
A Study of Enabling Factors for Rapid Fielding
Combined Practices to Balance Speed and Stability

Stephany Bellomo, Robert L. Nord, Ipek Ozkaya
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

sbellomo@sei.cmu.edu, rn@sei.cmu.edu, ozkaya@sei.cmu.edu

Abstract—Agile projects are showing greater promise in rapid

fielding as compared to waterfall projects. However, there is a
lack of clarity regarding what really constitutes and contributes
to success. We interviewed project teams with incremental
development lifecycles, from five government and commercial
organizations, to gain a better understanding of success and
failure factors for rapid fielding on their projects. A key area we
explored involves how Agile projects deal with the pressure to
rapidly deliver high-value capability, while maintaining project
speed (delivering functionality to the users quickly) and product
stability (providing reliable and flexible product architecture).
For example, due to schedule pressure we often see a pattern of
high initial velocity for weeks or months, followed by a slowing of
velocity due to stability issues. Business stakeholders find this to
be disruptive as the rate of capability delivery slows while the
team addresses stability problems. We found that experienced
practitioners, when faced with these challenges, do not apply
Agile practices alone. Instead they combine practices—Agile,
architecture, or other—in creative ways to respond quickly to
unanticipated stability problems. In this paper, we summarize
the practices practitioners we interviewed from Agile projects
found most valuable and provide an overarching scenario that
provides insight into how and why these practices emerge.

Index Terms—agile software development, architecture, speed,
stability, rapid fielding, software development practices

I. INTRODUCTION
A commonly held view is that waterfall-based processes

focusing on monolithic requirements, analysis, design,
implementation and testing practices have led to the slowing of
software delivery [1][7]. Because Agile projects show promise
in improving speed, industry and government alike have been
increasingly adopting Agile-based incremental software
development practices. Many Agile success stories have been
attributed to the adoption of practices such as increased team
communication, collective ownership, frequent customer-
visible releases, backlog-driven requirements management,
continuous integration, and shorter iterations, but are these
practices really the key enablers for rapid fielding? If they are,
why do teams in highly regulated environments struggle as
they adopt Agile, iterative, or hybrid methods? There is lack of
clarity regarding which factors truly contribute to the ultimate
goal of rapidly fielding tested software functionality to its
intended end users [2] [3].

In order to better understand whether generalizable rapid-
fielding success factors exist, we conducted an interview-
driven study with five organizations that have adopted agile,
iterative, software development practices from both
government and commercial organizations. We spoke with
Agile team members developing a variety of software systems,
such as mission/business analysis support systems, COTS
customization projects, software and hardware control systems,
and simulators. The systems studied varied in length of
operational use from pre-release to 14 years of production use.

Through these interviews, we observed that projects with a
business goal of delivering capability rapidly must deal with a
natural tension between the pressure to deliver functionality
quickly (speed) and the desire for a reliable, stable, and flexible
product (stability). We see evidence of this tension in our work
with Agile projects; for example, we often see a pattern of high
initial velocity for weeks or months due to schedule pressure
followed by a slowing of velocity due to stability issues. This
slowing in velocity negatively affects business stakeholders as
the rate of capability delivery slows.

Speed and stability dimensions increasingly have been the
subject of research interest. Speed and stability can be thought
of as two ends of the rapid-fielding spectrum which can be
useful for reasoning about architectural tradeoffs [4]. Martini et
al. observed a tension between speed and reuse when agile and
iterative practices were introduced to automotive organizations
with established product line engineering practices [5]. They
observe that increased reuse and increased speed are common
competing business goals. In their work, architecture is
identified as an enabler for reuse and Agile practices are
recognized as enablers for achieving deployment speed.

During our interviews, we asked practitioners to describe
examples of factors they believe enabled and inhibited speed
and stability on their projects. We started the interviews with
general definitions for speed and stability and then let the
interviewees reshape the definitions as needed.

Our starting definition for speed was enablers that promote
rapid fielding. Practitioners responded during interviews with
examples of speed enablers from across a broad spectrum of
development phases. For example, they gave examples of
speed enablers related to the proof of concept, requirements,
design, development, and testing phases. In addition, the
definition of “rapidly” varied widely in examples practitioners

shared with us. Sometimes rapidly meant a day (e.g., an enabler
that speeds up a daily build), weeks (e.g., an enabler that
speeds up a sprint cycle), or even a few months or years (e.g.,
enablers that speed up initial proof of concept or approval for
external release). We used the same approach for defining
stability starting with a general definition letting practitioners
tailor as desired.

Our starting definition for stability was enablers that
promote stability/flexibility in the software product. Like the
definitions for speed, the definitions of stability varied widely,
though all stability-related definitions remained focused on
architecture concerns. Some practitioners described stability in
terms of the quality attributes of the product such as reliability,
scalability, performance, security, etc. (quality attributes
describe the qualities that stakeholders expect a system to
provide [6]). Other practitioners described enablers for stability
in terms of infrastructure investments. We did not scrutinize
the definitions of speed and stability that practitioners
provided. As long as reasonable rationale was given,
accompanied by actual experiences, we considered the
definitions reasonable examples of enablers and inhibitors.

Several insights emerged through the grounded-theory-
based analysis method we applied. As we analyzed the
interview data, we found that enabling practices fell into two
types. The first type of enabling practices were the basic Agile
practices commonly touted as contributors to the success of
Agile projects, such as Scrum status meetings, continuous
integration, test-driven development, etc.

A second type of enabling practices emerged when
interviewees gave examples of how they addressed challenging
situations. When practitioners were talking about addressing
problems impacting their ability to rapidly field software, we
observed that project teams didn’t apply single Agile practices,
architecture practices, or other practices. Rather, they often
combined practices to address the problem in an incremental
way. Experienced practitioners used their expertise to
creatively combine practices from disciplines ranging from
management to engineering to avoid significant disruptions in
velocity. Some examples of these combined practices are
release planning with architectural considerations, prototyping
with quality attribute focus, release planning with external
dependency management and test-driven development with
quality attribute focus. We elaborate on several of these
examples in Results, Section 3.

In addition, a common scenario also emerged through our
interviews that gave us better insight into how these combined
practices are used to balance speed and stability. Through this
scenario we observe that a focus on speed often results in
problems that trigger a focus on stability. In response,
experienced practitioners combine Agile and architecture
practices to address the problem. We refer to this pattern as the
Speed-triggers-stability scenario.

We also explored inhibitors to rapid fielding. A number of
inhibiting deficiencies and constraints emerged through the
interviews; however, we noted a particularly high number of
inhibiting factors associated with testing. Testing, certification,
and accreditation are increasingly tagged as the most

challenging sources of expenditure [1]. Four out of the five
organizations we spoke with described situations where
projects were not able to complete test cases within the targeted
increment timeframe. Several practitioners we interviewed said
this is due to increasing software complexity and limitations in
expertise/tools on the project. Interviewees also shared several
examples of delays resulting from slow-moving and
incompatible enterprise processes, such as assurance
certification, and hierarchical decision-making processes.

The rest of the paper is organized as follows. Section 2
describes our data collection and analysis approach. Section 3
summarizes our findings. Sections 4 and 5 discuss the
implications of our results and conclude the paper, respectively.

II. INTERVIEW AND ANALYSIS APPROACH
We leveraged grounded-theory-based approach in our

analysis. As we conducted interviews, we emulated Glaser’s
conceptual approach to grounded theory which aims to let the
theory emerge from the data [9][13] while leveraging some of
the structured steps described by Strauss [10][8]. The research
design is described following this general flow:

• data collection
• developing memos and indicators
• coding (deriving concepts and categories)
• saturation and concept strength

A. Data Collection
We conducted each of the interviews, except for one, via

teleconference. One interview was conducted per project. All
of the interviews were recorded and transcribed. Each of the
interviews lasted 60-120 minutes. The interviewees from each
organization included technical and management staff
(architects, developers, managers, and testers). We used a
guiding question approach, in which we asked a general
overarching question and then let the discussion flow naturally
from there [9].

The guiding question we asked was “What are factors that
enable or inhibit rapid fielding on your project?” We also
asked interviewees to give examples of rapid-fielding enablers
with respect to speed and stability. Sometimes the
practitioners needed prompting to describe the speed and
stability dimensions so we asked probing questions such as,
“What impact did the incident you described have on speed or
stability?” The organizational characteristics of the project
teams we interviewed are summarized in Table 1, including
the type of the system being developed, the iteration length
and the approach used to manage releases.

The eight projects discussed in our interviews represented a
variety of system types. Five of the systems were information
processing systems (e.g., business analysis systems), two were
COTS customization projects, one was a hardware controller,
and one was a training simulator. The projects ranged from
those in the inception phase to those with over a decade of
production use. The product size ranged from 1 to 20 million
software lines of code (SLOC) and team size ranged from
teams of 5 to over 30 (team members included developers/
testers/ managers).

TABLE 1: ORGANIZATION CHARACTERISTICS

B. Memos and Indicators

Memoing is the first step in the analysis process. During
memoing analysts begin to collect their thoughts in preparation
for the full analysis phase (referred to as the “coding phase”).
Memos are informal, written records of analysis [10]. For each
transcribed interview, we went through the raw data, breaking
the transcription at natural breaking points and creating memos.
The data that researchers capture in memos are subject to their
discretion [10]. We found that the most important data element
we captured in memos was information indicating the possible
presence of a concept. We adopted the use of the term indicator
for the data element indicating presence of a concept in our
memos (adapted from recent work by Adolph et al. [11]). We
often captured an indicator of a concept as a snippet of raw
data. An example of an indicator from our data is, statement,
“We get a lot of value from weekly demos,” which suggests
support for the presence of the Prototyping concept. Indicators
are important in the next step, in which we analyze data and
identify concepts.

C. Coding (Deriving Concepts And Categories)
Coding is the analysis step. The primary objective of the

coding step is to derive concepts from data. Concepts
represent an analyst’s understanding of what is being
described through the examples of incidents. During the
coding process, the analyst walks through the indicators
generated from the raw data/memos deriving concepts [10].
The concepts are validated through the process of constant
comparison in which the analyst goes through each incident in
the data, comparing it to other incidents. Incidents found to be
conceptually similar are grouped together and mapped to an
emerging concept [10].

Through the constant comparison process, we derived
rapid fielding enabler and inhibitor concepts as well as
categories (see example in Fig. 1). Categories are higher level
concepts used to relate or group lower level concepts [10].
Figure 1 shows the conceptual relationship between
categories, concepts, and indicators and accompanying
examples. The two key relationships represented in the
diagram are: 1) indicators suggest concepts and 2) categories
contain (or group) concepts. The example shows four
indicators supporting the concept prototyping with quality
attributes, which is part of the category, practice.

Fig. 1. Category, Concept, and Indicator Relationship (adapted from [10])

D. Saturation and Concept Strength
Saturation is the process of acquiring sufficient data to

develop each concept/category fully, in terms of its properties
and dimensions, and to account for variation [10]. The goal of
saturation is to gain confidence in emerging concepts and
separate weaker concepts from stronger concepts. Our
approach for identifying strong concepts in our data was to
collect the data, methodically analyze concepts, and
systematically calculate concept strength. We calculated
concept strength by mapping the number of indicators to
concepts. For example, in Fig. 1 the concept “Prototyping with
quality attributes” is assigned concept strength of 4. Using this
mechanism, we ordered concepts shown in Table, 2, Table 3,
and Table 4. We counted each indicator identified in the data as
an independent data element.

We also leveraged an approach used by Martini, et al. [5]
for tagging the data with a speed/stability identifier. For
example, the indicator, “We get a lot of value from weekly
demos because we can incorporate user feedback more rapidly”
was tagged as promoting speed. These speed/stability
identifiers provided insight as to what interviewees perceive as
the relationship between an enabler and speed and/or stability.

III. RESULTS
We begin this section with an overarching scenario that

begins to shed light on how and why the practices described in
interviews emerged. Using this scenario, we present the
practice-related findings beginning with an overview of

Project
ID

Time in
Production

Release
Management

Approach

Type Product
Size

Team
Size

Sprint length
/ Prod

Release
Cycle

A-P1 Pre-
release

Scrum Case
management

system

<10M
SLOC

10-20 2 weeks/
TBD

B-P1 12 years Scrum Analysis support
system

<10M
SLOC

10-20 2 weeks/
6 months –

1 year
C-P1 3 years Scrum Training simulator 1-10M

SLOC
>30 4–6 weeks/

2–6 months
D-P1 Pre-

release
Scrum Enterprise

information
sharing portal

TBD >30 2 weeks/
TBD

E-P1 12 years Scrum Doc management
system

10-20M
SLOC

9 2 weeks/
1–3 months

E-P2 14 years Incremental
(prior to Scrum)

SQLWindows tool <10M
SLOC

10-15 N/A/
1 year

E-P3 8 years Incremental
(prior to Scrum)

Hardware
controller

<10M
SLOC

5 2 weeks/
2 months

E-P4 1.5 years Scrum Customization
project of a
packaged

software system

10-20M
SLOC

6 2 weeks/
3 months

enabling practices followed by several specific examples. We
end the section with a summary of several key inhibitors and a
brief discussion of the implications of inhibitor-related
findings.

Before we discuss the overarching scenario, we introduce a
unifying concept leveraged in the description of the scenario.
The idea is that Agile project teams recognize that there is a
desired software development state that enables them to
quickly deliver releases that stakeholders value [4][12] (Fig. 2).
When product development starts, this desired state has not yet
been achieved. To achieve desired state, teams go through a
Preparation phase focused on getting the infrastructure in place.
This involves getting platforms and frameworks, as well as
supporting tool environments, practices, processes, and team
structures in place to support efficient and sustainable
development of features. Once they have achieved the desired
state, teams enter into a Preservation phase where the
infrastructure is in place and they work to achieve a consistent
velocity (avoiding major disruptions to speed). In this phase,
the goal is to maintain balance. For example, it is important to
neither over-optimize the supporting development
infrastructure nor to quit working on it.

Fig. 2: Software development support for teams over time

As we spoke with organizations described in Table 1 in the
Preparation state (A and D) and Preservation state (B, C, and
E), a scenario emerged that illustrates how practitioners apply
practices to stay within acceptable range of desired state. We
refer to this as the Speed-triggers-stability scenario (Fig. 3).

We explain this scenario by walking through the steps S1-
S4, illustrated in Fig 3. (S1) Due to business needs, there is
significant pressure to field capability rapidly. We refer to this
as a Focus on speed. We also note that at S1 the project is
within acceptable tolerance of desired state. (S2) A stability
problem occurs, such as embarrassingly poor system
performance during a stakeholder demonstration. The problem
puts the project outside acceptable tolerance of desired state
triggering a focus on improving stability to get back into
acceptable range. (S3) The project team responds to address the
problem by applying a single practice or by combining
practices. If the problem is visible (i.e., impacting delivery of
needed capability) the team responds quickly and the resulting
practice change is incorporated into the team’s software
development support structure without major project
disruption. We refer to this as the incremental response cycle.

Fig. 3: Speed-triggers-stability scenario

If the problem is not visible (e.g., an architectural problem
observable only by the development team), it may be difficult
to make a strong case to expend development effort fixing it.
Response is delayed and problems accumulate often requiring
more effort later. We refer to this as the big bang response
cycle. The big bang can result in significant disruption and
effort. (S4) If the outcome of the response to the problem is
good, we observe that it will bring the project back toward the
acceptable tolerance of desired state for that particular problem.

A. Summary of Enablers
In this section, we summarize the enabling practice findings

from our interviews, as summarized in Table 2.

TABLE 2: SUMMARY OF ENABLING PRACTICES: WITHIN ACCEPTABLE RANGE

OF DESIRED STATE

We define practice as a repeatable way of accomplishing

an activity related to software product development or
delivery; for example, we consider prototyping to validate
requirements and gather user feedback a practice. We observe
that enabling practices fell into two groups. The first group,

SUMMARY OF ENABLING PRACTICES
 WITHIN ACCEPTABLE RANGE OF DESIRED STATE

• Vision Doc/roadmap (long-term release planning)
• Scrum collaborative management style
• Prototype/demo (community previews)
• External Dependency Management
• Use of collaborative tools foster communication
• Scrum status meeting
• Test-driven development
• Continuous integration
• Small dedicated team and limited scope
• Incremental release cycle
• End user involvement
• Evolutionary design and documentation
• Retrospective and periodic design reviews
• Use of standards and ref models
• Configuration Management
• Story points for productivity tracking
• Requirements to design traceability
• Proof of concept (for unproven tech)
• Pair programming

State of
agile team
support

Time

Current state

Preservation Preparation

Desired state

shown in Table 2, represents the set of practices that one
would expect to find in any discussion with project teams
about enabling Agile practices. These practices were typically
described as enablers when projects were going well or “within
acceptable range of desired state”. The practices in the tables 2
and 3 are ordered by concept strength.

The next group of practices, shown in Table 3, emerged as
practitioners gave examples describing how they dealt with
problem situations where they were “outside of acceptable
range of desired state”. We noted that often practitioners
would combine practices Agile and architecture practices in
creative ways to address the problem. We identify these
combined practices in bold font below.

TABLE 3: SUMMARY OF ENABLING PRACTICES: OUTSIDE OF ACCEPTABLE
RANGE OF DESIRED STATE

SUMMARY OF ENABLING PRACTICES
 OUTSIDE OF ACCEPTABLE RANGE OF DESIRED STATE

• Release planning with arch considerations
• Prototype/demo with quality attribute focus
• Release planning with Joint prioritization
• Test-driven development with quality attribute focus
• Dynamic organization and work assignment
• Release planning with legacy migration strategy
• Roadmap/Vision with external dependency mgmt
• Root cause analysis to identify architecture issues
• Dedicated team/specialized expertise for Tech Insertion
• Technical debt monitoring with quality attribute focus
• Focus on strengthening infrastructure (runway)
• Retrospective and periodic design reviews
• Use of standards and ref models
• Backlog grooming
• Fault handling or performance monitoring
• Vision document with architecture considerations

B. Enabling Practice Examples
In this section, we describe some of the combined practices

in more detail using the Speed-triggers-stability scenario. In
most of these examples an Agile practice is in use when a
problem pushes the team outside the acceptable range of
desired state. The experienced practitioner augments the Agile
practice with another practice to address the problem with
minimal disruption to capability delivery.

1) Release Planning with Architecture Considerations: This
practice extends the feature release planning process by adding
architectural information to the feature description document
prior to release prioritization. The example is provided by an
architect from Organization C.

• S1. Focus on speed: The organization had adopted the
Scrum release planning management process whereby
the product owner prioritizes features ensuring a focus
on speed [14]. After the backlog is prioritized, the
product owner hands the prioritized backlog to the
developer team to design and implement the features.

• S2. Triggers focus on stability: The trigger is the
business moves from a centralized development model
to a geographically distributed work model. An
increasing focus on speed brings about the realization

that teams need to work in parallel to meet schedule
demands. The team eventually runs into challenges
because there is not enough architectural definition in
the feature documentation to allow the teams to “go off
and work independently”. This ultimately impacts
release speed.

• S3. Response: The team responds by augmenting the
existing release planning practice. They attach a
minimal design document containing architectural
design information they called a “design memo” to the
feature description document. Several considerations
are taken into account as the design memos are
developed including support for parallel development.
Because this team responds quickly and incorporates
this practice while continuing to deliver capability the
example follows the incremental response cycle.

• S4. Outcome: By extending release planning with
architecture information, the team was better able to
identify tradeoffs to support parallel development. This
practice was instrumental in enabling rapid
development. In addition, the team noted that
architectural changes were also made to promote
modularity and support parallel development. We
discuss this aspect in the subsection “Architecture
change to promote stability.”

Release planning with architecture considerations practice
was widely supported. All the organizations we interviewed
gave examples supporting this practice.

2) Prototyping/Demo with Quality Attribute Focus: This
practice extends the prototyping/demo user feedback practice
to include a focus on quality attributes. The example provided
here comes from a project manager for Organization A. Note
that project team members used the terms prototype and demo
interchangeably.
• S1. Focus on speed: In this example, the team was under

great pressure to deliver capability rapidly. Consequently,
business stakeholders were very interested in seeing
demonstrations of feature-related functionality (page
layout, workflow, navigation, etc.) and less interested in
demonstration of quality attribute-related requirements
such as performance and security features.

• S2. Triggers focus on stability: Right before a pre-
release milestone meeting system stakeholders began
asking questions about scalability and performance. To
gain an understanding of how well the system would
respond under more strenuous conditions, they asked for a
demonstration of system capability the team had planned
to demonstrate but against a much larger data set than
usual. Scalability had not been a design focus for the
project team and, consequently, during the demonstration
the users experienced an unacceptable drop in
performance (response time was slow for some large
searches).

• S3. Response: The visibility of these performance
problems prompted the team to incorporate quality
attribute considerations into their prototyping practice.
This practice change was made with fairly minimal

disruption to the incremental release cycle. The team also
did some refactoring to improve performance.

• S4. Outcome: As a result of this incident, the team
incorporated performance and security-related scenarios
to the demonstration suite. By extending prototyping to
include these quality attribute concerns the team was able
move back within an acceptable tolerance of desired state.

Organizations A, B, C, and E gave similar examples.
Organization B said their prototyping process now begins with
a demo of basic flow and they “strike deeper” to validate the
design quality attribute requirements.

3) Roadmap/Vision with External Dependency
Management: This practice incorporates external dependency
analysis into the roadmap planning process to reduce the risk
of being blind-sided by unanticipated external changes. These
are dependencies outside of the team’s sphere of control such
as dependencies on expertise outside the team, infrastructure
components governed by other parties, or difficult-to-reach
users. Organization D provided the example below.

• S1. Focus on speed: A focus on speed led to limited
focus on external dependency analysis. This put the
team at risk for impacts by unmanaged external
dependencies.

• S2. Triggers focus on stability: The project was
working aggressively on developing their first
operational release. During an important development
sprint, several firewall ports governed by an external
party were closed without notice, causing sporadic and
difficult-to-troubleshoot stability issues. Significant
time was wasted targeting the source of this problem.
Speed was impacted because effort was expended on
troubleshooting the infrastructure problem rather than
building features for the next sprint.

• S3. Response: Since this problem was holding up
development, the team took immediate action by
analyzing dependencies and reassessing external
dependency risks. Team members then came up with a
mitigation strategy for each risk. Some mitigation
strategies required modifications to the change
management notification process and others required
deeper understanding of dependencies on components
being developed by other teams. The roadmap
document, which contained a description of
development by phases, was used to capture external
dependency risks and mitigation strategies at the
portfolio level. This change was incorporated into the
ongoing practices with limited disruption to ongoing
work; therefore, it followed the incremental response
cycle. The team also adopted the practice of continuing
to revisit external dependency analysis regularly to
identify external dependency risks.

• S4. Outcome: After updating the release plan
documentation with external dependency information,
the team experienced fewer instances of unanticipated
port changes as well as other external changes.

Like Organization D, most of the organizations we
interviewed said that they also had to manage external

dependencies proactively. The Scrum Guide suggests that, to
the extent possible, project teams should try limit external
dependencies on other resources outside team to reduce the risk
of unanticipated changes [14]. While the organizations we
spoke with agreed philosophically with this idea, they said it is
often not possible to avoid external dependencies due to the
scale and interoperability requirements on their projects.

4) Test-Driven Development with Quality Attribute Focus:
This practice merges test-driven practices, such as automated
test-driven development and continuous integration, with a
focus on runtime qualities such as performance, scalability,
and security. This example comes from Organization E.

• S1. Focus on speed: The team had developed a set of
test cases that very effectively tested business
functionality. However, they had a fixed deployment
deadline and great schedule pressure so they did not
have time to develop quality attribute-related test cases
(in particular security-related test cases).

• S2. Triggers focus on stability: Late in the
development lifecycle, the team became nervous that
the project software would not pass assurance testing
and that late discovery of security vulnerabilities would
cause them to miss the fixed deadline for deployment.

• S3. Response: Team members responded by removing
some of the planned features from the release
refocusing the effort on shoring up security-related
gaps. As they did this, they also incorporated additional
security-related test cases into their regression test case
suite. Because of the rapid response, and the continued
focus on security after the incident, this example also
followed the incremental response cycle path.

• S4. Outcome: By extending test-driven development to
incorporate security considerations (a quality attribute
focus) the team was able to improve confidence that
security requirements were addressed and avoid late
discovery of schedule-impacting problems.

All the organizations we spoke with gave examples
supporting this practice. We also noted that several of the
organizations appear to be struggling to make their test
activities fit into a rapid release cycle (particularly within a
sprint). We discuss this issue further in the Inhibitors section.

5) Technical Debt Monitoring with Quality Attribute Focus:
The metaphor of technical debt is used to refer to
accumulating degradation of quality due to intentional and
unintentional shortcuts [16]. During interviews we heard
stories of problems due to unchecked technical debt leading to
stability challenges and big bang response cycles. With this
practice practitioners described steps they are taking to begin
to put in place mechanisms to monitor technical debt. An
architect with Organization B provided this example.

• S1. Focus on speed: In order to speed up development
time, the team purchased a COTS tool to enable team
members to easily add new fields to web pages. This
tool put in place a layer between the database and the
application layers of the system. This appeared to be a

change that would promote stability by encapsulating
other layers from the database layer.

• S2. Triggers focus on stability: The problem is that
now every field added to a web page through the tool
creates a new XML-based query. Rather than having a
manageable set of interfaces to the data layer to
maintain there are many of these query-generated
interfaces. As a result of this design decision, a change
to the database schema may have an extensive ripple
effect impacting many interfaces. In addition, making
changes to the COTS tool requires a special skill set, so
requests for changes queue up. So, what seemed like a
positive change resulted in a negative impact to
modifiability. While team members would like to
change this situation, they have difficulty making a
case for change because the problem is only visible to
the development team. The development team lacks
measures for communicating the impact of the problem
to the business side.

• S3. Response: Because the team can’t easily make the
problem visible to the business side, the development
team is hoping to bundle this change with a future
redesign effort - big bang response cycle style.

• S4. Outcome: The outcome is that this problem still
exists today and potentially impacts speed every time a
new data element must be displayed on a page. The
team is waiting for an opportunity to work the change
in (or until the speed issue because too painful for the
business).

This enabler was emphasized in interviews with
organizations B and C. These teams were in the Preservation
phase and had considerable experience working together.
These teams described this type of issue as technical debt. Both
projects described how, due to business pressure, they
sometimes embed architectural change with unrelated features
during feature development. This lack of transparency can
result in incorrect productivity measures as well as
unanticipated schedule impacts. Both projects described how
they were in the early stages of working on ways to better
measure and monitor technical debt. They expressed the belief
that if they were able to make technical debt more visible to
stakeholders, they could avoid the potentially costly and
disruptive big bang cycle. As described in the example,
unchecked technical debt can have consequences impacting
quality attributes such as modifiability, therefore, we call this
enabler technical debt monitoring with quality attribute focus.

6) Architectural Change to Promote Stability: This practice
builds on an example described in the Release Planning with
Architecture Considerations subsection. In this practice,
project teams make architecture changes to address stability
issues applying architecture tactics such as encapsulation,
distributed design, layering, and so on to respond to stability
issues. Due to the technical nature of this enabler, these
examples were provided by technical staff such as developers
and architects. We use an example from Organization C to
describe this practice.

• S1. Focus on speed: The team members explained
they had been suffering from a monolithic software
design for several years making even small changes
time consuming and risky. The monolithic design also
limited the team’s ability to develop features in
parallel. Although these problems impacted the
effectiveness of the development team, the fact that the
problems were not very visible to the business side
caused design improvements to be put on the back
burner for a long time.

• S2. Triggers focus on stability: Adding the “design
memo” practice improved the situation, however, the
monolithic architecture continued to limit the team’s
effectiveness. Eventually the business stakeholders
approved a redesign.

• S3. Response: Due to difficulty in making this problem
visible to the business stakeholders, this change along
with others like it was extensively delayed and finally
addressed through a major redesign. The response
cycle was not incremental; it was big bang style.

• S4. Outcome: Speed was impacted for a period of time
as other planned features were put on hold during the
redesign, however, after the redesign was finished the
teams could more easily add new features and work in
parallel (improving speed).

Organizations A, B, C, D and E all gave examples
supporting this enabler. Based on our interviews, we see an
association between the big bang response cycle and the lack of
measures for technical debt. While changes to software
resulting from the normal course of software evolution are
expected in the sustainment phase [15], the problem with this
scenario is there was not enough information to convince the
business side to approve incremental architectural changes.
While the business side members wouldn’t agree to refactoring
to fix the problem, they really did not like the big bang either.
Projects B and C both said that their business stakeholders
strongly dislike bug-fixing releases and major redesigns
because of the impact on speed. So, what are experienced
practitioners doing to avoid this? Organizations B and C said
they are now starting to keep a list of design decisions that may
cause technical debt to accumulate in the future. These projects
suggest that improving visibility into technical debt, by keeping
a list of design shortcuts and by other means, coupled with an
incremental architectural change plan, could minimize the
likelihood of a big bang response.

C. Summary of Inhibitors
In this subsection we summarize inhibitors to rapid fielding

collected during our interviews. Table 4 lists the inhibitors
ordered by concept strength. We focus the discussion
primarily on concepts with high category strength or better
shown in white portion of the table.

We found that major inhibitors to rapid fielding generally
fell into categories of either constraints or practice deficiencies.
As we analyzed the inhibitor data we saw relationships
between some of the inhibitors (Table 4) and combined
enabling practices (Table 3). For example, when practitioners

from Organizations B and C described incidents of applying
the Technical debt monitoring with quality attribute focus
enabler they also often mentioned these influencing constraints
(inhibitors):

• Desire for features limits requirements analysis or
stability-related work

• Stability-related effort not entirely visible to business
• Limitations in measuring architectural technical debt

TABLE 4: SUMMARY OF INHIBITORS

The focus on speed and difficulty making architectural

problems visible to the business side often led to major
redesigns or bug-fixing sprints (undesirable big bang response
cycle). In these scenarios, technical debt builds until refactoring
will no longer address the problem [16]. Another constraint,
Slow business decision, feedback, or review response time, is
also at the top of the list. Several organizations said that they
wasted a lot of time waiting on important management
decisions and lumbering enterprise certification processes over
which they had no control. Organizations A, B, C, and D all
gave examples of this. A question for future investigation may
be “What role do these constraints play in inhibiting project
teams from achieving desired state?”

We also noted several high-ranking inhibitors we
categorized as practice deficiencies. For example, all of the
organizations, except E, said that they were struggling with
testing-related problems. Organization D struggled with
developing test cases for complex and unpredictable
functionality, such as user interaction, within a sprint or release
cycle. We called this inhibitor, Inconsistent testing practices

and/or deficiency in quality attribute focus. Several teams said
they wanted to fully leverage Agile test-driven development
practices; however, the team’s testing expertise and tool
knowledge was limited. These inefficiencies in testing practices
often resulted in inconsistency in applying testing practices.
Often teams said there just was not enough time to do all the
testing they needed to do to produce the highest quality
product. For example, Organization B acknowledged the need
for performance and scalability testing on the project; however,
because these tests take a lot of time when businesses pressure
increases focus on quality attribute-related testing decreases.
Organizations A and C both said their performance regression
tests “take too long” so they conduct them when (and if) they
can fit them in. We also note that there may be a relationship
between this inhibitor and the high-ranking enabler Testing
practices with quality attribute focus.

IV. DISCUSSION
In this section, we reflect on the approach and discuss ideas

for future work. We found the structured nature of the
grounded theory-based approach helped to organize the
analysis process and ground our work in actual experiences
from practitioners. The process of memoing from transcript-
driven data limited interviewer bias by minimizing filtering that
occurs during the note-taking process (although, of course,
analyst biases still exist). We used a structured approach to
build a lengthy, and somewhat complex, spreadsheet carefully
mapping the data to concepts/categories. As we followed this
method, 230 indicators, 50 concepts, and five categories were
derived. We also found unexpected trends emerged as we
analyzed the data. For example, we found that early in
interviews, practitioners made generalized statements about
beneficial Agile practices. However, when they gave examples
explaining how they dealt with challenges, they frequently
described applying creative solutions to complex problems.

A useful technique during the interview process was use of
probing questions to gain further insights. We used probing
questions to increase confidence in our interpretation of
incidents. For example, as Organization D gave an example of
an inhibitor and we probed for influence on speed and/or
stability. They responded by saying, “I’d say one of our biggest
inhibitors to executing with speed was that while we were
doing development, we were also setting up our entire base
infrastructure. We didn’t have a development region for the
first four months…” This indicated to us that they perceived
this inhibitor had an influence on speed. Had we had not
probed we might have concluded that this problem influences
stability only, rather than speed and stability. While we found
the probing to be helpful, we also acknowledge that this
approach may introduce a potential threat to validity.
Investigator bias during probing could influence concept
strength and, consequently, the ordering of practices.

Deriving concepts from 230 indicators taken from raw data
transcripts can be overwhelming. For this reason we found the
emergent categories very helpful in narrowing down the
analysis scope and comparing “apples to apples”. In this paper,
we focused primarily on practices. However, several other

SUMMARY OF INHIBITORS
• Desire for features limits requirements analysis or stability-

related work
• Slow business decision, feedback or review response time
• Problems due to challenges with external dependency

management
• Stability-related effort not entirely visible to business
• Limitations in measuring architectural technical debt
• Inadequate analysis, design or proof-of-concept
• Inconsistent testing practices and/or deficiency in quality

attribute focus
• Poor testing consistency
• Runway or infra limitations
• Resource limitations
• Poor configuration management limits reversibility
• Over-dependency on architect for architecture knowledge
• Selected COTS product limits flexibility
• Organizational standards limit design options
• Incompatible milestone lifecycles
• Business didn’t buy into Scrum
• Arbitrary backlog grooming
• Personnel issues limit ability to track individual

productivity

categories emerged including: Architectural Changes,
Decisions, Constraints, and Deficiencies. In future work, we
would like to investigate these other categories of enablers and
inhibitors. We would also like to delve deeper into the
interrelationships between all five categories and desired state.
For example, we observed that constraints, such as slow
management decision making, can inhibit rapid fielding, but
what is their influence on achieving or maintaining desired
state?

Because we were talking mostly with organizations using
Agile development and Scrum, the majority of the examples
followed the Speed-triggers-stability scenario. Another area we
would like to explore is reversibility of the Speed-triggers-
stability scenario. We see some evidence that the scenario is bi-
directional. In other words, a focus on stability could trigger a
focus on speed. For example, members of Organization E (one
of the projects using an incremental lifecycle, but not using
Scrum) explained they were losing market share because the
development team was prioritizing work leading to an
overemphasis on stability-related effort on the project. So, they
“took the prioritization out of the hands of the developers” and
created a product forum with involvement from business and
technical sides. Clearly, emphasis on stability caused a refocus
on speed. In future work, we would like to investigate whether
examples of the stability-triggers-speed scenarios exist on
Scrum projects and, if so, what are the similarities and
differences between the response cycles.

V. CONCLUSIONS
Through this work, we see evidence that software engineers

don’t necessarily apply pure Agile or architecture practices
separately. Practitioners we interviewed with come up with
innovative ways to combine practices to allow them to stay
within (or get back to) an acceptable range of desired state for
their projects. We present several examples of this in this
paper. These practice combinations allow teams to address
problems with stability while still focusing on speed. We see
value in investigating the practices that practitioners are
combining with success to avoid commonly observed patterns
of disruption to velocity.

We acknowledge a strong desire within the business
community to avoid disruptive actions such as bug-fixing
sprints or major redesigns. While the creative combinations of
practices help to avoid major disruptions, the Speed-triggers-
stability scenario is still a reactive pattern. This means that the
problem has to surface before it is addressed. However, there
may be value in investigating whether the combined practices
could be applied in a more proactive way. For example, we see
evidence from our interviews that improved visibility into
technical debt may help avoid the disruptive big bang cycle.
Are there other indicators that could be applied in a lightweight
and dynamic way to position teams to be more proactive?

We identified several inhibitors, particularly, practice
deficiencies, that pose great challenge to Agile projects. For
example, testing appeared to be a particularly problematic area.
The teams we interviewed struggled to develop test cases for
complex situations and to run quality-attribute-focused tests,

such as performance tests, within a sprint or release cycle. In
addition, inconsistent test practices and slow assurance
certifications processes led to problems and delays. This raises
a question about whether we are observing a lack of testing
practice discipline or a rational and reasonable response to the
need to balance speed and stability.

Projects were able to respond to stability challenges in an
incremental way when the problems were visible (e.g., painful
to the business stakeholders). However, in the case of technical
debt, where quality degrades due to shortcuts taken in the
interest of speed, problems with stability were often not as
visible to business stakeholders (e.g., tight coupling, which
results in small changes taking a long time to implement). Due
to the lack of technical debt measures, development teams
could not make a strong case to the business side to convince
them to invest in making the fixes. This often led to a
disruptive bug-fixing sprint or major redesign. Because we
could see an association between the lack of visibility into
accumulating technical debt and disruptive measures, we
suggest that this is an area for future investigation.

The Scrum Guide concludes with a statement suggesting
that Scrum must be implemented in its entirety or the result is
not Scrum [14]. Projects that tailor Scrum to incorporate their
practices, or use portions of the Scrum method, are referred to
in a derogatory sense as “Scrum But” projects. However, this
sentiment appears to be changing. In a recent blog posting, Ken
Schwaber said he would like to change the mindset of Scrum
But to Scrum And. He explained that Scrum And is a path of
continuous improvement in software development beyond the
basic use of Scrum. He gave this example to illustrate the
concept of extending Scrum, “We use Scrum and we are
continuously building, testing and deploying our increments
every Sprint” [16]. The work from this study supports the
stance that practice extensions are needed and anticipated in
iterative and incremental development. A recent study looking
at practices across three Microsoft teams using Scrum also
supports the notion that integrating engineering practices
within the Scrum development framework improves software
quality [18]. Future work exploring these integrated practices
may reveal additional patterns for effectiveness, greater detail
about how they work and shed light on aspects that may be
generalizable.

ACKNOWLEDGMENTS
We thank the following individuals for their help and

feedback during data collection: Deborah Brey, Christy
Hermansen, Einar Landre and Josh Seckel.

This material is based upon work funded and supported by

the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center.

This material has been approved for public release and
unlimited distribution.

DM-0000071

REFERENCES
[1] M. Hotle, D. Norton, and N. Wilson, “The end of the waterfall

as we know it,” Gartner Research, August 2012.
[2] Director of Defense Research and Engineering, “Rapicapability

fielding toolbox study,” Final Report, March 2010.
http://www.cogility.com/Documents/Rapid_Capability_Fielding
-Public_Release.pdf

[3] M. Denne and J. Cleland-Huang, Software by Numbers. Upper
Saddle River, NJ: Prentice Hall, 2003.

[4] F. Bachmann, R. L. Nord, and I. Ozkaya, “Architectural Tactics
to support rapid and agile stability.” CrossTalk: The Journal of
Defense Software Engineering, Special Issue on Rapid and
Agile Stability, May/June 2012.

[5] A. Martini, L. Pareto, and J. Bosch, “Enablers and inhibitors for
speed with reuse,” Proceedings of the 16th Software Product
Line Conference, ACM, New York, v. 1, pp. 116-125,
September 2012.

[6] L. Bass, P. Clements, R. Kazman, Software Architecture in
Practice, 3rd ed. Boston, MA: Addison-Wesley, 2012

[7] T. Grant, “Navigate the Future of Agile and Lean.” Forrester
Research, January 2012.

[8] B. Dick, “Grounded theory: a thumbnail sketch,”
http://www.uq.net.au/action_research/arp/grounded.html (2005).

[9] G. Barney, “A look at grounded theory: 1984-1994,” in
Grounded Theory 1984-1994, ed., vol. I, Glaser, Barney G., Mill
Valley, CA: Sociology Press, 1995, pp. 3-17.

[10] J. Corbin and A. Strauss, Basics of Qualitative Research-
Techniques and Procedures for Developing Grounded Theory,
3rd ed. Thousand Oaks, CA: Sage Publications, 2008.

[11] S. Adolf, W. Hall, and P. Kruchten, “A methodological leg to
stand on: using grounded theory to study the experience of
software development,” Vancouver, BC: University of British
Columbia, January 2011.

[12] D. Leffingwell, Scaling Software Agility. Upper Saddle River,
NJ: Addison-Wesley, 2007.

[13] B. Glaser, The Grounded Theory Perspective: Conceptualization
Contrasted with Description. Mill Valley, CA: Sociology Press,
2001.

[14] K. Schwaber and J. Sutherland, “Scrum guidebook,” Scrum.org
and Scrum Inc., 2011.

[15] Keith H. Bennett and T. Rajlich, “Software maintenance and
evolution: a roadmap,” in Proceedings of the Conference on The
Future of Software Engineering (ICSE 2000). New York: ACM,
2000, pp. 73-87.

[16] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: from
metaphor to theory and practice,” IEEE Software, 2012, pp.18-
21.

[17] K. Schwaber, (blog) “Telling it like it is,” April 2012.
http://kenschwaber.wordpress.com/2012/04/05/scrum-but
replaced-by-scrum-and/

[18] L.Williams, G. Brown, A. Melzer, N. Naggappan, “Scrum +
Engineering Practices: Experiences of Three Microsoft Teams”,
ICSE 2013.

