
Toward Simpler, not Simplistic, Quantification of
Software Architecture and Metrics

Report on the Second International Workshop on
Software Architecture and Metrics

Ipek Ozkaya, Robert L. Nord
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

{ozkaya, rn}@sei.cmu.edu

Heiko Koziolek
ABB Corporate Research

Ladenburg, Germany

heiko.koziolek@de.abb.com

Paris Avgeriou
University of Groningen

Groningen, NL

paris@cs.rug.nl

ABSTRACT
Architects of complex software systems face the challenge of how best
to assess the achievement of quality attributes and other key system
drivers, how to reveal issues and risks early, and how to make decisions
about architecture improvement. Software architecture quality has a large
impact on this effort, but it is usually not assessed with quantitative
measures. A software architecture metric quantifies architecture quality,
value, and cost. While it is highly desirable to improve feedback between
development and deployment through measurable means for intrinsic
quality, value, and cost, efforts in software architecture quality
measurement have lagged behind the body of work focusing on code
quality. The goal of the Second International Workshop on Software
Architecture and Metrics was to discuss progress on architecture and
metrics, measurement, and analysis; to gather empirical evidence on the
use and effectiveness of metrics; and to identify priorities for a research
agenda.

Categories and Subject Descriptors
D.2.8 [Metrics], D.2.9 [Management], D.2.11 [Software Architectures].

General Terms
Design, Management, Measurement.

Keywords
Software architecture, metrics, software analytics, technical debt,
software quality, software maintenance and evolution, empirical software
engineering, qualitative methods.

INTRODUCTION
Software engineers of complex software systems face the challenge of
how best to assess the achievement of quality attributes and other key
system drivers, how to reveal issues and risks early, and how to make
decisions about architecture and system evolution. They increasing need
to provide condensed, quantified measurement points for architecture
quality. Tracking these measurement points over time can provide insight
for managing the pace of software delivery, legacy system evolution, and
technology churn. Lack of feedback between development and
deployment through measurable means for intrinsic quality, value, and
cost has been a key barrier in providing information to assist quantitative
and qualitative decision making. The goal of this workshop is to bring
together the bodies of work of Software Architecture and Metrics, to
bridge this gap.
IEEE1061 defines a software quality metric as “a function whose inputs
are software data and whose output is a single numerical value that can
be interpreted as the degree to which software possesses a given attribute
that affects its quality.” The software engineering community has
developed metrics to measure the quality of source code (e.g., size,
complexity, coupling, stability). There are also tools for such metrics,

such as development environments like Eclipse, Visual Studio, and IDEA
or static code analysis tools like Understand, Klocwork, or NDepend. In
addition, an active software analytics community mines code repositories
(e.g., [1][2][3][4]), issue trackers, and version histories for actionable [5]
information.
Despite this substantial body of work focusing on code quality and
metrics, its applicability is not proven at the design and architecture levels
or at scale. Furthermore, measuring software architecture has received
much less attention in research and practice though it is critical to a
software system’s quality [6]. The most widely used techniques in
architecture assessment and decision making rely on expert judgment.
We are interested in exploring whether architecture can assist with better
contextualizing of existing system and code quality and metrics
approaches. Furthermore, we ask whether we need additional
architecture-level metrics to make progress in this exploration and
whether something as complex and subtle as software architecture can be
quantified.
To this end, we initiated the organization of the International Workshop
on Software Architecture and Metrics (SAM) series [7]. We proposed a
definition for the term software architecture metric as follows: “a
software quality metric that concerns software architecture and quantifies
architecture quality, value, and cost.” Different artifacts provide input for
computing a software architecture metric: informal architectural
documentation, architecture models and views, architecture decisions,
source code, byte code, and trace links between an architecture and other
artifacts.
The goal of the SAM workshop series is to establish a community that
will investigate software architecture and metrics. Furthermore, it aspires
to foster discussion on the quality of existing software architecture
metrics and create a future research agenda [8][9][10][11][12]. During
the first workshop, participants articulated the following challenges [7]:

 How can informal best practices of architecting be codified to
derive quantitative metrics?

 Which measures of architecture complexity are most useful so that
architects and developers can take actions on appropriate
refactorings?

 How can architecture design decisions that are usually captured in
textual form, without quantitative quality indicators, be
quantitatively assessed for the goodness of architecture decisions?

 How can informal artifacts such as architecture documentation be
incorporated into metrics computations to complement the source
code, which may not be easy to navigate, to understand tactical
decisions?

 How can domain-specific software architecture metrics be
defined, and what would their advantage be for certain business

DOI: 10.1145/2815021.2815037
http://doi.acm.org/10.1145/2815021.2815037

ACM SIGSOFT Software Engineering Notes Page 43 September 2015 Volume 40 Number 5

domains (e.g., banking, insurance, avionics, industrial) or
technical domains (e.g., embedded, distributed, desktop)?

 When are quantitative metrics more beneficial than qualitative
assessments and vice versa?

Potential solutions discussed during the first workshop included creating
architecture metrics catalogs, deriving architecture metrics from patterns
and styles, establishing a common test bed for architecture metrics, and
developing good metrics-computation tools. During the second
workshop, which was held in conjunction with the 37th International
Conference on Software Engineering (ICSE 2015), presentations focused
on driving and categorizing architecture metrics through different
architecture approaches such as patterns, styles, and views and
developing good tools for communicating the results to different
stakeholders, from developers to management decision makers.
The remainder of this paper is structured as follows. Section 2
summarizes presentations of the workshop’s participants, illustrating
different perspectives on the topic. Section 3 summarizes the discussions
that occurred during the workshop by highlighting the potential
immediate actions that industry and researchers can take.

 WORKSHOP CONTRIBUTIONS
The workshop brought together 25 attendees and featured two keynote
presentations and nine paper presentations that are available for
download [13].

2.1 Keynotes
Kits to Find Bits that Fits (Some Notes on Architecture and Context),
presented by Tim Menzies, North Carolina State University. In this
presentation, Menzies emphasized that while there is good research in
improving the predictive power of software quality metrics, it does not
translate well to explain what the metric communicates to the business
and other stakeholders. He reflected from his experience that different
projects use different metrics for predicting for example defects. Many
of the metrics observed at the static code level act differently in different
contexts (often contradicting each other), resulting in low external
validity and hence low adoption in practice. To be useful, metrics should
be studied in their context. Menzies maintained that the actual metrics are
not as important per se; it’s the discussion that takes place when they are
shown to stakeholders. Furthermore, large industries are shifting from
measuring source code quality to measuring usage data (e.g., exploring
which features are actually used). Software quality and measurement
work is based on the assumption that systems and their architectures are
hard and costly to change. Menzies argued that as improved development
tools and programming become more mainstream, programmers and
rework may become cheaper. If rework were not as costly, would our
software architecture and quality metrics challenges and gaps still be
relevant? Does it still make sense to come up with universal metrics, or
is it more beneficial to derive bottom-up metrics for specific domains and
technologies?

Measuring Software: From Data to Actionable Knowledge, presented
by Radu Marinescu, Politehnica University of Timisoara. This keynote
reported results from work on building software quality measurement and
management tools. Marinescu argued that current tools often risk
overemphasizing one aspect of the software under development (to
optimize one metric) and compromising another aspect (whose metric
was not taken into account). He further observed that to make metrics
useful, the fundamental mechanisms need to be abstracted from the
developers so that the metrics can be useful to them. He gave as an
example the “god class,” where expressing the problem of one class
doing too much and being tightly coupled communicates the issue to
developers much better than presenting the coupling metric of that
particular class. Marinescu emphasized that spotting tactical problems is
a bigger challenge and suggested encapsulating metrics in rules to make
progress. He also warned that through false-positive results, tools can
unintentionally introduce confusion and loss of confidence among
developers. How can we make innovative use of software architecture

and metrics together encapsulated as rules to detect tactical flaws that
slowly diminish the quality of systems? How can we make architecture
decisions by looking at system-wide quality attributes and their tradeoffs
instead of at individual qualities?

2.2 Paper Presentations
Paper presentations were limited to seven minutes, followed by a
discussion of the work presented, led by a selected discussant.

Metrics for Architectural Synthesis and Evaluation: Use Cases and
Compilation by Viewpoint, authored by Olaf Zimmermann, HSR FHO,
Switzerland. This work reported on industrial experience in using
architecture metrics. Zimmerman explained that architects are motivated
to use architecture metrics by the following goals: (a) make and justify
architectural decisions, (b) categorize design problems and solutions
according to their business context and technical complexity, and (c)
compare similar architectures. The metrics that Zimmerman used in
practice were mostly sized-based counters, such as number and weight of
use cases, number of external interfaces, and number of options
considered per problem. Based on these experiences, Zimmerman
emphasized that use and relevance of architecture metrics can potentially
increase if they are thought through based on the viewpoint of the
architecture. For example, measurement approaches applicable when
considering the development viewpoint may be different and need to
complement applicable physical and process viewpoints.

A Metric-Based Approach to Managing Architecture-Related
Impediments in Product Development Flow: An Industry Case Study
from Cisco, authored by Ken Power, Cisco Systems, Ireland; and Kieran
Conboy, National University of Galway, Ireland. This presentation
summarized a case study of how architecture-related impediments impact
the flow of work in software engineering teams and organizations. The
presentation described how using concepts of flow uncovered early
indicators of architectural problems that were impeding creating value
for the customer. Focusing on a balance of qualification and
quantification using architecture epics, the organization was able to
detect when architecture became a cause of interrupted delivery.

Evolution of Object-Oriented Coupling Metrics: A Sampling of 25
Years of Research, authored by Ana Nicolaescu, Horst Lichter, and Yi
Xu, RWTH Aachen University, Germany. This presentation reviewed the
development and use of coupling metrics and their impact on quality
attributes. Thousands of metrics are available in digital libraries, mostly
on academic-based systems, but they are accompanied by little evidence.
Nicolaescu and colleagues reviewed 26 of the most influential research
papers focusing on coupling, complexity, and maintainability. Their
analysis revealed that while a very strong theoretical background has
been developed, the impact of such coupling and complexity research on
practitioners, industry practices, and software analysis tooling is not clear
and observable. The authors suggested that the direction of current
research should shift toward systematizing and evaluating existing results
rather than exploring new applicability domains and defining new metric
suites.

Toward Assessing Software Architecture Quality by Exploiting Code
Smell Relations, authored by Francesca Arcelli Fontana, University of
Milano Bicocca, Italy; Vincenzo Ferme, University of Lugano,
Switzerland; and Marco Zanoni, University of Milano Bicocca, Italy.
This presentation reported results of evaluating software architecture
quality using thresholds as a distribution rather than focusing on single-
value results. The presentation emphasized that detecting code or
architectural anomalies that give useful hints about possible architecture
degradation are more valuable when looking at their co-occurrences. The
authors conclude that clusters of code anomalies tend to be better
indicators of architectural degradation and maintainability issues than
simple metrics evaluation.

An Analysis of Techniques and Methods for Technical Debt
Management: A Reflection from the Architecture, authored by Carlos
Fernandez-Sanchez, Juan Garbajosa, Carlos Vidal, and Agustin Yague,

ACM SIGSOFT Software Engineering Notes Page 44 September 2015 Volume 40 Number 5

Technical University of Madrid, Spain. In this paper, the authors
positioned that software architecture and metrics need to be brought
together effectively in order to make progress in technical debt
management. The presentation summarized a systematic mapping study
of available techniques for managing technical debt by highlighting the
gaps in software architecture and quantification.

Exploring the Stability of Software with Time-Series Cross-Sectional
Data, authored by Jukka Ruohonen, Sami Hyrynsalmi, and Ville
Leppänen, University of Turku, Finland. This work investigates stability
of software architectures in terms of an object-oriented design principle
presented by Robert C. Martin, including abstraction and instability. The
authors evaluated the design principle with a time-series cross-sectional
regression model. The empirical sample covers a release history from the
Java library Vaadin that includes 73 versions and 14 packages. The
empirical results establish that the design principle alone could not be
used to characterize the library.

Comparing the Applicability of Complexity Measurements for
Simulink Models During Integration, authored by Jan Schröder and
Christian Berger, University of Gothenburg, Sweden; Thomas Herpel,
Automotive Safety Technologies GmbH, Germany; and Miroslaw
Staron, University of Gothenburg, Sweden. This work focused on the
increase in automotive software by highlighting the growing number of
Simulink models for control logic and plant models, which also result in
increasing complexity of integration testing and model complexity. The
authors evaluated Simulink models from two vehicle projects at a
German premium car manufacturer by applying the following three
approaches: assessing a model’s (a) size, (b) structure, and (c) signal
routing. The measurements of 65 models resulted in comparable data for
the three measurement approaches. The interviews showed that the expert
opinion tends to favor the results of the simple size measurements over
the other two.

Architecture-Based Quality Attribute Synergies and Conflicts, authored
by Barry Boehm, University of Southern California, United States. This
presentation summarized research to develop quality attribute
requirement synergies and conflicts matrices that software system
engineers can use to identify potential areas of concern in balancing a
system’s relevant quality attributes. Boehm and colleagues studied key
quality attributes that included flexibility, dependability, mission
effectiveness, resource utilization, physical capability, cyber capability,
and interoperability. These quality attributes represented the top concerns
of stakeholders of large, mission-critical systems.

Using Metric Time Lines for Identifying Architecture Shortcomings in
Process Execution Architectures, authored by Daniel Lübke, Leibniz
Universität Hannover, Germany. This work focused on process execution
with service orchestrations for developing business software systems and
the challenge of not having business process-related metrics for this
architectural style. This presentation described an exploratory study that
uses timelines of static process size metrics for constant feedback to
software architects that deal with process-oriented architectures. Lübke
suggested that by following static code metrics over time, architects can
gain a better understanding of how processes and the whole system
evolve and whether the metrics provide the expected results as the
software evolves.

DISCUSSION
Workshop presenters and participants agreed that in order to make
progress toward quantification of architecture quality, value, and cost that
is relevant to both developers and business stakeholders, effective
quantification that combines software architecture and metrics should

 demonstrate useful threshold distributions as opposed to
single-value measurements or thresholds

 be supported by software development tools that translate,
explain, and contextualize the meaning of the metrics for the
stakeholders

 be able to cluster several different quality issues that are
relevant rather than focus on isolated issues

 uncover tactical design flaws that slowly degrade the system
rather than focus on only execution flaws or defects

 encapsulate design rules
 aim at meaningful discussion among stakeholders instead of

blind execution of metric improvement
 avoid one-size-fits-all approaches but focus on individual

domains and technologies
 be accompanied by convincing evidence of industrial scale

A major discussion point during the SAM 2015 workshop was the need
to bridge the explanation gap for not only business stakeholders but also
software developers. Many related code quality metrics do not get
adopted due to false-negative results, overhead introduced by tools, and
overly complex measurement approaches without immediate value.
While using software architecture as an anchor can help avoid such risks,
relevance and simple but useful measurement should be the goals.
Finally, the SAM community acknowledges that we do not really have
solid theories for measuring architecture quality, value, and cost. This is
not necessarily a problem, as we have learned in other software
engineering fields. As long as we develop metrics that work and can be
used in practice, we can learn valuable lessons. Theories will follow.

3.1 What Problems Are Relevant to Industry?
Some of industry’s immediate challenges that have potential relevance to
software architecture metrics include the following:
Limited time to compile and interpret the metrics: For a metric to have
potential for adoption, it must be easy to use, easy to understand what it
is good for, and fully automated. Developers need feedback about the
actual impact of rule violations to understand the immediate problem.
Inability to relate design decisions to concrete software architecture
artifacts: Architectural metrics are usually difficult to measure because
they are related to the decisions that developers make. Metrics related to
source code are easier to understand; hence, they dominate the
measurements that industry employs despite the fact that their uses are
very context specific.
Inability to uncover best practices and success stories: Industry
participants emphasized that there is a lot of evidence in industry that if
you derive these metrics for software architecture, you obtain a lot of
maintenance value. Unfortunately, these stories do not appear at
international conferences because they are one-off case studies. Creating
opportunities in which to share these case studies would provide
invaluable input and avoid wasted time in hypothesis creation and
research setup.

3.2 What Metrics Are Needed to Make
Reasonable Decisions?
A main theme in both the presentations and discussions was that without
simple, yet relevant approaches, making progress in this domain would
be hard.
A point measure of a metric may not be meaningful. The trends of
metrics, especially a sharp rise or drop in results, can carry more
significance than any single result. Time should be spent on defining use
cases of potential benefits of combining different metrics and software
architecture. Understanding different stakeholders and viewpoints could
also potentially help researchers and developers simplify metrics and
focus on more beneficial quantification techniques.
Quality attributes must be better utilized. Measurement approaches
should focus on the parts of a system that are likely to change. In addition,
they should focus on the quality attributes of highest priority. A system
that is optimizing for performance may have higher coupling and
cohesion values than expected, yet this may not indicate a problem.
Design-time qualities, such as “avoid vendor lock-in,” are particularly

ACM SIGSOFT Software Engineering Notes Page 45 September 2015 Volume 40 Number 5

difficult to quantify. Breaking them down to more tangible, simpler
components could be a solution.
Tools need to help interpretation, not only measurement. Metrics
should be used to understand the system, not just to assess the system.
They should relate to both value and cost and should help interpret the
results. Despite years of code quality work, executives do not fully
understand what they are getting in the delivered software, which is a
risk.
Role-based architectural metrics. Different target audiences may find
more meaning in different collections of architectural metrics. A CIO has
one view of a software system and its architectural metrics and a
developer responsible for a particular subsystem has another view.
Current tools for metrics calculation often assume a single stakeholder
role as the target audience, which can lead to confusion.

CONCLUSIONS
Given the broad participation by both academics and industrial
practitioners and the intense discussions that were held, we believe there
is interest and momentum to establish a substantial stream of work in this
area. Work presented at this second SAM workshop represented a healthy
cross-fertilization of software analysis tools, software architecture and
design decision making, and code quality. We already consider that the
identified research challenges and the solution approaches are a great
starting point for the research community, best driven forward in close
collaboration with the industry. Finally, we believe in the cross-
fertilization between the SAM community and the other communities
related to metrics, software analytics, and mining software repositories.
We are amenable to organizing future editions of the workshop and
supporting the SAM community to grow and flourish.

ACKNOWLEDGMENTS
Putting together SAM 2015 was a team effort. We thank the authors of
all submitted papers and invited speakers for providing the content of the
program. We would like to express our gratitude to the program
committee, who contributed their expertise, provided valuable feedback
to the authors, and helped improve the quality of the accepted papers:

 Pierre America, Philips Research, NL
 Ayse Bener, Ryerson University, CA
 Barry Boehm, University of Southern California, US
 Eric Bouwers, Technical University Delft, NL
 Yuangfang Cai, Drexel University, US
 Jane Cleland-Huang, DePaul University, US
 Rich Hilliard, Consulting Software Systems Architect, US
 Oliver Hummel, iQser, DE
 Anton Jansen, ABB, SE
 Rainer Koschke, University of Bremen, DE
 Philippe Kruchten, University of British Columbia, CA
 Patricia Lago, VU University, NL
 Nazim Madhavji, University of Western Ontario, CA
 Radu Marinescu, “Politehnica” University of Timisoara, RO
 Tim Menzies, North Carolina State University, US
 Matthias Naab, Fraunhofer, DE
 Oscar Pastor, Valencia University of Technology, ES
 Neeraj Sangal, Lattix, US
 Jean-Guy Schneider, Swinburne University of Technology, AU

 Bran Selic, Malina Software Corp., CA
 Will Snipes, ABB, US
 Michael Stal, Siemens, DE
 Robert Stoddard, Software Engineering Institute, US
 Uwe Zdun, University of Vienna, AT
 Liming Zhu, National ICT Australia, AU
 Olaf Zimmermann, University of Applied Sciences, CH
 Tom Zimmermann, Microsoft Research, USA

DISCLAIMER
The views and conclusions contained in this document are solely those
of the individual authors(s) and should not be interpreted as representing
official policies, either expressed or implied, of the Software Engineering
Institute, Carnegie Mellon University, the U.S. Air Force, the U.S.
Department of Defense, or the U.S. government.

REFERENCES
[1] The Working Conference on Mining Software Repositories.

http://www.msrconf.org/.
[2] Menzies, T. and Zimmermann, T. 2013. Software analytics: so what? IEEE

Software 30, 4 (Jul./Aug. 2013), 31-37.
[3] Xie, T., Zimmermann, T., and van Deursen, A. 2013. Introduction to the

special issue on mining software repositories. Empir. Softw. Eng. 18, 6
(Dec. 2013), 1043-1046.

[4] Workshop on Emerging Trends in Software Metrics (WeTSOM).
http://www.rcost.unisannio.it/wetsom2014/#previouseditions.

[5] Zimmermann, T., Weißgerber, P., Diehl, S., and Zeller, A. 2004. Mining
version histories to guide software changes. In Proceedings of the 26th
International Conference on Software Engineering (Edinburgh, UK, May
23-28, 2004). IEEE Computer Society, Washington, DC, 563-572.

[6] Avgeriou, P., Stal, M., and Hilliard, R. 2013. Architecture sustainability.
IEEE Software 30, 6 (Nov./Dec. 2013), 40-44.

[7] Nord, R. L., Ozkaya, I., Koziolek, H., and Avgeriou, P. 2014. Quantifying
software architecture quality report on the First International Workshop on
Software Architecture Metrics. ACM SIGSOFT 39, 5 (Sep. 2014), 4:32-
4:34.

[8] Koziolek, H. 2011. Sustainability evaluation of software architectures: a
systematic review. In Proceedings of the Joint ACM SIGSOFT Conference
– QoSA and ACM SIGSOFT Symposium – ISARCS on Quality of Software
Architectures – QoSA and Architecting Critical Systems (Boulder, CO, Jun.
20-24, 2011). ISARCS, New York, NY, 3-12.

[9] Kruchten, P., Nord, R., and Ozkaya, I., Eds. 2012. IEEE Software, Special
Issue on Technical Debt, 29, 6 (Nov./Dec. 2012).

[10] Callo Arias, T., van der Spek, P., and Avgeriou, P. 2011. A practice-driven
systematic review of dependency analysis solutions. Empir. Softw. Eng. 16,
5 (Oct. 2011), 1-43.

[11] Macia, I., Garcia, J., Popescu, D., Garcia, A., Medvidovic, N., and von
Staa, V. 2012. Are automatically-detected code anomalies relevant to
architectural modularity? An exploratory analysis of evolving systems. In
Proceedings of the 11th Annual International Conference on Aspect-
Oriented Software Development (Potsdam, Germany, Mar. 25-30, 2012).
ACM, New York, NY, 167-178.

[12] Bouwers, E., van Deursen, A., and Visser, J. 2013. Evaluating usefulness
of software metrics: an industrial experience report. In Proceedings of the
2013 International Conference on Software Engineering (San Francisco,
CA, May 18-26, 2013). IEEE Press, Piscataway, NJ, 921-930.

[13] Second International Workshop on Software Architecture Metrics.
http://www.sei.cmu.edu/community/sam2015/.

ACM SIGSOFT Software Engineering Notes Page 46 September 2015 Volume 40 Number 5

