
Architecture Patterns for Mobile Systems in
Resource-Constrained Environments

Grace A. Lewis, Soumya Simanta, Marc Novakouski, Gene Cahill, Jeff Boleng, Edwin Morris, James Root
Carnegie Mellon Software Engineering Institute (SEI)

Advanced Mobile Systems Initiative
Pittsburgh, PA USA

{glewis, ssimanta, novakom, gmcahill, jlboleng, ejm, jdroot}@sei.cmu.edu

Abstract— Soldiers, first responders and other personnel

operating at the tactical edge increasingly make use of mobile
devices to help with tasks such as face recognition, language
translation, decision-making and mission planning. Tactical-edge
environments are characterized by limited resources, dynamic
context, high stress and poor connectivity. This paper focuses on
three architecture patterns that address these conditions. The
Data Source Integration pattern uses server-side standardized
definitions of live or cached geo-located data feeds that can be
customized and filtered on a single, map-based user interface on
a mobile device. The Group Context Awareness pattern uses
context obtained from groups of handheld devices operating as
part of a team to make sure that the right information is
displayed to the right soldier at the right time. The Cloudlet-
Based Cyber-Foraging pattern uses cloudlets as code-offload
elements to optimize resources and increase computation power
of mobile devices. Cloudlets are discoverable, localized, stateless
servers running one or more virtual machines on which users can
offload resource-intensive computations from their mobile
devices. Prototype applications have been implemented for each
of these patterns. Experiment results and participation in
exercises have shown the effectiveness of the patterns in
addressing the challenges of resource-constrained environments.

Keywords—mobile computing, mobile systems, architecture
patterns, software architecture, resource-constrained environments,
tactical edge

I. INTRODUCTION
Soldiers, first responders and other personnel operating at

the tactical edge increasingly make use of mobile devices to
help with tasks such as face recognition, language translation,
decision-making and mission planning. These resource-
constrained, edge environments are characterized by
� occasional to frequent dismounted operations
� intermittent or no connectivity to traditional infrastructure;
� a fast paced, highly fluid and unpredictable environment;
� the potential of large amounts of raw data and information;
� resource challenges (i.e. power, computing, etc.); and
� periods of very high stress and cognitive load

Given these characteristics mobile systems deployed in
these environments must address the following challenges to
meet mission needs:

� Provide situational awareness and data analysis for
soldiers disconnected from high-speed data reach back and
only able to depend on tactical radio data networks

� Reduce cognitive load and complexity for dismounted
soldiers, particularly in situations of high stress

� Increase computing power, data access, and survivability
of computing capabilities in tactical environments while
reducing demands on person-carried resources

 This paper presents an initial set of patterns for mobile
systems in resource-constrained environments that address
these challenges. Section II presents related work. Section III
describes the Data Source Integration pattern that provides
access to disparate and potentially unknown data sources while
addressing the challenges of limited resources, high cognitive
load, information overload and dynamic environments. Section
IV describes the Group Context awareness pattern that enabled
teams to share and make decisions that consider group context
while addressing the challenges of limited resources,
uncertainty of available infrastructure, and high cognitive load.
Section V describes the Cloudlet-Based Cyber-Foraging
pattern that increases the computing power or mobile devices
while addressing the challenges of limited processing power
and battery life, unreliable networks, uncertainty of available
infrastructure, and uncertainty of connectivity to the enterprise.
Section VI describes our current and future work in this area.
Section VII concludes the paper.

II. RELATED WORK
In software engineering, a pattern represents a proven

solution to a recurring design problem. Gamma et al were the
first to develop design patterns for object-oriented systems [1].
These design patterns were manifested as low-level reusable
object-oriented designs described using a standard template.
Buschmann et al were the first to present architecture patterns
for large-scale applications that could be composed to promote
certain system qualities [2]. Our patterns are described using an
abbreviated version of their template. Since then, architecture
patterns have been developed for specific types of applications
or domains, such as concurrent and networked systems [3],
enterprise applications [4], enterprise integration [5], resource
management [6], and distributed systems [7]. Specific to
mobile systems, patterns have been presented for mobile web
information systems focusing on web access and customization
[8] and service-based mobile applications focusing on code
offload [9]. To the best of our knowledge, we are the first to

2013 IEEE Military Communications Conference

978-0-7695-5124-1/13 $31.00 © 2013 IEEE

DOI 10.1109/MILCOM.2013.121

680

explore architecture patterns beyond code offloading for
mobile systems in resource-constrained environments.

III. THE DATA SOURCE INTEGRATION PATTERN

A. Motivation
Map-based apps with optional data layers or overlays, such

as Google Maps, can provide SA to edge users, but only if the
apps provide access to a far greater range and type of mission-
oriented data. To support the dynamic aspect of edge
environments and missions, SA applications in the field must
support the rapid creation of mashups that consolidate
information and support concurrent visualization of
information from multiple sources that might not be known in
advance.

B. Problem
SA capabilities at the edge require a mashup capability that

allows end users to connect to and display data from multiple
unrelated data sources that, when combined, provide a more
complete situational presentation than the individual sources
alone. To address the challenges of resource-constrained
environments, required capabilities of edge-enabled SA
solutions include rapid incorporation of new data sources;
minimized information overload; user control of data sources,
data volume and visualization method; and simple use.

C. Solution
We propose a solution for data source integration that

supports the rapid creation of mashups of geo-located data
from multiple sources and displays that data on handheld
devices to support situational awareness. A reference
architecture is presented in Figure 1 and a specific
implementation is documented in [10].

The main elements of the architecture are the Client App on
the Mobile Device and the Data Source Manager on the Data
Integration Server. The client app is composed of a set of
Views that most likely contains a map-based view to display
the retrieved geo-located data and a search view to enable end
users to create data filters. A key element of the client app is
the Rule Builder, which translates end-user created filters into
rules that are sent as part of the Data Request from the Data
Client to the Data Server.

On the server side, each Data Source is separately
described by a Data Source Descriptor. Data sources can be
local (i.e., on the same server), on a server in the same local
network, or in the cloud. Upon receiving the data request from
the client, the data server sends the request to the Data
Connector and Filter that corresponds to the requested data
source. This component contains the data access logic and the
rules engine that executes the filtering rules that are contained
within the data request.

Figure 1. Reference Architecture for Rapid Integration of Situational Awareness Data

681

D. Impact
The Data Source Integration pattern addresses the

challenges of dynamic environments, high cognitive load,
information overload, and limited resources. Server-side,
separately defined data sources simplify the addition and
removal of data sources without affecting existing data models
or clients. In addition, because the differences in data sources
are addressed at the server side, it enables the creation of a
unified user interface (as opposed to a user interface per data
source) that reduces cognitive load.

User-defined filters address the challenge of cognitive load
and information overload because users at runtime can
determine how much and what information to see. Data is
filtered on the server before sending it to the mobile client,
which reduces bandwidth utilization. However, the data
formats used in the data requests will also have an effect on
bandwidth utilization (e.g., bandwidth-hungry formats such as
XML and SOAP vs. more compact data formats such as
protocol buffers). Server-side data filtering also addresses
resource limitations because potentially computation-intensive
filtering rules are offloaded and executed on the server and not
on the mobile device (see Section V).

Finally, while the link from the mobile client to the data
integration server will likely be relatively low-bandwidth
wireless, the link from the server to the data sources can be a
higher-bandwidth wireless or, potentially, a wired link. The
faster data rates and higher bandwidth of the links can result in
lower overall latency to the mobile clients.

E. Variants
The Data Source Integration pattern can be instantiated in

multiple ways by using different combinations of technologies.
Even though the solution presented in Figure 1 is based on a
request-response interaction paradigm, publish-subscribe
would also be possible. In this case the equivalent of the data
request would be a data source subscription that contains rules
describing the specifics regarding data fields and volume to be
published. In addition, the presented solution uses location as
the “mashup field” because it is a common field in available
SA information. The use of other mashup fields is possible and
would have to be defined and used by specific views in the
client app. Finally, depending on needs and server capabilities,
all results of data requests could be cached. This strategy takes
advantage of the fact that individuals working in the same area
often make repeated accesses to the same data. A more
predictive caching strategy based on context information such
as location could also support disconnected operation.

IV. THE GROUP CONTEXT AWARENESS PATTERN

A. Motivation
Edge environments demand that individuals operate

cooperatively in teams. When teams operate in high stress
environments such as search and rescue operations, or tactical
combat engagements, it is crucial that every team member is
able to execute their assigned tasks to ensure the teams’ larger
mission is accomplished, and that all the members of the team
are provided the right information at the right time in order to
ensure their safety and effective actions.

Figure 2. Reference Architecture for Group-Context-Aware Mobile Applications

682

B. Problem
An architecture for group context awareness must be

flexible enough to create, analyze, and react to unpredictable
events that were never imagined during planning. Similarly,
the architecture must be resilient to intermittent
communications connectivity and opportunistic in using
communication capabilities as they become available. The
architecture should also provide the capability to manage
resources on the mobile device such that resources are used as
efficiently as possible to maximize the availability of the
system. Finally, the architecture must address cognitive load
by providing mechanisms for supporting the information needs
of the group while requiring minimal attention and interaction.

C. Solution
We propose a solution for group context awareness that

addresses flexibility, resource management, and cognitive load.
A reference architecture for group-context-aware mobile
systems is presented in Figure 2 and documented in [11].

The architecture follows the basic architecture for context-
aware mobile applications proposed in [12] that divides the
architecture into context capture, context reasoning and
aggregation and context visualization. This architecture also
follows the common model-view-controller (MVC) pattern.
The model is the App Data in the I/O Layer which is managed
by the Data Manager. The controller is the Application
Manager in conjunction with the other components in
Application Layer. The view is the set of Views in the User
Interface Layer. These views register an interest in events
produced by the system and display data accordingly. The
views can also input context data from the user.

The Context Engine is at the core of the architecture and is
the central processor for all context information used by the
application. As device sensors report new data and context data
is received from group members, it is passed through the
engine so that new events are detected as they occur. Context
data is processed based on mission-specific Rule Sets that can
be created, added, and swapped as needed. The Sensor
Manager accepts data from Sensors on the mobile device, such
as position sensors, movement sensors, light and proximity
sensors, etc. It is highly-extensible to incorporate new sensors
easily. The Communications Manager acts as the gateway for
all external communications. It is also highly extensible to
support multiple Communication Mechanisms.

D. Impact
Group Context Awareness addresses the challenges of

limited battery life, uncertainty of available infrastructure, and
high cognitive load. The layered architecture/MVC approach
allows for maximum extensibility and modifiability. In
addition, the XML-based configuration approach and group
context model (discussed further in [11]) allow for maximum
flexibility in defining and creating arbitrary events and system
responses for a given mission.

Flexibility in managing sensors and communications is
provided by the manager approach. Combining generalized
control of sensors and communications with the ability of the
context engine to react to different situations allows a system
implementing this pattern to tailor sensor sensitivity and

reporting rate to the situation, as well as to choose when and
how to communicate to other groups.

Finally, the key advantage of a group context model and
context engine is management of cognitive load.
Understanding the situation of the individual and the group
allows the context engine to intelligently manage both when
and how information is presented to the user. This results in a
system that knows when to do nothing, when to queue
information for later presentation, and when to interrupt the
user. The MVC pattern also supports this goal by supporting
the creation of arbitrary views, allowing the tailoring of
information presentation to a given domain or context.

E. Variants
The power of the Group Context Awareness pattern is its

flexibility. The presented reference architecture provides the
capability for communications, sensor polling, event creation
and reaction through the context engine, and customized
display of data through arbitrary UI views. This pattern could
be used to instantiate applications that use any or all of these
components. More interestingly, the pattern could potentially
be used to implement machine-learning-like behavior, by
gathering data and analyzing it over some period of time, then
using the context engine to react to events identified by the
machine learning algorithms.

V. THE CLOUDLET-BASED CYBER-FORAGING PATTERN

A. Motivation
Applications that are useful in resource-constrained,

mission execution environments include, among others, face
recognition, natural language processing, and language
translation. These resource-intensive applications require great
amounts of battery and computing power and might not even
be able to execute on the mobile device due to the complexity
of the algorithms required.

B. Problem
Cyber foraging, as first introduced by Satyanarayanan [13],

is a technique to enable resource-poor mobile devices to
leverage external computing power. A mobile device offloads
code to a surrogate, taking advantage of a more powerful
hardware infrastructure. This surrogate executes the code and
returns the computational result to its client. However, most
existing cyber-foraging solutions assume connectivity to the
cloud or tightly couple offloaded applications to a specific
infrastructure, which make them infeasible in resource-
constrained environments or harder to provision.

C. Solution
We propose a solution for cyber-foraging based on

cloudlets — discoverable, generic, stateless servers located in
single-hop proximity of mobile devices, that can operate in
disconnected mode and are virtual-machine (VM) based to
promote flexibility and mobility [14]. A reference architecture
for cloudlet-based cyber-foraging is presented in Figure 3 and
documented in [15].

683

Figure 3. Reference Architecture for Cloudlet-Based Cyber-Foraging

The main elements of the architecture are the Mobile

Client and the Cloudlet Host. A Discovery Service running
inside the cloudlet host publishes Cloudlet Metadata that is
used by the Cloudlet Client to determine the appropriate
cloudlet for offload and to connect to the cloudlet. Metadata
can range from a simple IP address and port to connect to the
cloudlet server to complex data structures describing cloudlet
capabilities. Every application is composed of a Cloudlet-
Ready Client App that corresponds to the client portion, the
Server Offload Code that corresponds to the server portion,
and the Client App Metadata that contains information that is
used by the cloudlet client and the cloudlet server to
negotiate and carry out the code offload process. Once a
cloudlet is identified for offload, the cloudlet client sends the
server offload code and client app metadata to the Cloudlet
Server. The cloudlet server then deploys the server code
inside a Guest VM inside the VM Manager. The server
offload code can range from source code, to application
packages, to complete VMs. Once the deployment is
complete, the cloudlet server is notified that the server is
ready for execution and the client app is launched.

D. Impact
Cloudlet-based cyber-foraging addresses the challenges

of limited processing power and battery life by offloading
expensive computation to more powerful cloudlets. Because
cloudlets are stateless — they can operate in disconnected
mode and only have to be connected to the cloud for

provisioning — they address the challenge of uncertainty of
connectivity to the enterprise. The challenge of uncertainty
of available infrastructure and unreliable networks is
addressed because offloaded code is deployed in a basic VM
Manager such as KVM or VMWare. Migrating offloaded
code to a different cloud can be done via live VM migration.
This also increases the survivability of the solution.

However, Simanta [15] and Messinger [18] both
demonstrate that the size of the server offload code is
directly proportional to energy consumption and application-
ready time. While VM synthesis, which is the cloudlet
provisioning mechanism used in [15], provides great
flexibility and places minimal requirements on the
infrastructure, the size of the server offload code is five time
larger than with application virtualization which is the
technique used in [18]. The limitation of application
virtualization however is that correct execution is only
guaranteed if all application dependencies are captured,
which is not a problem with VM synthesis. This means that
mobile systems that implement this pattern have to balance
server offload code size with desired system qualities and
infrastructure requirements.

E. Variants
Even though in traditional cyber-foraging solutions code

is always offloaded from the mobile device to the surrogate
(cloudlet), a variant to this pattern is to offload the client app

Cloudlet HostMobile Client

Legend

System
Boundary

Cloudlet-
Ready

Client App
1

Custom Runtime
Component

Cloudlet
Client

File Read/
WriteCall

File

VM Manager

Guest VM 1

Server 1

Cloudlet
Server

Discovery Service

Cloudlet Metadata

Broadcast

3rd Party
Runtime

Component

Server Offload Code + Metadata

Cloudlet-
Ready

Client App
2

Cloudlet-
Ready

Client App
n

Guest VM 2

Server 2

Guest VM n

Server n

Cloudlet
Metadata

Client
App 1

Metadata

Client
App n

Metadata

Client
App 2

Metadata

Server 1
Offload

Code

Server 2
Offload

Code

Server n
Offload

Code

684

from the cloudlet to the client. Cloudlet-based cyber-foraging
is an “always offload” strategy, which means that server
code is always offloaded to the surrogate. Variants of this
pattern include static partitioning strategies such as MAUI
[16] or dynamic partitioning strategies such as CloneCloud
[17] to determine whether it is more energy efficient to
execute locally or remotely. However, this variant assumes
that the code can execute locally or remotely.

VI. CURRENT AND FUTURE WORK
The architecture patterns presented in this paper have

been implemented for Android using current, open source
technologies to demonstrate the validity of the patterns as
well as their technical feasibility.
� The Data Source Integration pattern has been instantiated

to support the rapid integration of DoD and public data
feeds onto a map-based user interface that can be easily
configured by the end user [10].

� The Group-Context Awareness pattern has been
instantiated to support real-time sharing of SA information
enhanced with contextual information using small tablets
and communicating peer-to-peer via radios [11].

� The Cloudlet-Based Cyber-Foraging pattern has been
implemented using two different provisioning strategies —
VM synthesis [15] and application virtualization [18]. We
are in the process of implementing two additional
strategies that will minimize the communication between
the mobile device and the cloudlet for provisioning.

These implementations have been taken to field
experiments and exercises to demonstrate their operational
feasibility. Consistent with the SEI’s mission, we are in the
process of finding transition partners for which the patterns
can be instantiated according to specific missions and
organizational requirements and moved into real systems.

In addition, as stated in Fowler [4], patterns are combined
to create larger-scale solutions. We are currently working on
the combination of these patterns to support context-aware,
rapidly deployed SA solutions. The Data Integration Server
is rapidly deployed onto a cloudlet using Cloudlet-Based
Cyber-Foraging. Group-Context-Awareness is used to tailor
the information that is retrieved and visualized on each
mobile device. We are also working on additional
architecture patterns to account for dynamic environments.

VII. CONCLUSIONS
We have presented a set of architecture patterns for

mobile systems in resource-constrained environments that
support first responders and military personnel operating in
edge environments. These architecture patterns are driven by
flexibility, resource efficiency, and usability, which are key
quality attributes for systems at the tactical edge. The goal of
these patterns is to enable system architects to instantiate
them using a variety of technologies that can meet functional
and quality requirements.

ACKNOWLEDGMENT
This material is based upon work funded and supported by the

Department of Defense under Contract No. FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software

Engineering Institute, a federally funded research and development
center. This material has been approved for public release and
unlimited distribution (DM-0000316).

REFERENCES
[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

Design Patterns. Addison-Wesley, Boston, MA, 1995.
[2] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,

and Michael Stal. Pattern-Oriented Software Architecture: A System
of Patterns. John Wiley & Sons, Inc., New York, NY, USA, 1996

[3] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-Oriented Software Architecture Volume 2:
Patterns for Concurrent and Networked Objects, Wiley, 2000.

[4] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[5] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions, 1st Edition.
Addison-Wesley Professional, 2003.

[6] Michael Kircher and Prashant Jain. Pattern-Oriented Software
Architecture Volume 3: Patterns for Resource Management. Wiley,
2004.

[7] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-
Oriented Software Architecture Volume 4: A Pattern Language for
Distributed Computing. Wiley, 2007.

[8] Walter A. Risi and Gustavo Rossi. An architectural pattern catalogue
for mobile web information systems. Int. J. Mob. Commun. 2, 3
(September 2004), 235-247.

[9] Jennifer Kim. Architectural patterns for service-based mobile
applications," Service-Oriented Computing and Applications
(SOCA), 2010 IEEE International Conference on , vol., no., pp.1,4,
13-15 Dec. 2010.

[10] Soumya Simanta, Gene Cahill, and Edwin Morris. eMontage: An
Architecture for Rapid Integration of Situational Awareness Data at
the Edge. Engineering of Mobile-Enabled Systems (MOBS), 2013
ICSE Workshop on, May 2013 (to be published in September 2013).

[11] Grace Lewis, Marc Novakouski, and Enrique Sánchez. A Reference
Architecture for Group-Context-Aware Mobile Applications. In
Mobile Computing, Applications, and Services (pp. 44-63). Springer
Berlin Heidelberg, 2013.

[12] Anind Dey. Understanding and Using Context, Springer-Verlag
London Ltd. Personal and Ubiquitous Computing 5:4—7, 2001.

[13] Mahadev Satyanarayanan. Pervasive Computing: Vision and
Challenges. IEEE Personal Communications, pp. 10-17, 2001.

[14] Mahadev Satyanarayanan; Paramvir Bahl, Ramón Cáceres, and Nigel
Davies. The Case for VM-Based Cloudlets in Mobile Computing,
Pervasive Computing, IEEE , vol.8, no.4, pp.14,23, Oct.-Dec. 2009.

[15] Soumya Simanta, Grace A. Lewis, Edwin Morris, Kiryong Ha, and
Mahadev Satyanarayanan. A Reference Architecture for Mobile Code
Offload in Hostile Environments, Software Architecture (WICSA)
and European Conference on Software Architecture (ECSA), 2012
Joint Working IEEE/IFIP Conference on , vol., no., pp.282,286, 20-
24 Aug. 2012.

[16] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec
Wolman, Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl.
MAUI: making smartphones last longer with code offload. In
Proceedings of the 8th international conference on Mobile systems,
applications, and services (MobiSys '10). ACM, New York, NY,
USA, 49-62. 2010.

[17] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. CloneCloud: elastic execution between mobile device
and cloud. In Proceedings of the sixth conference on Computer
systems (EuroSys '11). ACM, New York, NY, USA, 301-314. 2011.

[18] Dominik Messinger and Grace Lewis. Application Virtualization as a
Strategy for Cyber Foraging in Resource-Constrained Environments
(CMU/SEI-2013-TN-007). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2013.

685

