
Toward Design Decisions to Enable Deployability
Empirical Study of Three Projects Reaching for the Continuous Delivery Holy Grail

Stephany Bellomo, Neil Ernst, Robert Nord, and Rick Kazman
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

sbellomo, nernst, rn, kazman@sei.cmu.edu

Abstract—There is growing interest in continuous delivery
practices to enable rapid and reliable deployment. While
practices are important, we suggest architectural design decisions
are equally important for projects to achieve goals such
continuous integration (CI) build, automated testing and reduced
deployment-cycle time. Architectural design decisions that
conflict with deployability goals can impede the team’s ability to
achieve the desired state of deployment and may result in
substantial technical debt. To explore this assertion, we
interviewed three project teams striving to practicing continuous
delivery. In this paper, we summarize examples of the
deployability goals for each project as well as the architectural
decisions that they have made to enable deployability. We
present the deployability goals, design decisions, and
deployability tactics collected and summarize the design tactics
derived from the interviews in the form of an initial draft version
hierarchical deployability tactic tree.

Keywords—deployability; continuous integration; continuous
delivery; architecture tactic; test automation

I. INTRODUCTION
There is substantial interest in practices for achieving

continuous delivery and rapid, robust deployment goals [1],
[2], [3]. However, we suggest there is a need to focus on more
than practices. The architecture of the target application can
also contribute to enabling or impeding deployability goals. If
teams fail to make the right architecture design decisions and
tradeoffs as they build and evolve the system, then critical
activities such as continuous build integration, automated test
execution, and operational support can become difficult. For
example, we have observed cases where a tightly coupled
component architecture becameme a barrier to continuous
integration (CI) because small changes required a rebuild of the
entire system. This limits the number of builds possible in a
day and, in some cases, a CI build is not even possible in a
single day. Re-architecting to fix problems such as these can
require significant work and in some cases these types of
problems can become a form of technical debt [4], resulting in
high expenditures of time, cost, and effort release after release.

Architecting for deployability benefits software developers
who are increasingly called upon to support systems post
release, but I also benefits those in operational and release
engineering roles responsible for the activities described above
(e.g., CI build tools/support, test automation infrastructure,
deployment automation). To explore our hypothesis that it is
beneficial to consider deployability architectural design
implications early in a development effort, we conducted

interviews with three project teams practicing continuous
integration and delivery. In this paper, we summarize these as
case study analysis results. The results we present here are
derived from responses to two overarching interview questions
consistently asked in each interview:

� IQ1: What are the key goals driving your deployability
efforts?

� IQ2: What are some examples of architecture decisions
that have enabled these goals?

From the interview data, we summarized examples of
deployability goals to gain a better understanding of the desired
state that each project aimed to achieve (as described in [5]). In
addition, we probed beyond goals to collect examples of
architectural design decisions that the project teams felt
enabled achievement of their deployability goals.

As we analyzed the results, we found that many of the
design decisions the project teams made were instances or
variations of previously defined architecture tactics[6]. An
architecture tactic is a design primitive that an architect can
use to satisfy a quality attribute requirement. We claim that
deployability can similarly be described and elaborated as a
quality attribute. Doing this requires an understanding of
stakeholder goals, constraints, requirements (e.g., quality
attribute scenarios [6]), and design decisions (e.g., architectural
tactics).

The idea of deployability as a quality attribute is not new.
A brief description of deployability as a quality attribute is
presented in [6]. Adams et al. explore the relationship between
rapid deployment and quality [7], [8]. Bass et al. propose use
of operational scenarios focusing on cloud and dependability
networking to more concretely define operational requirements
and identify architecture-related design decisions [9]. Cukier
shares a mixture of development and system operations as well
as architectural patterns for cloud-based web applications [10].
Spinellis looks at infrastructure as code and design
implications of deployable systems [11] as well as tools and
techniques for integrating development and operations [12].
Liu et al. suggest a framework for integrating cloud-based
application development and production frameworks
seamlessly [13]. Schaefer et al. explore automation approaches
to promote environment consistency and reduce manual work
to enable CI [14]. Gohil et al. experiment with behavior-driven
monitoring and how it can be adopted for infrastructure
provisioning and deployment [15]. Work in this area is still in
the early stages and continues to evolve.

In this paper, we summarize our findings from interviews
conducted with three project teams from different

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.104

702

organizations. We summarize deployability goals, design
decisions, and tactics that we elicited. The deployability tactics
we collected are summarized in a tactic tree. The deployability
goals that we collected through interviews form the first level
of the tree. The set of deployability tactics that we collected
through interviews form the lower branches. The derived
tactics tree contains new tactics as well as previously defined
tactics that crosscut (or are variations of) existing tactics in
quality attribute areas such as modifiability, testability,
availability, and performance.

II. RESEARCH METHOD DESCRIPTION
We conducted three interviews with technical leads and
architects of projects that have deployability (or continuous
delivery) as a major focus. To collect data, we asked each
interviewee the questions listed above as IQ1 and IQ2. We
probed for “incident descriptions” that allowed us to collect
concrete examples from which to derive results. We recorded
each interview and extracted raw examples from the recorded
transcripts . The results are summarized and presented in
Section III.

A. Project Profile
We interviewed technical leads and architects from three
projects, which we will refer to as Projects A, B, and C. These
teams were from three different organizations working on
different types of software projects. The organization for
Project A primarily develops federal business systems. The
application Project A is currently building enables clients to
buy and sell securities. The organization for Project B is an
academic institution and the application provides a heavily
used virtual training environment with e-learning and virtual
lab capability. The organization for Project C a large software
contractor building a sales portal for financial transactions.
While A and C coincidentally support financial applications,
the project teams are from different organizations and the
capabilities the applications provide are very different from
each other. We provide a high-level profile of some of the
project characteristics in Table I.

From Table I we see that all three projects used some
variant of an Agile/Scrum project management framework.
The size and SLOC varied, but all were large projects. All of

the systems have been in operational use for several years. All
were releasing internally every two to three weeks for client
feedback but were externally deploying only every two or three
months. All projects practiced daily CI. More project details,
such as brief architecture description, languages, and so forth,
are provided in Section III.

III. RESEARCH OBSERVATIONS
In this section, we describe example deployability goals

from Projects A, B, and C followed by raw design-decision
examples and tactics. We conclude the section with a first draft
of an architecture tactics tree which summarizes the examples
provided in the interview data.

A. Deployability Goals Summary (by Project)
Below we summarize responses to IQ1: What are the key

goals driving your deployability efforts? The interviewees were
not familiar with the term deployability goals, so we
interchangeably used the term continuous delivery goals during
the IQ1 data collection.

Project A Goals:
Goal 1: Shorten feedback cycle time and integrate frequently

to avoid integration problems
Goal 2: Enable nightly integration builds with successfully

run automated tests
Goal 3: Simplify deployment and minimize deployment time

Project B Goals:
Goal 1: Achieve actual CI (beyond daily integration)
Goal 2: Promote the habit of frequent and automated means

of deploying

Project C Goals:
Goal 1: Enable CI and delivery
Goal 2: Enable extensive test automation to include unit,

functional, acceptance, and other types of testing
Goal 3: Automate deployment and increase frequency and

comfort with deployment
Goal 4: Reduce the gap between environments to keep them

consistent and reduce deployment errors and
complexity

To synthesize this information in Table II, we affinity
grouped the goals into more general goals (as shown in the
middle column of Table II). We then mapped these generalized
goal names to the specific project goals to show which projects
are focused on which goals.

TABLE I. PROJECT PROFILE

Pro-

ject

Management

Approach

Size

Metrics

Years

Opera-

tional

Release

Cadence

CI

Cadence

A Agile/Scrum

(last 2 years

and traditional

before that)

1M SLOC 17 Client release

available

every 2

months (not

all accept it)

Daily CI

build

B Water-Scrum-

Fall

3M SLOC,

team size

6–8,

90,000

users

3+ Internal

release every

2–3 weeks,

external

release as

needed

Daily CI

build

C Agile/Scrum Team

size 30

2+ Internal

release every

2–3 weeks,

customer

release every

2–3 months

Daily CI

build

TABLE II. DEPLOYABILITY GOALS SUMMARY

 Generalized Name of
Deployability Goal

Mapping of Project Goals
to Generalized Goal

G1 Enable Build and Continuous

Integration

PA-G1, PB-G1, PC-G1

G2 Enable Test Automation PA-G2, PB-G2, PB-G2

G3 Enable Deployment and

Robust Operations

PA-G3, PB-G2, PB-G3

G4 Enable Synchronized and

Flexible Environments

PC-G3, PC-G4

703

B. Examples of Design Decisions to Support Deployability
In this section, we provide a summary of the raw-data

design decisions that we gathered from Projects A, B, and C in
response to IQ2: What are some examples of architecture
decisions that have enabled these goals?

For each design decision, we suggest a generalizable
architectural tactic that the decision instantiates. The tactics are
drawn either from our existing work on architecture tactics [4],
a variation of an existing tactic (beyond the instantiation), or
new tactics.

Project A is a financial application that has several
customized variants of the software deployed to eight client
sites. The architecture for Project A is a thick client written in
C# with a C++ and Java back end, which is currently being
ported to Java. Examples of Project A’s design decisions are
summarized below:

� PA-D1: Integrated test framework. Project A built
an integrated test framework to allow the team to
simulate the performance of the system under varying
conditions. For example, as part of the nightly build,
they used the framework to process batches of
transactions and monitor performance to see if it falls
below an established threshold. The integrated test
framework supports testing of distributed message
communication (e.g., message queues and backend
processes).
Initial Tactic Assessment: Integrated test framework
is an instance or a variation of the Testability tactic
Specialized Access Routines/Interfaces.

� PA-D2: Script-driven process shutdown. The
Caching tactic was used to improve performance.
However, this change made it difficult to put the
system in an appropriate state to run a clean test (i.e.,
to clear the cache). As a result, often the team would
have to shut down the system several times during the
nightly build to obtain a clean test state. To enable
automated performance testing using the integrated test
framework, the team built “hooks” into the application
to allow for stopping and restarting processes. This
allowed the team to ensure that all tests begin in a
good, known state.
Initial Tactic Assessment: Stopping and starting of
processes for testing is an instance or variation of the
Testability tactic Record/Playback. Caching is an
instance of the Performance tactic Maintain Multiple
Copies.

� PA-D3: Web service consolidation. The application
has a C# thick client, and updating the software on the
client side required configuration of four web services.
The customer organization found this to be a time-
consuming and error-prone deployment process. So the
team consolidated the four web services to a single
web service. To make this change, additional interfaces
were created in the single web service, and the
addresses of the calls in the front end of the application
were modified to reflect the new URLs for the existing
interfaces. The interfaces in the combined web service
had much in common, such as shared data (database
tables) and shared classes, so the change resulted in
increased semantic cohesion. A problem with the prior

implementation was that each web service had its own
set of database connection pools, so one service could
potentially run out of database connections while
another service still had some available. By
consolidating to a single web service, they were also
able to have a single, larger pool of database
connections.
Initial Tactic Assessment: Combining web services
into one web service with several interfaces is an
instance of the Modifiability tactic Increase Semantic
Cohesion. The connection-pooling decision is an
instance of the Modifiability tactic Abstract Common
Services as well as the Performance tactic Reduce
Overhead.
We note that there is a trade-off being made in this
example (PA-D3). The team is decreasing semantic
coherence and increasing coupling, which can reduce
modifiability, to reduce deployment time/complexity
and minimize performance overhead.

� PA-D4: Parameterization. The team made use of
parameterization for environment variables such as
database and server names. This allowed the client to
change these as needed without changing the build.
Initial Tactic Assessment: Use of Parameterization
and Use of Configuration Files are subtactics or
variations of the Modifiability tactic Defer Binding
Time.

� PA-D5: Self-monitoring. The team added alerting to
monitor the system during operation. The team
employed proactive internally and externally driven
logging. For some critical components, they have
incorporated the capability for components to do a
self-check to detect internal component faults or
failures. In other cases they use a polling approach to
detect failures that must be checked externally (e.g., to
check that the message exchange state is functioning as
expected). Based on the output of the detection
mechanisms captured in the logs, alerts can be
configured to send emails and messages or customized
to be integrated with client systems.
Initial Tactic Assessment: Polling and component
self-checks are instances of the Availability tactics
Monitor, Self-test, Ping/Echo, or Heartbeat.
Notification can be considered part of Availability
tactics Exception Detection and Exception Handling.

Project B is a virtual training environment with an e-
learning system and virtual lab capability. The architecture for
Project B is a cloud platform (software as a service) with
virtualization to provide a training sandbox. Languages used on
Project B include .NET, C#, Java, HTML, CFS, jQuery, and
Javascript. Examples of Project B design decisions gathered in
response to IQ2 are summarized below:

� PB-D1: Adapter container. Project B leveraged
automated deployment scripting, deployment-focused
configuration management tools (e.g., Chef), and
virtualized environment generation tools (e.g.,
Vagrant). The team described use of an adapter
container that lives within specific environments, or on
a specific virtual machine environment, which allows
them to run the same Chef scripts in multiple

704

environments (e.g., development, staging, and
production). This promotes environment consistency.
Initial Tactic Assessment: Configuration Files are
subtactics or variations of the Modifiability tactic
Defer Binding Time. The adapter container has
similarity with the Testability tactic Sandbox;
however, in this usage context the container enables
rapid and consistent deployment. Virtualization is used
to create and manage the environments in which the
applications run.

� PB-D2: Single-responsibility principle and
distributed service architecture. The team described
use of the single-responsibility principle, which is an
instance of the Increase Semantic Coherence tactic, to
support unit testing and rapid deployment. They
designed methods and classes as isolated services with
very small responsibilities and well-defined interfaces.
This allows the team to test individual units
independently and to write (mocks of) the inputs and
outputs of each interface. It also allows them to test the
interfaces in isolation without having to interact with
the entire system. They also use services to
communicate independently (e.g., Web server APIs or
RPCs), so they can have the individual, fine-grained
permissions to access the database and specific
services. They added that modularizing features, lower
coupling, and increased cohesion enable deployment
and continuous delivery, explaining, “otherwise you
may have to push the whole three million lines of
application every time a change is made and if you
have to do that you are in a world of hurt.”
Initial Tactic Assessment: The single-responsibility
principle is another way of describing the Modifiability
tactic Increase Semantic Coherence. Writing small,
encapsulated unit tests is an example of the
Modifiability tactic Encapsulation and Maintain
Existing Interface.

� PB-D3: Managing and reproducing state. Project B
suggested that it is helpful to design the system such
that it is possible to inject the state easily for automated
testing (e.g., a database or cache rather than RAM).
This required making changes to the architecture to
reproduce the state. They suggested that management
of state to support testing is a design consideration that
must be considered early because of implications over
scope of control for development artifacts such as
containers, application, and data. An approach Project
B says they have observed in practice, but that they do
not subscribe to, is pushing shared services logic into
the container (e.g., Java authentication and
authorization). This is not preferred because the teams
says their developers have less control to debug and
run automated tests when they can’t work within
isolated environments.
Initial Tactic Assessment: State injection to support
automated testing is a variant of the Testability tactic
Record/Playback. The changes made to support state
injection are an instance of the Testability tactic
Specialized Access Routines/Interfaces.

� PB-D4: Self-initiating version update (supports
Version Control. Project B described challenges with
the client site database version getting out of sync with
the application. In response, they wrote an application
version-checking harness that checks database version
upon user login and automatically runs scripts to
update the database (if needed) to align with the
current version of the application. Application changes
to enable this capability were made to the presentation
layer and business/data layers, such as the ability to
detect database state upon login. This self-initiating
update approach also supports availability because the
upgrade approach did not require taking down the
application server.
Initial Tactic Assessment: Login-initiated version
monitoring is similar to the Availability tactic
Condition Monitoring; however, the usage focuses on
updating an element in the application (the database)
rather than handling fault or failure. The ability to
bring the database to the correct version is a variation
of the Availability tactic State Resynchronization.

� PB-D5: Monitoring and auto-scaling. Load
balancing and monitoring capabilities were used to
monitor and manage average load cycles. To support
scalability, they added capability for worker
components to grab jobs as they become free or start
more workers if needed. This approach supports the
ability to scale up and down in an automated manner.
Initial Tactic Assessment: Load balancing is an
example of the Performance tactics Maintain Multiple
Copies and Increase Available Resources.

Project C is a financial application sales portal. The
architecture is a distributed set of services with a front end built
using Java Server Faces and a backend Microsoft SQL server
database. Project C was originally built with a middle tier
leveraging web services but was later re-architected to use
Enterprise Java Beans instead of web services. Examples of
Project C design decisions gathered in response to IQ2 are
summarized below:

� PC-D1: Removing web services and collapsing the
middle tier. Project C struggled with version
synchronization between application and web services,
latency issues, and an overly complex deployment
configuration. They made the decision to remove web
services used for data access from architecture and
rewrite these as Enterprise JavaBeans—essentially, the
collapsing of the entire middle tier. This change
immediately improved performance, eliminating
marshaling and un-marshaling of XML and middle-tier
transformation. With this change they could deploy the
entire application as one file (one version) to the
primary and replicated server environments. They also
eliminated a configuration in which the application
servers had to be updated and managed separately
from the middle-tier servers. After the change, the
servers were exactly the same, which eliminated
synchronization of the web-tier and the middle-tier
deployment. Finally, this change also made testing
easier, because developers could test without having to
set up and utilize web services.

705

Initial Tactic Assessment: The removal of web
services in this example is an instance of the
Performance tactic Reduce Overhead.
It is also important to note the trade-off being made in
this example. This removal of the web services layer
promotes performance and reduces deployment time
and complexity, which may influence modifiability.

� PC-D2: Parameterization. Parameterization is used
to allow for changing content such as branding or
messages and marketing text. Project C also suggested
avoiding use of static variables for ease of testing.
Initial Tactic Assessment: Use of Parameterization
and use of Configuration Files are subtactics/variations
of the Modifiability tactic Defer Binding Time.

� PC-D3: Load balancer. Project C uses a load
balancer to provide active and passive redundancy.
This also allowed them to roll out a change by
switching from one application server to another
(described as “blue-green switching” in Continuous
Delivery [1]). If there are problems with the release,
the other version is still running and users can be
redirected to the other server.
Initial Tactic Assessment: The load balancing
capability leverages the Performance tactic Maintain
Multiple Copies and the Availability tactic Active
Redundancy.

� PC-D4: Bundle and rollback feature and data layer
change. The team used a tool called RedGate to
deploy database SQL changes with a feature. With this
approach, the database scripts are checked in and the
SQL is automatically run against the database by the
build tool. This approach allows application feature
and database changes to be rolled back simultaneously.
Initial Tactic Assessment: The bundling and rollback
capability leverages the Availability tactic Rollback.

C. Deployability Tactics Strawman Tree
Fig. 1 is a straw-man deployability tactics tree derived from

raw data in Section III.B intended to summarize the tactics
collected from the three case study interviews. Most of the

tactics captured in the interview data crosscut existing tactic
trees. It is premature to try to say with absolutely certainty
whether these are existing “as is”, new or variations of existing
tactics. However, based on the interview data we have
collected to date we felt comfortable making an initial
assessment which we hope to validate through follow on work.
In the Fig 1 we also point out that the modifiability-related
tactics shown under Enable Continuous Integration also enable
Test Automation. The crosscutting tactics shown in Fig 1 are
primarily from the performance, modifiability, testability, and
availability tactics trees.

IV. DISCUSSION
In addition to employing software application-related

architectural decisions and tactics, all three projects described
using several other enablers that were critical to their success.
These were generally a mix of practices and tool/environment
support. For example, Project A created an automated database
script to minimize update time during database release. Project
B leveraged automated deployment scripting, deployment-
focused configuration management tools (e.g., Chef), and
virtualized environment generation tools (e.g., Vagrant).
Project C used a tool called RedGate so they could bundle and
deploy database SQL changes with a feature. On Project B,
while software architecture was not impacted by adopting these
approaches and tools, other related architectural elements, such
as network and deployment architecture, were impacted. For
example, automated deployment systems had to be
reconfigured to communicate with staging and production
networks, and all necessary automation client tools had to be
installed on virtual machines housing the application.

The examples in the previous paragraph raise an interesting
topic that our team spent some time discussing. Traditionally,
there has been a fairly strict line drawn between the application
and supporting infrastructure and tool environment (e.g.,
testing tools, configuration management tools, deployment
scripts, and other components). The later have been considered
external to the system. Examples such as those described by
Project B, where decisions related to deployment support
significantly impact the infrastructure or network on which the
applications run (in some cases, even production
environments), beg the question of whether these components
and tools traditionally considered external to the application
should continue to be thought of as external or whether we are
entering an era when the lines are blurred and, perhaps these
should be reconsidered as a combined ecosystem.

V. CONCLUSION
This work is intended to explore the hypothesis that

architecture contributes to achieving continuous delivery and
deployability goals. The concrete tactics captured in this paper
provide a start toward validating our hypothesis. Our hope is to
continue to investigate this research area through additional
empirical research activities. Takeaways from our exploration
include the following:

� As we analyzed the data collected in our interviews,
we found that many of the key decisions made by the
projects were architectural.

FIG. 1. DEPLOYABILITY TACTICS TREE

706

� In the examples that we collected in response to IQ1
and IQ2, we found an initial set of embedded goals that
we can use to form the top layer of a tactics tree.

� We found that several tactics were employed, and
while there are some new variants of tactics, the
Deployability tactics crosscut many of the existing
Quality Attribute tactics described in [6].

� We found examples of important trade-offs the teams
made to reduce deployment time, complexity, and
overhead. We suggest that, just like with other quality
attributes, it is important to have a clear understanding
of stakeholder priorities and visibility of tradeoffs to
make the right decisions for short and long term
deployability.

ACKNOWLEDGMENTS
We acknowledge Salient Federal Solutions for their

technical contribution to this paper.
Copyright 2014 Carnegie Mellon University and IEEE.

This material is based upon work funded and supported by the
Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center.

This material has been approved for public release and
unlimited distribution. DM-0001103

REFERENCES
[1] J. Humble and D. Farley, Continuous Delivery. Boston, MA: Addison

Wesley, 2010.
[2] D. Feitelson, E. Frachtenberg, and K. Beck, “Development and

deployment at Facebook,” IEEE Internet Computing, vol. 17, no. 4, pp.
8-17, 2013.

[3] S. Bang, S. Chung, Y. Choh, and M. Dupuis, “A grounded theory
analysis of modern web applications: knowledge, skills, and abilities for

DevOps,” Proc. 2nd Annual Conf. Research in Information Technology,
pp. 61-62, 2013.

[4] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: from metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18-21, 2012.

[5] F. Bachmann, R. L. Nord, and I. Ozkaya, “Architectural tactics to
support rapid and agile stability,” CrossTalk: The Journal of Defense
Software Engineering, vol. 25, no. 3, pp. 20-25, 2012.

[6] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Boston, MA: Addison-Wesley, 2012.

[7] M. Mäntyla, F. Khomh, B. Adams, E. Engström, and K. Petersen, “On
rapid releases and software testing,” Proc. 29th IEEE Intl. Conf.
Software Maintenance (ICSM), pp. 20-22, 2013.

[8] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, “Do faster releases
improve software quality? An empirical case study of Mozilla Firefox,”
Proc. Working Conf. Mining Software Repositories (MSR), pp. 179-
188, 2012.

[9] L. Bass, R. Jeffery, H. Wada, I. Weber, and L. Zhu, “Eliciting
operations requirements for applications.” Presented at the International
Workshop on Release Engineering, 2013.

[10] D. Cukier, “DevOps patterns to scale web applications using cloud
services,” Proc. 2013 Companion Publication for Conf. Systems,
Programming, and Applications: Software for Humanity, pp. 143-152,
2013.

[11] D. Spinellis, “Don’t install software by hand,” IEEE Software, vol. 29,
no. 4, pp. 86-87, 2012.

[12] D. Spinellis, “Package management systems,” IEEE Software, vol. 29,
no. 2, pp. 84-86, 2012.

[13] S. Hosono, J. He, X. Liu, L. Li, H. Huang, and S. Yoshino, “Fast
development platforms and methods for cloud applications,” Proc. 2011
IEEE Asia-Pacific Services Computing Conf., APSCC 2011, pp. 94-
101, 2011.

[14] A. Schaefer, M. Reichenbach, and D. Fey, “Continuous integration and
automation for DevOps,” Lecture Notes in Electrical Engineering, vol.
170 LNEE, pp. 345-358, 2013.

[15] K. Gohil, N. Alapati, and S. Joglekar, “Towards behavior driven
operations (BDOps),” IET Seminar Digest, Proc. 3rd Intl. Conf.
Advances in Recent Technologies in Communication and Computing,
pp. 262-264, 2011.

707

