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Abstract—There is growing interest in continuous delivery 
practices to enable rapid and reliable deployment. While 
practices are important, we suggest architectural design decisions 
are equally important for projects to achieve goals such 
continuous integration (CI) build, automated testing and reduced 
deployment-cycle time. Architectural design decisions that 
conflict with deployability goals can impede the team’s ability to 
achieve the desired state of deployment and may result in 
substantial technical debt. To explore this assertion, we 
interviewed three project teams striving to practicing continuous 
delivery. In this paper, we summarize examples of the 
deployability goals for each project as well as the architectural 
decisions that they have made to enable deployability. We 
present the deployability goals, design decisions, and 
deployability tactics collected and summarize the design tactics 
derived from the interviews in the form of an initial draft version 
hierarchical deployability tactic tree. 

Keywords—deployability; continuous integration; continuous 
delivery; architecture tactic; test automation 

I. INTRODUCTION 
There is substantial interest in practices for achieving 

continuous delivery and rapid, robust deployment goals [1], 
[2], [3]. However, we suggest there is a need to focus on more 
than practices. The architecture of the target application can 
also contribute to enabling or impeding deployability goals. If 
teams fail to make the right architecture design decisions and 
tradeoffs as they build and evolve the system, then critical 
activities such as continuous build integration, automated test 
execution, and operational support can become difficult. For 
example, we have observed cases where a tightly coupled 
component architecture becameme a barrier to continuous 
integration (CI) because small changes required a rebuild of the 
entire system. This limits the number of builds possible in a 
day and, in some cases, a CI build is not even possible in a 
single day. Re-architecting to fix problems such as these can 
require significant work and in some cases these types of 
problems can become a form of technical debt [4], resulting in 
high expenditures of time, cost, and effort release after release.  

Architecting for deployability benefits software developers 
who are increasingly called upon to support systems post 
release, but I also benefits those in operational and release 
engineering roles responsible for the activities described above 
(e.g., CI build tools/support, test automation infrastructure, 
deployment automation). To explore our hypothesis that it is 
beneficial to consider deployability architectural design 
implications early in a development effort, we conducted 

interviews with three project teams practicing continuous 
integration and delivery. In this paper, we summarize these as 
case study analysis results. The results we present here are 
derived from responses to two overarching interview questions 
consistently asked in each interview: 

� IQ1: What are the key goals driving your deployability 
efforts? 

� IQ2: What are some examples of architecture decisions 
that have enabled these goals? 

From the interview data, we summarized examples of 
deployability goals to gain a better understanding of the desired 
state that each project aimed to achieve (as described in [5]). In 
addition, we probed beyond goals to collect examples of 
architectural design decisions that the project teams felt 
enabled achievement of their deployability goals.  

As we analyzed the results, we found that many of the 
design decisions the project teams made were instances or 
variations of previously defined architecture tactics[6]. An 
architecture tactic is a design primitive that an architect can 
use to satisfy a quality attribute requirement. We claim that 
deployability can similarly be described and elaborated as a 
quality attribute. Doing this requires an understanding of 
stakeholder goals, constraints, requirements (e.g., quality 
attribute scenarios [6]), and design decisions (e.g., architectural 
tactics).  

The idea of deployability as a quality attribute is not new. 
A brief description of deployability as a quality attribute is 
presented in [6]. Adams et al. explore the relationship between 
rapid deployment and quality [7], [8]. Bass et al. propose use 
of operational scenarios focusing on cloud and dependability 
networking to more concretely define operational requirements 
and identify architecture-related design decisions [9]. Cukier 
shares a mixture of development and system operations as well 
as architectural patterns for cloud-based web applications [10]. 
Spinellis looks at infrastructure as code and design 
implications of deployable systems [11] as well as tools and 
techniques for integrating development and operations [12]. 
Liu et al. suggest a framework for integrating cloud-based 
application development and production frameworks 
seamlessly [13]. Schaefer et al. explore automation approaches 
to promote environment consistency and reduce manual work 
to enable CI [14]. Gohil et al. experiment with behavior-driven 
monitoring and how it can be adopted for infrastructure 
provisioning and deployment [15]. Work in this area is still in 
the early stages and continues to evolve. 

In this paper, we summarize our findings from interviews 
conducted with three project teams from different 

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.104

702



organizations. We summarize deployability goals, design 
decisions, and tactics that we elicited. The deployability tactics 
we collected are summarized in a tactic tree. The deployability 
goals that we collected through interviews form the first level 
of the tree. The set of deployability tactics that we collected 
through interviews form the lower branches. The derived 
tactics tree contains new tactics as well as previously defined 
tactics that crosscut (or are variations of) existing tactics in 
quality attribute areas such as modifiability, testability, 
availability, and performance.  

II. RESEARCH METHOD DESCRIPTION 
We conducted three interviews with technical leads and 
architects of projects that have deployability (or continuous 
delivery) as a major focus. To collect data, we asked each 
interviewee the questions listed above as IQ1 and IQ2. We 
probed for “incident descriptions” that allowed us to collect 
concrete examples from which to derive results. We recorded 
each interview and extracted raw examples from the recorded 
transcripts . The  results are summarized and presented in 
Section III.  

A. Project Profile 
We interviewed technical leads and architects from three 
projects, which we will refer to as Projects A, B, and C. These 
teams were from three different organizations working on 
different types of software projects. The organization for 
Project A primarily develops federal business systems. The 
application Project A is currently building enables clients to 
buy and sell securities. The organization for Project B is an 
academic institution and the application provides a heavily 
used virtual training environment with e-learning and virtual 
lab capability. The organization for Project C a large software 
contractor building a sales portal for financial transactions. 
While A and C coincidentally support financial applications, 
the project teams are from different organizations and the 
capabilities the applications provide are very different from 
each other. We provide a high-level profile of some of the 
project characteristics in Table I. 

From Table I we see that all three projects used some 
variant of an Agile/Scrum project management framework. 
The size and SLOC varied, but all were large projects. All of 

the systems have been in  operational use for several years. All 
were releasing internally every two to three weeks for client 
feedback but were externally deploying only every two or three 
months. All projects practiced daily CI. More project details, 
such as brief architecture description, languages, and so forth, 
are provided in Section III. 

III. RESEARCH OBSERVATIONS 
In this section, we describe example deployability goals 

from Projects A, B, and C followed by raw design-decision 
examples and tactics. We conclude the section with a first draft 
of an architecture tactics tree which summarizes the examples 
provided in the interview data. 

A. Deployability Goals Summary (by Project) 
Below we summarize responses to IQ1: What are the key 

goals driving your deployability efforts? The interviewees were 
not familiar with the term deployability goals, so we 
interchangeably used the term continuous delivery goals during 
the IQ1 data collection. 
 
Project A Goals: 
Goal 1: Shorten feedback cycle time and integrate frequently 

to avoid integration problems 
Goal 2: Enable nightly integration builds with successfully 

run automated tests 
Goal 3: Simplify deployment and minimize deployment time 
 
Project B Goals: 
Goal 1: Achieve actual CI (beyond daily integration) 
Goal 2: Promote the habit of frequent and automated means 

of deploying 
 
Project C Goals: 
Goal 1: Enable CI and delivery 
Goal 2: Enable extensive test automation to include unit, 

functional, acceptance, and other types of testing 
Goal 3: Automate deployment and increase frequency and 

comfort with deployment 
Goal 4: Reduce the gap between environments to keep them 

consistent and reduce deployment errors and 
complexity 

To synthesize this information in Table II, we affinity 
grouped the goals into more general goals (as shown in the 
middle column of Table II). We then mapped these generalized 
goal names to the specific project goals to show which projects 
are focused on which goals. 

TABLE I.  PROJECT PROFILE 

Pro-

ject  

Management 

Approach 

Size 

Metrics 

Years 

Opera-

tional 

Release 

Cadence 

CI 

Cadence 

A Agile/Scrum 

(last 2 years 

and traditional 

before that) 

1M SLOC 17  Client release 

available 

every 2 

months (not 

all accept it) 

Daily CI 

build 

B Water-Scrum-

Fall 

3M SLOC, 

team size 

6–8, 

90,000 

users 

3+  Internal 

release every 

2–3 weeks, 

external 

release as 

needed 

Daily CI 

build 

C Agile/Scrum Team 

size 30  

2+  Internal 

release every 

2–3 weeks, 

customer 

release every 

2–3 months 

Daily CI 

build 

TABLE II.  DEPLOYABILITY GOALS SUMMARY 

 Generalized Name of 
Deployability Goal 

Mapping of Project Goals 
to Generalized Goal 

G1 Enable Build and Continuous 

Integration  

PA-G1, PB-G1, PC-G1 

G2 Enable Test Automation  PA-G2, PB-G2, PB-G2 

G3 Enable Deployment and 

Robust Operations  

PA-G3, PB-G2, PB-G3 

G4 Enable Synchronized and 

Flexible Environments  

PC-G3, PC-G4 
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B. Examples of Design Decisions to Support Deployability 
In this section, we provide a summary of the raw-data 

design decisions that we gathered from Projects A, B, and C in 
response to IQ2: What are some examples of architecture 
decisions that have enabled these goals?  

For each design decision, we suggest a generalizable 
architectural tactic that the decision instantiates. The tactics are 
drawn either from our existing work on architecture tactics [4], 
a variation of an existing tactic (beyond the instantiation), or 
new tactics.  

Project A is a financial application that has several 
customized variants of the software deployed to eight client 
sites. The architecture for Project A is a thick client written in 
C# with a C++ and Java back end, which is currently being 
ported to Java. Examples of Project A’s design decisions are 
summarized below: 

� PA-D1: Integrated test framework. Project A built 
an integrated test framework to allow the team to 
simulate the performance of the system under varying 
conditions. For example, as part of the nightly build, 
they used the framework to process batches of 
transactions and monitor performance to see if it falls 
below an established threshold. The integrated test 
framework supports testing of distributed message 
communication (e.g., message queues and backend 
processes). 
Initial Tactic Assessment: Integrated test framework 
is an instance or a variation of the Testability tactic 
Specialized Access Routines/Interfaces. 

� PA-D2: Script-driven process shutdown. The 
Caching tactic was used to improve performance. 
However, this change made it difficult to put the 
system in an appropriate state to run a clean test (i.e., 
to clear the cache). As a result, often the team would 
have to shut down the system several times during the 
nightly build to obtain a clean test state. To enable 
automated performance testing using the integrated test 
framework, the team built “hooks” into the application 
to allow for stopping and restarting processes. This 
allowed the team to ensure that all tests begin in a 
good, known state. 
Initial Tactic Assessment: Stopping and starting of 
processes for testing is an instance or variation of the 
Testability tactic Record/Playback. Caching is an 
instance of the Performance tactic Maintain Multiple 
Copies. 

� PA-D3: Web service consolidation. The application 
has a C# thick client, and updating the software on the 
client side required configuration of four web services. 
The customer organization found this to be a time-
consuming and error-prone deployment process. So the 
team consolidated the four web services to a single 
web service. To make this change, additional interfaces 
were created in the single web service, and the 
addresses of the calls in the front end of the application 
were modified to reflect the new URLs for the existing 
interfaces. The interfaces in the combined web service 
had much in common, such as shared data (database 
tables) and shared classes, so the change resulted in 
increased semantic cohesion. A problem with the prior 

implementation was that each web service had its own 
set of database connection pools, so one service could 
potentially run out of database connections while 
another service still had some available. By 
consolidating to a single web service, they were also 
able to have a single, larger pool of database 
connections. 
Initial Tactic Assessment: Combining web services 
into one web service with several interfaces is an 
instance of the Modifiability tactic Increase Semantic 
Cohesion. The connection-pooling decision is an 
instance of the Modifiability tactic Abstract Common 
Services as well as the Performance tactic Reduce 
Overhead. 
We note that there is a trade-off being made in this 
example (PA-D3). The team is decreasing semantic 
coherence and increasing coupling, which can reduce 
modifiability, to reduce deployment time/complexity 
and minimize performance overhead. 

� PA-D4: Parameterization. The team made use of 
parameterization for environment variables such as 
database and server names. This allowed the client to 
change these as needed without changing the build. 
Initial Tactic Assessment: Use of Parameterization 
and Use of Configuration Files are subtactics or 
variations of the Modifiability tactic Defer Binding 
Time. 

� PA-D5: Self-monitoring. The team added alerting to 
monitor the system during operation. The team 
employed proactive internally and externally driven 
logging. For some critical components, they have 
incorporated the capability for components to do a 
self-check to detect internal component faults or 
failures. In other cases they use a polling approach to 
detect failures that must be checked externally (e.g., to 
check that the message exchange state is functioning as 
expected). Based on the output of the detection 
mechanisms captured in the logs, alerts can be 
configured to send emails and messages or customized 
to be integrated with client systems. 
Initial Tactic Assessment: Polling and component 
self-checks are instances of the Availability tactics 
Monitor, Self-test, Ping/Echo, or Heartbeat. 
Notification can be considered part of Availability 
tactics Exception Detection and Exception Handling. 

Project B is a virtual training environment with an e-
learning system and virtual lab capability. The architecture for 
Project B is a cloud platform (software as a service) with 
virtualization to provide a training sandbox. Languages used on 
Project B include .NET, C#, Java, HTML, CFS, jQuery, and 
Javascript. Examples of Project B design decisions gathered in 
response to IQ2 are summarized below: 

� PB-D1: Adapter container. Project B leveraged 
automated deployment scripting, deployment-focused 
configuration management tools (e.g., Chef), and 
virtualized environment generation tools (e.g., 
Vagrant). The team described use of an adapter 
container that lives within specific environments, or on 
a specific virtual machine environment, which allows 
them to run the same Chef scripts in multiple 
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environments (e.g., development, staging, and 
production). This promotes environment consistency. 
Initial Tactic Assessment: Configuration Files are 
subtactics or variations of the Modifiability tactic 
Defer Binding Time. The adapter container has 
similarity with the Testability tactic Sandbox; 
however, in this usage context the container enables 
rapid and consistent deployment. Virtualization is used 
to create and manage the environments in which the 
applications run. 

� PB-D2: Single-responsibility principle and 
distributed service architecture. The team described 
use of the single-responsibility principle, which is an 
instance of the Increase Semantic Coherence tactic, to 
support unit testing and rapid deployment. They 
designed methods and classes as isolated services with 
very small responsibilities and well-defined interfaces. 
This allows the team to test individual units 
independently and to write (mocks of) the inputs and 
outputs of each interface. It also allows them to test the 
interfaces in isolation without having to interact with 
the entire system. They also use services to 
communicate independently (e.g., Web server APIs or 
RPCs), so they can have the individual, fine-grained 
permissions to access the database and specific 
services. They added that modularizing features, lower 
coupling, and increased cohesion enable deployment 
and continuous delivery, explaining, “otherwise you 
may have to push the whole three million lines of 
application every time a change is made and if you 
have to do that you are in a world of hurt.” 
Initial Tactic Assessment: The single-responsibility 
principle is another way of describing the Modifiability 
tactic Increase Semantic Coherence. Writing small, 
encapsulated unit tests is an example of the 
Modifiability tactic Encapsulation and Maintain 
Existing Interface. 

� PB-D3: Managing and reproducing state. Project B 
suggested that it is helpful to design the system such 
that it is possible to inject the state easily for automated 
testing (e.g., a database or cache rather than RAM). 
This required making changes to the architecture to 
reproduce the state. They suggested that management 
of state to support testing is a design consideration that 
must be considered early because of implications over 
scope of control for development artifacts such as 
containers, application, and data. An approach Project 
B says they have observed in practice, but that they do 
not subscribe to, is pushing shared services logic into 
the container (e.g., Java authentication and 
authorization). This is not preferred because the teams 
says their developers have less control to debug and 
run automated tests when they can’t work within 
isolated environments. 
Initial Tactic Assessment: State injection to support 
automated testing is a variant of the Testability tactic 
Record/Playback. The changes made to support state 
injection are an instance of the Testability tactic 
Specialized Access Routines/Interfaces. 

� PB-D4: Self-initiating version update (supports 
Version Control. Project B described challenges with 
the client site database version getting out of sync with 
the application. In response, they wrote an application 
version-checking harness that checks database version 
upon user login and automatically runs scripts to 
update the database (if needed) to align with the 
current version of the application. Application changes 
to enable this capability were made to the presentation 
layer and business/data layers, such as the ability to 
detect database state upon login. This self-initiating 
update approach also supports availability because the 
upgrade approach did not require taking down the 
application server. 
Initial Tactic Assessment: Login-initiated version 
monitoring is similar to the Availability tactic 
Condition Monitoring; however, the usage focuses on 
updating an element in the application (the database) 
rather than handling fault or failure. The ability to 
bring the database to the correct version is a variation 
of the Availability tactic State Resynchronization. 

� PB-D5: Monitoring and auto-scaling. Load 
balancing and monitoring capabilities were used to 
monitor and manage average load cycles. To support 
scalability, they added capability for worker 
components to grab jobs as they become free or start 
more workers if needed. This approach supports the 
ability to scale up and down in an automated manner. 
Initial Tactic Assessment: Load balancing is an 
example of the Performance tactics Maintain Multiple 
Copies and Increase Available Resources. 

Project C is a financial application sales portal. The 
architecture is a distributed set of services with a front end built 
using Java Server Faces and a backend Microsoft SQL server 
database. Project C was originally built with a middle tier 
leveraging web services but was later re-architected to use 
Enterprise Java Beans instead of web services. Examples of 
Project C design decisions gathered in response to IQ2 are 
summarized below: 

� PC-D1: Removing web services and collapsing the 
middle tier. Project C struggled with version 
synchronization between application and web services, 
latency issues, and an overly complex deployment 
configuration. They made the decision to remove web 
services used for data access from architecture and 
rewrite these as Enterprise JavaBeans—essentially, the 
collapsing of the entire middle tier. This change 
immediately improved performance, eliminating 
marshaling and un-marshaling of XML and middle-tier 
transformation. With this change they could deploy the 
entire application as one file (one version) to the 
primary and replicated server environments. They also 
eliminated a configuration in which the application 
servers had to be updated and managed separately 
from the middle-tier servers. After the change, the 
servers were exactly the same, which eliminated 
synchronization of the web-tier and the middle-tier 
deployment. Finally, this change also made testing 
easier, because developers could test without having to 
set up and utilize web services. 
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Initial Tactic Assessment: The removal of web 
services in this example is an instance of the 
Performance tactic Reduce Overhead. 
It is also important to note the trade-off being made in 
this example. This removal of the web services layer 
promotes performance and reduces deployment time 
and complexity, which may influence modifiability. 

� PC-D2: Parameterization. Parameterization is used 
to allow for changing content such as branding or 
messages and marketing text. Project C also suggested 
avoiding use of static variables for ease of testing. 
Initial Tactic Assessment: Use of Parameterization 
and use of Configuration Files are subtactics/variations 
of the Modifiability tactic Defer Binding Time. 

� PC-D3: Load balancer. Project C uses a load 
balancer to provide active and passive redundancy. 
This also allowed them to roll out a change by 
switching from one application server to another 
(described as “blue-green switching” in Continuous 
Delivery [1]). If there are problems with the release, 
the other version is still running and users can be 
redirected to the other server. 
Initial Tactic Assessment: The load balancing 
capability leverages the Performance tactic Maintain 
Multiple Copies and the Availability tactic Active 
Redundancy. 

� PC-D4: Bundle and rollback feature and data layer 
change. The team used a tool called RedGate to 
deploy database SQL changes with a feature. With this 
approach, the database scripts are checked in and the 
SQL is automatically run against the database by the 
build tool. This approach allows application feature 
and database changes to be rolled back simultaneously. 
Initial Tactic Assessment: The bundling and rollback 
capability leverages the Availability tactic Rollback. 

C. Deployability Tactics Strawman Tree 
Fig. 1 is a straw-man deployability tactics tree derived from 

raw data in Section III.B intended to summarize the tactics 
collected from the three case study interviews. Most of the 

tactics captured in the interview data crosscut existing tactic 
trees. It is premature to try to say with absolutely certainty 
whether these are existing “as is”, new or variations of existing 
tactics. However, based on the interview data we have 
collected to date we felt comfortable making an initial 
assessment which we hope to validate through follow on work. 
In the Fig 1 we also point out that the modifiability-related 
tactics shown under Enable Continuous Integration also enable 
Test Automation. The crosscutting tactics shown in Fig 1 are 
primarily from the performance, modifiability, testability, and 
availability tactics trees. 

IV. DISCUSSION 
In addition to employing software application-related 

architectural decisions and tactics, all three projects described 
using several other enablers that were critical to their success. 
These were generally a mix of practices and tool/environment 
support. For example, Project A created an automated database 
script to minimize update time during database release. Project 
B leveraged automated deployment scripting, deployment-
focused configuration management tools (e.g., Chef), and 
virtualized environment generation tools (e.g., Vagrant). 
Project C used a tool called RedGate so they could bundle and 
deploy database SQL changes with a feature. On Project B, 
while software architecture was not impacted by adopting these 
approaches and tools, other related architectural elements, such 
as network and deployment architecture, were impacted. For 
example, automated deployment systems had to be 
reconfigured to communicate with staging and production 
networks, and all necessary automation client tools had to be 
installed on virtual machines housing the application. 

The examples in the previous paragraph raise an interesting 
topic that our team spent some time discussing. Traditionally, 
there has been a fairly strict line drawn between the application 
and supporting infrastructure and tool environment (e.g., 
testing tools, configuration management tools, deployment 
scripts, and other components). The later have been considered 
external to the system. Examples such as those described by 
Project B, where decisions related to deployment support 
significantly impact the infrastructure or network on which the 
applications run (in some cases, even production 
environments), beg the question of whether these components 
and tools traditionally considered external to the application 
should continue to be thought of as external or whether we are 
entering an era when the lines are blurred and, perhaps these 
should be reconsidered as a combined ecosystem. 

V. CONCLUSION 
This work is intended to explore the hypothesis that 

architecture contributes to achieving continuous delivery and 
deployability goals. The concrete tactics captured in this paper 
provide a start toward validating our hypothesis. Our hope is to 
continue to investigate this research area through additional 
empirical research activities. Takeaways from our exploration  
include the following: 

� As we analyzed the data collected in our interviews, 
we found that many of the key decisions made by the 
projects were architectural.  

FIG. 1. DEPLOYABILITY TACTICS TREE 

706



� In the examples that we collected in response to IQ1 
and IQ2, we found an initial set of embedded goals that 
we can use to form the top layer of a tactics tree. 

� We found that several tactics were employed, and 
while there are some new variants of tactics, the 
Deployability tactics crosscut many of the existing 
Quality Attribute tactics described in [6]. 

� We found examples of important trade-offs the teams 
made to reduce deployment time, complexity, and 
overhead. We suggest that, just like with other quality 
attributes, it is important to have a clear understanding 
of stakeholder priorities and visibility of tradeoffs to 
make the right decisions for short and long term 
deployability. 
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