To appear in the proceedings of the International Conference on Generative Programming and Component Engineering (GPCE’06)

Creating Custom Containers with Generative Techniques

Gabriel A. Moreno

Software Engineering Institute, Carnegie Mellon University

gmoreno@sei.cmu.edu

Abstract

Component containers are a key part of mainstream compo-
nent technologies, and play an important role in separating non-
functional concerns from the core component logic. This paper
addresses two different aspects of containers. First, it shows how
generative programming techniques, using AspectC++ and meta-
programming, can be used to generate stubs and skeletons without
the need for special compilers or interface description languages.
Second, the paper describes an approach to create custom contain-
ers by composing different non-functional features. Unlike compo-
nent technologies such as EJB, which only support a predefined set
of container types, this approach allows different combinations of
non-functional features to be composed in a container to meet the
application needs.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques]: Automatic Programming; D.2.13 [Software Engineer-
ing]: Reusable Software

General Terms Design

Keywords Aspect-oriented programming, AspectC++, compo-
nent, container, generative programming, meta-programming, non-
functional concern.

1. INTRODUCTION

Component containers are a key part of mainstream component
technologies such as Enterprise JavaBeans (EJB), and CORBA
Component Model (CCM). Containers mediate the interaction of
a component with the runtime environment and with other compo-
nents. Furthermore, they relieve the developer from dealing with
routine but nevertheless error-prone tasks such as allocating re-
sources, creating threads, performing inter-process communication
(IPC), etc. In that way, the component developer can focus on the
functional logic of the component and rely on the container to
perform those tedious tasks, either by letting the container carry
them out implicitly or by explicitly calling services the container
provides. The concept of containers provides so much leverage to
component-based software development that it has been adopted
even in lightweight component models [5, 9].

In addition to being advantageous from the software construc-
tion perspective, container-based component technologies provide
the foundation for supporting analysis and predictability. For ex-

Copyright is held by the author/owner(s).

GPCE’06 October 22-26, 2006, Portland, Oregon, USA.
ACM 1-59593-237-2/06/0010.

ample, the Cadena' project at Kansas State University [8] and the
PACC? initiative at the Carnegie Mellon Software Engineering In-
stitute (SEI) [20] are both creating methods to analyze and predict
the behavior of systems developed with container component tech-
nologies, so that components can be used in real-time and safety
critical systems.

This paper addresses two different facets of containers. First, it
shows how generative programming techniques [3] can be used to
generate containers with typed stubs and skeletons (i.e., the client-
and server-side meta-objects [22]) so that programmers are relieved
from writing marshaling and unmarshaling code, and type checking
can be done statically. Stubs and skeletons are usually generated by
a compiler that either takes a description of the component’s inter-
face in an interface description language (IDL) or uses reflection
to get the component’s interface. For example, EJB containers are
generated by special compilers that in turn use the RMI compiler to
generate the stubs and skeletons. The approach discussed in this pa-
per generates stubs and skeletons without the need for special com-
pilers and a complex infrastructure by combining aspect-oriented
programming (AOP) using AspectC++ [16] with template meta-
programming [19], a powerful combination already demonstrated
by Lohmann and colleagues [13].

The other facet of containers this paper attends to is about the
features, services, and/or policies implemented by the container.
These are referred to as non-functional aspects/services/proper-
ties/concerns in the literature [1, 2, 4] because they are not directly
related with the function that a component has to carry out. Instead,
they often provide mechanisms to guarantee quality attributes such
as performance, security, availability, etc. In general, containers im-
plement a fixed set of non-functional concerns. In EJB for instance,
a different container is generated depending on the kind of EJB
(session, entity, or message-driven), but there is no provision for
customizing the container by composing different non-functional
concerns. This paper demonstrates how non-functional features can
be composed to create custom containers that fit the application’s
needs. Thus, illustrating how a lightweight component technology
was enhanced with support for compositional adaptation [14] by
using AspectC++ as a composition mechanism.

The ideas in this paper were implemented using Pin [9], a
lightweight component technology. One of the fundamental charac-
teristics of Pin is that it implements the container idiom; the func-
tional logic of the component—the component core—is encapsu-
lated by a container that implements coordination and scheduling
policies, connectors, and other services. The container enforces the
constraints and assumptions of quality attribute theories [10], and
prevents unexpected component interactions, thus leading to pre-
dictable behavior.

! Component Architecture Development ENvironment for Avionics sys-
tems.

2 Predictable Assembly from Certifiable Components

The rest of the paper is organized as follows. Section 2 gives
an overview of the Pin component model. Section 3 explains the
generative approach to create stubs and skeletons. Section 4 shows
the aspect-oriented implementation of non-functional concerns. An
example of a non-functional feature implementing the sporadic
server algorithm [12] is presented. Section 5 refers to related work
and Section 6 concludes the paper.

2. PIN COMPONENT MODEL OVERVIEW

Pin is a simple component technology, suitable for embedded sys-
tems, that supports pure assembly [9]. Components are assembled
together by connecting a source pin to a sink pin without the need
for “glue” code. A source pin produces a stimulus, which is then
received by a sink pin, causing the component to react to the stimu-
lus. The behavior of a Pin component is encapsulated in a reaction,
which, in addition to performing computations, can in turn emit
other stimuli through its source pins.

Pin allows both synchronous and asynchronous interactions.
The former has the traditional call/return semantics, while the latter
has event-based semantics. In both kinds of interactions, the stimuli
are messages that may carry data along with them. For that reason,
pins have a data interface or signature that specifies the parameters
that they produce and consume. For a connection between a source
and a sink to be valid, the signature of the sink pin must be the
complement of the signature of the source, because the parameters
produced by the source must be consumed by the sink and vice
versa.

An important characteristic of Pin is that it realizes the container
idiom. The pre-fabricated container wraps the custom code, me-
diating all its interactions with the environment and other compo-
nents. The container implements the message loop that waits for in-
coming messages on sink pins, handles timeouts, and dispatches the
corresponding reaction handler function in the appropriate thread
upon receiving a message. In addition, it provides services to reply
to synchronous requests, and to make other synchronous and asyn-
chronous requests through the source pins. Furthermore, all these
services make the location of other components transparent since
the container handles IPC across threads, processes, and networked
computers.

Besides providing all these services, different containers may
implement different features or policies. For example, a container
may implement a specific scheduling policy. In addition, Pin sup-
ports the dynamic binding of containers and custom code (also re-
ferred to as component core) so that the same component core can
be used with different containers to fit the application needs. Fig-
ure 1 depicts the mechanism provided by Pin to support the dy-
namic binding of containers and custom code to create a compo-
nent® [10]. The container uses the ComponentCore interface both
to get information about the component and to dispatch different
handlers at different points in the component life cycle. The cus-
tom code in turn uses the ContainerServices interface to access the
services provided by the container. Tables 1 and 2 show the mem-
bers of these interfaces.*

This brief description of Pin is limited to the concepts relevant
to this paper. More details and the rationale behind Pin can be found
in the work of Hissam and colleagues [9].

3 Although an instantiable Pin component is created by loading a compo-
nent core into a container, throughout this paper the terms component and
component core are used interchangeably.

4 Only the members relevant to this paper are shown.

Pin Component E|

ThisisaDLL ||

Custom Code

/LContainerServices

ContainerServices

ComponentCore i

ComponentCore

Oo——-o <<delegate>>
PinComponent]\Qi

PinComponent

}\<L
Componentlnstance <<delegate>>

This component is
assembled at runtime

]
Container —0O
Container

Componentinstance

Thisisa DLLﬁ

Figure 1. Pin Component and Container

Table 1. ComponentCore Interface

Description

Description of the reactions in a
component, including a pointer
to the reaction handler function
Initializes the internal state of a
component instance

Deletes the internal state of an
instance being deleted

Performs operations needed
upon initializing a reaction of a
component instance

Performs operations required
upon terminating a component
instance reaction

Member
reactionsInfo[]

createComponentInstance()

deleteComponentInstance()

reactionlnitialize()

reactionTerminating()

Table 2. ContainerServices Interface

Member
sendOutSourcePin()

Description

Sends an asynchronous message
through a source pin
sendOutSourcePinWait() | Sends a synchronous message
through a source pin

sendReply() Sends a reply to a received syn-
chronous message
parseUserMessage() Parses a PIN_MSG received by a

reaction handler

3. GENERATION OF STUBS AND
SKELETONS: THE INNER CONTAINER

A stub is a client-side meta-object that is a proxy for a remote
component [22]. It allows the caller of a component to invoke it
by means of a simple procedure call. Behind the scenes, the stub
marshals the arguments, sends the request to the component be-
ing called, waits for the reply, and unmarshals the returned val-
ues. The counterpart of the stub is the skeleton, a server-side meta-
object. The skeleton receives remote invocations, unmarshals the
arguments, invokes the component being called, marshals the re-

sults, and finally sends them back to the caller. The skeleton makes
the implementation of a function in a component as easy as writing
a regular function or method.

3.1 Motivation

A Pin container provides a large part of the mechanism required
for component interactions. Nevertheless, the component developer
still needs to take care of marshaling and unmarshaling arguments
and return values, and invoking the appropriate container services
to send messages and replies to other components.

In order to illustrate what the component code looks like, a sim-
ple assembly is shown in Figure 2. The SensorMonitor component
has one asynchronous sink pin (trigger) that is stimulated periodi-
cally by a clock. This component reads a sensor and sends a syn-
chronous request through a source pin to the Converter component
to get the sensed values converted to physical units. If the result sur-
passes a threshold, SensorMonitor sends an alarm message through
an asynchronous source pin to the ConsoleOutput service. Listing 1
shows the source code for the reaction handler of SensorMonitor.
Line 3 checks whether the message corresponds to a pin message.
In this component, other types of messages such as timeouts are ig-
nored. Also, in this reaction handler, there is no need to determine
through which sink pin the message arrived since the component
has only one sink pin. Lines 6-7 are related to the functional logic
of the component; they read the two sensors needed to compute the
physical magnitude. The next step in the functional logic is to send
a synchronous request through a source pin to convert the values
obtained from the sensors to physical units. The signature of that
pin can be specified using CCL, a language used to describe inter-
faces (as in an IDL), to specify the behavior of reactions, and to
define assemblies of components [21]. The signature of the convert
source pin in CCL would be

source synch convert(produce int a, produce int b,

consume float result);

meaning that it is a synchronous source pin named convert, that
sends two values of type int and expects a value of type float as
a reply from the synchronous interaction. Lines 9-26 make the
synchronous interaction through the convert source pin. Lines 10—
12 define some needed variables, lines 15-20 marshal the argu-
ments, and lines 21-23 invoke the container service to send the
synchronous message and wait for the reply. Line 26 unmarshals
the result of the synchronous request. Line 28 checks if the result
surpassed the threshold—a functional logic step—and if that is the
case, lines 29-34 marshal an alarm message and send it out through
an asynchronous source pin.

convert

W

Converter

Clock trigger
Sensor
Monitor

tick

Figure 2. Running Example Assembly

Listing 2 shows the code for the reaction associated with the
convert sink pin in the Converter component. Although the Pin con-
tainer dispatches this code through a function call, the component
developer still has to deal with several things besides the functional
logic. Several data structures are used to receive parameters and
send results (lines 3—6); the reaction handler can be invoked for
events of other kinds (such as timeouts) that do not correspond to
sink pin activation (lines 8—14); likewise, the same reaction handler

BOOL reactionHandler (Reactionx pReaction,
CommonMessage *pMsg) {
if (pMsg—>type != PIN.MSG) {
return TRUE; // don’t care about others

int readingA
int readingB

readSensor (0);
readSensor (1);

/* request conversion x/
IpcPort_Message message;
IpcPort_Message answer;
int answerDataSize;

/x marshal arguments x/
intx pNextArg = (intx) message.data;
int dataSize = 0;

*pNextArg++ = readingA;
dataSize += sizeof(int);
*pNextArg++ = readingB;

dataSize += sizeof(int);

sendOutSourcePinWait (pReaction , SOURCE.CONVERT,
&message , dataSize , &answer,
&answerDataSize , IPCPORT_WAITFOREVER, 0);

/% unmarshal results */

float result = x((floatx) answer.data);

if (result > THRESHOLD) { // send alarm
SPrintf ((char*) message.data ,
”"ALARM: SensorMonitor\n”);
sendOutSourcePin (pReaction, SOURCE_ALARM,
&message ,
strlen ((char=*) message.data) + 1,
IPCPORT_WAITFOREVER) ;

return TRUE;

Listing 1. Original SensorMonitor Reaction Handler Code

is invoked for all the sink pins in that reaction (lines 16—17); the pa-
rameters consumed by the sink pin need to be unmarshaled (lines
18-23); and finally, the results have to be marshaled and sent back
by calling a container service (lines 34-38). Only lines 25-32 are
directly related to the functional logic of this component.

Even though the marshaling/unmarshaling method used in the
example is very basic, most of the code in the handler functions
is not directly related to the functional logic of the components.
Moreover, the code specific to the logic is entangled with the non-
functional code. In order to avoid these issues and let the developer
focus on the functional logic, it is desirable to automatically gener-
ate the stubs and skeletons for the source and sink pins respectively.

Due to their role, stubs and skeletons belong to the container.
However, they are specific for a particular component. If they were
made part of a Pin container, the feature of Pin that allows a de-
veloper to exchange containers and components would be broken.
Consequently, it makes sense to keep the containers component-
independent, and put the stubs and skeletons together in an inner
container, a container that not only is tailored for a particular com-
ponent, but also fits inside a regular Pin container. Given that the
inner container is custom-made for a particular component, when
compiled it becomes part of the component core binary.

3.2 Generative Approach to Stub and Skeleton Generation

Mainstream component technologies such as EJB and CORBA pro-
vide an infrastructure to generate the stubs and skeletons. In the
case of CORBA, the interface of a component has to be speci-
fied in an IDL, which is then processed by a special compiler to

BOOL reactionHandler (Reactionx pReaction,
CommonMessagex pMsg) {
IpcPort_Message*x pMessage;
IpcPort_Messagelnfo messagelnfo;
IpcPort_Message messageOut;
int dataSize;

if (pMsg—>type != PIN.MSG) {
return TRUE; // don’t care about others
}

// get pin message
pMessage = parseUserMessage (pReaction, pMsg,
&dataSize , &messagelnfo);

switch (pMessage—>sinkPin) {
case SINK_.CONVERT:
/x unmarshal arguments x/
unsigned charx pNextArg
= pMessage—>data;

int sampleA = *((intx) pNextArg);
pNextArg += sizeof (int);
int sampleB = *((intx) pNextArg);

/% functional logic */
float physicalA
= (sampleA — BASELINE_A)
* ADUS_PER_PU_A;
float physicalB
= (sampleB — BASELINE_B)
+ ADUS_PER_PU_B;
float result = physicalA / physicalB;

/% marshal result and send reply =/
x((float*) messageOut.data) = result;
sendReply (pReaction ,
&messagelnfo, &messageOut,
sizeof (float));
break ;
default:
return FALSE; // wrong sink pin

return TRUE;

Listing 2. Original Converter Reaction Handler Code

generate the stub and skeleton. EJB takes advantage of the reflec-
tion capabilities of Java to determine the methods in a component
and their signatures. Although this overcomes the need for using an
IDL, a special compiler called ejbc’ is still used to generate the stub
and skeleton. Instead of using a special compiler, the approach de-
scribed here exploits the generative capabilities of template meta-
programming [19] to generate the stub and skeleton.

Templates make C++ a two-level language, where the static
code, in the form of template meta-programs, is evaluated at
compile-time, and the dynamic code is executed at runtime [3].

In addition to being able to generate code, a reflection mecha-
nism is needed to determine the signature of the pins so that the
corresponding stub/skeleton code can be generated. Moreover, in
order to generate the code at compile-time, compile-time reflection
is needed. AspectC++ has a compile-time join point API that can
be used to determine the number of arguments in a join point and
their type [16], thus providing the needed reflection mechanism.

3 Some EJB implementations relieve the developer from explicitly invoking
the compiler to create the meta-objects, because that process is implicitly
carried out when the component is deployed.

3.2.1 Source Pin Stubs

The objective of a source pin stub is to make the interaction through
a source pin as simple as making a function call. Therefore, a
function that represents the stub for the source pin is declared. For
the convert source pin, the declaration is

int source_synch_0(Reaction* pReaction,

int a, int b, float* result);

This is very similar to the CCL signature of the pin. Instead of using
the name of the pin, the index of the pin (0 in this case since it is the
first source pin) is used in the name of the function. The parameter
PReaction is akin to the implicit this parameter that member func-
tions in C++ have. In this case, it has to be passed explicitely be-
cause Pin was implemented in a way such that C language could be
used to develop components. Next, the parameters of the pin follow.
Considering that pins can produce and consume multiple parame-
ters, a convention is used to distinguish them: produced parameters
are declared as passed by value, whereas consumed parameters are
declared as passed by pointer. In addition, the stub function has a
return value of type int so that success or failure can be reported
back to the caller.

All that is required from the component developer is declaring—
but not implementing—the function that represents the source pin.
The implementation of that stub function is generated automati-
cally. The generation is done as follows. First, it has to be deter-
mined where the generated code should be inserted or woven in. In
the aspect shown in Listing 3, an around advice is defined in line 2
for the pointcut matching calls to the stub functions. Since the as-
pect advises the call (as opposed to the execution) and proceed() is
never called for that join point, there is no need to ever define the
stub function that the component developer declared. The calls to
the stub are replaced with the code in the advice.

The first step the stub needs to take is to marshal the arguments,
and this is done by code that is automatically generated specifically
for that stub by a template meta-program. Only the produced pa-
rameters (a and b in this example) need to be marshaled. However,
for the sake of simplicity, let us assume for a moment that all the
parameters, both consumed and produced, have to be marshaled.
Listing 4 contains a basic implementation of the marshaling meta-
program. The approach demonstrated by Spinczyk and colleagues
[17] to iterate with a meta-program over the list of arguments in a
join point is used. The meta-function MarshalParams in lines 11—
16 takes two arguments.® The first one is the JoinPoint class corre-
sponding to the join point of the advice. The second argument is an
integer used to control the iteration over the arguments. The code
this meta-function generates is a call to the marshal function (line
13) with the appropriate argument type, which is known thanks to
the TJP argument of the template. Line 14 recursively uses the same
meta-function to generate the code for the next parameter. To end
the recursion, the template is specialized for N=1 (lines 18-22).
The generated code can be executed by the dynamic code within
the advice by calling the execute method as follows:

int dataSize = MarshalParams<JoinPoint,

JoinPoint::ARGS - 1>
siexecute(&message, 0, tjp);
The parameters to this method are an IpcPort_Message where the
parameters must be marshaled; the offset of the next parameter to be
marshaled; and the particular instance of the JoinPoint class, which
allows accessing the actual value of the parameters. The return
value of this method is the offset of the next parameter, which at
the end of the recursion is the size of all the marshaled parameters.
Since the C++ compiler can optimize the code, the generated code
will not be recursive at all. In fact, because all the functions are

6 Note that the complete version of MarshalParams takes three arguments.
However, the third argument is not needed in the this simpler version.

aspect SourcePinStub {
advice call(”int source_synch_%(Reaction x*,
IpcPort_Message message;
IpcPort_Message answer;
int answerDataSize;
Reactionx pReaction =

D7)

*tjp —>arg <0>();

around () {

short dataSize = MarshalParams<JoinPoint, JoinPoint::ARGS — 1, SourceProduce>
:rexecute(&message, 0, tjp);
int pinld = JoinPoint::signature ()[17] — *0°; // yes, only 1 digit index

if (sendOutSourcePinWait(pReaction ,

pinld , &message,

dataSize ,

&answer, &answerDataSize , IPCPORT_-WAITFOREVER, 0)) {

UnmarshalParams<JoinPoint ,
xtjp—>result () = TRUE;
} else {

JoinPoint ::ARGS — 1,

SourceConsume >::execute(&answer, 0, tjp);

notifyController (pReaction—>pInstance , CONTROLLER UNKNOWN_ERROR,
”sendOutSourcePinWait failed”);

xtjp—>result () = FALSE;

Listing 3. Aspect for Source Pin Stub

inline int marshal (IpcPort_Message* message, int offset, int& value) {

#*((int*) (message—>data + offset)) = value;

return offset + sizeof(int);

}
inline int marshal(IpcPort_Message* message, int offset,
((float) (message—>data + offset)) = value;
return offset + sizeof(float);
}
template<class TJP, int N> struct MarshalParams {
static inline int execute(IpcPort_Messagex pMessage,
int newOffset = marshal (pMessage, offset,
return MarshalParams<TJP, N — | >::execute (pMessage,
}
+s
template<class TIJP> struct MarshalParams<TJP, 1> {
static inline int execute(IpcPort-Messagex pMessage,
return marshal (pMessage, offset,
}
+s

float& value) {

int offset, TIPx tjp) {

xtjp—>template arg<TJP::ARGS — N>());

newOffset, tjp);

int offset, TIPx tjp) {

*tjp—>template arg<TJP::ARGS — 1>());

Listing 4. Simple Marshaling Meta-program

declared as inline, the generated code will not have any subroutine
calls after the optimization.

An important benefit of this approach is that type checking is
done at compile time. The marshal function is overloaded for the
different supported parameter types. However, if a stub for a source
pin is declared with a parameter type for which a marshal function
has not been implemented, the compiler will throw an error. Note
that in the example, the value parameter of the marshal functions
has been declared as a reference to avoid implicit type conversions,
which would go undetected and cause problems.

Now, the fact that only the produced parameters have to be mar-
shaled has to be dealt with. The convention of using pointer types to
distinguish consumed from produced parameters was used. How-
ever, there is no direct way to determine whether a type passed as
a template argument is a pointer or not. To solve this, trait tem-
plates [3][15], a method to represent meta-information of types, is
used. For a given type, it must be determined whether parameters

of that type must be included in a marshaling/unmarshaling opera-
tion, and whether that type is a pointer type or not. Listing 5 shows
how this information is encoded in trait templates. Lines 1-4 de-
fine a generic trait template with defaults for what is not a source
produced parameter. Lines 6—12 specialize the trait template over-
riding the traits for the types that represent parameters produced by
a source pin (i.e., int and float for the running example). The fol-
lowing examples, both of which evaluate to true, show how the trait
template is used.

SourceProduce<int>::include == true;

SourceProduce<int*>::include == false;
Lines 14-19 define a trait template for the types representing pa-
rameters consumed by a source pin by simply including all the
types that are not included as produced.

The meta-information encoded in the traits is used to select
alternative pieces of code when the code is being generated. That
can be done with the /F meta-function [3], which is used as follows:

template<class T> struct SourceProduce {

static const bool include = false;
static const bool isPointer = true;
}s
template<> struct SourceProduce<int> {
static const bool include = true;
static const bool isPointer = false;
}s
template<> struct SourceProduce<float>

public SourceProduce<int> {};

template<class T> struct SourceConsume {
static const bool include
= !SourceProduce<T>::include;
static const bool isPointer
= SourceProduce<T>::isPointer;

Listing 5. Trait Templates

IF<condition, ThenClass, ElseClass>::RET object;

If the condition is true, object will be an instance of ThenClass,
otherwise, it will be an instance of ElseClass. Listing 6 shows the
code of the parameter marshaling meta-program with correct han-
dling of consumed and produced parameters. The first change with
respect to the simplified version is that the MarshalParams tem-
plate takes now a third parameter ArgMetalnfo, which is another
template itself, namely, the traits template. In line 20, a helper type
is defined by instantiating ArgMetalnfo with the type of the pa-
rameter being considered for marshaling. Instead of generating a
call to the marshal function directly as it was done before, a code
selection technique is used to instantiate the template with the ap-
propriate code for marshaling a parameter passed by value, mar-
shaling a parameter passed by pointer, or skipping a parameter if
it does not have to be included in the marshaling operation (lines
23-27). For instance, if the parameter has to be marshaled (i.e.,
argMetalnfo::include is true) and the parameter is not a pointer,
the template MarshalArgValue is instantiated to generate the code
that will be executed by calling execute().

Listing 7 shows the source code of the reaction handler for
the SensorMonitor component using the automatically generated
stubs. Comparing it to the original code in Listing 1, it can be
appreciated that it is more compact and that the functional logic
of the component is easier to follow as it is not entangled with the
marshaling/unmarshaling code.

3.2.2 Sink Pin Skeletons

The skeleton is the counterpart of the stub. Its purpose is to make
the invocation of the reaction code associated with a sink pin to
look as if it had been called by a regular procedure call without
additional overhead to the programmer.

With this approach of generated skeletons, the component de-
veloper defines a function with the signature of the sink pin and a
special first argument that is explained later. This function, shown
in lines 1-10 of Listing 8, only needs to implement the functional
logic of the sink pin. Except for the first argument, the signature of
the function matches the signature of the corresponding sink pin,
which in CCL is declared as:

sink mutex convert(consume int a,

consume int b, produce float result);
Note that this signature is the complement of the one for the source
pin in the SensorMonitor component. However, in the C++ version
of the signature, the interpretation of parameter types is reversed;

source_synch_0 (Reactionx pReaction, int a,
int b, floatx result);
source_unicast_1 (Reaction* pReaction,
char+* message);

int

int

BOOL reactionHandler (Reactionx pReaction,
CommonMessage *pMsg) {
if (pMsg—>type == PIN.MSG) {
int readingA readSensor (pReaction ,

= 0);
int readingB = readSensor(pReaction,

1);

/% request conversion x/

float result;

source-synch_0 (pReaction, readingA ,
readingB , &result);

if (result > THRESHOLD) { // send alarm
source_unicast_1 (pReaction,
“"ALARM: SensorMonitor\n”);

}

}
return TRUE;

Listing 7. New SensorMonitor Reaction Handler Code

sink_mutex_convert (
PinMessageDatax pMessageData,
int sampleA, int sampleB,
float* pResult)
float physicalA = (sampleA — BASELINE_A)
+ ADUS_PER_PU_A;
(sampleB — BASELINE_B)
*+ ADUS_PER_PU.B;
physicalA / physicalB;

void

float physicalB =

*pResult =

}

BOOL pinMessageHandler (
PinMessageData*x pMessageData) {
switch (pMessageData—>pMessage—>sinkPin) {
case SINK_CONVERT:
float result;
sink_mutex_convert (pMessageData ,
0, 0, &result);
break ;
default: return FALSE;

return TRUE;

Listing 8. New Converter Reaction Handler Code

parameters passed by value are consumed in the sink pin, whereas
those passed by pointer are produced.

Unfortunately, the solution to insert the skeleton code is not
as neat as for the stubs. The reason is due to the use of the join
point API of AspectC++ as a reflection mechanism, which can
only detect the existence of functions that are called from some
place in the code. Therefore, the component developer has to write
a function named pinMessageHandler that includes a call to the
function corresponding to a given sink pin (see lines 12-23 in
Listing 8). The call to the sink pin function in line 17 has two
special requirements. First, it has to forward the PinMessageData
structure that pinMessageHandler received; second, it must pass
valid addresses for the produced parameters passed by pointers.
Note, however, that for the consumed parameters passed by value,

template<class TJP, int arglndex> struct MarshalArgPointer {
static inline int execute(IpcPort-Messagex pMessage, int offset, TIPx tjp) {
return marshal (pMessage, offset, *xtjp—>template arg<arglndex >());

}
}s

template<class TJP, int arglndex> struct MarshalArgValue {
static inline int execute(IpcPort_-Messagex pMessage, int offset, TIP*x tjp) {
return marshal (pMessage, offset, xtjp—>template arg<arglndex >());

}
+s

template<class TIJP> struct SkipArg {

static inline int execute(IpcPort_-Messagex pMessage, int offset, TIPx tjp) {

return offset;

}
+

template<class TJP, int N, template<class T> class ArgMetalnfo> struct MarshalParams {
typedef ArgMetalnfo<typename TJP::template Arg<(TJP::ARGS — N) >::ReferredType> argMetalnfo;
static inline int execute(IpcPort-Messagex pMessage, int offset, TIPx tjp) {

int newOffset =
IF<argMetalnfo ::include ,
typename IF<argMetalnfo::isPointer ,

MarshalArgPointer<TJP, TJP::ARGS — N>,
MarshalArgValue<TJP, TJP::ARGS — N> >::RET,

SkipArg<TJP> >::RET::execute (pMessage,
return MarshalParams<TJP, N — 1, ArgMetalnfo >::execute (pMessage, newOffset,

}s

template<class TJP, template<class T> class ArgMetalnfo> struct MarshalParams<TJP,

offset, tjp);

tip);

1, ArgMetalnfo> {

typedef ArgMetalnfo<typename TJP::template Arg<(TJP::ARGS — 1)>::ReferredType> argMetalnfo;
static inline int execute(IpcPort_Messagex pMessage, int offset, TIPx tjp) {

return
IF<argMetalnfo :: include ,
typename IF<argMetalnfo::isPointer ,

MarshalArgPointer<TJP, TJP::ARGS — 1>,
MarshalArgValue<TJP, TJP::ARGS — 1> >::RET,

SkipArg<TJP> >::RET::execute (pMessage,

offset , tjp);

Listing 6. Marshaling Meta-program

bogus values are used because they are going to be replaced by the
skeleton with values received from the source pin.

The skeleton consists of two parts: a non-generated reaction
handler that is used as the component’s reaction handler; and an
aspect that advises calls to sink pin functions. The reaction han-
dler (whose code is not shown for brevity), fills a PinMessageData
structure with information about the message that the advice will
need, and calls pinMessageHandler with this structure as an argu-
ment. The around advice, shown in Listing 9, unmarshals the pa-
rameters consumed by the sink by using the code generated by the
UnmarshalParams meta-function, calls proceed() on the join point
to execute the sink pin function, marshals the parameters produced
using the MarshalParams meta-function, and finally replies to the
synchronous request. Note that instead of defining new trait tem-
plates for sink parameters, the trait templates for sources are used
in reverse order.

Despite requiring the component developer to define the pin-
MessageHandler function to overcome the limitations of using
AspectC++ as a reflection mechanism, using the automatically
generated skeletons represent a big improvement considering that
the code needed to implement the convert sink pin was reduced
roughly in half, and the functional logic is not entangled with non-
functional code.

4. COMPOSING NON-FUNCTIONAL
FEATURES

Separation of concerns has been for decades the motivation of many
advances in software engineering. Not surprisingly, it has become
a common trend to separate the non-functional and functional parts
of an application by relying on the services provided by middle-
ware and component technologies, specially considering that the
non-functional features they provide are usually more difficult to
implement than the core logic of a component [2]. Notwithstand-
ing, even EJB and CCM fall short of fully enabling this separa-
tion of non-functional concerns because they only support a lim-
ited number of container types with predefined features. Containers
should be adaptable to different requirements, which may require
containers with different combinations of non-functional features.
This leads to the need to compose features into containers [1, 4].
Since non-functional properties are cross-cutting concerns, it is
natural to turn to the virtues of AOP to modularize and compose
them. Although AOP certainly allows the non-functional features
to be disentangled from the core logic, it has some drawbacks
when advice is applied directly to the component. First, it needs
the component’s source code so that the aspects can be woven in.

aspect SinkPinSkeleton {
advice call(”void sink_mutex_%(PinMessageDatax*,
PinMessageDatax pMessageData = xtjp —>arg <0>();
UnmarshalParams<JoinPoint , JoinPoint::ARGS — 1,
:rexecute (pMessageData—>pMessage ,
tjp —>proceed ();

IpcPort_Message answer;
int dataSize = MarshalParams<JoinPoint ,
::execute(&answer, O,
sendReply (pMessageData—>pReaction ,

tjp);

D7)

JoinPoint ::ARGS — 1,

pMessageData—>pMessagelnfo , &answer,

around () {
SourceProduce>

0, tjp);

SourceConsume>

dataSize);

Listing 9. Sink Pin

Second, aspects may have dependencies on elements of the internal
implementation of the component.

In the approach presented here to achieve the composition of
non-functional features, aspects are used to advise the container.
This has several advantages over using aspects directly on the com-
ponent to modularize non-functional concerns. First, the aspects
can exploit the fact that every interaction of the component with its
environment and vice versa not only goes through the container, but
also does it through known and stable interfaces. For instance, this
allows encrypting all the messages between components with a se-
curity aspect. Second, since the container controls the component
life cycle, aspects can exploit the knowledge of the component’s
state (from the point of view of the runtime, not its internal state).
Last, but not least, this approach does not require having access
to the source code of the component. This in itself has the same
advantages of the dynamic binding of containers in Pin, that is, a
component does not need to be recompiled when a non-functional
property is imposed on it, and the component developer is oblivious
to the non-functional aspects that will be used on that component.

The following section describes an example of a non-functional
feature implemented using this approach. Other features, such as
encryption, can be implemented in the same way. Composing more
than one feature in the same container only requires including the
aspects for them in the build process of the container.

4.1 Sporadic Server

The sporadic server is a mechanism to schedule aperiodic tasks at
a given priority, while limiting their impact on the schedulability of
other tasks in the system [12]. The sporadic server reserves a certain
amount of execution capacity that is used to service aperiodic
events. When execution time is consumed from this budget, a
replenishment is scheduled to occur one replenishment period later.
If the execution budget is exhausted and an aperiodic event needs to
be serviced, the aperiodic task is relegated to execute at background
priority. The sporadic server gives the aperiodic task a good quality
of service while retaining the predictable execution of periodic
tasks even in the face of a burst of aperiodic events.

The implementation of the sporadic server is not trivial. In
order to correctly implement the replenishment policy, events have
to be waited for at the highest priority, and upon receiving one,
immediately revert to the sporadic server or background priority
level. In addition, a separate thread is needed to keep track and
carry out the pending replenishments [7]. Even using the sporadic
server requires discipline. The aperiodic task (or component) needs
to create an instance of the sporadic server, call a function to arm
the sporadic server every time it is going to enter a wait for an event,
and must call another function to request execution budget to the
sporadic server. Finally, it has to shut the sporadic server down.

The sporadic server is a perfect example of a non-functional
feature that could be provided by the container. First, its complex-

Skeleton Aspect

ity would most likely overshadow the core logic of the component.
Second, when provided by the container, it can give strong perfor-
mance guarantees both to the contained component and to the rest
of the system, which result in predictability.

Listing 10 shows the aspect for the sporadic server feature. The
implementation, in the C language, of the sporadic server algo-
rithm itself is not shown, but it consists of a data structure Spo-
radicServer that holds the state of the sporadic server and the
functions ssmgr_initialize(), ssmgr_arm(), ssmgr_request(), and ss-
mgr_shutdown() that operate on it. Lines 2-3 define a map that is
going to be used to get the sporadic server corresponding to a given
reaction. Lines 5-9, define the parameters of the sporadic server. In
line 11, a pure virtual method configure() is declared to make this
aspect abstract so that a particular use of the aspect can be parame-
terized by aspect inheritance. Then three advices are specified cor-
responding to initialization, normal operation, and shutdown. Note
that the pointcuts seem to refer to functions in the ComponentCore
interface; however, they refer to proxy functions to that interface
that reside in the container. In that way, the aspect can be woven in
the container.

The advice in lines 13-21, is executed after the execution of
reactionlnitialize(), that is, when the thread for the reaction is about
to be created and enter the message loop. The sporadic server is
created, initialized, and associated to the reaction. The priority of
the reaction is set to SS_ARM_PRIORITY, which has the same effect
as calling ssmgr_arm() as soon as the thread is created. Lines 23-30
show the around advice for the execution of the reaction handler.
Basically, it calls ssmgr_request(), to request for execution budget.
Upon returning from that function, the priority will have been set
to either the sporadic server level or background, as decided by
the sporadic server algorithm. Then, proceed() is called on the join
point to execute the reaction handler. Finally, ssmgr_arm() is called
to arm the sporadic server for waiting for the next event. The advice
in lines 32-37 takes care of shutting the sporadic server down when
the reaction thread terminates.

Due to the fact that the feature needs to be configured with the
desired parameters for the sporadic server when used, an aspect
derived from SporadicServerAspect is defined to perform this con-
figuration (see Listing 11).

With this approach, any Pin component core can be made com-
pliant with the sporadic server scheduling algorithm without any
modification. It just needs to be deployed in a container in which
this feature has been composed.

5. RELATED WORK

Gal et al. [6] used aspects to create client- and server-side meta-
objects in order to separate the component code from middleware-
specific code. However, those aspects were not generic due to the
lack of a reflection mechanism in AspectC++ at the time. The

aspect SporadicServerAspect {

typedef std::map<Reaction*, SporadicServer*> ReactionSSMap;

ReactionSSMap reactionSSMap ;

int replenishmentPeriod;
int budget;

int normalPriority ;

int backgroundPriority;
int executionTime;

virtual void configure() = 0;

advice execution(”void reactionlnitialize (Reaction*)”) && args(pReaction)

after (Reaction* pReaction) {

SporadicServer* pSs = (SporadicServerx) Malloc(sizeof (SporadicServer));

ssmgr_initialize (pSs, replenishmentPeriod , budget, normalPriority ,

backgroundPriority);
pReaction—>priority = SS_ARM_PRIORITY ;
reactionSSMap [pReaction] = pSs;

}

advice execution(”int reactionHandler (Reaction*, CommonMessagex)”)

&& args (pReaction, pMsg)

around (Reaction* pReaction, CommonMessagex pMsg) {

SporadicServer* pSs =
ssmgr_request (pSs, executionTime);
tjp —>proceed ();

ssmgr_arm ();

}

reactionSSMap [pReaction];

advice execution(”void reactionTerminating (Reaction*)”) && args(pReaction)

after (Reaction* pReaction) {
SporadicServer* pSs =
ssmgr_shutdown (pSs);
reactionSSMap . erase (pReaction);

reactionSSMap [pReaction];

Listing 10. Sporadic Server Aspect

aspect ThisSporadicServer
public SporadicServerAspect {

ThisSporadicServer () {
configure ();

}

void configure () {
replenishmentPeriod = 80;
budget = 10;
normalPriority = 6;
backgroundPriority = 100;
executionTime = 10;

}

Listing 11. Sporadic Server Aspect Configuration

approach to generate stubs and skeletons presented in this paper
uses the generic advice technique shown by Lohmann et al. [13].
Conan et al. [2] argued that non-functional services should be
placed in the container. Aigner et al. [1] proposed creating tailor-
made containers by composing property-dependent non-functional
services with core services (i.e., basic infrastructure services such
as component instantiation and connection). Furthermore, they pro-
posed using aspect orientation as the means to modularize the non-
functional concerns. Despite these similarities, the work presented

in this paper differs from theirs in that they suggest weaving the
aspects together with the component code, whereas the solution in
this paper keeps the container with the aspects in a binary, sepa-
rate from the component core. In this aspect, the work of Duclos et
al. [4] is aligned with the approach in this paper because they do
not require access to the source code of the component in order to
weave the aspects. However, they created a new aspect language.

JBoss [11] and the Spring framework [18] have proprietary
AOP extensions that allow modularizing non-functional services
in EJB. The main difference with the approach presented in this
paper is that their services are implemented as interceptors which
are invoked dynamically at runtime. For instance, when an advised
method is called in JBoss, the list of interceptors is traversed,
invoking each of them, and finally the component code is invoked
using Java reflection. The technique described in this paper uses
compile-time weaving and no runtime reflection, which makes it
more suitable for real-time and embedded systems.

6. CONCLUSIONS

Component containers can be used to implement several non-
functional concerns that would otherwise have to be implemented
by the component developer. This paper made contributions in two
different facets of containers. First, it showed how generative tech-
niques can be used to generate custom stubs and skeletons, making
use of AspectC++ as a compile-time reflection mechanism and
as the means to compose the generated code with the component

code; and using template meta-programming for code generation.
What makes this approach different from others is that the stubs
and skeletons are generated without any complex infrastructure
other than the AspectC++ compiler, while still being able to gen-
erate typed stubs and skeletons. The approach has limitations such
as the need to use pin indexes instead of names, and that the dec-
laration of a pin as a function still does not relieve the developer
from declaring the pin in the component’s introspection structures’.
Nevertheless, the example presented demonstrated that the code of
the component was greatly simplified, letting the developer focus
on the core logic of the component and letting the inner container
(stubs and skeletons) carry out all the repetitive but nonetheless
error-prone tasks.

Second, the paper addressed the role of containers to imple-
ment non-functional concerns. In this aspect, one shortcoming of
component technologies such as EJB is that they only support a
predefined set of non-functional features. In order to clearly sepa-
rate all the non-functional concerns from the component, contain-
ers must support the composition of non-functional features. This
paper illustrated how AOP used in conjunction with containers is a
viable method to achieve this goal. Although this idea is not novel
[1, 4], the approach discussed in this paper showed a concrete im-
plementation that does not require a new language or a runtime
reflection mechanism. The example presented the aspect version of
a container non-functional feature, namely the sporadic server. The
sporadic server container had already been created for Pin using an-
other technique [10]. However, with the technique presented in this
paper, it is possible to compose other non-functional features, such
as encryption, in the same container. More case-studies are needed
to know if the requirement to exclusively use the interface of the
container for pointcuts imposes a limitation on the kinds of non-
functional concerns that can be implemented. Another open issue
is about the order of composition of several features. For some fea-
ture combinations, the order is irrelevant (e.g., the sporadic server
and the encryption features). However other features may require
consistent and symmetric ordering as is the case of encryption com-
posed with data compression. This is still an open research issue.

Acknowledgments

Thanks to Kurt Wallnau for the helpful discussions and feedback
during the early stages of this paper. Thanks to Scott Hissam and
Sagar Chaki for their reviews.

References

[1] R. Aigner, C. Pohl, M. Pohlack, and S. Zschaler. Tailor-made
containers: Modeling non-functional middleware service. In
Workshop on Models for Non-functional Aspects of Component-
Based Software (NfC’04) at UML conference, 2004.

D. Conan, E. Putrycz, N. Farcet, and M. DeMiguel. Integration

of non-functional properties in containers. In Proceedings of the

6th International Workshop on Component-Oriented Programming
(WCOP), 2001.

[3] K. Czarnecki and U. W. Eisenecker. Generative programming:
methods, tools, and applications. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 2000.

F. Duclos, J. Estublier, and P. Morat. Describing and using non
functional aspects in component based applications. In Proceedings
of the Ist International Conference on Aspect-Oriented Software
Development (AOSD), New York, NY, USA, 2002. ACM Press.

A. Ferscha, M. Hechinger, R. Mayrhofer, and R. Oberhauser. A
light-weight component model for peer-to-peer applications. In

[2

—

[4

[5

[ty

7 These structures contain the number of sink and source pins, their names,
and their mapping to reactions.

Proceedings of the 24th International Conference on Distributed
Computing Systems Workshops (ICDCSW’04), Washington, DC,
USA, 2004. IEEE Computer Society.

[6] A. Gal, O. Spinczyk, and W. Schröder Preikschat. On
aspect-orientation in distributed real-time dependable systems. In
Proceedings of the The Seventh IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS 2002),
Washington, DC, USA, 2002. IEEE Computer Society.

[7] M. Gonzalez Harbour and L. Sha. An application-level implementa-
tion of the sporadic server. Technical Report CMU/SEI-91-TR-026,
Software Engineering Institute - Carnegie Mellon University, Pitts-
burgh, PA, September 1991.

J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P. Ranganath.
Cadena: An integrated development, analysis, and verification
environment for component-based systems. In Proceedings of the
25th International Conference on Software Engineering (ICSE "03),
Washington, DC, USA, 2003. IEEE Computer Society.

[9] S. Hissam, J. Ivers, D. Plakosh, and K. Wallnau. Pin component
technology (V1.0) and its C interface. Technical Note CMU/SEI-
2005-TN-001, Software Engineering Institute - Carnegie Mellon
University, Pittsburgh, PA, April 2005.

[8

—

[10] S. Hissam, G. Moreno, and K. Wallnau. Using containers to enforce
smart constraints for performance in industrial systems. Technical
Note CMU/SEI-2005-TN-040, Software Engineering Institute -
Carnegie Mellon University, Pittsburgh, PA, August 2005.

[11] JBoss Home Page. http://www. jboss.org.

[12] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. Gonzalez Har-
bour. A practitioner’s handbook for real-time analysis. Kluwer
Academic Publishers, Norwell, MA, USA, 1993.

[13] D. Lohmann, G. Blaschke, and O. Spinczyk. Generic advice: On the
combination of AOP with generative programming in AspectC++.
In Proceedings of the 3rd International Conference on Generative
Programming and Component Engineering (GPCE’04), 2004.

[14] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng.
Composing adaptive software. Computer, 37(7):56-64, 2004.

[15] N. Myers. Traits: A new and useful template technique. C++ Report,
June 1995.

[16] O. Spinczyk, D. Lohmann, and M. Urban. Advances in AOP with
AspectC++. In Proceedings of the 4th International Conference
on Software Methodologies, Tools, and Techniques, SoMeT’05. 10S
Press, 2005.

[17] O. Spinczyk, D. Lohmann, and M. Urban. Aspectc++: An AOP
extension for C++. Software Developers Journal, June 2005.

[18] Spring Framework Home Page. http://www.springframework.
org.

[19] T. Veldhuizen. Using C++ template metaprograms. C++ Report,
7(4):36-43, May 1995.

[20] K. Wallnau. Volume III: A technology for predictable assembly from
certifiable components (PACC). Technical Report CMU/SEI-2003-
TR-009, Software Engineering Institute - Carnegie Mellon University,
Pittsburgh, PA, April 2003.

[21] K. Wallnau and J. Ivers. Snapshot of CCL: A language for predictable
assembly. Technical Note CMU/SEI-2003-TN-025, Software
Engineering Institute - Carnegie Mellon University, Pittsburgh, PA,
June 2003.

[22] N. Wang, D. Schmidt, O. Othman, and K. Parameswaran. Evaluating
meta-programming mechanisms for ORB middleware. [EEE
Communications Magazine, 39, 2001.

