RFC 1518, Sep. 1993.

[18] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear, “Ad-
dress Allocation for Private Internets,” RFC 1918 (Best Current Practice),
Tech. Rep. RFC 1918, Feb. 1996.

[19] P. E. Black, “Dictionary of algorithms and data structures,” V. Pieterrse
and P. E. Black, Eds., Feb 22 2011, [Accessed: Feb 13, 2014]. [Online].
Available: http://xlinux.nist.gov/dads/HTML/trie.html

[20] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),”
RFC 4271 (Draft Standard), Tech. Rep. RFC 4271, Jan. 2006, updated by
RFCs 6286, 6608.

CERTCC-2014-24 19

https://www.usenix.org/legacy/events/lisa10/tech/slides/inacio.pdf
https://www.usenix.org/legacy/events/lisa10/tech/slides/inacio.pdf
https://tools.netsa.cert.org/silk/faq.html#file-formats
https://tools.netsa.cert.org/silk/faq.html#file-formats
http://www.verizonenterprise.com/DBIR/2012/
http://www.verizonenterprise.com/DBIR/2013/
http://tools.netsa.cert.org/silk/analysis-handbook.pdf
http://www.cert.org./flocon/proceedings.html
http://www.cert.org./flocon/proceedings.html
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1686&context=sei
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1686&context=sei
http://xlinux.nist.gov/dads/HTML/trie.html

SiLK: Analysis at Scale CERT/CC

[21] CERT/NetSA at Carnegie Mellon University, “CERT/CC Route Views
Project Page,” [Accessed: Feb 13, 2014]. [Online]. Available: http:
//routeviews-mirror.cert.org.

CERTCC-2014-24 20

http://routeviews-mirror.cert.org.
http://routeviews-mirror.cert.org.

