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ABSTRACT 
Delivering increasingly complex software-reliant systems 
demands better ways to manage the long-term effects of short-
term expedients. The technical debt metaphor is gaining 
significant traction in the agile development community as a way 
to understand and communicate such issues. The idea is that 
developers sometimes accept compromises in a system in one 
dimension (e.g., modularity) to meet an urgent demand in some 
other dimension (e.g., a deadline), and that such compromises 
incur a “debt”: on which “interest” has to be paid and which the 
“principal” should be repaid at some point for the long-term 
health of the project. We argue that the software engineering 
research community has an opportunity to study and improve this 
concept. We can offer software engineers a foundation for 
managing such trade-offs based on models of their economic 
impacts. Therefore, we propose managing technical debt as a part 
of the future research agenda for the software engineering field.  

Categories and Subject Descriptors 
D.2.9 [Software Engineering] Management—life cycle, 
productivity. 

General Terms 
Management, Measurement, Design, Economics 

Keywords 
Technical debt, large-scale system development, cost-benefit 
analysis, software metrics, design decision trade-off 

1. INTRODUCTION 
Software developers and corporate managers frequently disagree 
about important decisions regarding how to invest scarce 
resources in development projects, especially in relation to 
internal quality aspects that are crucial to system sustainability, 
but that are largely invisible to management and customers, and 
that do not generate short-term revenue.  Among these properties 
are design and code quality and documentation.  

Engineers often advocate for such investments, but executives 
question their value and frequently decline to approve them, to the 

long-term detriment of software projects. The situation is 
exacerbated in projects that must balance short deadlines with 
long-term sustainability.  

Cunningham coined the technical debt metaphor in his 1992 
OOPSLA experience report [4] to describe a situation in which 
long-term code quality is traded for short-term gain, creating 
future pressure to remediate the expedient.  

Shipping first time code is like going into debt. A little debt 
speeds development so long as it is paid back promptly with a 
rewrite…The danger occurs when the debt is not repaid. 
Every minute spent on not-quite-right code counts as interest 
on that debt. Entire engineering organizations can be brought 
to a stand-still under the debt load of an unconsolidated 
implementation, object-oriented or otherwise. 

To date, technical debt has been used as a metaphor and rhetorical 
device within the agile community with increasingly recognized 
utility for technical communication and for communication 
between engineers and executives. The technical debt concept is 
gaining traction as a way to focus on the long-term management 
of accidental complexities created by short-term compromises. 
Effective management of such debt is perceived as critical to 
achieving and maintaining software quality.  Left unmanaged, 
such debt creates significant long-term problems, such as 
increased maintenance costs.  

The metaphor highlights that, like financial debt, technical debt 
incurs interest payments in the form of increased future costs 
owing to earlier quick and dirty design and implementation 
choices. Like financial debt, sometimes technical debt can be 
necessary. One can continue paying interest, or pay down the 
principal by re-architecting and refactoring to reduce future 
interest payments.  

Agile practices of refactoring [8], test-driven development [6], 
iteration management [3], [10], [21] and software craftsmanship 
[16], along with an intuitive understanding of technical debt, are 
felt to be sufficient to manage technical debt on small-scale 
projects; a more rigorous definition and validation of the concept 
and the heuristic practices it implies has not been undertaken. 
Agile software development methods, such as XP, Scrum, FDD 
(Feature Driven Development), Lean Software development, have 
had significant impact over the last 5-8 years on industrial 
software development practices. While scaling agile techniques 
have gained attraction [14], techniques for managing technical 
debt have not emerged out of such efforts.   

The risk is that the needs of the technical community for effective 
solutions to the managing technical debt problem will lead to the 
adoption of intuitively attractive but sub-optimal heuristics.  
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Research that illuminates the strengths and weaknesses of the 
metaphor and that develops the definitions needed for quantitative 
modeling and management of technical debt are lacking. In 
addition, while the term was originally coined in reference to 
coding practices, today the metaphor is applied more broadly 
across the project lifecycle and may include architectural [2], 
testing [20], or documentation debt.  

The research community can play a constructive role by helping 
practitioners to put this resonating idea on firm foundation. The 
metaphor already communicates critical issues in large-scale, 
long- term projects: 

 There is an optimization problem where optimizing for 
the short-term puts the long-term into economic and 
technical jeopardy when debt is unmanaged. 

 Design short-cuts can give the perception of success 
until their consequences start slowing projects down. 

 Development decisions, especially architectural ones, 
need to be actively managed and continuously analyzed 
quantitatively as they incur cost, value, and debt. 

Yet, the concept as developed to date leaves many questions open: 

 Is debt a sound metaphor for managing expedients and 
remediative investments in software projects? If not, is 
there a closely related metaphor that is better? 

 Can the debt metaphor lead to testable theories about 
how to use, measure, and pay-off software short-cuts? 

 How can one identify debt in a software development 
project and product, perhaps automatically?  

 What are the kinds of debt? What techniques can help 
projects elicit, communicate, analyze, and manage it? 

 How is technical debt related to evolution and 
maintenance?  

 How can information about technical debt be collected 
empirically for developing conceptual models? 

 How can technical debt be visualized and analyzed? 

On June 2-3, 2010, the authors of this paper met at the Software 
Engineering Institute with the purpose of discussing research on 
managing technical debt in large-scale systems. The goal of the 
workshop was sharing work-in-progress and early results, 
developing a common understanding and conceptual model of 
technical debt, identifying gaps in knowledge, and refining a 
research agenda. This research agenda statement was a key output 
of the workshop. We propose that the research community take on 
the challenge of assessing the metaphor, and developing validated 
theory and practices for the management of technical and 
economic tradeoffs with technical and executive decision-makers 
as stakeholders.   

2. THE TECHNICAL DEBT METAPHOR 
Technical debt is one dimension of a larger valuation process, a 
lens through which to observe a financial strategy view of 
software development. This requires a means of assessing 
opportunities for creating value in software in terms of the cost of 
those endeavors relative to other endeavors that might be 
considered (some of which may not be technical). 

Here is a typical real-world example. A large web project was 
developed over more than two years, primarily by one developer. 
The company had guidelines for deploying a common architecture 

across all projects and for accessing a company-owned web 
library (that stored often-used code). Developers were advised to 
document their work by creating in-code and API style 
documentation. The visible, external quality of the product was 
above average (e.g., number of post-delivery defects detected by 
customers, number of implemented features per iteration). When 
the main developer left one day, the developers taking over found 
that the source code had greatly drifted from the common 
architecture. The result was that the implementation of new 
features constantly led to defects due to the mismatch between the 
developers’ understood architecture (based on the common 
architecture) and the actual, implemented architecture of the 
product. This previously undetected “debt” is currently being paid 
off by putting enormous amounts of effort into understanding and 
gradually refactoring the system towards the common architecture 
(while at the same time implementing new features.)  

One way to understand technical debt is as a way to characterize 
the gap between the current state of a software system and some 
hypothesized “ideal” state in which the system is optimally 
successful in a particular environment. This gap includes items 
that are typically tracked in a software project, such as known 
defects and unimplemented features. But it also includes less 
obvious and less visible aspects, such as architectural and code 
decay and outdated documentation. While the metaphor is broad 
enough to encompass all of these concepts, the discourse around 
technical debt has emphasized the latter category, because those 
issues tend to be ignored or discounted by decision-makers when 
considering how to invest developer time. 

2.1 Properties of Technical Debt 
For purposes of both defining the concept and characterizing 
types of technical debt, it is helpful to refer to a number of 
properties of technical debt. While a complete set of technical 
debt properties is a subject of research, a number of properties are 
already becoming clear.  

 Visibility. Significant problems arise when debt is not visible. 
In many cases, it is (or was) known to some people (e.g., I 
know that I broke encapsulation to implement a feature 
before the deadline) but it is not visible enough to others who 
eventually have to pay for it. A purpose of research in this 
area is to find ways to ensure that technical debt achieves 
adequate visibility so that it can be considered in system-
level decision-making processes.  

 Value. In its financial use, debt when managed correctly is a 
device to create value (e.g., having a mortgage enables 
owning a house.) The value is the economic difference 
between the system as it is and the system in an ideal state 
for the assumed environment. The attributes that enable such 
a valuation in software are difficult to elicit.  

 Present value. In addition to the overall potential system 
value enabled by technical debt, the present value of the 
costs incurred as a result of the debt, including the time-to-
impact and uncertainty of impact, must be mapped to the 
overall cost-benefit analysis.  

 Debt accretion. Debt does not necessarily combine 
additively, but super-additively in the sense that taking on too 
much debt leads a system into a bad, perhaps irreparable 
state (e.g., of code complexity).  
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 Environment. In software engineering projects, debt is 
relative to a given or assumed environment.  

 Origin of debt. It is important to distinguish sharply between 
strategic debt, taken on for some advantage, and 
unintentional debt, that is taken on either through poor 
practices or simply because the environment changed in a 
way that created a mismatch that reduces system value.  

 Impact of debt. The locality (or lack thereof) of debt is 
important: are the elements that need to be changed to repay 
a debt localized or widely scattered?  

As the properties imply, while the metaphor is compelling, it does 
not cover all aspects of the software development lifecycle. There 
are several sources of uncertainty in managing technical debt. Not 
all technical debt results in the obligation to be paid off. Rather, 
some technical debt appears to create opportunities to invest 
without obligations, that is, options. This phenomenon manifests 
itself in legacy systems where the system has incurred technical 
debt (it is not meeting new needs), but the organization chooses to 
leave it as is because the value of changing the system is less than 
the cost of those changes. Moreover, if an organization decides to 
pay back the debt, it is often impossible to determine upfront 
either the principal or the interest rate, in other words a payment 
strategy. 

In addition, financial debt occurs as a result of deliberate action of 
borrowing; one deliberately incurs debt. But in software, technical 
debt can arise due to changes in environmental factors that are out 
of the development team’s control even if good decisions may 
have been made. If the system does not evolve, then new 
environmental conditions may start creating high interest 
payments. 

2.2 Related work  
Technical debt metaphor to date mostly has been used as a 
communication device. Most writing about the concept has not 
been in the research literature, but in blogs and essays. The 
concept is, however, tied to several subjects that have been topics 
of research in iterative and incremental software development, 
software maintenance and evolution contexts for some time. 

Steve McConnell [18] and Martin Fowler [7] categorize technical 
debt into distinct types, separating issues arising from 
recklessness from those decisions that are made strategically 
(Figure 1).  

 
 Figure 1: Technical Debt [7] 

Evolution of a software system is no longer restricted to the 
maintenance phase of development, but now manifests itself 
during system elaboration and construction. Technical debt can be 
observed based on the structure of the system. Structural 
complexity is often inadvertently introduced as the number of 
dependencies between parts of the system grows and design goals 

are violated. Such increasing complexity makes systems rigid 
(hard to change), fragile (each change breaks something else), 
viscous (doing things right is harder) and opaque (hard to 
understand).  

There is a significant body of research in software maintenance 
and evolution (see Mens [17] for a recent review of research and 
historical foundations.)  Technical debt especially resonates with 
maintenance activities when it needs to be repaid, especially with 
refactoring and re-architecting. Lehman and Belady [15] postulate 
that for systems to remain useful they must change and that 
change will increase their complexity leading to software decay if 
refactoring is not done as needed. Parnas [19] calls this 
phenomenon software aging reflecting the failure of a product 
owner to modify it to meet changing needs.  Engineers must, 
therefore, learn to track, manage, and mitigate software 
complexity since, left unchecked, it can lead to systems that are 
difficult to maintain and evolve. 

Clone detection [12] and inferring systematic change patterns [13] 
are concerns relevant to code-level technical debt. Yet, again, in 
the context of large-scale, long-term projects, there is distinction 
between code-level and architecture-level abstractions, especially 
when it comes to relating these to a global concept such as debt. 

3. OPEN RESEARCH QUESTIONS 
At our workshop the participants shared many ideas for future 
research. As we engaged in defining technical debt, the scope of 
relevant issues expanded to include a variety of research 
problems. There is room for contribution from researchers with 
expertise in many areas of software engineering. 

3.1 Refactoring opportunities 
When the software functions correctly, we commonly depend on 
developers' experience and intuition to detect debt as maintenance 
becomes burdensome. Several research projects have investigated 
a number of ways to identify such problematic design. For 
example, researchers have implemented bad code smell detection 
analyses that find symptoms of poor design [8]. The challenge of 
such refactoring opportunity identification research is that it is 
difficult to evaluate the outcome of refactoring suggestions, even 
in a retrospective analysis setting. Even if the suggestion was 
accepted and implemented, it can be difficult to quantitatively 
assess the impact.  

3.2 Architectural issues 
Refactoring is the restructuring of an existing body of code, 
altering its internal structure without changing its external 
behavior. When significant architectural change is needed, small, 
local refactoring efforts cannot compensate for the lack of a 
coherent system-wide architecture. Currently, research looks at 
how to do tradeoff analysis based on architecturally significant 
requirements; however, typically, once decisions have been made 
they are not monitored throughout the life of the project and not 
related to code artifacts, resulting in architecture-level technical 
debt. As a result, evaluating if and how to re-architect to pay the 
debt down typically becomes based on subjective-criteria. 
Monitoring and managing technical debt in the architecture would 
provide analyses earlier in the development cycle for keeping the 
project on track. Some of can be used today. For example, 
analyzing and monitoring architecture violations based on 
dependency analysis in an ongoing effort to evolve and improve 
the architecture have been employed at L.L. Bean [11].  
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3.3 Identifying dominant sources of debt 
There are many potential sources of technical debt at any time in 
any given system. It would be useful to know, for a given context, 
what sources of technical debt are most numerous, costly, or 
useful. Field studies of development practice and elicitation from 
practitioner experts are fruitful directions for research to reveal 
the relative importance of different sources. A related research 
question is to understand the dynamics of how debt is incurred, 
viewed, and resolved. Specifically, there appears to be a key 
difference between bad engineering practices that result in debt, 
and intentional strategic decisions that require incurring debt.  Our 
role as researchers is to develop this metaphor, based on rigorous 
empirical examination of current development practices.  

3.4 Measurement issues 
Measurement of technical debt is difficult, and there are many 
areas for research on this issue. Each type of technical debt has 
associated with it various techniques for quantitative 
characterization. For example, the extent of code clones might be 
a useful measure of design debt. The number of TBDs in the 
requirements document might be a useful measure of another type 
of debt. Designing and validating measures at this level is an 
important area of research. However, these individual measures of 
technical debt need to be combined into a form useful for 
decision-making. Following the metaphor, it is useful to aggregate 
these individual, technical measures into several metaphor-
specific concepts: 

 Principal – given a particular type of technical debt, the 
estimated cost of eliminating that debt (e.g., testing, 
refactoring.) 

 Interest probability – the probability that a particular type of 
technical debt will in fact have visible consequences (e.g., 
how likely it is that a defect exists in the untested part, or 
how likely the code in need of refactoring will have to be 
modified.) 

 Interest amount – the added cost of performing maintenance 
on the part of the system that contains technical debt (e.g., 
the cost of fixing a defect when it is discovered by a 
customer as compared to earlier when it would have been 
detected if testing had been completed, or the extra cost of 
modifying a component in need of refactoring as compared 
to the cost of modifying it after refactoring.) 

3.5 Non-code artifacts 
There are also research questions related to non-code artifacts, 
particularly design artifacts, testing, and requirements documents. 
There can be sources of technical debt in any of these artifacts. 
For example, testing debt occurs when a test plan is not 
completely carried out. If a part of a system does not undergo all 
the testing that was intended, there is a risk that defects remain 
that would otherwise have been detected. Examination of a test 
plan against test results would reveal such debt. Related issues 
exist in requirements documents, for example the relationship 
between numbers of TBDs and maintenance costs or stability. 
Design artifact-related technical debt includes architectural issues, 
discussed earlier, as well as issues of updating and completeness.  

Research into the feasibility of characterizing technical debt, or 
finding other ways to characterize it (e.g., using other parts of the 
financial metaphor, such as investment strategy), in the context of 
supporting decision making, is a research problem. 

3.6 Monitoring 
A little technical debt may not be a problem, but it becomes a 
problem when there is “too much” debt. This implies that there 
must be some rules about what “too much” debt looks like such as 
acceptability thresholds. An existing technical debt visualization 
plug-in demonstrates how to monitor coding rules violations and 
providing measures using debt heuristics [9]. It is envisioned that 
such thresholds are not simple numbers, but instead are complex 
decision processes. This implies methods for determining the level 
of technical debt over time, recognizing trends, and disseminating 
warnings at appropriate times. Such monitoring must be 
integrated into the development and management environment 
through appropriate tooling. 

3.7 Process issues 
Technical debt has real, and often significant, economic costs. A 
reason that technical risks are inadequately understood and 
managed today is that we lack rigorous ways of quantifying the 
present values of these costs. These costs in turn create 
opportunities for investments to remediate the technical debt. 
Even more challenging is how to value these investment 
opportunities, so that decisions can be made about which 
opportunities to exploit: for example, should we refactor, or 
should we implement another feature? Effective management of 
technical debt demands a rational basis for making investment 
decisions. The questions that arise are: Should we limit feature 
delivery and do a major refactoring? Should we invest in 
architecture? How much refactoring is enough? To ensure that the 
technical debt concept leads to well-founded practices, research is 
needed to enable valuation of the liability created by technical 
debt and of projects launched to remediate it. Such techniques in 
turn require ways of making technical debt explicit and are subject 
to tracking and management within defined development 
processes. 

4. CONCLUSION 
Technical debt recasts a technical concept as an economic one. 
Cost, benefit, and value aspects of software development have 
begun to be addressed as a part of the value-driven software 
engineering agenda in the broad [1], [5], but have not yet 
culminated in rigorous analysis models and research directions for 
large-scale projects. Two important questions about any proposed 
research initiative are the following: (1) what will be different if 
the research is successful, and (2) who will care, and why?  

The vision emerging in the research community is that developers, 
architects, managers, and other stakeholders will have ready 
access to explicit representations of the technical debt in a given 
project as aids to project decision-making. Such representations 
could, for example, be presented through software project 
dashboards.  

The impact of this research, if it succeeds, will be improved 
software development productivity and quality. Software 
developers and managers will better reason about the liabilities 
and opportunities created by technical debt and make better 
decisions about managing them. Software engineers would 
understand the rationale that managers use in making such 
decisions. This will lead to improved software maintenance and, 
in the end, better software. Finally, software tool developers will 
have a new set of functions to support and new markets for their 
tools based on a coherent framing of the issues. 
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