
More Netflow Tools: For
Performance and Security

Carrie Gates, Michael Collins, Michael Duggan, Andrew Kompanek and Mark Thomas –
Carnegie Mellon University

ABSTRACT

Analysis of network traffic is becoming increasingly important, not just for determining
network characteristics and anticipating requirements, but also for security analysis. Several tool
sets have been developed to perform analysis of flow-level network traffic, however none have
had security as the primary goal of the analysis, nor has performance been a key consideration.

In this paper we present a suite of tools for network traffic collection and analysis based on
Cisco NetFlow. The two primary design considerations were performance and the ability to build
richer models of traffic for security analysis. Thus the data structures and code have been
optimized for use on very large networks with a large number of flows. Data filter rates are
approximately 80 million records in less than 1.5 minutes on a Sun 4800.

Introduction

Cisco NetFlow [11] is becoming an increasingly
popular method for analyzing network traffic, and sev-
eral tools (e.g., [3, 8, 1]) have been developed to take
advantage of this flow information. However, most of
these tools have been developed within the context of
academic settings, where performance was not critical.
The SiLK Suite1 was developed to provide analysis
tools for very large installations, such as large corpo-
rations, government organizations, and backbone ser-
vice providers. These sites often transfer large vol-
umes of data, much of it extraneous (e.g., worm traf-
fic, scanning activity).

In addition to having performance as a key ele-
ment of the SiLK Suite, the tool set was developed
with security analysis as a primary goal. This has
facilitated the development of a new suite of tools that
allow information filtering in a manner unavailable in
other tool sets. This suite of tools has been field tested
at a large ISP, and is now in operational use at this site.
For example, the tool set is able to process approxi-
mately 80 million records in less than a minute and a
half on a Sun 4800.

This paper provides an introduction to the SiLK
Suite tool set, describing both the collection system
and the analysis tools. It provides examples of how to
use the analysis tools and the types of analyses that can
be performed. SiLK is then compared to related tools.

The SiLK Suite can be down-loaded from http://
silktools.sourceforge.net/ [5].

Overview of the SiLK Suite

The SiLK Suite consists of two primary compo-
nents: the collection system and the analysis tool set.

1SiLK stands for System for Internet Level Knowledge,
with the SLK capitalized in memory of Suresh L. Konda,
who was the founder of the project.

The collection system converts Cisco NetFlow Ver-
sion 5 PDUs into a compressed binary format. The
tools work on these compressed records, allowing a
user to filter data in a variety of ways and to use a
series of command line tools for data summarization.

SiLK was originally designed to address a prob-
lem inherent in traffic analysis: traditional payload-
based analysis can make accurate judgments with a
relatively small amount of data, but traffic analysis
requires larger volumes of data to assess trends and
large scale behaviors. Coupled with the volume of
data seen on our client network, the amount of traffic
summaries received was on the order of tens of Giga-
bytes a day.

In order to manage this volume of traffic, SiLK
adopted three strategies: the footprint of individual
records was reduced to the minimum necessary to
store security-relevant information and nothing more,
files were split into several common pre-defined cate-
gories to reduce the amount of time to look for spe-
cific traffic, and the SiLK Suite was made gzip-trans-
parent. SiLK reads gzipped or unzipped files transpar-
ently, which yields a substantial performance bonus
(in our experience, gunzipping a file in memory is
cheaper than loading the unzipped file).

Collection System

The collection system has been designed to mini-
mize the amount of disk space required to store data,
while still supplying the data required for security
analysis of network traffic. The collection system
takes Cisco NetFlow Version 5 PDUs and converts
them to a ‘‘packed’’ format. The packed records are
stored in a hierarchy based on the router class (e.g.,
ingoing, outgoing) where this information is specified
by the type of record (e.g., in, inweb, out and outweb),
and date and time, with hourly files available at the
leaves. A separate file is maintained for the flow

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 121



More Netflow Tools: For Performance and Security Gates, et al.

records from each router. Only flows that have been
routed are recorded – flows representing traffic that
was dropped by the router due to an access control list
(ACL) violation are not saved.2 A NetFlow record
consists of 48 bytes. We reduce this record size to
achieve disk storage savings via three approaches:

• do not store the fields that are not required
• reduce the number of bits used to store some

information
• remove the storage of fields where the file hier-

archy can indicate the same information

The first approach results in the removal of eight
fields from the NetFlow record. In particular, informa-
tion about the network path is not maintained. This
results in the removal of the following fields: input
interface number, output interface number, the source
AS number, the destination AS number, the source
mask, the destination mask, and the next hop IP num-
ber. In addition, the type of service information is not
kept. This results in a savings of 19 bytes per record.3

Additional space savings comes from a reduction in
the number of bits used to store various information.

For example, time information is only stored
with accuracy to within one second, rather than the
millisecond precision provided by NetFlow. In addi-
tion, the packed record only uses 12 bits to store the
start time of the flow, and 11 bits to store the elapsed
time of the flow. The header for the packed data file
contains the start time for all of the records in the file.
As each file contains only one hour of flow data, the
start time only needs to be the number of seconds
since the start of the file. The end time is actually the
number of seconds elapsed since the start of the flow.
By default, NetFlow flushes a continuous flow after
30 minutes, and so the elapsed time requires one fewer
bit than the start time (based on this default). If a site
is using a different configuration (in particular, flush-
ing less frequently than 30 minutes), then the code will
need to be modified to accommodate this difference.

Other bit savings come from storing the average
bytes per packet, rather than the absolute number of
bytes. There are 14 bits dedicated to the number of
bytes per packet, and an additional six bits to represent
the fractional portion of the value. Additionally, only
20 bits are used to represent the number of packets in
a flow. If this value overflows, then an overflow bit is
set. Therefore we only have accuracy in this field up
to approximately one million packets. After this, we
use a multiplier to achieve greater values, but at the
cost of accuracy. It is important to note that implicit in
this design is the concept that flows with small pay-
loads are more important or interesting than larger

2We currently do process flows that encounter ACL viola-
tions on one of our client sites, where these records are
saved in a different directory in the file hierarchy, however
this code is not yet available in the open source release.

3Future versions might incorporate some of these values,
however the open source version currently does not save this
information.

ones, and hence we are not concerned with the exact
values for larger flows. However, the overflow bit has
been designed to still provide information (by acting
as a multiplier), rather than being used as an error flag.

As noted above, some information has been
removed from the data record and is maintained by the
structure of the underlying file system. For example,
the directory hierarchy specifies the type of record as
the second level in the hierarchy, where the type of
record can be either web or non-web. For many large
networks, the majority of traffic consists of web-based
traffic. By splitting out web traffic into a separate loca-
tion, the number of bits required to store port informa-
tion for web records can be reduced. That is, the
ephemeral port information is maintained (16 bits),
while only two bits are used to represent the web port
in use (where the web port can only be one of 80, 443
or 8080). A third bit is used to indicate if the web port
is the source port or destination port. In addition, since
all web traffic uses the TCP protocol, there is no need
to store the protocol information. In total, these
changes result in a savings of 21 bits, which is a sav-
ings of 2-bytes per record in disk storage. For a site
that sees ten million web flows per hour (incoming or
outgoing), there is a savings of nearly 500 MB per day.

Using all these techniques results in a flow
stored as source IP address, destination IP address,
source port, destination port, protocol, flag combina-
tion, start time, elapsed time, number of packets, and
the bytes per flow (which is converted to number of
bytes by the analysis tools). The packed record only
requires 22 bytes of on-disk storage, while the original
NetFlow PDU requires 48 bytes. For the web data, this
is reduced even further to 20 bytes per record. For
sites that experience large volumes of traffic, this can
result in significant savings in disk space.

Analysis Tools

Data Manipulation

The SiLK Suite currently provides 13 tools and
seven associated utilities. Libraries are provided for
reading the packed records, which performs file glob-
bing (using fglob library calls, which is how file glob-
bing will be referred to for short) based on information
provided through a standard set of arguments. These
arguments specify the start and end date/time, the type
of data (e.g., incoming or outgoing, web or non-web),
and the sensor (router). These flags can be provided to
the tools that read the packed records, and are used to
specify exactly what files are read. This allows for
enhanced performance by reducing the amount of traf-
fic that needs to be searched, as only the relevant por-
tions of data are examined. (In other tools, all traffic is
maintained as flat files, where the analytical tools
require the user to specify the input data file. The
directory hierarchy employed by SiLK, however, is
incorporated into the analysis tools, allowing the ana-
lyst to focus on the behaviour of interest, rather than

122 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



Gates, et al. More Netflow Tools: For Performance and Security

needing to find the appropriate file. Additionally, the
hierarchy allows the tools to more quickly locate small
files containing the information for the time and sen-
sor of interest.) The tools default to using incoming
traffic, both non-web and web, for all sensors. Addi-
tionally, if only a day is provided for the start date,
then the default is to process the entire day. If an hour
is provided, then the default is to process only that
hour. To process some other amount of time (e.g., two
hours), the end date flag is required. If no start date is
provided, the tools default to using the data available
so far for the current day.

The primary tool is rwfilter.4 This tool reads the
packed data and can filter based on various options.
These options include filtering based on the start or
end time of the flow, the duration of the flow, the
source or destination ports, the protocol, the number
of bytes or packets, or the flag combination (for TCP).
Perhaps one of the most useful options that can be
provided for filtering is the source and destination
addresses, which can be provided as single addresses,
ranges of addresses, or as a set of unrelated IPs (called
an ipset and described more fully below). Alterna-
tively, all IPs that are NOT in the set provided can also
be used. In addition to the base command line func-
tionality, rwfilter has the ability to incorporate a user-
compiled dynamic library. This library can be used to
filter records based upon criteria that are too compli-
cated to express on the command line, to perform
‘‘canned’’ queries more quickly than the command
line would allow, and to perform stateful operations on
large sets of flow records. For example, a user can
define their own set of important services (e.g.,
dns/tcp, dns/udp, web, other tcp, etc.), using the
dynamic library to count the number of flows for each
of these services, and printing the results at the end of
the rwfilter command.

The rwfilter tool provides two output options:
--pass and --fail. The --pass option allows all data meet-
ing the specified filtering options to be saved to a file
(or, alternatively, stdout can be specified here, if the
results are to be piped through another command),
while the --fail option saves all those records that did
NOT meet the filtering criteria. Both options can be
used at the same time, allowing a user to chain rwfilter
commands, where data that meets a condition can be
saved in a file via --pass, while those records that fail
the condition can be piped into another rwfilter com-
mand via --fail=stdout. The data files that are generated
by rwfilter are in a binary format similar to that gener-
ated by the packing system, and which can also be
read by the rw commands, which allows commands to
easily be chained together. (Records output from rwfil-
ter no longer have the contextual information provided
by the file hierarchy and therefore fully expand fields

4We use rw as a short-hand for raw. This is a historical con-
vention, and refers to the type of packed files we are using
and the type of data we are receiving.

such as start time. The result is a homogeneous stream
of 32-byte records.)

A major functionality provided by this tool set is
a binary representation of IP addresses, called an ipset.
The ipset data structure is effectively a dynamically
expanding checklist: the core of the structure is a list
pointing to 65,536 8 KB bitmaps, where each bit indi-
cates the presence of an IP address. Under normal cir-
cumstances, only a small number of the bitmaps are
allocated, and most ipsets end up being less than a
megabyte in size. However, the structure is very fast
(any address is looked up in two memory loads) and
consequently allows a user to query arbitrary sets of IP
addresses as fast as any other query in SiLK.

An ipset can be built from an ASCII list of dot-
ted-quad IP addresses using the buildset command. It is
also possible to use the results from an rwfilter com-
mand to generate an ipset by piping the output from
rwfilter to rwset. The rwset command reads in data in the
packed format and generates an ipset of either the
source IP addresses or destination IP addresses, as
specified by a command line option.

The ipset files that result from buildset or rwset
can be read using the readset command, which can
print the IP addresses in the set, a count of the IP
addresses, or various statistical information. Ipsets can
also be combined using standard set functions such as
intersect (setintersect) or union (rwset-union).

Ipsets allow a user to filter data on IP addresses
that need not have anything in common (e.g., does not
need to be in a range). For example, a site can main-
tain a ‘‘bad list’’ of IP addresses (addresses that are
known to be malicious) as an ipset. This set can then
be used to filter incoming traffic for any activity from
these IPs, or to filter outgoing traffic to see if there is
any communication to these IPs. If a second bad list
needed to be added to the first, then the two could be
merged using rwset-union. Similarly, to see what
addresses the two lists had in common, setintersect
could be used.

In order to view the records returned by rwfilter or
similar utilities (e.g., rwsort, which is described
below), the command rwcut must be used. This com-
mand reads in any packed data file, and prints the
fields in the packed record, along with the sensor ID
and the end time of the flow. The fields to be printed
can be specified with the --field option, where the fields
are numbered from one to 12. (Numbers were used to
save the user from needing to type each required field
in full, e.g., --field=sip,dip,sport,dport,stime. Additionally,
once the user has memorized which numbers map to
which fields, it allows them to easily specify ranges,
e.g., --field=1-4,9.) The number of records to print can
also be specified with the --num-recs option.

All of the tools work on packed data, as this is
the most efficient. Given the large number of records
that need to be handled quickly, Unix-like utilities,

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 123



More Netflow Tools: For Performance and Security Gates, et al.

such as rwuniq and rwsort were developed that use
packed data. The rwuniq tool will return the unique
entries for the specified field, along with a count, and
so is equivalent to the Unix command uniq -c. In addi-
tion, rwuniq allows the user to set a threshold, so that
only those entries that occur more often than the
threshold are returned. The rwsort tool sorts packed
data on the specified fields (allowing the user to spec-
ify a primary key and secondary key), outputting the
results in a packed data format. Operations using these
tools on packed data perform more than twice as fast
as the same operations on plain text using traditional
UNIX tools.

Currently, rwsort is limited to 50 million records.
If the input contains more than 50 million records, sort
proceeds based on just the first 50 million records.
This limit was provided based on memory restrictions,
and can be changed easily by modifying the source
code. This design decision was made based on the
assumption of 2 GB of RAM being available, and with
the desire to provide the user with a consistent mem-
ory limit, rather than one that might change based on
machine or machine usage.

Data Summarization

Other tools are intended to assist in traffic analy-
sis by providing summarizations appropriate for
graphing, and various statistical reports. For example,
rwcount provides the number of bytes, packets and
flows seen in the packed data provided, broken into
user-specified time intervals (e.g., five minutes, one
hour). This allows a user to glance at a report and
determine if there was any sudden spike in activity.
The tool rwtotal allows even finer granularity based on
user-specified criteria. For example, a user can per-
form an rwfilter to extract all traffic going to a particu-
lar /24 address space, then pipe this to rwtotal and
group the results (number of bytes, packets and flows)
by the last octet of the destination address. This pro-
vides a count of all the traffic going to each IP address
in a /24 network. Other than specifying various parts
of the source or destination address (e.g., last 8 bits,
last 16 bits), the user can also print results based on
protocol, source port, destination port, number of
packets or number of bytes.

The tool rwaddrcount is similar to rwtotal, however
it is based on IP addresses instead of time intervals. It
can take as input the results from an rwfilter query, and
will return the total number of bytes, packets and
flows for each source IP address, along with the time
stamps for the first and last flows observed. The infor-
mation provided can be further refined through com-
mand line options specifying the minimum and maxi-
mum flows, packets or bytes observed.

The tool rwstats computes a variety of statistics,
based on the traffic flows provided to it. The number
of flows, and the percent of the input that these flows
represent, are provided for the groups specified by the

user. Top N lists (e.g., sort the results by the number of
flow records, and then only return the first N, such as
10, from the list – thereby presenting the results with
the most traffic) can be provided by either source or
destination IP address, where the user specifies the
value for N. In this manner, the user can view the top
10 (for example) sources that generated the most num-
ber of flows to the monitored network, or the top 20
destinations that generated the most flows to outside
addresses. This feature can also be used based on
ports, rather than IP addresses. Additionally, the bot-
tom N (those groups with the least number of flows)
can also be specified. If preferred, the user can look at
combinations of items, such as the top source-destina-
tion IP address combinations or source-destination
port pairs. Additional statistics, such as the minimum,
maximum, quartile, and interval statistics for bytes,
packets and bytes/packet can be determined based on
protocol (e.g., TCP, UDP).

In addition to the 13 tools provided by the SiLK
Suite, there are also seven utilities. The utilities differ
from the tools as they were provided to assist in some
analysis tasks, based on user feedback. In contrast, the
tools were designed to perform the actual analysis.
The utilities are:

1. num2dot: This utility converts IP addresses from
a 32-bit integer to dotted quad notation. It
expects output from rwcut (where the rwcut IP
format had been specified to be 32-bit integers,
rather than the default of dotted-quad), with the
fields to be converted specified on the com-
mand line. This tool is useful if output that con-
tains IP information in both 32-bit integer and
dotted-quad notation is desired. One example
of where this would be useful is if the resulting
flows needed to be imported into a spreadsheet.
Using rwcut with --field=1,9,1-8 --integer-ips gen-
erates rwcut output with IP numbers as 32-bit
values. num2dot can then convert fields three
and four to dotted-quad notation, leaving the
first field (source IP address) as a 32-bit inte-
ger, allowing easy sorting in the spreadsheet,
yet still providing the dotted-quad value for the
user (the third field would now contain the dot-
ted-quad version of the source IP, while the
fourth field contained the destination IP in dot-
ted-quad).

2. rwappend: This utility appends new flow
records to an existing packed file.

3. rwcat: This utility will concatenate packed files
into a single stream.

4. rwfileinfo: This utility reads the header informa-
tion of a packed file and prints it to the screen.
This information includes items such as the
number of records in the file and the command
line that generated the file.

5. rwfglob: This utility can be used to determine
what files will be processed given a set of fglob

124 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



Gates, et al. More Netflow Tools: For Performance and Security

options (e.g., start date, incoming or outgoing,
etc.).

6. mapsid: This utility determines the sensor name
or number, and can convert between the two
representations.

7. rwswapbytes: This utility can be used to change
the endianness of a packed file.

IP Address| Bytes|Packets|Records| Start Time| End Time
241.21.21.24| 3855940| 87635| 65732|06/29/2004 17:00:00|06/29/2004 17:48:13

241.27.240.226| 5267496| 109792| 74773|06/29/2004 17:00:02|06/29/2004 17:49:40

Figure 1: The results from rwaddrcount.

Security Analysis

These tools can easily be scripted to deliver regu-
lar reports. For example, one of the client sites using
these tools produces top 10 lists on a nightly bases.
The top 10 IP addresses that have seen the most flows,
or bytes, or packets can easily be determined through a
combination of rwfilter and rwaddrcount. Similar statis-
tics can easily be generated for ports based on rwtotal.

The following sections demonstrate some of the
capabilities of the tool set to detect various types of
activity. All IP addresses have been obfuscated. All
internal addresses are represented as 10.x.x.x, while
all external addresses are represented as 241.x.x.x.
Access to the data may be made available by special
request to the authors.

Scanning Activity

Adversaries often perform a scan of a network as
the prelude to an attack. In particular, ‘‘script kiddies’’
(unskilled attackers) will often deploy an exploit
across all of the machines in a network [7]. This type
of activity will appear as a SYN scan (in the case of a
TCP-based exploit), where there might be some fur-
ther communication with internal systems that respond
to the scanner with a SYN-ACK. The SiLK tool set
can be used to find scanners of this type, and to deter-
mine if particular machines should be investigated for
compromise.

For example, to look for ‘‘fast’’ scanners (that is,
scanners who have contacted a large number of
machines in a short amount of time), we can do the
following:
rwfilter --start=2004/6/29:17 \

--syn=1 --ack=0 --fin=0 \
--proto=6 --pass=stdout | \

rwaddrcount --print-recs \
--rec-min=65000

The rwfilter command here uses incoming traffic
(both web and non-web) by default. It processes one
hour of data (17:00-18:00 GMT on June 29, 2004),
looking for all flows where the SYN flag was set, and
the ACK and FIN flags were not set. The other flags
(RST, URG and PSH) can take any value. Only the
TCP protocol is used (--proto=6, using the standard
protocol numbers as defined by the Internet Assigned

Numbers Authority (IANA) [4]). The results from the
rwfilter command are passed through stdout to the rwad-
drcount command. This command prints all the source
IPs that had more than 65000 flows, along with the
number of bytes, packets and flows, with start and end
times (see Figure 1). There were two sources that met
these criteria.

The source IP that had the most records (and who
therefore presumably scanned the most targets) was
241.27.240.226, with 74,773 flows (a little over one /16
network, if each flow is to a different destination IP),
while 241.21.21.24 had 65,732 flows. We therefore elect
to examine the traffic from both source IPs in detail.
Some of the information that we would like to know
include how many unique destination IP addresses did
each source target, and what ports they targeted.

To answer the first question regarding the num-
ber of destinations, we can extract all of the flows for
each source via an rwfilter call. In this case we will save
the results to disk so that we do not need to continu-
ally process an entire hour of data. We also drop the
restriction on the flag combinations so that we see all
of the TCP flows from this source. The command used
for the first source IP address is:
rwfilter --start=2004/6/29:17 \

--saddr=241.27.240.226 \
--proto=6 \
--pass=rwdatafile

The process is the same for the second IP address. The
resulting file contains 75,199 records (obtained by
using rwfileinfo, or by adding the option --print-stat to the
rwfilter command). To determine the number of unique
destination IP addresses in this file, we can use the
command:
rwuniq --field=2 --no-title \

rwdatafile | wc

which performs the equivalent of sort | uniq -c using the
destination IP field (field = 2), with the titles for the
fields turned off. The result was 75,199 lines, which
indicates that there were that many unique IP
addresses – indicating only one flow per destination IP
address. However, given that there were more records
observed when the flag restriction was dropped, there
was likely some further communication between some
of the additional destination IP addresses.

To determine the ports that were targeted, we can
perform the same query as above, but replace the field
value with 4 (for destination port). The result from this
query (rwuniq --field=4 rwdatafile) is:
dPort count

80 75199

This shows that all of the flows were to destina-
tion port 80 (web). Similarly, running the same

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 125



More Netflow Tools: For Performance and Security Gates, et al.

commands for source IP address 241.21.21.24 also
showed a scan of port 80.

sIP| dIP|sPort|dPort| packets| bytes| flags|
10.10.10.1| 241.37.150.226| 80| 1542| 7| 1646| FS PA |
10.10.10.2| 241.37.150.226| 80| 1543| 7| 1646| FS PA |
10.10.10.3| 241.37.150.226| 80| 1544| 7| 1646| FS PA |
10.10.10.4| 241.37.150.226| 80| 1545| 7| 1646| FS PA |
10.10.10.5| 241.37.150.226| 80| 1546| 7| 1646| FS PA |
10.10.10.6| 241.37.150.226| 80| 1547| 7| 1646| FS PA |
10.10.10.7| 241.37.150.226| 80| 1548| 7| 1646| FS PA |
10.10.10.8| 241.37.150.226| 80| 1549| 7| 1646| FS PA |
10.10.10.9| 241.37.150.226| 80| 1550| 7| 1646| FS PA |
10.10.10.10| 241.37.150.226| 80| 1551| 6| 1152| FS PA |

Figure 2: Output from filtering on a particular destination IP.

We are interested in determining if there were
any responses to these two scans. To determine this,
we first create an ipset from these two IPs. We can do
this by creating a file that contains the two IP
addresses and then running buildset. Alternatively, we
can do the following:
rwfilter --start=2004/6/29:17 \

--syn=1 --ack=0 --fin=0 \
--proto=6 --pass=stdout | \

rwaddrcount --print-ip \
--rec-min=65000 --no-title | \

buildset stdin ip.set

With only two IP addresses, it is quicker to just create
a temporary file, however if there had been a large
number of IP addresses, than the latter approach is
preferable.

We can then use the ipset that we have created as
a filter on the outgoing data to determine what com-
munication there was from the internal network to
these two scanning IP addresses. The command we
would use is:
rwfilter --type=out,outweb \

--start=2004/6/29:17 --proto=6 \
--dipset=ip.set --pass=rwdata.out

The result was a file consisting of 17,542 records. This
indicates a very large number of responses! However,
we are only interested in positive responses, or records
where there was no RST returned to the source. The
rwdata.out file can be further filtered on the flag combi-
nations, to examine only those flows that contained no
RST using the command:
rwfilter --rst=0 rwdata.out \

--pass=rwdata.out.noRST

Unfortunately, this still resulted in 16,865 records. We
therefore take a quick look at the data to see if we can
determine anything interesting. We do this by first
sorting on the source IP address (the internal respond-
ing host), followed by displaying the results:
rwsort --field=1 rwdata.out.noRST \

| rwcut --field=1,2,3,4,6,7,8 \
| less

A sample from the result set is given in Figure 2. This
shows that the scanner was proceeding in order
through the IP space. In this instance, the source had

actually stumbled onto a honey-pot, which is why
there was a response from each IP address in that par-
ticular subnet. In general, if an unusually high number
of the same service is seen on the same subnet (e.g.,
16000 web servers on a /16) where the subnet is a gen-
eral network (that is, not a server farm, for example),
then it might indicate a honey pot or a firewall (as
some firewalls can be configured to respond in this
manner). This hypothesis is further supported by each
server responding with exactly seven packets and
1646 bytes, implying that they are returning the same
content (or at least content that is exactly the same
size!). In our case, it turns out that the majority of
responses to the scan were due to this honeypot.

Worm Attacks
Recently, two prominent worms (Korgo [9] and

Sasser [10]) have been released that scan port 445.
When a vulnerable machine is found, each of the
worms exploits the vulnerability, but then diverge to
perform different activities on the infected machine.
As we care less about external machines scanning our
network for vulnerabilities than we do about internal
machines that have been infected, we turn our attention
to examining outgoing network traffic. We know that
infected machines scan for vulnerabilities on port 445,
so we can narrow our search by examining only flows
with destination port 445. Since we are looking for
machines that perform scanning of this port, by defini-
tion there will be a large number of unique destination
IP addresses contacted by a single source. We there-
fore want to find all internal machines that are contact-
ing large numbers of external machines on port 445.
(Note that just a large number of flows is not necessar-
ily indicative of an infection, but that a large number
of unique destination IP addresses is more indicative.)

To extract the information we want, we first per-
form an rwfilter, and then pipe these results through a
call to rwstats:
rwfilter --type=out \

--start=2004/6/29:17 \
--proto=6 --dport=445 \
--pass=stdout | \

rwstats --pair-topn=10

As we are now examining outgoing traffic, we
need to specify that the type is out instead of the
default of incoming. We do not need to examine

126 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



Gates, et al. More Netflow Tools: For Performance and Security

outweb, as port 445 is not one of the web ports. Again
we look at only one hour of data, extracting all traffic
to destination port 445 using the TCP protocol. The
output from this command is piped into rwstats, which
produces the top ten source-destination IP pairs based
on the number of records. The output from this com-
mand is give in Figure 3.

INPUT SIZE: 127393 records

SOURCE IP/DEST IP PAIRS: Top 10 of 95825 unique
src_ip_addr |dest_ip_addr | num_pairs| %_of_input| cumul_%
10.100.1.10 |241.21.208.42 | 99| 0.077712%| 0.077712%
10.10.10.10 |241.22.97.159 | 52| 0.040819%| 0.118531%
10.110.100.10 |241.240.17.204 | 22| 0.017269%| 0.135800%
10.120.100.10 |241.241.17.204 | 21| 0.016484%| 0.152285%
10.10.1.1 |241.242.1.51 | 14| 0.010990%| 0.163274%
10.130.100.100 |241.243.200.199 | 10| 0.007850%| 0.171124%
10.10.1.10 |241.244.187.97 | 10| 0.007850%| 0.178974%
10.140.10.100 |241.245.231.202 | 8| 0.006280%| 0.185254%
10.150.100.100 |241.23.240.114 | 5| 0.003925%| 0.189178%
10.150.100.100 |241.24.128.179 | 5| 0.003925%| 0.193103%

Figure 3: Output from rwstats --pair-topn=10.

INPUT SIZE: 4477703 records
SOURCE IP/DEST IP PAIRS: Top 30 of 3953344 unique
src_ip_addr |dest_ip_addr | num_pairs| %_of_input| cumul_%
241.240.220.58 |10.100.100.100 | 20893| 0.466601%| 0.466601%

Figure 4: Output from rwstats --pair-top-threshold=1000.

This is not exactly the output that we want, since
we want the sources that have contacted the most desti-
nations, not the source-destination pairs that have the
most flow records. To get this information, we can
specify a threshold on the number of flows that a
source-destination pair must have before printing it to
the screen. By specifying a threshold of one, we extract
all pairs. However, this still only provides a list of all
pairs, along with information about each pair such as
the number of flow records. We can take this informa-
tion and pipe it through some standard unix utilities to
extract, for example, the ten sources who contacted the
most destinations. The command to do this is:
rwfilter --type=out \

--start=2004/6/29:17 \
--proto=6 --dport=445 \
--pass=stdout | \

rwstats --pair-top-threshold=1 | \
gawk -F"|" ’{print $1}’ | sort | \
uniq -c | sort -nr | head

The results from this command are:
78443 10.101.100.10
16083 10.123.100.100
940 10.150.100.100
127 10.115.100.100
92 10.10.10.100
43 10.20.1.20
12 10.111.20.30
9 10.30.100.40
6 10.177.30.50
5 10.199.100.60

This shows that four IP addresses contacted more
than 100 unique destinations in a single hour, which is
an unusually high number of destinations. (It has been
observed by Williamson that workstations usually
contact no more than ten destination IP addresses per
hour [13].) These four machines therefore warrant
additional investigation as they might be infected with
Sasser or Korgo (or some other worm or virus). The
only IP address that shows up in both top ten lists –
that of number of connections to unique destination IP
addresses and that of number of flows between it and
some other source – is 10.150.100.100.

SYN Flooding
Another security concern is denial of service

attacks. One of the common network-based denial of
service attacks is SYN flooding. We can use commands
similar to those used to detect worms to detect if a
SYN flood has occurred. In this case, we want to detect
all source-destination IP pairs that have seen an exces-
sive number of SYN packets. To do this, we first filter
on all incoming traffic for flows with the SYN bit set,
but with no ACK or FIN, examining only the TCP pro-
tocol. We then run rwstats on the result, looking for the
source-destination pairs that have the most flows. In
fact, we can specify that at least some X number of
flows are required before we consider this a SYN flood
that we want to investigate. In this case, we choose
X = 1000, resulting in the following command:
rwfilter --syn=1 --ack=0 \

--fin=0 \
--start=2004/6/29:17 \
--pass=stdout \
--proto=6 | \

rwstats --pair-top-threshold=1000

This produces the result shown in Figure 4.

This example shows that there was one SYN
flood that occured during the hour that was examined.
We can look at the flows in detail by using the command:

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 127



More Netflow Tools: For Performance and Security Gates, et al.

rwfilter --saddr=241.240.220.58 \
--daddr=10.100.100.100 \
--start=2004/6/29:17 \
--pass=stdout | \

rwsort --field=9 | \
rwcut --field=3-8 | less

Date| Records| Bytes| Packets
01/26/2004 07:40:00| 5.00| 4508.00| 21.00
01/26/2004 07:50:00| 5.00| 3468.00| 63.00
01/26/2004 08:00:00| 6.00| 47078833.00| 36509.00
01/26/2004 08:10:00| 9.00| 93215.00| 123.00

...
01/27/2004 20:40:00| 9.00| 6152.00| 63.00
01/27/2004 20:50:00| 9240.00| 786257.00| 14840.00
01/27/2004 21:00:00| 1010.00| 90580.00| 1683.00
01/27/2004 21:10:00| 34569.00| 2788388.00| 53526.00
01/27/2004 21:20:00| 28810.00| 2326538.00| 44585.00
01/27/2004 21:30:00| 9039.00| 735054.00| 14112.00
01/27/2004 21:40:00| 7.00| 15842.00| 101.00

Figure 5: Output from filtering on destination port 3127 and then looking at the number of bytes, packets and flows
in 10 minute intervals.

rwfilter --stime=2004/1/26:08:00:00- 2004/1/26:08:10:00 dport.3127 \
--pass=stdout | rwcut

Figure 6: Filtering on ten minute interval.

This command filters on the particular source and desti-
nation IP address of interest for the one hour, followed
by sorting the records based on the start time for the
flow. A sample of the results from this command are:
sPort|dPort|pro| packets| bytes| flags|
54237|17299| 6| 1| 60| S |
54232|38318| 6| 1| 60| S |
54235|62020| 6| 1| 60| S |
54238|46925| 6| 1| 60| S |
54239|23970| 6| 1| 60| S |
54240| 3568| 6| 1| 60| S |
54233|43740| 6| 1| 60| S |
54228|14472| 6| 1| 60| S |
54241|17440| 6| 1| 60| S |

This is an unusual set of traffic in that it appears
that the attacker was flooding a particular machine,
rather than a specific service. It is also unusual for the
TCP SYN packet to contain 60 bytes. Further, it
appears that the DoS was directed against only high-
numbered ports.

To determine if there was any variation in the
protocol, packets, bytes or flags, we run:
rwfilter --saddr=241.240.220.58 \

--daddr=10.100.100.100 \
--start=2004/6/29:17 \
--pass=stdout | \

rwuniq --field=6

In this case, we are looking at how many different num-
bers of packets (field=6) appear in the set of flows. By
varying the field value, we can also examine bytes,
flags, and protocol. In this case we found that all of the
flows were 1-packet TCP SYN flows consisting of 60
bytes. By choosing field=4 for destination port, and
then piping the result through sort and wc, we found that

13915 unique ports were targeted, with no port being
hit more than three times.

Infected Machines
Another example usage comes from tracking the

MyDoom worm in late January, 2004. This worm
spread via an email attachment that created a backdoor
on ports 3127-3198. After the release of this worm,
scanning for this backdoor increased significantly. To
see the number of flows caused by this scanning in
10-minute intervals (indicated by --bin-size=600, for
600 seconds) over the 26-27 January 2004, we use the
commands:
rwfilter --start-date=2004/1/26:00 \

--end-date=2004/1/27:23 \
--dport=3127 --proto=6 \
-−type=in --pass=stdout | \

rwcount --bin-size=600

Note that we use only the incoming non-web
data, and not the web data. This is because port 3127
can be chosen as an ephemeral port for web connec-
tions, which is benign traffic that we want to exclude.
The rwfilter command processed 354,559,695 records,
generating output that consisted of only 104,376
records to be processed by rwcount. In this case, we
use the default binning of rwcount, which is to put the
flow in the bin based on its start time, regardless of the
elapsed time of the flow. For example, if a flow con-
sisted of 10,000 bytes over 20 minutes, then all 10,000
bytes would be counted in the first 10-minute bin
(based on start time), rather than 5000 bytes in the first
10-minute bin, and 5000 bytes in the second
10-minute bin. One of the options provided with
rwcount will split the bytes and packets evenly over the
time period covered by the record. This could result in
fractional value (and hence we provide two digits after
the decimal place for precision in the output). A snap-
shot of some of the result is provided in Figure 5.

Tw o interesting events occur in this data. The first
is a sudden jump in the number of bytes transferred,

128 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



Gates, et al. More Netflow Tools: For Performance and Security

even though the number of flows remained constant.
Drilling down to investigate further, we filter on the 10
minute interval and then print the resulting records; see
Figure 6. There was one flow in this time period that
accounted for the majority of bytes, which was a trans-
fer from port 119, which contains the network news
protocol, but also the Happy99 trojan [12]. However,
by going to the source IP address, we find that it is a
news server, and so this traffic is likely legitimate.

The second interesting event is the sudden jump
in the number of records, which likely represents scan-
ning activity against our network. We can determine
which source IP addresses had the most flows associ-
ated with them by using the command in Figure 7.
This command prints all IP addresses that had more
than 10 flows in the one hour time period. There were
only two IP addresses that met this criterion, one of
which had 12 flows, and the second of which had
82,639. It is therefore likely that this second IP was
performing a scan of our network.

It is interesting to determine if there was any
traffic that was returned to the scanning IP address. To
do this, we filter all outgoing traffic on the scanning IP
address as a destination (here, we represent this IP as
241.2.3.4); see Figure 8. If there had been multiple
scanning IP addresses, we could perform the same
operation by creating an ipset first and then filtering
on this set. We now have a file that contains all of the
return traffic to the (potential) scanner(s).

rwfilter --stime=2004/1/27:20:40:00- 2004/1/27:21:40:00 dport.3127 \
--pass=stdout | rwaddrcount --print-rec --rec-min=10

Figure 7: Finding IP addresses with most flows.

rwfilter --start-date=2004/1/27:20 --end-date=2004/1/27:21
--class=out --type=in --daddr=241.2.3.4 --pass=response.scanners

Figure 8: Filter by scanning IP address.

Examining this file more closely, we find 2658
flows. We are particularly interested in flows that do
not consist of only a RST-ACK. To determine if any
flows meet this criteria, we can filter on all flows that
contain just a RST-ACK, and then look at those flows
that fail this filter:
rwfilter --rst=1 --ack=1 \

--urg=0 --psh=0 \
--syn=0 --fin=0 \
--proto=6 response.scanners \
--fail=stdout | \

rwcut --fields=1-8 | less

There are only 10 records that fail this query. Fortu-
nately, all 10 records were ICMP error messages, and
so we can conclude that no internal machines had the
trojan running.

Comparison to Related Work

The work that is the most closely related to this
work is that of OSU FlowTools, developed by Fullmer
and Romig [3]. The OSU FlowTools is a great toolkit,

and we had initially investigated using it. However, it
was not capable of processing the amount of data we
had in the time required, nor did it compress informa-
tion sufficiently to minimize disk space. While Flow-
Tools has continued to be developed over the past two
years (with the latest release appearing to be Decem-
ber 2003), increasing the efficiency of processing
flows or storing to diskspace has not been a priority.
Indeed, for the majority of networks, OSU FlowTools
is more than sufficient. However, our needs corre-
spond to providing analysis tools for a large ISP,
where long-term trending as well as short-term secu-
rity analysis were requirements. We therefore devel-
oped our own flow packing system with performance
and disk space minimization as design goals. To main-
tain information on 1.5 billion flows requires approxi-
mately 30 Gb of disk space. Additional space savings
can be obtained through compression. (Saving this
information as raw NetFlow records requires approxi-
mately 67 GB.) These flows can be processed (via
rwfilter) in 21 minutes on a Sun 4800.

Many of the basic tools we provide are the same
as in the OSU FlowTools, such as the ability to filter
flows on ports or addresses, or to perform some level
of statistical analysis. However, OSU FlowTools relies
on Unix utilities for items such as sorting and
uniq’ing, while we have developed utilities that per-
form these operations on the raw data. By using these
customized utilities, the performance increases signifi-
cantly. For example, we can sort 45,433,086 records in
five minutes, instead of 11.5 minutes required to sort
the ASCII output.

One of the capabilities that we do provide, that
appears to be missing in OSU FlowTools, is that of
ipsets. This provides a user with the ability to generate
any arbitrary list of IP addresses (such as a list of
known scanners, or known hostile hosts, or key inter-
nal servers) and use this list in an efficient manner as a
filter option. This functionality has proven to be par-
ticularly useful for security analysis. For example, ear-
lier we showed how to use ipsets to store a list of
scanning IP addresses, which we can then use to filter
outgoing data to search for SYN-ACK responses to
these scans, which might indicate potential compro-
mises. Assume that there were 1000 scanners in whom
we were interested (rather than just the two in the
example). OSU FlowTools would require the user to
create an acl file with the IP addresses of interest in it
in order to achieve the desired filtering. In contrast, we
can generate the ipset of interest from the first rwfilter,
and use this to then filter the outgoing data. Again, our

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 129



More Netflow Tools: For Performance and Security Gates, et al.

approach has been optimized for performance (using a
tree rather than a linear list), so that there is no reduc-
tion in filtering speed as the number of IPs in the ipset
increases. Another example would be a ‘‘bad list,’’
containing the IP addresses of external hosts who are
known to have exhibited malicious activity in the past.
The bad list can be represented as an ipset, and then
the incoming data can be filtered on the bad list IPs as
sources. Similarly the outgoing data can be filtered
with the bad list as destinations. If we receive a bad
list from another site that we wish to merge with our
own, we need only do an rwset-union to combine the
two sets into one.

In addition, we provide the ability to extend the
filtering capabilities of rwfilter through the use of
dynamic libraries. Using this approach, administrators
can program their own queries for cases where their
query is too complex for the current filtering options.
One example of where a dynamic library is useful is in
examining flow traffic for particular patterns of activ-
ity. For example, one sign of a successful buffer over-
flow is that a source first contacted a server S on port
P, and that this was then followed with a subsequent
communication from the source to server S but on port
R (e.g., the first flow represents 241.9.9.9 → 10.8.8.8:80,
and the second flow is 241.9.9.9 → 10.8.8.8:5483).
Every time a flow showed a connection with more
than one 40-byte packet to port 80 on some destina-
tion, then the information could be stored in a hash ta-
ble with the source and destination IPs as the key. This
hash table would be checked each time a flow was
encountered that did not meet the above condition. If
such a match was found, then the entry in the hash ta-
ble would be marked. Once all records were pro-
cessed, all marked entries in the hash table could be
printed. To the best of our knowledge, none of the
other flow tools provide this capability.

Another useful capability that is provided by the
SiLK Suite is rwfileinfo, which allows a user to deter-
mine information about a packed file. What is particu-
larly useful about this command is that it will return
the arguments that were provided to rwfilter in order to
generate the data file.

Conclusions and Future Work

We have presented a new suite of tools for sav-
ing and analyzing NetFlow data. The tools provided
were built with network security analysis in mind, and
can be easily extended by a knowledgeable C pro-
grammer through both the creation of new tools and
the incorporation of dynamic libraries. The tools were
specifically designed for use on very large and very
busy networks, and so had fast execution and minimal
disk space usage as design requirements.

We have completed the collection system and
provided basic analysis tools. We now intend to sup-
plement these capabilities by providing tools that

allow traffic descriptions. One example of this is bags,
which will be provided in an upcoming open source
release. Bags are similar to ipsets, except that rather
than using a single bit to indicate if an IP address has
been seen, it provides a 32-bit counter that counts the
number of flows seen to/from each IP address. This
allows a user to ask questions such as ‘‘What IP
addresses saw only one flow in the past hour?’’ and
‘‘How many IP addresses saw more than 10,000 flows
in the past day?’’ Tools such as these will allow an
administrator to characterize their network in cases
where they might not otherwise have the authority or
insight to do so (e.g., such as in the cases of large
ISPs). Bags will be extended in a future release to be
even more generic, counting any type of ‘‘volume’’
characteristic (e.g., flows, bytes, packets).

In addition, we intend to provide the ability to
perform stateful queries. For example, we are working
on an rwmatch tool, which will match flows from two
sets of data based on a specific attribute. For example,
we could filter all incoming flows to a particular port
(e.g., TCP 135) into one file, generating the ipset for
the sources at the same time. We could then use this
ipset to filter all outgoing traffic to an ephemeral port
(> 1024), and save the resulting data. rwmatch would
use the two output files, and match on the IP addresses
(destination in one direction matching with source in
the other direction). This would provide an aggregated
flow record indicating the traffic in both directions in a
single record. This would allow an administrator to see
all relevant data at once (e.g., the number of bytes and
packets in each direction, for example), rather than
needing to manually eyeball two different data files.

The current tool suite has already been in opera-
tional use at a large site for over a year and is currently
used by several different organizations. Additionally,
extensions have been coded that have been used in secu-
rity publications. Two papers have been written that
make use of this tool set, with some custom-coded
extensions. McHugh [6] provides a good explanation of
how to use the functionality of IP sets, along with the
bags extension, for security analysis. Collins and Reiter
[2] have used the SiLK tool set in performing an analy-
sis of denial of service (DoS) traffic-filtering approaches.

Acknowledgments

The authors would like to acknowledge the help-
ful suggestions from Marc Kellner, Jim McCurley,
Tom Longstaff, Tim Shimeall and John McHugh from
the CERT Network Situational Awareness Group, as
well as the many analysts at the client site. We would
also like to thank our shepherd, David Hoffman, for
his helpful and constructive suggestions.

Author Information

Carrie Gates has five years of system administra-
tion experience, starting at a small not-for-profit

130 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



Gates, et al. More Netflow Tools: For Performance and Security

organization and finishing with three years as the Sys-
tem Manager for the Computer Science Faculty at
Dalhousie University. She left this position in 2001 to
pursue a Ph.D., specializing in network security. She
is currently a Visiting Scientist with the CERT Net-
work Situational Awareness program at Carnegie Mel-
lon University, where she is completing her disserta-
tion research. She can be reached at cgates@cert.org .

Michael Collins is a full-time employee of
CERT/NETSA where he focuses on network traffic
analysis and the study of large systems. Before work-
ing for CERT, he worked for several years in the n-
dim group, studying engineering design and system
reliability. He graduated with a B.S. in Physics from
CMU in 1997, and a MS in Electrical Engineering in
2001. He is a candidate for a Ph.D. in Electrical Engi-
neering. He can be reached at mcollins@cert.org .

Michael Duggan graduated with a Bachelors
degree in Electrical and Computer Engineering from
Carnegie Mellon University in 1996, after which he
worked as a software developer. He joined the CERT
Network Situational Awareness program in 2003,
where he worked on the SiLK Suite of tools, concen-
trating on the collection system.

Andrew Kompanek is a member of the Network
Situational Awareness Team at the Software Engineer-
ing Institute at Carnegie Mellon University. Prior to
joining the SEI, he was a member of the research staff in
the School of Computer Science at Carnegie Mellon, a
principal at a startup, and a partner in a software devel-
opment consultancy. He can be reached at ajk@cert.org .

Mark Thomas is a programmer and analyst for
the Network Situational Awareness team, part of the
Networked Systems Survivability Program at the Soft-
ware Engineering Institute (SEI). Mark holds a Ph.D.
and a MS in Chemical Engineering from Carnegie
Mellon University and a BS in Chemical Engineering
from West Virginia Institute of Technology.

References

[1] CAIDA, cflowd: Traffic Flow Analysis Tool, http://
www.caida.org/tools/measurement/cflowd , 2004.

[2] Collins, Michael and Michael Reiter, ‘‘An empir-
ical analysis of target-resident DoS filters,’’ Pro-
ceedings of the 2004 IEEE Symposium on Secu-
rity and Privacy, pages 103-114, May 9-12,
2004.

[3] Fullmer, Mark and Steve Romig, ‘‘The OSU
flow-tools package and Cisco Netflow logs,’’
Proceedings of the 14th Systems Administration
Conference (LISA 2000), pages 291-303, Usenix
Organization, December 3-8, 2000.

[4] Internet Assigned Numbers Authority (IANA),
Protocol numbers , http://www.iana.org/
assignments/protocol-numbers , 2004.

[5] Kompanek, Drew and Mark Thomas, SiLK
Analysis Suite, http://sourceforge.net/projects/
silktools/ , 2003.

[6] McHugh, John, ‘‘Sets, Bags and Rock and Roll,’’
Proceedings of the Ninth European Symposium
on Research in Computer Security, September
13-15, 2004.

[7] ‘‘The Honeynet Project,’’ Know Your Enemy,
Addison-Wesley, 2002.

[8] QoSient, LLC, Argus: Network Audit Record
Generation and Utilization System, http://www.
qosient.com/argus/ , 2004.

[9] Symantec, W32.Korgo.F, http://securityresponse.
symantec.com/avcenter/venc/data/w32.korgo.f.
html , 2004.

[10] Symantec, W32.Sasser.B.Worm, http://security
response.symantec.com/avcenter/venc/data/w32.
sasser.b.worm.html , 2004.

[11] Cisco Systems, Cisco CNS NetFlow Collection
Engine, http://www.cisco.com/en/US/products/sw/
netmgtsw/ps1964/products_user_guide_chapter
09186a00801ed569.html , 2004.

[12] Treachery Unlimited, Port Lookup Search Results,
http://www.treachery.net/tools/ports/lookup.cgi ,
2004.

[13] Williamson, Matthew M., ‘‘Throttling Viruses:
Restricting Propagation to Defeat Malicious
Mobile Code,’’ 18th Annual Computer Security
Applications Conference, December 9-13, 2002.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 131



132 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA


