
The belief that Agile requires small colocated teams,

downplays architectures, and delivers no documentation

still prevails among many software practitioners. The

reality is that organizations, in their quest to rapidly field

projects, are building on the strengths of Scrum and XP.

They are doing so to creatively combine Agile architec-

ture practices to achieve the benefits of Agile across the

lifecycle.

We found further evidence of this more expansive

approach when we interviewed representatives of five

government and commercial organizations that operate

in highly regulated settings.1 Our goal was to gain a

better understanding of success and failure factors in

rapidly fielded projects using Agile software develop-

ment practices. The reality of a highly regulated envi-

ronment is that practitioners must often balance the

demand to quickly deliver functionality with a desire

for a stable, reliable system, especially when faced with

the challenge of sustaining such systems for several

decades. In addition, in highly regulated environments

such as avionics, financial services, and healthcare,

software development teams need to interface with

system engineering, deployment, and quality assurance

teams that may be operating under different develop-

ment and delivery tempos. These competing pressures

often result in projects marked by high initial velocity

followed by a slowdown that results from stability

issues (see Figure 1).

The interviews showed that most experienced practi-

tioners, when faced with challenges, did not apply

Agile practices in a silo. Rather, they used their exper-

tise to creatively combine them with other practices,

especially architecture, to respond effectively to sta-

bility issues while rapidly fielding projects. Doing so

helped them avoid significant disruptions in velocity.

The experiences of these organizations support the

stance that a more expansive application of hybrid

practices is not only necessary but essential in balancing

the opposing objectives of speed and stability.

In this article, we highlight several approaches applied

by these organizations and provide a more in-depth

look at two of the practices: release planning with

architecture considerations and roadmap planning

with external dependency management.

SPEED VS. STABILITY

The essence of balancing speed and stability involves

achieving and preserving a software development state

that enables teams to deliver releases that stakeholders

value at a tempo that makes sense for their business.

The desired software development state is different for

each organization and needs to be understood clearly.

This is a state in which architecture (often in the form of

platforms and application frameworks), supporting tool

environments, practices, processes, and team structures

exist to support efficient and sustainable development

of features. The entire organization, including devel-

opment teams, management, and stakeholders, must

have visibility into the desired state, so that they neither

overoptimize the supporting development infrastruc-

ture nor quit working on it.

We asked senior software developers and managers

to describe factors that either enabled or inhibited the

speed of delivery and the degree of stability in the soft-

ware product. The factors fall into one of three common

situations:

1. When the project was going well, teams applied

foundational Agile practices commonly touted as

“enablers of success,” such as daily Scrum meetings,

©2013 Carnegie Mellon University. All rights reserved.CUTTER IT JOURNAL June 20136

Beyond Scrum + XP: Agile Architecture Practice

by Ipek Ozkaya, Robert L. Nord, Stephany Bellomo, and Heidi Brayer

A NEED FOR (STABLE) SPEED

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

D
e

li
v

e
ry

 t
e

m
p

o

Time

A sudden fall in delivery tempo draws

management attention and triggers

a focus on stability.

Figure 1 — A common pattern of delivery tempo
in support of rapid fielding.

7Get The Cutter Edge free: www.cutter.com Vol. 26, No. 6 CUTTER IT JOURNAL

a Scrum collaborative management style, continuous

integration, test-driven development, and so on.

Small dedicated teams are able to stay within bounds

due to the well-known nature of the infrastructure

and the limited scope of the project. Teams facing

issues of scale and complexity are able to stay within

bounds because of awareness across the organization

of the need to maintain the infrastructure.

2. When teams encountered a problem that was taking

them away from their desired state, they would often

combine Agile practices with architecture and other

disciplines, such as management and engineering,

to make incremental adjustments to ensure they had

sufficient technological infrastructure to support

development.

3. When teams encountered problems that were not

visible to management and stakeholders, the adjust-

ments were disruptive. Solutions were delayed until

the chronic problem became visible. In certain cases,

it was not possible to adjust course because the prob-

lem became visible too late; the project was not able

to deliver, and the team failed.

HYBRID PRACTICES THAT ENABLE FAST,
STABLE DEVELOPMENT

Our interviews revealed the following examples of

Agile architecture practices that enable speed and

stability:

n Release planning with architecture considerations

n Prototyping with a quality attribute focus

n Roadmap planning with external dependency

analysis

n Merging of test-driven practices (e.g., automated

test-driven development and continuous integration)

with a focus on runtime qualities (e.g., performance,

scalability, and security)

n Technical debt monitoring with a quality attribute

focus

These Agile architecture practices allow more experi-

enced practitioners to avoid project slowdowns related

to stability issues with minimal disruption to capability

delivery. While these practices have been advocated

for a while, using them within the confines of a well-

defined process, such as Scrum, becomes challenging.

We will now describe in more depth two of these prac-

tices that all five organizations used: release planning

with architecture considerations and roadmap planning

with external dependency analysis.

Release Planning with Architecture Considerations

Development teams often incorporated architecture

considerations into release planning in response to

problems associated with prioritizing features visible to

the stakeholder. One organization adopted the Scrum

release planning management process without much

visibility into the infrastructure needs. The increasing

focus on rapid delivery inevitably made the organiza-

tion realize that its teams needed to work in parallel to

meet schedule demands. So the business moved from

a centralized development model to a geographically

distributed work model. Delivery slowed, however,

because there was not enough architectural definition

in the feature documentation to allow the teams to

work independently. This triggered a closer look into

the infrastructure and a more stable architecture. The

outcome was to incorporate more explicit infrastructure

and architecture planning into release planning and not

simply focus on the high-priority features.

The important and unexpected observation revealed by

our interviews is that all the organizations recognized

that without incorporating architecture into release plan-

ning, it is not possible to achieve the expected delivery

tempo after significant and unexpected change. In all

cases, the projects initially appeared within bounds of

their desired state, and issues were visible. It was only

after the disruption that the teams sought deeper visi-

bility into the project.

Roadmap Planning with External Dependency Analysis

One organization incorporated external dependency

analysis into its roadmap planning process. This

approach reduced the risk of being blindsided by unan-

ticipated conditions due to dependencies on expertise

external to the team, infrastructure components gov-

erned by other parties, or difficult-to-reach users. For

instance, during the development of an operational

sprint, several firewall ports governed by an external

party were closed without notice, causing sporadic sta-

bility issues that were difficult to troubleshoot. Until this

event, the dependency on security decisions governed

by another team had not been realized as a critical

dependency that could impact the development effort.

Since this problem was holding up development, the

team took immediate action to analyze and reassess

external dependency risks that could affect their design

decisions and development. Team members then devised

a mitigation strategy for each risk. Some strategies

required modifications to the change management notifi-

cation process, and others required a deeper understand-

ing of dependencies on components being developed by

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

©2013 Carnegie Mellon University. All rights reserved.CUTTER IT JOURNAL June 20138

other teams. The roadmap document, which contained

a description of development by phases, was used to cap-

ture external dependency risks and mitigation strategies

at the portfolio level. The team incorporated the change

into the ongoing practices with limited disruption to

workflow; therefore, it followed the incremental response

cycle. The team also adopted the practice of continuing

to conduct external dependency analysis regularly to

identify external dependency risks at the roadmap level.

The criticality and impact of technical dependencies

intensify at scale. Such dependencies are also easy to

overlook because they may not be exercised daily or

even at each sprint. Therefore, the roadmapping level is

the right place to surface and track these dependencies.

It allows the architectural decisions to propagate cor-

rectly among software elements as a system is devel-

oped in breadth and depth and among the multiple

development teams across an organization.

INHIBITING FACTORS

The factors that prevented development teams from

rapidly delivering the software product, or mired

them in a state outside the bounds of acceptable soft-

ware development, included often-observed inhibitors

such as slow business decision-making processes,

limitations in measuring architectural technical debt,

overdependency on the architect for architecture knowl-

edge, and stability-related efforts not entirely visible to

the business.

The inability to deal with scale and complexity also

emerged as a factor. Development teams from four

of the five organizations described situations in which

they were not able to complete test cases within the

targeted iteration due to increasing software complexity

and limitations in expertise and/or tools. They also

reported that excessive focus on speed, and difficulty

in making architectural problems visible to the business

side of an operation, often led to major redesigns or

bug-fixing sprints.

Many of these negative outcomes are the result of incon-

sistent and incorrect applications of Agile and/or archi-

tecture practices. Several factors can be traced back to

their enabling counterparts. For example, a desire to

quickly deliver features caused stakeholders to overlook

the importance of stability and limited requirements

analysis and stability-related work. Demonstrating the

criticality of stability required improved measurement of

technical debt. Two of the organizations took actions to

improve their visibility into technical debt by tracking it

explicitly in their backlogs.

Organizations acknowledged the tradeoffs they experi-

enced when taking shortcuts in software development

to accelerate delivery. They are now more aware of

how degraded quality leads to technical debt and

are taking steps to address it. In response to business

pressure, organizations sometimes embedded architec-

tural changes within unrelated features during develop-

ment. This lack of transparency can result in incorrect

productivity measures as well as unanticipated sched-

ule impacts. They expressed the belief that if they were

able to make technical debt more visible to stakehold-

ers, they could avoid potentially costly and disruptive

changes in favor of more incremental changes support-

ing a sustainable delivery tempo. We call this “technical

debt monitoring with a quality attribute focus.”

TRANSITIONING ENABLERS OF CHANGE

In a recent blog post, Ken Schwaber said he would like

to change the mindset of “Scrum But” to “Scrum And.”2

He explained that the use of “Scrum And” character-

izes an organization that is on a path of continuous

improvement in software development beyond the

basic use of Scrum. He gave this example to illustrate

the concept of extending Scrum: “We use Scrum, and

we are continuously building, testing, and deploying

our increments every Sprint.” The experiences

described by organizations we interviewed support

the stance that practice extensions are needed and

anticipated in iterative and incremental development.

Evidence from Guest Editor and Cutter Senior

Consultant Scott Ambler’s Agile project initiation

survey has also shown consistent results with the

experience of the teams we interviewed.3

In this new “Agile And” world, some organizations

are moving toward Disciplined Agile Delivery (DAD),

a hybrid, people-focused IT approach developed by

Ambler. In line with our observations from practice,

such new-generation software development practices

place the emphasis on a full delivery lifecycle that is

process goal–driven and incorporates architecture

and enterprise awareness.4 Others are embracing the

Scaled Agile Framework (SAFe) developed by Dean

Leffingwell and colleagues, not only incorporating

architecture explicitly into the development lifecycle,

but also Lean methods and portfolio management.5

At the SEI, we work with organizations that must oper-

ate in a climate of ever-shrinking budgets coupled with

near-constant demands for new capabilities. We advise

organizations looking to adopt or enhance Agile prac-

tices in their pursuit of rapid delivery to begin by con-

ducting a review of architecture-centric risk factors for

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

9Get The Cutter Edge free: www.cutter.com Vol. 26, No. 6 CUTTER IT JOURNAL

adoption of large-scale Agile software development.

While Agile architecture practices can help these orga-

nizations ensure the stability of the systems they are

fielding, it is important to understand the root causes

of the inability to deliver at the expected pace and how

the tension between speed and stability is managed.

Organizations must also make the problems more

visible to developers, management, and stakeholders.6

When considering how to combine Agile and archi-

tecture practices, organizations must first ask the

following questions:

n Are we delivering software to our customer at an

expected pace?

n Are we aware of problems that are cropping up as

a result of losing focus on architecting when Agile

adoption activities become the primary focus?

n Does our technical roadmap address short-term

and long-term issues?

n Does the team of software developers have skills

that would enable them to successfully implement

Agile and architecture?

n Do we have visibility into not only the project

management of the system, but also the quality

expected from the system?

We hope that by codifying and sharing the practices

described above, other organizations can learn to apply

these approaches to contend with the demands of

rapidly delivering software that is reliable, stable,

and flexible in a fast-changing environment.

ACKNOWLEDGMENT

This material is based upon work funded and supported

by the US Department of Defense under Contract No.

FA8721-05-C-0003 with Carnegie Mellon University for

the operation of the Software Engineering Institute, a

federally funded research and development center.

ENDNOTES

1Bellomo, Stephany, Robert L. Nord, and Ipek Ozkaya. “A

Study of Enabling Factors for Rapid Fielding: Combined

Practices to Balance Speed and Stability.” Paper presented at

the International Conference on Software Engineering (ICSE) 2013,

San Francisco, California, USA, 18-26 May 2013.

2Schwaber, Ken. “Scrum But Replaced by Scrum And.” Telling

It Like It Is, 5 April 2012 (http://kenschwaber.wordpress.com/

2012/04/05/scrum-but-replaced-by-scrum-and).

3Ambler, Scott W. “Agile Project Initiation Survey Results:

July/August 2009.” Ambysoft, 2009 (www.ambysoft.com/

surveys/projectInitiation2009.html).

4Ambler, Scott W., and Mark Lines. Disciplined Agile Delivery:

A Practitioner’s Guide to Agile Software Delivery in the Enterprise.

IBM Press, 2012.

5Leffingwell, Dean. “Scaled Agile Framework”

(http://scaledAgileframework.com).

6Gagliardi, Michael, Robert L. Nord, and Ipek Ozkaya.

“Architecting for Large Scale Agile Software Development:

A Risk-Driven Approach.” CrossTalk, May/June 2013.

Ipek Ozkaya is a senior member of the technical staff at the Carnegie

Mellon Software Engineering Institute (SEI). With her team at the

SEI, she works to help organizations improve their software develop-

ment efficiency and system evolution. Dr. Ozkaya’s work focuses

on software architecture practices, software economics, and require-

ments management. She serves as chair of the advisory board of IEEE

Software magazine and as an adjunct faculty member for the Master

of Software Engineering Program at Carnegie Mellon University

(CMU). Dr. Ozkaya holds a PhD in computational design from CMU.

She can be reached at ozkaya@sei.cmu.edu.

Robert L. Nord is a senior member of the technical staff at the SEI,

where he focuses on Agile and architecting at scale and works to

develop and communicate effective methods and practices for soft-

ware architecture. He is coauthor of the practitioner-oriented books

Applied Software Architecture and Documenting Software

Architectures: Views and Beyond, and he lectures on architecture-

centric approaches. Dr. Nord is a member of the steering committee

of the WICSA Conference Series, in addition to organizing events at

software engineering, Agile, and architecture venues. He earned a

PhD from CMU and is a distinguished member of the ACM. He can

be reached at rn@sei.cmu.edu.

Stephany Bellomo is a senior member of the technical staff at the SEI,

serving in the Architecture Practices group and the Value-Driven

Incremental Development research team. Ms. Bellomo is currently

focused on work in the area of Agile and architecture practices. Prior

to that, she focused on other areas such as service-oriented systems

and Agile and information assurance. In support of this work, she has

authored papers/reports, delivered presentations, served on panels,

and provided onsite technical support. Ms. Bellomo was Tutorial

Chair for the 2013 SEI Architecture Technology User Network

(SATURN) Conference and a technical reviewer for submissions

to the SEI Software Product Lines conference. She teaches the

SEI courses “Service-Oriented Architecture Migration of Legacy

Components” and “Software Architecture Principles and Practice.”

Ms. Bellomo received a master’s degree in software engineering

from George Mason University. She can be reached at sbellomo@

sei.cmu.edu.

Heidi Brayer is a writer and editor at the SEI. Her work focuses on

writing and editing a weekly blog to highlight SEI research initiatives.

She also produces the SEI Podcast Series, which is available on the

SEI website and on CMU’s iTunes U channel. She earned a master’s

degree from CMU’s Master of Professional Writing program. She can

be reached at hap@sei.cmu.edu.

NOT FOR DISTRIBUTION • For authorized use, contact

Cutter Consortium: +1 781 648 8700 • service@cutter.com

