
AGILITY AND ARCHITECTURE

The phrase “Agile architecture” evokes two concepts:

1. A system or software architecture that is versatile,

easy to evolve, and easy to modify, while resilient

enough not to degrade after a few changes.

2. An Agile way to define an architecture, using an

iterative lifecycle, allowing the architectural design

to tactically evolve over time, as the problem and the

constraints are better understood.

The two concepts are not the same: you can have a

non-Agile development process that leads to a flexible,

adaptable architecture, and vice versa, an Agile process

that leads to a rigid and inflexible architecture. One

does not imply the other. In the best of worlds, though,

we’d like to have an Agile process that leads to a flexi-

ble architecture.

The eleventh principle behind the Agile Manifesto1

— “The best architectures, requirements, and designs

emerge from self-organizing teams” — reinforces the

belief among some teams that an architecture will grad-

ually emerge out of applying Agile practices, such as

biweekly refactorings. This thinking was cemented by

mantras such as YAGNI (You Ain’t Gonna Need It) and

No BDUF (No Big Design Up Front), as well as a belief

in deferring decisions to the last responsible moment.

Principle 11, however, is neither prescriptive nor

testable.2

This thinking about the spontaneous emergence of archi-

tecture is reinforced by experiences with IT software

endeavors that do not require a significant amount

of bold new architectural design because (1) the most

important design decisions have been made months ear-

lier, (2) they are fixed by current preexisting conditions,

or (3) they are the result of a de facto architectural setup

in a specific domain. These architectural decisions are

already embodied within the choice of frameworks and

off-the-shelf software packages. The operating system,

servers, programming language, database, middleware,

and other choices are predetermined in the vast majority

of these software development projects, or the project

team has a very narrow range of choices. There is in fact

little significant architectural work left to be done.

Architectural design, when it is really needed because

of a project’s novelty, has an uneasy relationship with

traditional Agile practices. Unlike the functionality of

a system, design cannot easily be decomposed into

small chunks of work, user stories, or “technical

stories.” Most of the difficult aspects of architectural

design are driven by nonfunctional requirements,

or quality attributes: security, high availability, fault

tolerance, interoperability, scalability, and so on. Other

difficulties are driven by quality attributes related to

development itself — such as testability, certification,

and maintainability — which cannot be parceled up

and for which tests are difficult to produce up front.

Key architectural choices cannot be easily retrofitted

on an existing system by means of simple refactorings.

Some of the late decisions may gut out large chunks of

the code, and therefore many of the architectural deci-

sions have to be made early, although not all at once.

Many practitioners have grappled with the issue

of marrying an Agile approach to designing a solid

architecture, such as Cutter Senior Consultant

Alistair Cockburn and his “walking skeleton”3 or

Dean Leffingwell and his colleagues’ Scaled Agile

Framework® (SAFe™).4 Common thinking nowadays

is that architectural design and the gradual building of

the system (that is, its user-visible functionality) must

go hand in hand, but there are several delicate issues:

n How do we pace ourselves?

n How do we make decisions over time in a way

that will lead to a flexible architecture and enable

developers to proceed?

n In which order do we pick the quality attribute

aspects and address them?

The concept of Agile architecture is not new: evolvabil-

ity, software evolution, and reengineering of existing

systems have been studied and understood for a long

time. Indeed, Manny Lehman started this investigation

circa 1980.5 The novel challenge that Agile architecting

©2014 Carnegie Mellon University.CUTTER IT JOURNAL February 201410

How to Agilely Architect an Agile Architecture
by Stephany Bellomo, Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya

BEYOND YAGNI

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

11Get The Cutter Edge free: www.cutter.com Vol. 27, No. 2 CUTTER IT JOURNAL

brings to system evolvability is the practices that allow

architecting the system in smaller chunks. Successful

teams are those that can take advantage of existing soft-

ware engineering techniques with slight modifications,

in particular those that provide early feedback and

learning, such as prototyping.6

In this article, we present lessons learned about the

characteristics of an Agile architecture that enabled

an organization to develop its architecture in an Agile

manner and continue to rapidly deliver features when

more stringent quality attribute requirements emerged.

To investigate why some teams have fewer delays and

disruptions to continuous delivery of features than oth-

ers, we interviewed project teams from several govern-

ment and commercial organizations. The examples we

present here come from one such project team, which

was challenged when an unexpected performance qual-

ity attribute requirement surfaced in customer feedback

during a user demo. Fortunately, the team was able to

react to the emerging requirements without disrupting

the project. When we examined the team’s practices, we

found they were doing Agile architecting that resulted

in an Agile architecture.

AGILE ARCHITECTING

Agile architecting is not only the process of allocating

architectural work to iterations. There is also a winding

route in which development proceeds as the require-

ments, architecture, and design/implementation are

elaborated iteratively and often concurrently. Early

understanding of requirements and architecture choices

is key to managing large-scale systems and projects;

however, linkage between architecture and implementa-

tion design choices is also crucial.7 While requirements

originating from the problem space inform architecture

and development, explorations originating from archi-

tecture and implementation investigations also assist

in eliciting and detailing requirements. The essence

of Agile architecting is to conduct these activities

concurrently with the right balance.

In Figure 1, we illustrate an example (captured during

our interviews with the team) of such an Agile archi-

tecting process for prototyping with a quality attribute

focus.8 In this example, the team probes for quality

concerns during a user demo, discovers an emerging

performance requirement (the user expected faster

rendering of data-intensive pages than anticipated),

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Figure 1 — Agile architecting process example.

©2014 Carnegie Mellon University.CUTTER IT JOURNAL February 201412

analyzes the requirement, architects a solution to the

performance problem, implements the solution in a

demonstrable prototype, and gets feedback from the

user at the next user demo. The user accepts the proto-

typed implementation, and the team merges the imple-

mented code into the project baseline for a future

release.

The team operates in three cycles in which develop-

ment is iterated through biweekly sprints; the archi-

tecture and product team manage the releases through

forward-looking architecture-focused investigations;

and a separate R&D cycle investigates long-term strate-

gic technology goals. Figure 1 shows the process steps

as integration points (IPs) between requirements and

architecture or between architecture and design/

implementation:

n IP-1* (Rqmts->Arch): Probe for emerging quality

attribute requirements at user demo.

n IP-2 (Rqmts->Arch): Analyze quality attribute

requirements.

n IP-3 (Rqmts->Arch): Conduct deeper analysis

of emerging quality attribute.

n IP-4 (Rqmts->Arch): Identify architectural

approach/patterns.

n IP-5 (Arch->Design/Imp): Elaborate architectural

patterns for specific system.

n IP-6 (Arch->Design/Imp): Implement portion

of prototyped solution as a spike.

n IP-7 (Rqmts->Arch): Get user feedback on prototype.

n IP-8 (Rqmts->Arch): Analyze feedback on prototype.

n IP-9: Get approval for prototyped changes (merge

with release).

*Note that the team probes for emerging requirements dur-

ing the user demo as part of the requirements elicitation

process, which explains why IP-1 starts there.

Two particularly important practices that helped the

team succeed are prototyping prior to the target sprint

and prototyping in a separate environment. This contin-

uous architecture exploration allowed the team to focus

on making the architecture Agile enough to support

upcoming needs, which helped strike a balance between

too much up-front architecture and not enough.

The example shown in Figure 1 illustrates the proto-

typing process the team uses for a relatively small archi-

tectural change. The team handles these smaller changes

at the sprint/release planning level. For larger-scale

infrastructure improvements targeted at future phases,

the team explained that they often create an R&D proto-

type to begin reasoning about foundational architecture

that may be needed to support emerging functional and

quality attribute requirements (e.g., clustering infra-

structure for the scalability quality attribute require-

ment). The team creates such prototypes in an entirely

separate lab environment, so there is no risk to the

development environment.

AGILE ARCHITECTURE

We found that the team has an Agile architecture that

they described as a “flexible architecture.” This allows

them to explore technical options rapidly with minimal

ripple effect. The architecture can be understood in

terms of patterns and tactics that influence the time

and cost to implement, test, and deploy changes.9

The overarching pattern the team uses to enhance modi-

fiability and control the time and cost of change is the

layered pattern. Other supporting patterns and tactics to

separate interfaces, restrict dependencies, and separate

concerns are employed as well. The team described

their architecture choices as follows:

n Layered architecture, client-server architecture, and

separation of the presentation from business/data

layers. Over time, the architecture and vision have

been implemented as various layers, and components

can be replaced wholesale without significant disrup-

tion elsewhere. The layered architecture supports

adding new client interfaces and replacing presen-

tation components with minimal ripple effect. For

example, the presentation layer was modified to add

a new Web client to an existing smart client imple-

mentation with no effect on the underlying architec-

ture and no down time in operations to introduce the

new interface. The smart client was later replaced

with .NET C# WPF with no impact to the back end.

All three presentation technologies existed simultane-

ously using the same back end.

n Service orientation with separate interfaces and

restricted dependencies. The data layer was built

behind an API service layer to insulate the client

from changes in the data layer. These tactics enable

the team to fence off third-party dependencies by

creating a metadata definition layer (in C#). They

also support replacing the underlying database and

access control without impact to the service-oriented

data layer, thereby allowing the presentation layer to

continue in production without modification.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

13Get The Cutter Edge free: www.cutter.com Vol. 27, No. 2 CUTTER IT JOURNAL

n Publish-subscribe pattern. This pattern is used to

monitor the data layer schema for changes since the

database is owned and managed by a third party.

The team uses the following patterns and tactics to

improve scalability:

n Clustered architecture with load balancing and

replicated copies. The cluster-based architecture

allows rapid scaling, whether increasing for mission

need or scaling back due to budgetary constraints.

It is possible to scale up by increasing the size of

the virtual servers or to scale out by increasing the

number of clusters, the number of analysts using

the App-V client, or the number of Citrix servers

in the cluster.

n Encapsulation of algorithms. Computationally inten-

sive algorithms, which have a significant impact on

system performance, are encapsulated to allow them

to evolve or be replaced.

n Data caching. A local copy of a subset of data is kept

to optimize performance of data retrieval and data

processing for frequently accessed data.

The team also focuses on flexibility in deployment and

controlling the cost and time for testing by using several

patterns and tactics:

n Virtualization, layering both the infrastructure and

the application. By adopting virtualization at a very

early stage, the system may be hosted in any data

center with the appropriate network connections. For

example, infrastructure (VMware) and the application

(App-V) are virtualized. This enabled the system to

be consolidated from deployment in five regional

centers to two, allowing the customer to reduce costs.

n Standardized and configurable architecture: para-

meterization and static and dynamic binding. Each

cluster has a standard configuration and can be cus-

tomized. This standardization allows installations to

be accomplished at will; for example, the team can

allocate new servers (in the cloud), install the soft-

ware, and replicate joins to scale the system to meet

new needs. Additional processors and memory can

be added to a virtual machine to increase capacity.
Similarly, clusters can be removed at will to meet

resource constraints.

n Executable, interface-driven code structure.
Executable code structure enables automated testing

of business layer functionality through interfaces.

A solid understanding of the overall architectural struc-

ture helps the team to respond to stakeholder feedback

or learning from spikes (that is, prototyping activities

that are timeboxed10), because they have the architec-

tural knowledge to rapidly analyze the impact of

changes and conduct architecture tradeoff analysis.

INTEGRATING PRACTICES WITHIN INCREMENTAL
DEVELOPMENT ENVIRONMENTS

Understanding the desired state of development and

delivery helps tie together Agile architecting and Agile

architecture. A desired software development state is

one that enables Agile teams to quickly deliver releases

that are valuable for stakeholders.11 The teams them-

selves typically define the desired state. It is their vision

of the ideal development infrastructure that they would

like to work with. When product development starts,
the desired state does not necessarily exist. Setting up

the initial architecture helps push the team and the

delivery into the desired state and enables Agile

architecting that results in an Agile architecture.

In this example, the team needs both Agile architecting

and architecting for agility to stay within the desired

state. Agile architecting provides the team a regular

cadence for periodically considering whether they are

already out of bounds or about to get out of bounds.

The regular cadence of Agile architecting also helps the

team manage architecture exploration and balance com-

peting concerns of too much or too little architecting.

Agilely architecting an Agile architecture, then, mini-

mally has four key requirements:

1. Focusing on key quality attributes and incorporating

these into technical explorations within prototyping

and spikes

2. Understanding that a successful product is a combi-

nation of not only customer-visible features but also

the underlying infrastructure that enables those;

hence, architectural requirements are incorporated

into sprint planning and demos

3. Recognizing that an Agile architecture that enables

ease of maintainability and evolvability is the result

of ongoing, explicit attention given to the architec-

ture, not a natural byproduct of an Agile — or any —

software development process

4. Continuously managing and synchronizing depen-

dencies between functional and architectural require-

ments and ensuring that the architectural foundation

is put in place in a just-in-time manner

At a high level, the process for Agilely developing an

Agile architecture can be seen as a zipper, as shown in

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

©2014 Carnegie Mellon University.CUTTER IT JOURNAL February 201414

Figure 2. From the requirements, as they evolve, the

designers extract and separate functional requirements

(mostly features seen by the end users) and architec-

tural requirements (mostly derived from key quality

attributes), which are already expressed or anticipated.

Dependencies between these two kinds of requirements

must be managed to ensure that necessary elements of

the architecture are present (or at least “stubbed”) in

upcoming iterations with functional requirements that

depend on them. This skeletal foundation must be

woven into early iterations of architectural and func-

tional increments.

This approach will facilitate a deliberate (not accidental)

emergence of an architecture, constantly validated by

the functionality developed on top of it. The develop-

ment of the architecture occurs over several iterations,

without being stopped, blocked, or slowed down

by developers claiming “YAGNI” or “No BDUF.”
However, as when a zipper gets out of alignment, caus-

ing it to get stuck, teams that do not pay close attention

to evolving dependencies can get caught off guard with-

out the architectural foundation they need to support

emerging requirements. Agility and architecture do

support each other very well.

ACKNOWLEDGMENTS

We would like to acknowledge Sphere of Influence

for their technical contributions to this article. This

material is based upon work funded and supported by

the Department of Defense under Contract No. FA8721-

05-C-0003 with Carnegie Mellon University for the

operation of the Software Engineering Institute, a

federally funded research and development center.

ENDNOTES

1“Principles Behind the Agile Manifesto”

(http://agilemanifesto.org/principles.html).

2Séguin, Normand, Guy Tremblay, and Houda Bagane.
“Agile Principles as Software Engineering Principles: An

Analysis.” Lecture Notes in Business Information Processing,

Vol. 111, edited by Claes Wohlin. Springer, 2012.

3Cockburn, Alistair. “Walking Skeleton” (http://

alistair.cockburn.us/Walking+skeleton).

4Scaled Agile Framework® (http://scaledAgileframework.com).

5Lehman, Meir M. “Programs, Lifecycles, and Laws of Software

Evolution.” Proceedings of the IEEE (Special Issue on Software

Engineering), Vol. 68, No. 9, September 1980.

6Ozkaya, Ipek, Robert L. Nord, Stephany Bellomo, and Heidi

Brayer. “Beyond Scrum + XP: Agile Architecture Practice.”
Cutter IT Journal, Vol. 26, No. 6, 2013.

7Nuseibeh, Bashar. “Weaving the Software Development

Process Between Requirements and Architectures.” IEEE

Computer, Vol. 34, No. 3, March 2001.

8Bellomo, Stephany, Robert L. Nord, and Ipek Ozkaya.

“Elaboration on an Integrated Architecture and Requirement

Practice: Prototyping with Quality Attribute Focus.” Proceedings

of the Second International Workshop on the Twin Peaks of

Requirements and Architecture. IEEE, 2013.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

Figure 2 — The zipper model.

15Get The Cutter Edge free: www.cutter.com Vol. 27, No. 2 CUTTER IT JOURNAL

9Bass, Len, Paul Clements, and Rick Kazman. Software

Architecture in Practice. 3rd edition. Addison-Wesley

Professional, 2012.

10Leffingwell, Dean. Agile Software Requirements: Lean

Requirements Practices for Teams, Programs, and the Enterprise.

Addison-Wesley Professional, 2011.

11Bachmann, Felix, Robert L. Nord, and Ipek Ozkaya.
“Architectural Tactics to Support Rapid and Agile Stability.”
CrossTalk, May/June 2012.

Stephany Bellomo is a senior member of the technical staff at

the Carnegie Mellon University (CMU) Software Engineering

Institute (SEI). Ms. Bellomo is a member of the Architecture

Practices group and an active member of the Value-Driven

Incremental Development research team. She teaches SEI courses in

Service-Oriented Architecture Migration of Legacy Components and

Software Architecture Principles and Practice. Ms. Bellomo has over

15 years’ experience in the software field. Prior to joining the SEI, she

worked as a software engineer for several organizations, including

Lockheed Martin, Intuit, and VeriSign Network Solutions. She served

as tutorial chair for SEI’s SATURN Conference and is currently a

member of the organizing committee for the International Workshop

on Release Engineering 2014 (hosted by Google). Ms. Bellomo

received an MS in software engineering from the George Mason

University. She can be reached at sbellomo@sei.cmu.edu.

Philippe Kruchten is a professor of software engineering at the

University of British Columbia (UBC), in Vancouver, Canada,

where he holds an NSERC Chair in Design Engineering. Dr.

Kruchten joined UBC in 2004 after a 30-plus-year career in industry,

where he worked in large software-intensive systems design in the

domains of telecommunications, defense, aerospace, and transpor-

tation. Some of his experience is embodied in the Rational Unified

Process, whose development he directed from 1995 to 2003. His cur-

rent research interests reside mostly with software architecture, in

particular architectural decisions and the decision process, as well as

software engineering processes, especially the application of Agile

processes in large and globally distributed teams. Dr. Kruchten

teaches courses in entrepreneurship, software project management,

and design. He is a senior member of IEEE Computer Society; an

IEEE Certified Software Development Professional; a member of

ACM, INCOSE, and CEEA; the founder of Agile Vancouver; and a

professional engineer in British Columbia. Dr. Kruchten has a diploma

in mechanical engineering from Ecole Centrale de Lyon and a doctor-

ate degree in information systems from Ecole Nationale Supérieure des

Télécommunications in Paris. He can be reached at pbk@ece.ubc.ca.

Robert L. Nord is a senior member of the technical staff at the SEI.

Dr. Nord is engaged in activities focusing on Agile and architecting

at scale and works to develop and communicate effective methods

and practices for software architecture. His collaboration with

Philippe Kruchten and Ipek Ozkaya is helping shape the research

agenda on technical debt. He is coauthor of the practitioner-oriented

books Applied Software Architecture and Documenting Software

Architectures: Views and Beyond and lectures on architecture-

centric approaches. Dr. Nord is a member of the steering committee of

the WICSA Conference series, in addition to organizing events at

software engineering, Agile, and architecture venues. He earned a

PhD in computer science from CMU and is a distinguished member

of the ACM. He can be reached at rn@sei.cmu.edu.

Ipek Ozkaya is a senior member of the technical staff at the SEI. With

her team, Dr. Ozkaya works to help organizations improve their soft-

ware development efficiency and system evolution. Her work focuses

on software architecture practices, software economics, and require-

ments management, and her latest publications include articles on

Agile architecting, dependency management, and architectural techni-

cal debt. Dr. Ozkaya also chairs the advisory board of IEEE Software

and serves as an adjunct faculty member for the Master of Software

Engineering Program at CMU. She also organizes different events

(tutorials, workshops, and sessions) and is an invited speaker at

software engineering, Agile, and architecture venues (e.g., ICSE,

OOPSLA, SATURN, and WICSA). She holds a doctorate from

CMU. She can be reached at ozkaya@sei.cmu.edu.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

