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Abstract. Robots are increasingly used to perform a wide variety of
tasks, especially those involving dangerous or inaccessible locations. As
the complexity of such tasks grow, robots are being deployed in teams,
with complex coordination schemes aimed at maximizing the chance of
mission success. Such teams operate under inherently uncertain condi-
tions – the robots themselves fail, and have to continuously adapt to
changing environmental conditions. A key challenge facing robotic mis-
sion designers is therefore to construct a mission – i.e., specify number
and type of robots, number and size of teams, coordination and plan-
ning mechanisms etc. – so as to maximize some overall utility, such as
probability of mission success. In this paper, we advocate, formalize, and
empirically justify an approach to compute quantitative utility of robotic
missions using probabilistic model checking. We show how to express a
robotic demining mission as a restricted type of discrete time Markov
chain (called αPA), and its utility as either a linear temporal logic for-
mula or a reward. We prove a set of compositionality theorems that
enable us to compute the utility a system composed of several αPAs
by combining the utilities of each αPA in isolation. This ameliorates
the statespace explosion problem, even when the system being verified
is composed of a larger number of robots. We validate our approach
empirically, using the probabilistic model checker prism.

1 Introduction

Robots are increasingly used to perform a wide variety of tasks. Examples include
situations where the task is dangerous (e.g., demining) or involves physically in-
accessible localities (e.g., a disaster area). In both types of cases, robots are
often deployed in teams to provide fault tolerance, and to accommodate a wider
variety of plans. The tasks consist of both unpredictable and known parts. For
example, the operating conditions change unpredictably, and robots might mal-
function, become indisposed, or be unable to complete its task due to the lack of
capability. These are unknown. On the other hand, there are known parameters,
e.g., the number of robots, the capabilities of each robot, the set of plans avail-
able to each robot, and the coordination algorithms used by the robots, that are
within the control of the mission designer. The goal of the designer is to select
these parameters so as to increase overall mission utility.



We focus a specific class of missions that involve foraging-and-reacting (FAR),
where robots have to explore an arena, look for specific objects, and react to them
in specific ways. Examples of such missions are demining a minefield [16] where
robots attempt to defuse detected mines, and search-and-rescue of a disaster area
where robots report the location and status of discovered survivors to authorities.

Designing FAR missions requires solving two types of problems: (a) success:
estimate the probability of mission success within a certain deadline; and (b)
coverage: compute the expected amount of terrain covered within a given dead-
line. Currently, designers rely on their prior knowledge as well as field tests and
simulations to solve these two problems. Both have limitations. Relying on prior
knowledge is ad-hoc, limited, and typically does not cover unknown and unfore-
seen situations. Full scale field tests are expensive, time-consuming, and may not
be conducted in a way that permits a generalization of the relative impacts of
certain parameter settings to similar missions in other contexts.

In this paper, we propose a more systematic, repeatable, and analytic method,
based on probabilistic model checking, to solve both success and coverage prob-
lems. Specifically, we show how to model a robotic demining mission as a prob-
abilistic automaton (PA). In addition, we show how to express success as a
probabilistic LTL [1] formula, and coverage as a cumulative reward over the PA.
This is our first contribution. Further details are presented in Section 5.

Our second contribution is tackling the statespace explosion problem during
probabilistic model checking of FAR missions. We leverage two types of restric-
tions commonly found in such missions. First, robots are divided into teams, and
each team operates independently on a separate portion of the arena. We call
this property independence (IND). Second, the PAs for the teams synchronize
over a common action corresponding to a clock tick since the robot teams op-
erate under the same global clock. We call property synchronization (SYNC).
In our approach, these two restrictions are incorporated by modeling each team
as a αPA, i.e., a PA with a singleton alphabet {α}. When αPAs are composed,
they synchronize over the common action α. The result is also a αPA.

The restricted nature of αPAs enables us to obtain two compositionality re-
sults: (a) probability of satisfying an LTL formula accumulates multiplicatively
over αPAs (cf. Theorem 1 and 2); and (b) expected reward accumulates addi-
tively over αPA (cf. Theorem 3 and 4). Our compositionality theorems hold for
an arbitrary (but finite) number of αPAs. Further details are presented in Sec-
tion 4. These theorems enable us to solve success and coverage for our demining
case study in a completely compositional manner by model checking the αPA
for each team individually.

Our third and final contribution is an empirical validation of our results
by using the state-of-the-art probabilistic model checker prism [11] to compute
the values of success and coverage for our demining case study using both the
compositional approach and the direct non-compositional approach. We show
how the non-compositional model checking runs out of resources even for two
robotic teams, while the compositional approach scales easily to even thirty
teams. Further details are presented in Section 6.



The rest of the paper is structures as follows. In Section 2 we survey related
work. In Section 3, we present basic definitions. In Section 4 we present our com-
positionality theorems. In Section 5, we present our robotic demining scenario
and its αPA model, as well as the properties we want to verify. In Section 6, we
present experimental results, and in Section 7, we conclude.

2 Related Work

This paper builds on a wide body of work in modeling and verifying probabilis-
tic systems [14]. In particular, probabilistic model checking has been used to
verify systems ranging from pacemakers [3], root contention protocols [13] and
biological pathways [8]. Our work explores the application of probabilistic model
checking to yet another domain – coordinated multi-robot missions.

The connection between probabilistic systems and compositionality has been
studied by a number of researchers. For example, de Alfaro et al. [4] provide
a semantic notion of compositionality in the context of probabilistic reactive
modules. Our notion of probabilistic automata and parallel composition is bor-
rowed from that proposed by Stoelinga [15] and others. In essence, αPA are
a restricted, yet useful, version of probabilistic automata that admit to strong
compositionality results.

A number of projects on compositional verification of probabilistic systems [12]
use automated assume-guarantee algorithms that are based on learning [6, 7].
There is also work on learning-based assume-guarantee reasoning for synchronous
probabilistic systems [5], assume-guarantee and abstraction refinement for prob-
abilistic systems [9], and on compositional reasoning for probabilistic model
checking of hardware designs [10]. Our approach is also compositional, but does
not involve assume-guarantee reasoning.

A preliminary version of the demining scenario presented here, its probabilis-
tic model, and experimental results were reported in our previous work [2]. The
model was less elaborate, e.g., it did not include uncertainty when moving from
cell to cell. Also, it was a DTMC, not αPA, and hence not amenable to the com-
positionality theorems presented here. Indeed, our prior work [2] did not include
any compositionality theorems, nor empirical results showing their effectiveness.

3 Preliminaries

We adopt the formalism of probabilistic automata [15], modifying it in two ways:
(a) extending it by labeling states with atomic propositions; and (b) restricting
the alphabet to be a singleton. The result is a class of automata we call αPA.
Let Dist(X) be the set of all probability distributions over any set X.

Definition 1 (αPA). A αPA is a 6-tuple (S, Init , Σ, δ,AP ,L) where: (i) S is
a set of states; (ii) Init ∈ S is the initial state; (iii) Σ = {α} is the singleton
alphabet; (iv) δ : S 7→ Dist(S) is the transition relation; (v) AP is a set of
atomic propositions; and (vi) L : S 7→ 2AP is a mapping from states to sets of
atomic propositions, such that L(s) is the set of propositions true in s.



If M = (S, Init , Σ, δ,AP ,L) is a αPA, we write S(M), Init(M), Σ(M),
δ(M), AP(M), and L(M) to mean S, Init , Σ, δ, AP and L, respectively.

Definition 2 (Execution). Let M be a αPA. An execution π is a (finite or
infinite) sequence of states s0, s1, . . . such that:

∀i ≥ 0 � δ(M)(si)(si+1) > 0

The execution π starts from s0. The set of all executions starting from s is de-
noted by Ex (s,M), and Ex (M) means Ex (Init(M),M). The set of all finite exe-

cutions starting from s is denoted by Êx (s,M) and Êx (M) means Êx (Init(M),M).

We omit M from Ex (s,M) and Êx (s,M) when it is clear from the context.

Given two probability distributions µ1 ∈ Dist(X1) and µ2 ∈ Dist(X2), the
distribution (µ1 × µ2) ∈ Dist(X1 ×X2) is defined as follows:

∀(x1, x2) ∈ X1 ×X2 � (µ1 × µ2)(x1, x2) = µ1(x1)× µ2(x2)

For any set X and an element x ∈ X, the Dirac distribution ∆(x) ∈ Dist(X)
maps x to 1 and every other element of X to 0. αPAs synchronize via the
common action α. Let M1 and M2 be two αPAs. We write M1 �M2 to mean
AP(M1)∩AP(M2) = ∅. Formally, the composition of αPA is defined as follows.

Definition 3. Let M1 and M2 be αPAs such that M1 �M2. Their parallel com-
position M1 ‖M2 is the αPA (S, Init , Σ, δ,AP ,L) where:

S = S(M1)× S(M2) Init = (Init(M1), Init(M2))

Σ = {α} δ(s1, s2) = δ(M1)(s1)× δ(M2)(s2)

AP = AP(M1) ∪AP(M2) L(s1, s2) = L(M1)(s1) ∪ L(M2)(s2)

Properties. We assume that properties are specified as LTL [1] formulas. The
syntax of a LTL formula Ψ over the set of atomic propositions AP is given by:

Ψ := true | a | ¬Ψ | Ψ ∧ Ψ | XΨ | ΨUΨ

where a ∈ AP is an atomic proposition. We write π |= Ψ to mean that the infinite
execution π satisfies the formula Ψ . Consider a PA M . We write Ex (s, Ψ) to mean
the infinite executions starting from s that satisfy Ψ , i.e.,

Ex (s, Ψ) = {π ∈ Ex (s) | π |= Ψ}

Cylinders. Every finite execution π̂ induces a set of infinite executions for which
π̂ is a prefix. This is known as the cylinder of π̂, or Cyl(π̂). A finite execution π̂
satisfies Ψ , denoted π̂ |= Ψ , if ∀π ∈ Cyl(π̂) � π |= Ψ . We write π̂1 v π̂2 to mean
that π̂1 is a prefix of π̂2. A set of finite executions E is minimal if it has no two
distinct elements π̂1 and π̂2 such that π̂1 v π̂2. For every LTL formula Ψ and
state s, there is a unique minimal subset of Êx (s), denoted B(s, Ψ), such that:

Ex (s, Ψ) =
⋃

π̂∈B(s,Ψ)

Cyl(π̂)



Let Êx (s, k) be the subset of Êx (s) containing only executions with k+ 1 states.

Let π̂ = s0, . . . , sn ∈ Êx (s0, n). Let us define p(π̂) as follows:

p(π̂) = 1 if n = 0 and p(π̂) =
∏

0≤i<n

δ(M)(si)(si+1) otherwise

Definition 4. Given a state s and a LTL formula Ψ , P(s, Ψ) is the probability
that s satisfies Ψ , and is defined as:

P(s, Ψ) =
∑

π̂∈B(s,Ψ)

p(π̂)

Rewards. We write P(M,Ψ) to mean P(Init(M), Ψ). A reward structure on a
αPA M is a pair (ρ, ι) such that ρ : S(M) 7→ R and ι : S(M)×S(M) 7→ R map
states and transitions of M , respectively, to real-valued rewards.

Definition 5. The cumulative reward due to a reward structure R = (ρ, ι) from
state s upto time k, denoted by C≤k(s,R) is defined recursively as follows:

C≤0(s,R) = 0

∀k > 0 � C≤k(s,R) = ρ(s) +
∑

s′∈S(M)

δ(M)(s)(s′)× (ι(s, s′) + C≤(k−1)(s
′, R))

4 Compositional Verification

In this section, we present our compositionality theorems. We begin by defining
the “product” of two executions. Let M1 ∈ αPA and M2 ∈ αPA. Let π̂1 =
s0, . . . , sn ∈ Êx (M1, n) and π̂2 = s′0, . . . , s

′
n ∈ Êx (M2, n) be two finite executions.

Then, π̂1 × π̂2 ∈ Êx (M1 ‖ M2, n) is the execution (s0, s
′
0), . . . , (sn, s

′
n). If π̂ =

π̂1 × π̂2, then we write π � 1 and π � 2 to mean π̂1 and π̂2, respectively.
This extends to executions of different length as follows. Given a finite exe-

cution π̂ = s0, . . . , sm, and n ≥ m, the set of n-extensions of π̂, denoted by π̂+n,
is defined as follows:

π̂+n = {π̂′ ∈ Êx (s0, n) | π̂ v π̂′}

π̂1 × π̂2 = {π̂′1 × π̂′2 | π̂′1 ∈ π̂1+n ∧ π̂′2 ∈ π̂2+n ∧ n = max(|π̂1|, |π̂2|)}

E1 × E2 =
⋃

(π̂1,π̂2)∈E1×E2

π̂1 × π̂2

Note that if π̂ ∈ π̂1 × π̂2, then π1 v π̂ � 1 and π2 v π̂ � 2. Next we present
two lemmas. The proofs of these lemmas are in the appendix.

Lemma 1. Let M1 ∈ αPA, M2 ∈ αPA be αPAs such that M1 � M2. Let
s1 ∈ S(M1), s2 ∈ S(M2), and Ψ1 and Ψ2 be LTL formulas over AP(M1) and
AP(M2), respectively. Then:

B((s1, s2), Ψ1 ∧ Ψ2) = B(s1, Ψ1)× B(s2, Ψ2)



Lemma 2. Let E1 and E2 be two minimal sets of finite executions. Then:

∑
π̂∈E1×E2

p(π̂) =

 ∑
π̂1∈E1

p(π̂1)

×
 ∑
π̂2∈E2

p(π̂2)


Now we present and prove our first compositionality theorem.

Theorem 1. Let M1 ∈ αPA, M2 ∈ αPA be αPAs such that M1 �M2. Let Ψ1

and Ψ2 be LTL formulas over AP(M1) and AP(M2), respectively. Then:

P(M1 ‖M2, Ψ1 ∧ Ψ2) = P(M1, Ψ1)× P(M2, Ψ2)

Proof. The proof proceeds as follows:

B using Definition 4

P(M1 ‖M2, Ψ1 ∧ Ψ2) =
∑

π̂∈B((Init1,Init2),Ψ1∧Ψ2)

p(π̂)

B using Lemma 1

=
∑

π̂∈B(Init1,Ψ1)×B(Init2,Ψ2)

p(π̂)

B using Lemma 2

=

 ∑
π̂1∈B(Init1,Ψ1)

p(π̂1)

×
 ∑
π̂2∈B(Init2,Ψ2)

p(π̂2)


B again using Definition 4

= P(M1, Ψ1)× P(M2, Ψ2)

ut

Theorem 1 generalizes from 2 to n αPAs as follows.

Theorem 2. Let M1, . . . ,Mn be αPAs such that ∀1 ≤ i < j ≤ n �Mi �Mj. Let
Ψ1, . . . , Ψn be LTL formulas over AP(M1), . . . ,AP(Mn), respectively. Then:

P(M1 ‖ · · · ‖Mn, Ψ1 ∧ · · · ∧ Ψn) =

n∏
i=1

P(Mi, Ψi)

We omit the proof of Theorem 2 for brevity, and turn our attention to re-
wards. Let M1 and M2 be αPAs and let R1 = (ρ1, ι1) and R2 = (ρ2, ι2) be
reward structures defined on them. The composition of R1 and R2, denoted by
R1 ⊕R2, is the reward structure (ρ, ι) on M1 ‖M2 defined as follows:

ρ(s1, s2) = ρ1(s1) + ρ2(s2) ι((s1, s2), (s′1, s
′
2)) = ι1(s1, s

′
1) + ι2(s2, s

′
2)

Our second compositionality theorem relates to rewards, as stated next.



Theorem 3. Let M1 ∈ αPA, M2 ∈ αPA be αPAs such that M1 �M2. Let R1

and R2 be reward structures M1 and M2, respectively. Then:

∀k � C≤k((s1, s2), R1 ⊕R2) = C≤k(s1, R1) + C≤k(s2, R2)

Proof. The proof is by induction on k. If k = 0, then it follows from Definition 5.
Let R1 ⊕R2 = (ρ, ι), δ(M1) = δ1, δ(M2) = δ2, δ(M1 ‖M2) = δ. If k > 0, then:

B using Definition 5

C≤k((s1, s2), R1 ⊕R2) = ρ(s1, s2)+∑
(s′1,s

′
2)

δ(s1, s2)(s′1, s
′
2)× (ι((s1, s2), (s′1, s

′
2)) + C≤(k−1)((s

′
1, s
′
2), R1 ⊕R2))

B expanding ρ and ι and applying inductive hypothesis

= ρ1(s1) + ρ2(s2)+ ∑
s′1∈S(M1)

∑
s′2∈S(M2)

δ1(s1, s
′
1)× δ2(s2, s

′
2)× (ι1(s1, s

′
1) + C≤(k−1)(s

′
1, R1))

+

 ∑
s′1∈S(M1)

∑
s′2∈S(M2)

δ1(s1, s
′
1)× δ2(s2, s

′
2)× (ι2(s2, s

′
2)) + C≤(k−1)(s

′
2, R2))



B rewriting

= ρ1(s1) + ρ2(s2)+ ∑
s′2∈S(M2)

δ2(s2, s
′
2)


︸ ︷︷ ︸

=1

×

 ∑
s′1∈S(M1)

δ1(s1, s
′
1)× (ι1(s1, s

′
1) + C≤(k−1)(s

′
1, R1))

+

 ∑
s′1∈S(M1)

δ1(s1, s
′
1)


︸ ︷︷ ︸

=1

×

 ∑
s′2∈S(M2)

δ2(s2, s
′
2)× (ι2(s2, s

′
2)) + C≤(k−1)(s

′
2, R2))



= ρ1(s1) +

 ∑
s′1∈S(M1)

δ1(s1, s
′
1)× (ι1(s1, s

′
1) + C≤(k−1)(s

′
1, R1))

+

ρ2(s2) +

 ∑
s′2∈S(M2)

δ2(s2, s
′
2)× (ι2(s2, s

′
2)) + C≤(k−1)(s

′
2, R2))





B using Definition 5

= C≤k(s1, R1) + C≤k(s2, R2)

ut

Theorem 3 generalizes from 2 to n αPAs as follows.

Theorem 4. Let M1, . . . ,Mn be αPAs such that ∀1 ≤ i < j ≤ n �Mi �Mj. Let
R1, . . . , Rn be reward structures over M1, . . . ,Mn, respectively. Then:

∀k � C≤k(M1 ‖ · · · ‖Mn, R1 ⊕ . . .⊕Rn) =
∑

1≤i≤n

C≤k(Mi, Ri)

We omit the proof of Theorem 4 for brevity. The power of Theorems 2 and 4
is that they enable compositional verification of αPAs. Specifically, Theorem 2
enables us to compute probabilities satisfying a conjunctive LTL formula on
the composition of several αPAs from the probabilities of satisfying individual
conjuncts on each component αPA. Similarly, Theorem 4 enables us to compute
rewards on the composition of several αPAs from the individual rewards on
each component αPA. This avoids having to computes the reachable statespace
of the composed αPA, and therefore the statespace explosion.

In the next section, we present an example that is compositionally verifiable
using Theorem 2 and Theorem 4. After that, in Section 6, we present empiri-
cal evidence about the improvement is verification due to the compositionality
enabled by Theorem 2 and Theorem 4.

5 The Scenario: Robotic Demining

We consider a two-dimensional area (modeled as a grid of cells with Row rows
and Col columns) randomly seeded with mines. Robots are organized into T
teams, each comprising of N robots. The teams sweep the area, detect each
mine, and either defuse it or (failing which) mark it. The mission succeeds if
all mines are detected and defused (or marked) within a specified deadline D.
The mission is parameterized not only by Row, Col, T , N , and D, but also the
capabilities of each robot, the terrain, and coordination algorithm used by the
robots. We first describe how each team is modeled as a αPA.

5.1 Modeling a Team

Each team has a pre-defined initial cell cInit , final cell cFinal , and a path plan P
that dictates how to move cell-to-cell from cInit to cFinal . At any point, the team
has a leader, and zero or more followers. In each cell, the team (specifically, the
leader) first attempts to sense a mine. If a mine is detected, the leader attempts
to defuse it. On successful defusing, the team moves on to the next cell according
to its path plan P . If defusing fails, then the cell is first marked as being mined,
and then the team moves on to the next cell according to its path plan P . If the



(a) (b)

Fig. 1. (a) αPA for a team, and its decomposition into sub-αPAs Mcell and Mstep ; (b)
αPA Mstep ; transitions are numbered for ease of reference, and labeled by associated
probabilities (green), guards (black) and commands (red); tk = transition number k;
true guards and implied probabilities are omitted for brevity, e.g., the probability of
t1 is 1.0, the guard of t5 is true, and the probability of t12 is (1 − p skip). Note that
Y MIN=0 and Y MAX=Row-1. All transitions are labeled by action tick, i.e., α = tick.

mine explodes (thereby destroying the leader) the followers elect a new leader
using a pre-defined leader election algorithm. We are concerned with several
sources of uncertainty in this scenario:

1. Due to the terrain and the quality of the leader’s sensing capability, it fails
to detect a mine.

2. Due to the terrain, the time required to defuse a mine varies.
3. Due to the quality of the leader’s defusing capability, the mine explodes

while it is being defused.
4. Due to the quality of the leader’s marking capability, the mine explodes

while the cell is being marked.
5. Due to communication problems, the leader election algorithm fails.
6. Due to the terrain and the team’s locomotion capability, the team fails to

move to the next cell in its path plan.

To express these uncertainties as part of the team’s behavior, we model each
team as a αPA. The αPA is composed of two sub-αPAs – Mcell corresponding
to the team’s behavior within a cell, and Mstep corresponding to the team’s
locomotion from the current cell to the next. Figure 1(a) shows the overall αPA
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(a) (b)

Fig. 2. Path followed by the teams: (a) path with one team; (b) path with four teams;
cInit i, cFinal i, and Pi are the starting cell, ending cell, and path plan for i-th team.

for a team, and its decomposition into the two sub-αPAs Mcell and Mstep . The
initial state is INIT, and the αPA ends up in one of three possible end-states –
DONE indicates that the team has covered all cells; STUCK indicates that the
team is unable to move to its next cell; BLOWNUP indicates that the team has
been destroyed by exploding mines.

αPA Mstep . We assume that the teams follow a pre-determined path through
the grid. Specifically, if there is a single team (i.e., T = 1), then it follows the
path shown in Fig. 2(a). If T > 1, then each team operates independently on a
distinct fragment of the path that is pre-allocated to it. For example, if T = 4,
the starting and ending cells, and the path of each team is shown in Fig. 2(b).

Figure 1(b) shows the αPA Mstep . The team maintains: (a) its current posi-
tion in the grid – using variables x and y which are initialized to values (X INIT
and Y INIT, respectively) corresponding to cInit ; and (b) the direction of move-
ment – using variable dir which is initialized according to P and takes two
possible values UP and DOWN. All transitions are labeled by the action tick.

Let tk mean transition number k in Figure 1(b). From the initial state NEXT,
the team first checks if it has reached cFinal . In this case (t1), the team moves
to state DONE and stutters (t14). Otherwise, the team attempts to move to the
next cell (t2). This involves two cases: (a) the team moves to the next column
(t3) which involves two turns (t5, t7), a skip (t6), and a change in direction;
or (b) the team moves to the next row (t4) which involves just a skip (t11).
Skips and turns succeed with probability p skip and p turn, respectively. These
probabilities are determined by the terrain and the team’s locomotion capability,
as discussed later. If a skip or a turn fails, the team moves to a STUCK state
(t8, t9, t10, t12) and stutters (t13).

αPA Mcell . The αPA Mcell is shown in Fig. 3. We model whether a mine was
missed using variable failed, initialized to false. We also model the number of



Fig. 3. αPAMcell ; transitions are numbered and labeled, and guards and probabilities
are omitted as in Figure 1(b); states LEADER and NEXT are repeated to reduce clutter;
all transitions are labeled by action tick, i.e., α = tick.

remaining robots in the team using variable sz, initialized to N . In the following,
tk means the transition labeled k in Fig. 3. The teams begins in state INIT and
the leader attempts to detect a mine. The result of mine detection is either an
explosion with probability p explode detect (t2), a mine found with probability
p detect mine (t1), or no mine found (t3).

If no mine was detected (state NOT DETECTED), then we assume that with
probability p false neg, there is actually a mine. In this case, with equal likeli-
hood, the leader either explodes (t4) or the team moves to the next cell (t5). In
the latter case, we indicate mission failure (since a mine has been missed) by
setting failed to true. Finally, with probability (1 - p false neg), the team moves
to the next cell (t6), continuing with its mission. The probability p false neg is a
function of the leader’s detecting capability and the terrain, as discussed later.

If a mine was detected, the leader attempts to defuse it. We assume that
the leader is in one of three defusing situations with increasing difficulty – easy,
medium and hard. Initially (DEFUSE1), the leader assumes that it is in the easy
defusing situation. The result is either an explosion with probability (p d1 ×
p ed1) (t8), successful defusing of the mine with probability (p d1× (1− p ed1))
(t7), or a decision to move on to the medium defusing scenario (t9). Here, p d1
is the probability that the leader is actually in an easy defusing situation, and
p ed1 is the probability that there is an explosion given that the leader is trying
to defuse in an easy situation. As discussed later, while p d1 is a function of the
terrain, p ed1 is a function of the leader’s defusing capability.



In the medium defusing scenario (DEFUSE2), the leader either blows up
(t11), successfully defuses the mine (t10), or moves to the hard defusing scenario
(t12). The probabilities involved in this step are: p d2 – the terrain-dependent
probability that the leader is actually in a medium defusing situation, and p ed2
– the probability (dependent on the leader’s defusing capability) that there is
an explosion given that it is trying to defuse in a medium situation.

In the hard defusing scenario (DEFUSE3), the leader either blows up (t14),
successfully defuses the mine (t13), or attempts to mark the cell (t15) as being
mined. The probabilities involved in this step are: p d3 – the terrain-dependent
probability that the leader is actually in a hard defusing situation, and p ed3 –
the probability (dependent on the leader’s defusing capability) that there is an
explosion given that it is trying to defuse in a hard situation.

Finally, when the leader attempts to mark the cell, it either blows up (t17)
with probability p em, or succeeds (t16) and the team continues to the next cell.
The probability p em of an explosion during the marking operation is a function
of the leader’s defusing capability, as discussed later.

If the leader blows up, the team elects a new leader from state LEADER.
If there are no remaining robots in the team (i.e., sz=0), the team moves to
BLOWNUP (t18) and stutters. Otherwise, with probability p elect leader, a new
leader is elected successfully and the team moves on to the next cell (t20), and
with probability (1 - p elect leader) leader election fails and the team moves to
STUCK (t19) and stutters.

5.2 Team αPA Parameters

The αPA for a team is parameterized by the following:

1. The number of robots N , and the coordinates for cInit and cFinal .
2. The probability (p detect mine) of detecting a mine in a cell.
3. The probability (p elect leader) of successful leader election.
4. The remaining probabilities were computed from the terrain and the robot’s

capabilities as discussed next.

Modeling Terrain and Robot Capabilities. The robot’s mine detection ca-
pability was modeled by a parameter DET with three possible values – LOW,
MEDIUM and HIGH. The robot’s mine defusing capability was modeled by a
parameter DEF with three possible values – LOW, MEDIUM and HIGH. The
robot’s locomotion capability was modeled by a parameter LOC with three pos-
sible values – LOW, MEDIUM and HIGH. The terrain was modeled by eighteen
independent parameters: (i) p fn dc0, p fn dc1 and p fn dc2 are the probabili-
ties of a false negative (i.e., mine present but not detected) given that DET =
LOW, MEDIUM and HIGH, respectively; (ii) p d1, p d2 and p d3 are the proba-
bilities of being in an easy, medium, or hard defusing situation, respectively; (iii)
p edet dc0, p edet dc1 and p edet dc2 are the probabilities of an explosion dur-
ing mine detection given that DET = LOW, MEDIUM and HIGH, respectively;
(iv) p edef dc0, p edef dc1 and p edef dc2 are the probabilities of an explosion



during mine defusing given that DEF = LOW, MEDIUM and HIGH, respectively;
(v) p skip lc0, p skip lc1 and p skip lc2 are the probabilities of successful skip
given that LOC = LOW, MEDIUM and HIGH, respectively; and (vi) p turn lc0,
p turn lc1 and p turn lc2 are the probabilities of successful turn given that LOC
= LOW, MEDIUM and HIGH, respectively. For our experiments, all terrain pa-
rameters were assigned constant values, but in practice we expect that these
atomistic probabilities will be obtained empirically.

Remaining Probabilities. The probability of a false negative in Fig. 3 are
computed as follows:

p false neg =

p fn dc0 if DET = LOW,
p fn dc1 if DET = MEDIUM,
p fn dc2 if DET = HIGH.

The probability of an explosion while detecting a mine is computed as follows:

p explode detect =

p edet dc0 if DET = LOW,
p edet dc1 if DET = MEDIUM,
p edet dc2 if DET = HIGH.

The probabilities of an explosion while defusing or marking a cell are com-
puted as follows:

p ed1 = p ed2 = p ed3 = p em =

p edef dc0 if DEF = LOW,
p edef dc1 if DEF = MEDIUM,
p edef dc2 if DEF = HIGH.

The probability of successful skip is computed as follows:

p skip =

p skip lc0 if LOC = LOW,
p skip lc1 if LOC = MEDIUM,
p skip lc2 if LOC = HIGH.

Finally, the probability of successful turn is computed as follows:

p turn =

p turn lc0 if LOC = LOW,
p turn lc1 if LOC = MEDIUM,
p turn lc2 if LOC = HIGH.

5.3 Multiple Teams and Properties

Let Mi = (Si, Init i, Σi, δi,AP i,Li) be the αPA for the i-th team. Recall that all
transitions in the αPA for a team are labeled by the action tick, i.e., Σi = {tick}.
A state of Mi is a valuation to the variables x, y, dir, failed, sz and pc, where pc
is the program counter whose value indicates the position of the αPA w.r.t. the
state machines in Figure 1(b) and Figure 3. For example, pc = LEADER means
that the team is about to elect a new leader. Note that all variables have a finite



domain, hence Si is finite as well. In addition, Mi has three atomic propositions:
(i) donei which is true in all states where pc = DONE; (ii) succi which is true in
all states where failed = false; and (iii) init i which is true in all states where pc
= INIT. Now consider a scenario with T teams. Clearly, the αPAs M1, . . . ,MT

satisfy the conditions of Theorem 2.
Success. The first property we consider is true for all executions where all

teams cover all their cells without missing a single mine within a deadline D. Let
us write F≤kΨ to mean Ψ ∨XΨ ∨XXΨ ∨ · · · ∨XX . . .X︸ ︷︷ ︸

k times

Ψ . Then our first property

is expressed by the following path formula:

successD ≡ (F≤D(done1 ∧ succ1)) ∧ · · · ∧ (F≤D(doneT ∧ succT ))

Note that successD satisfies the conditions of Theorem 2.
Coverage. The second property we consider is coverage. Informally, this is

the number of cells processed by all the teams within a deadline D. Formally, it
is expressed as the cumulative reward:

coverageD ≡ C≤D((Init1, . . . , InitT ), R1 ⊕ . . .⊕RT )

where, for 1 ≤ i ≤ T , Ri = (ρi, ιi) is the reward structure such that:

∀s ∈ Si � ρi(s) = 1 if Init i ∈ Li(s) and ρi(s) = 0 otherwise

∀(s, s′) ∈ Si × Si � ιi(s, s′) = 0

In other words, Ri assigns a reward 1 whenever the i-th team enters a new cell.

6 Experiments

We performed a set of experiments using the αPA model of the robotic demining
scenario presented in Section 5. The goal was to demonstrate the suitability of
our approach to make appropriate tradeoff decisions when designing robotic
missions, and to demonstrate the effectiveness of our compositionality theorem
in improving scalability. All our experiments were performed on an Intel Core i7
machine with four cores (each running at 2.7GHz) and 8GB of RAM. We used
a timeout of 1800s, and fixed certain parameters as follows:

p fn dc0 = 0.05 p fn dc1 = 0.01 p fn dc2 = 0.005

p d1 = 0.25 p d2 = 0.33 p d3 = 0.5

p edet dc0 = 0.05 p edet dc1 = 0.04 p edet dc2 = 0.03

p edef dc0 = 0.05 p edef dc1 = 0.04 p edef dc2 = 0.03

p skip lc0 = 0.9999 p skip lc1 = 0.99999 p skip lc2 = 0.999999

p turn lc0 = 0.9999 p turn lc1 = 0.99999 p turn lc2 = 0.999999

p detect mine = 0.5 D = 250 p elect leader = 0.9



We also set Row=10, and Col=12. Other parameters were varied based on the
experiment. We used prism version 4.0.3, which was the latest version available
at the start of this project. All our prism models, results, as well as instructions
to reproduce them are available at www.contrib.andrew.cmu.edu/~schaki/

discover/spin13.tgz.

T N successD Time

LLL LLH LHL LHH HLL HLH HHL HHH seconds

2 2 0.000 0.000 0.000 0.000 0.013 0.014 0.035 0.035 21

2 3 0.001 0.001 0.003 0.004 0.065 0.066 0.129 0.131 26

2 5 0.018 0.018 0.030 0.031 0.256 0.259 0.355 0.359 38

2 10 0.073 0.074 0.086 0.087 0.386 0.391 0.443 0.449 62

2 15 0.076 0.077 0.087 0.089 0.386 0.391 0.443 0.449 87

3 10 0.088 0.090 0.100 0.101 0.435 0.441 0.491 0.498 46

6 5 0.080 0.081 0.094 0.095 0.429 0.434 0.488 0.494 29

10 3 0.046 0.047 0.062 0.063 0.354 0.359 0.435 0.441 35

15 2 0.011 0.012 0.020 0.020 0.175 0.177 0.261 0.264 48

30 1 0.000 0.000 0.000 0.000 0.001 0.001 0.003 0.003 100

Table 1. Results for successD with different T , N , DET, DEF and LOC; second row
entries indicate values of DET, DEF and LOC; e.g., LLL = (DET=LOW, DEF=LOW,
LOC=LOW); LHL = (DET=LOW, DEF=HIGH, LOC=LOW), etc.; Time = average time
to compute successD over all combinations of DET, DEF and LOC.

Experiments with success. The first set of experiments were designed to evaluate
the impact of DET, DEF, LOC, T andN on successD. The results are summarized
in Table 1. We consider eight possible combinations of DET, DEF, and LOC.

The first five rows are the values of successD for each of these eight combina-
tions using T = 2 and different values of N . We observe that changing DET from
LOW to HIGH has a much bigger impact on the value of successD compared to
changing DEF or LOC. This suggests that using robots with good mine detection
capability should be of high priority during mission design.

The next five rows show the value of successD with different values of T andN
such that T ×N = 30, i.e., different team configurations with 30 robots. These
results indicate that using three teams with ten robots each provide optimal
values of successD. Note that value of successD drops off sharply for N > 5
since small teams have a high chance of being blown up completely before mission
completion.

The final column shows the average time required to compute successD over
all eight combinations of DET, DEF, and LOC considered. The average is a good
indicator since the standard deviation was quite low. These times were measured
when we performed our experiments compositionally, i.e., computing successD
for each team individually, and multiplying the results (in accordance with The-



orem 2). When we used the monolithic approach, i.e., all teams composed in the
same model, prism timed out at 1800 seconds in all cases.

T N DET:DEF:LOC Time

LLL LLH LHL LHH HLL HLH HHL HHH seconds

2 2 43.3 43.3 48.3 48.4 61.8 62.0 70.6 70.8 7

2 3 60.1 60.2 66.2 66.4 80.8 81.0 89.1 89.3 7

2 5 82.1 82.4 87.5 87.7 97.8 98.1 102.5 102.8 7

2 10 93.5 93.8 96.2 96.5 101.7 102.0 104.6 105.0 7

2 15 93.6 93.9 96.2 96.5 101.7 102.0 104.6 105.0 7

3 10 101.6 101.8 103.5 103.8 107.5 107.7 109.6 109.8 9

6 5 110.3 110.4 111.4 111.5 113.6 113.8 114.7 114.9 16

10 3 112.9 113.0 113.9 114.0 115.8 115.9 116.6 116.7 25

15 2 112.4 112.4 113.6 113.6 115.8 115.8 116.7 116.8 37

30 1 105.3 105.3 106.9 107.0 110.2 110.3 111.9 111.9 84

Table 2. Results for coverageD with different T , N , DET, DEF and LOC; second row
entries indicate values of DET, DEF and LOC; e.g., LLL = (DET=LOW, DEF=LOW,
LOC=LOW); LHL = (DET=LOW, DEF=HIGH, LOC=LOW), etc.; Time = average time
to compute coverageD over all combinations of DET, DEF and LOC.

Experiments with coverage. The next set of experiments were designed to eval-
uate the impact of DET, DEF, LOC, T and N on coverageD. The results are
summarized in Table 2. Each cell of the table corresponds to the same values of
DET, DEF, LOC, T and N as in the corresponding cell in Table 1.

Not surprisingly, we again observe that changing DET from LOW to HIGH
has a much bigger impact on the value of coverageD compared to changing DEF
or LOC. This suggests that using robots with good mine detection capability is
a good tradeoff for not only successD, but coverageD as well.

The results for different values of T (last five rows of Table 1) are somewhat
different. The optimal coverageD is observed for ten teams with three robots
each. This reflects a subtle difference between coverageD and successD – a cell
is covered as soon as the team reaches it, but that does not contribute to suc-
cess unless the team avoids being blown up as well. In general, the benefit of
smaller teams extends further for coverageD simply because more teams are
able to “reach” more cells even if they get blown up. However, for T > 15, even
coverageD falls off.

The final column shows the average time required to compute coverageD
over all eight combinations of DET, DEF, and LOC considered. Once again,
these times are for the compositional approach, i.e., computing coverageD for
each team individually, and adding the results (in accordance with Theorem 4).
For the monolithic approach, prism timed out at 1800 seconds in all cases.



7 Conclusion

We present an approach to compute quantitative utility of robotic missions using
probabilistic model checking. We show how to express a robotic demining mission
as a αPA, its success as a LTL formula, and its coverage as a reward. We prove
a set of compositionality theorems that enable us to compute the success prob-
ability (or, coverage) of a system composed of several αPAs by combining the
success probability (or, coverage) of each αPA in isolation. This ameliorates the
statespace explosion problem, even when the system being verified is composed
of many αPAs. We validate our approach empirically, using the probabilistic
model checker prism for our experiments.

We envision building on this work in several directions. One issue is that
our model for the demining mission is based on several atomistic probabilities
(e.g., p fn dc0). We assume that these probabilities are available with sufficient
accuracy. Otherwise, the predictions made via probabilistic model checking will
be correspondingly inaccurate. As part of our ongoing work, we are developing
ways to estimate these probabilities via field experiments. Another direction is
to adapt probabilistic model checking to create a more generative approach –
one that constructs an optimal mission – that can handle an expressive range of
mission configurations and constraints.
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A Proof of Lemma 1

We begin with another lemma.

Lemma 3. Let E1 ⊆ Êx (s1) and E2 ⊆ Êx (s2) be two minimal sets of finite

executions. Then E1 × E2 ⊆ Êx (s1, s2) is also minimal.

Proof. By contradiction. Assume π, π′ ∈ E1 × E2 such that π @ π′ (i.e., π v
π′ ∧ π 6= π′). Then:

∃π1, π′1 ∈ E1 � ∃π2, π′2 ∈ E2 � π ∈ π1 × π2 ∧ π′ ∈ π′1 × π′2 (1)

Note that:

(π1 6= π′1) ∨ (π2 6= π′2) (2)

otherwise, we cannot have π @ π′. Without loss of generality, assume π1 6= π′1.
Also, from (1) we have:

(π1 v π � 1) ∧ (π′1 v π′ � 1) (3)

Again since π @ π′, we have:

(π � 1 @ π′ � 1) (4)

Combining (3) and (4) we have:

(π1 v π′ � 1) ∧ (π′1 v π′ � 1) (5)

Again, since we assumed π1 6= π′1, from (5) we have:

(π1 @ π
′
1) ∨ (π′1 @ π1) (6)

which contradicts the assumption that E1 is minimal. ut

Lemma 1. Let M1 ∈ αPA, M2 ∈ αPA be αPAs such that M1 � M2. Let
s1 ∈ S(M1), s2 ∈ S(M2), and Ψ1 and Ψ2 be LTL formulas over AP(M1) and
AP(M2), respectively. Then:

B((s1, s2), Ψ1 ∧ Ψ2) = B(s1, Ψ1)× B(s2, Ψ2)

Proof. Since B(s1, Ψ1) and B(s2, Ψ2) are minimal, by Lemma 3, B(s1, Ψ1) ×
B(s2, Ψ2) is also minimal. So we only have to prove that:⋃

π̂∈B(s1,Ψ1)×B(s2,Ψ2)

Cyl(π̂) =
⋃
π̂∈B((s1,s2),Ψ1∧Ψ2)

Cyl(π̂)

= {π ∈ Ex (s1, s2) | π |= Ψ1 ∧ Ψ2}



Let π ∈ Ex (s1, s2). Then:

π |= Ψ1 ∧ Ψ2 ⇐⇒ (π � 1 |= Ψ1) ∧ (π � 2 |= Ψ2)

⇐⇒ (∃π̂1 ∈ B(s1, Ψ1) � π � 1 ∈ Cyl(π̂1)) ∧ (∃π̂2 ∈ B(s2, Ψ2) � π � 2 ∈ Cyl(π̂2))

⇐⇒ ∃π̂ ∈ B(s1, Ψ1)× B(s2, Ψ2) � π ∈ Cyl(π̂)

Therefore: ⋃
π̂∈B(s1,Ψ1)×B(s2,Ψ2)

Cyl(π̂) = {π ∈ Ex (s1, s2) | π |= Ψ1 ∧ Ψ2}

ut

B Proof of Lemma 2

Lemma 2. Let E1 and E2 be two minimal sets of finite executions. Then:

∑
π̂∈E1×E2

p(π̂) =

 ∑
π̂1∈E1

p(π̂1)

×
 ∑
π̂2∈E2

p(π̂2)


Proof.

B since E1 and E2 are minimal∑
π̂∈E1×E2

p(π̂) =
∑
π̂1∈E1

∑
π̂2∈E2

∑
π∈π̂1×π̂2

p(π)

B let n = max(|π̂1|, |π̂2|)

=
∑
π̂1∈E1

∑
π̂2∈E2

∑
π̂′
1∈π̂1

+n

∑
π̂′
2∈π̂2

+n

p(π̂′1)× p(π̂′2)

B rewriting

=
∑
π̂1∈E1

∑
π̂2∈E2


 ∑
π̂′
1∈π̂1

+n

p(π̂′1)

×
 ∑
π̂′
2∈π̂2

+n

p(π̂′2)




B rewriting

=
∑
π̂1∈E1

∑
π̂2∈E2

(p(π̂1)× p(π̂2))

B rewriting

=

 ∑
π̂1∈E1

p(π̂1)

×
 ∑
π̂2∈E2

p(π̂2)


ut


