

(Continued on page 2)

Toil and Trouble
Most programs gain momentum as
time passes. Some, though, take on a
life of their own—after a number of
milestones pass, and teams expend
time and effort, they seem self-
propelled, unstoppable. They’re woven
into an organization’s existence. They
seem privileged, too, despite the fact
they often have yet to show any value
to customers or stakeholders. These
few “precious” programs become sa-
cred cows: they are fed, protected from
harm, and are often revered. They are
beyond reproach.

But all systems also have issues—and
it is healthy to raise risks and problems
with a system in development
(especially major ones). That way all
concerned become aware of the issues,
and can commit to finding the best
possible resolutions. Unfortunately,

sacred cow projects are neither subject
to nor tolerant of even healthy criti-
cism and dissent. In one real-life exam-
ple, a program was fielding an IT busi-
ness system to a network of field of-
fices. The project was several years
into its timeline and nearing its initial
beta test deployment, yet had long be-
fore become largely off-limits to any
active questioning by the organization.

Problems? What Problems?
For example, even as stakeholders at-
tempted to raise issues during develop-
ment, their questions—and their acts of
criticism—were rebuffed by project
staff and managers. The project team
became increasingly defensive:
• User concerns about creating a

centralized system architecture
with a single point of failure were
dismissed.

• Disagreements with choosing the
second busiest site in the nation as
a beta site were ignored.

• Concerns over rushing to a cut-
over date before the system was
ready were downplayed.

• Criticism from whistle blowers,
the media, and Congress about
serious issues after initial rollout
began elicited only defensiveness.

• Program team members
characterized disgruntled users as
incompetent or computer
illiterate—warning other critics to
back off.

This cow could moo.

Hey! Keep Feeding Me!
As these and other risks arose, the pro-
gram office and the contractor repeat-
edly deflected them. In continuing to
receive funding—and continuing to

Acquisition Archetypes
Feeding the Sacred Cow

throw money at the project—they
blamed others, or shrugged the prob-
lems aside as irrelevant. Any ques-
tioning of or disagreement with the
program’s direction or approach met
unresponsiveness or hostility. This
single-minded support of the program,
even at the expense of the stake-

holders’ interests, marked a form of
defensiveness by the PMO and con-
tractor. It affected the objectivity of
the decisions being made, and the pro-
gram proceeded on its obdurate path.
Decisions believed by many to be fa-
tally flawed went unchallenged, yield-
ing only further development invest-
ment to implement those decisions.

It’s The User’s Fault
Six months after “go live” became a
disaster, the contractor still denied
there were any significant technical
problems with the system—that it was
entirely a case of user incompetence.
Of course, the sacred cow still was
fed—substantial time and effort con-
tinued to be invested in system devel-
opment.

Changing Counterproductive
Behaviors in Real Acquisitions

“Sometimes …
well-established
programs … are

not tolerant of even
healthy criticism.”

“Six months after
‘go live’ became a

disaster, the contractor
still denied there were

significant
technical problems.”

back into focus, test them for continued feasibility, and
help decision makers make rational choices.

To help prevent this escalation behavior from taking
hold, several steps should be taken:
• Actively encourage dissenting opinions; don’t shoot the

messenger. Honest, objective resistance to the program
can help solve problems early, when the chance of
resolution is greatest. To leverage dissent, establish a
formal process to raise, review, negotiate, and resolve
issues in a way that stakeholders can agree is fair.

• Let technical rationality rather than political
considerations guide decision making. Planning regular,
technical program reviews (such as the one described
earlier) is one good step to take.

• At a minimum, regularly review and question the
original assumptions behind the decision to develop the
system. Are they still true? This is a great preventive
measure. Determine if it’s still possible to move
forward, if a change in direction is needed, or if the
original rationale has changed such that the program is
no longer relevant.

Breaking The Pattern

The general phenomenon of escalation in decision mak-
ing—of which this archetype is an example— is widely
recognized, and described as “persistence with a venture
beyond an economically defensible point” [Drummond
1996]. Decision making on large, high-visibility programs
becomes less technically objective and more politically
defensive as time passes. Various factors may come into
play in producing the effect, including uncertainty regard-
ing the outcome of the program, poor visibility into pro-
gram progress and status, sunk cost, prior decisions, per-
sonal self-interest, and ego- and face-saving.

As the diagram illustrates, various System Issues continue
to arise during development. These are dealt with through
a series of Effective System Investments, maintaining equi-
librium within a balancing loop. However, increasing Sys-
tem Issues produce Criticism of [the] System, which then
drives up the level of Personal Investment [and] Defen-
siveness, reducing Objectivity on the part of the decision-
makers and reducing the Quality of Investment Decisions.
The lower Quality of Investment Decisions in turn reduces
the value of the Effective System Investment. This creates
a reinforcing loop that surrounds and can ultimately over-
whelm the original balancing loop by increasing System
Issues in a continuing cycle.

A key aspect of this dynamic is the loss of objectivity on the
part of the decision makers. They have become too close to
the project to be impartial, making them unable to assess the
true feasibility of the system. It may be due to ego or stub-
bornness [Flowers 1996]. Regardless, the results are likely to
include overly optimistic status reports and a “desire to com-
mit more resources to improve things.”

Recovering from “Feeding the Sacred Cow” requires rec-
ognition that the counterproductive behavior is taking
place—recognition by the very people who are embedded
in the dynamic and have lost the ability to make objective,
rational program decisions. If “Feeding the Sacred Cow”
has taken hold of the program, a significant change in
management may be necessary to “reset” personal factors
such as self-interest, ego, and face-saving.

Another key step in recovery is to conduct a series of for-
mal, objective reviews with external technical experts to
identify and address issues. This on-going review process
will bring the original program goals and assumptions

The Bigger Picture

Acquisition Archetypes is an exploration of patterns of failure in software acquisi-
tion using systems thinking concepts. It is published by the Acquisition Support
Program of the Software Engineering Institute.

For more information, visit http://www.sei.cmu.edu/programs/acquisition-support/

Copyright 2008 Carnegie Mellon University.

A Causal Loop Diagram of the Feeding the Sacred Cow

(Continued from page 1)

System variables (nodes) affect one another (shown by arrows):
Same means variables move in the same direction; opposite
means the variables move in opposite directions. Balancing loops
converge on a stable value; Reinforcing loops are always increas-
ing or always decreasing. Delay denotes actual time delays.

Objectivity

Criticism of
System

System Issues Personal
Investment/

Defensiveness

Same

Opposite

Same

Effective
System

Investment

Opposite

Same

Same

Balancing

Quality of
Investment
Decisions

Same

Reinforcing

[Drummond 1996] Drummond, Helga. “The politics of risk: trials and tribulations
of the Taurus project.” Journal of Information Technology II (1996): 347-357.

[Flowers 1996] Flowers, Stephen. Software Failure: Management Failure. New
York, N.Y.: John Wiley & Sons, 1996.

AA03 0803004

	
Toil and Trouble

