
Technical Debt in Software Development: from Metaphor to Theory
Report on the

Third International Workshop on Managing Technical Debt

Philippe Kruchten1, Robert L. Nord2, Ipek Ozkaya2, and Joost Visser3

1 University of British Columbia, Canada
pbk@ece.ubc.ca

2 Software Engineering Institute, Carnegie Mellon University, USA
rn@sei.cmu.edu, ozkaya@sei.cmu.edu

3Software Improvement Group, Netherlands
j.visser@sig.eu

DOI: 10.1145/2347696.2347698
http://doi.acm.org/10.1145/2347696.2347698

Abstract
The technical debt metaphor is gaining significant traction in the soft-
ware development community as a way to understand and communicate
issues of intrinsic quality, value, and cost. This is a report on a third
workshop on managing technical debt, which took place as part of the
34rd International Conference on Software Engineering (ICSE 2012).
The goal of this third workshop was to discuss managing technical debt
as a part of the research agenda for the software engineering field, in
particular focusing on eliciting and visualizing debt, and creating pay-
back strategies.
Keywords: technical debt, software economics, software quality

Introduction
Software developers and corporate managers frequently disagree

about important decisions regarding how to invest scarce resources in
development projects, especially for internal quality aspects that are
crucial to system sustainability, but are largely invisible to management
and customers, and do not generate short-term revenue. These aspects
include code and design quality and documentation. Engineers and de-
velopers often advocate for investments in these areas, but executives
question their value and frequently decline to approve them, to the long-
term detriment of software projects. The situation is exacerbated in pro-
jects that must balance short deadlines with long-term sustainability.

The technical debt metaphor is gaining significant traction in the
software development community, as a way to understand and com-
municate issues regarding intrinsic quality, value, and cost. Ward Cun-
ningham first coined the metaphor in his 1992 Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA) experience report in defense of relentless refactoring as a
means of managing debt 1.

Technical debt is based on the idea that developers sometimes accept
compromises in a system in one dimension (e.g., modularity) to meet an
urgent demand in some other dimension (e.g., a deadline). Such com-
promises incur a debt on which interest must be paid and which should
be repaid at some point for the long-term health of the project.

There is a key difference between debt that results from employing
bad engineering practices and debt that is incurred through intentional
decision-making in pursuit of a strategic goal 2. While technical debt is
an appealing metaphor, theoretical foundations for its identification and
management are lacking. In addition, while the term was originally
coined in reference to coding practices, today the metaphor is applied
more broadly across the project life cycle and may include practices of

refactoring 3, test-driven development 4, iteration management 567,
software architecture 89, and software craftsmanship 10.

The concept of technical debt can provide a basis on which the vari-
ous stakeholders can reason about the best course of action for the evo-
lution of a software product. As reflected by the composition of our
program committee that includes practitioners, consultants, and re-
searchers, this area has significant relevance to practicing software en-
gineers and software engineering.

A first workshop on technical debt was held at the Software Engi-
neering Institute in Pittsburgh on June 2 to 3, 2010. Its outcomes were
published as a research position paper 11 summarizing the open re-
search questions in the area.

The goal of the second workshop in 2011 was to come up with a
more in-depth understanding of technical debt, its definition(s), charac-
teristics, its different forms. The discussions of the second workshop
proved that there is an increasing need to formulate a clear research
agenda that is well-aligned with the industry challenges 12.

The goal of this third workshop was to discuss managing technical
debt as a part of the research agenda for the software engineering field,
in particular focusing on eliciting and visualizing debt, and creating pay-
back strategies. One objective related to this goal was to understand the
processes that lead to technical debt and its indicators, such as degrading
system quality and inability to maintain code. A second objective was to
understand how to handle technical debt by examining payback strate-
gies and investigating the type of tooling that may be required to assist
software developers and development managers to assess its cost. The
discussions of the third workshop proved that there is an increasing need
to formulate a clear research agenda that is well-aligned with the indus-
try challenges.

The Workshop
The software engineering community is in the process of building the

research agenda around managing technical debt. The purpose of these
initial workshops is to bring forward work in progress and ideas from
the entire community to collectively vet their validity for the future.

The workshop was structured to facilitate a dialog between two par-
ticular groups: 1) software engineers who need to elicit, communicate,
and manage technical debt pertaining to different facets of their projects;
and 2) researchers who examine different aspects of technical debt, with
particular interest in applying their research in practice and collecting
empirical evidence related to their research as it applies to technical
debt.

ACM SIGSOFT Software Engineering Notes Page 36 September 2012 Volume 37 Number 5

Managing technical debt is a broad concern of software engineering
that blends research and practice. This can be seen from the program
and those involved in the workshop program selection process. The
workshop had six sessions, each dedicated to a specific subject. We had
12 paper presentations grouped into four topics and two guided discus-
sions 12.

� Industry challenges for the research community
� Landscape and other perspectives of technical debt in the soft-

ware development lifecycle
� Discussion on the topic: Can we formulate the technical debt

landscape?
� Eliciting and visualizing debt
� Research perspective on code and defects
� Discussion on the topic: What kinds of tools and techniques do

we envision to help practitioners tackle technical debt?
The accepted submissions cover a range of topics such as: estimating

the size and cost of debt, eliciting and visualizing debt, the technical
debt landscape ranging from technical debt in software ecosystems to
requirements, design and build, and the relationship between code de-
fects and debt. For the complete set of workshop papers, see the ICSE
2012 proceedings at the IEEE Digital Library 14.

Here is a summary of these sessions, highlighting new insights that
emerged.

First Steps From Metaphor to Theory
From the original description by Cunningham (“not quite right code”

which we postpone making it right 1), various people have used the
concept of technical “debt” to describe many other kinds of debts or
“ills” of software development, encompassing broadly anything that
stands in the way of deploying, selling or evolving a software system,
anything that adds to the friction software development suffers from:
test debt, people debt, architectural debt. As a result, the concept of debt
gets somewhat diluted. Is a visible bug or defect technical debt? Is a
new requirement, a new function or feature not yet implemented re-
quirement debt?

Once we identify tools, such as static analyzers to assist us in the
identification of technical debt, there is a danger of equating technical
debt with “whatever the tool can detect.” This approach leads to leaving
aside large amounts of technical debt undetectable by tools: structural or
architectural debt, or technological gaps.

Gaps in technology are of particular interest since the debt incurred
is not the result of making a wrong choice, originally, but rather the
result of the evolution of the context, merely the passing of time, so that
the choice is “not quite right” in retrospect. Technical debt in this case is
due to external events: technological obsolescence, change of environ-
ment, rapid commercial success, advent of new and better technologies,
and so on.

To make some progress, we need to go beyond debt as a “rhetorical
concept” 11, we need a better definition of what constitutes technical
debt, and some perspective or viewpoints that allow us to reason across
a wide range of technical debt.

Fig. 1 shows a possible organization of a landscape of technical debt,
or rather of software improvement from a given state. We can distin-
guish visible elements such as potential new functionality and defects,
and the invisible elements (or rather, visible only to the software devel-
opers). We can see that on the left we are dealing mainly with software
evolution or difficulty of evolution, whereas on the right we are dealing
with quality issues, both internal and external quality. We propose to
limit the term “debt” to the invisible part, that is, the elements in the
box.

Once we scope the concept of technical debt, the next step is to move
from a useful metaphor, to a theoretical framework that would allow us
to reason about it.

GUTSI3: the Grand Unified Theory of Software
Improvement

A simple model to tackle technical debt is to consider a software de-
velopment endeavor as a sequence of changes, or improvements. At a
given point in time, the past set of changes is what defines the current
state of the software. Some of these changes are the events that have
triggered any of the current debt.

The main issue at hand is how to decide about future changes: what
evolution do we want to see the software system undergo, and in which
sequence? This evolution is in most cases constrained by cost: the re-
sources that we can apply to making these changes, and most likely
driven by value, as seen by the external stakeholders.

The decision making process about which sequence of changes we
want to apply could be the main reconciling point across the whole
landscape shown above, and since it is related to balancing cost and
value, maybe economic or financial models could become the unifying
concept;

� Net Present Value (NPV) for a product, from the finance world,
� Total Cost of Ownership (TCO) for an IT system, popularized in

1987 by the Gartner group
� Opportunity Cost
� Real Option Analysis (or valuation) (ROA)
During the workshop, of these four economic concepts, it seemed

that Net Present Value would be the most promising: better formalized
than opportunity cost, simpler and less proprietary than TCO, while
ROA can be seen as a probabilistic extension to NPV.

3 This sounded like Schwyzerdütsch, and we were in Zürich, after all;
plus a wink to GUTSE 15.

Figure 1: the technical debt landscape

ACM SIGSOFT Software Engineering Notes Page 37 September 2012 Volume 37 Number 5

Technical debt should not be treated in isolation from new function-
ality or defects, even if we chose not to include them in the definition of
“debt”. The challenge is expressing them all in terms of sequences of
changes, associated with a cost and a value (over time). These changes
are not independent. Their interdependencies play a big role, as M.
Denne and J. Cleland-Huang have shown, in particular visible features
dependent on less visible architectural aspects 1617.

Summary
The main future directions that were discussed are

� What should the research agenda look like? It should include:
o Characterizing debt.
o If defining technical debt is too difficult, can we say what

is not?
o Models to show where technical debt slows development

and where it speeds it up and where the breaking point ex-
ists such that it is no longer efficient to carry technical
debt.

o Debt transfers and externalities (costs someone incurs and
someone else pays for).

� A collection of examples of technical debt—having a catalog of
examples from various stakeholder points of view could help us
develop a better taxonomy. The collection could include:
o More studies grounding technical debt in industry with
case studies of genuine application of concepts to real situa-
tion (looking to invest to reduce the chaos of systems with ex-
pectation to produce profit).
o Dataset for case studies large and significant enough to be
available to all people; guidance on what to collect for the da-
taset.
o Reasoning about commercial-off-the-shelf (COTS) prod-
ucts and services in the cloud, technical debt in ecosystems.

� Relating to mathematical theory of decisions such as:
o Decision making under uncertainty in a multi-attribute world;

depending on the situation, different valuation approaches
makes sense.

o Decision support (not just static analysis but other analyses
that feed into decision support).

o Dynamic decision making (real options is one technique;
when, if ever, do you pay down debt; when is the optimal time
to exercise an option to make an investment).

� While technical debt has a strong negative connotation, it can
also be seen in a more positive light as a tactical investment in
a project, something to gain a temporary advantage to later be
repaid or not. Studies could include:

o Present value study – retrospective of efforts made to reduce
maintenance costs through refactoring.

Acknowledgments
We extend our thanks to all those who have participated in the organiza-
tion of this workshop, particularly to the program committee members:

� Eric Bouwers, Technical University Delft, Netherlands
� Yuangfang Cai, Drexel University, USA
� Rafael Capilla, Universidad Rey Juan Carlos, Spain
� Jeromy Carriere, eBay, USA
� Bill Curtis, CAST, USA
� Hakan Erdogmus, Kalemun Research, Canada
� David Garlan, Carnegie Mellon University, USA
� Israel Gat, Cutter Consortium, USA
� Matthew Heusser, Socialtext, USA

� Jim Highsmith, ThoughtWorks, USA
� Rick Kazman, University of Hawaii and the Software Engineering

Institute, USA
� Erin Lim, University of British Columbia, Canada
� Alan MacCormack, MIT, USA
� Don O'Connell, Boeing, USA
� Raghu Sangwan, Penn State University, USA
� Carolyn Seaman, University of Maryland Baltimore County, USA
� Kevin Sullivan, University of Virginia, USA
� Peri Tarr, IBM, USA
� Ted Theodoropoulus, Acrowire, USA

Disclaimer
The views and conclusions contained in this document are solely those
of the individual creator(s) and should not be interpreted as representing
official policies, either expressed or implied, of the Software Engineer-
ing Institute, Carnegie Mellon University, the U.S. Air Force, the U.S.
Department of Defense, or the U.S. Government.

References
1. Cunningham, W. 1992. The WyCash Portfolio Management Sys-

tem. OOPSLA’ 92 Experience Report.
2. McConnell, S. 2007. Technical Debt. 10x Software Development.

Available from: http://www.construx.com/Page.aspx?cid=2801
3. Fowler, M. 1999. Refactoring: Improving the Design of Existing

Code. Addison-Wesley Professional.
4. Erdogmus, H., Morisio, M., and Torchiano, M. 2005. On the Effec-

tiveness of the Test-First Approach to Programming. IEEE Trans.
Softw. Eng. 31, 3 (Mar. 2005), 226-237.

5. Cohn, M. 2006. Agile Estimation and Planning, Prentice Hall.
6. Highsmith, J. 2009. Agile Project Management, 2. Addison Wes-

ley.
7. Sutherland, J. 2005. Future of Scrum: Parallel Pipelining of Sprints

in Complex Projects. Proceedings of the Agile 2005 Conference,
IEEE CS, pp. 90-102.

8. Brown, N., Nord, R., Ozkaya, I. 2010. Enabling Agility through
Architecture, Crosstalk, Nov/Dec 2010.

9. InfoQ: What Color is your Backlog? Interview with Philippe
Kruchten, May 02, 2010. Available from:
http://www.infoq.com/news/2010/05/what-color-backlog

10. Martin, Robert C. 2008. Clean Code: A Handbook of Agile Soft-
ware Craftsmanship. Addison Wesley.

11. Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P.,
Lim, E., MacCormack, A., Nord, R., Ozkaya, I., Sangwan, R.,
Seaman, C., Sullivan, K., Zazworka, N., 2010. Managing Technical
Debt in Software-Reliant Systems, 2010 FSE/SDP Workshop on
the Future of Software Engineering Research, ACM. doi:
10.1145/1882362.1882373

12. Second International Workshop on Managing Technical Debt
http://www.sei.cmu.edu/community/td2011/

13. I. Ozkaya, P. Kruchten, R. Nord, and N. Brown, 2011. Managing
technical debt in software development ACM Software Engineer-
ing Notes. 36, 5. 33-35.

14. Third International Workshop on Managing Technical Debt
http://www.sei.cmu.edu/community/td2012/

15. P. Johnson, and M. Ekstedt. 2005. The grand unified theory of
software engineering. Industriella informations- och styrsystem,
KTH.

16. M. Denne, and J. Cleland-Huang. 2004. Software by Numbers:
Low-Risk, High-Return Development. Prentice Hall.

17. M. Denne, and J. Cleland-Huang, 2004. The Incremental Funding
Method: Data-Driven Software Development IEEE Software. 21,
3. (May/Jun), 39-47.

ACM SIGSOFT Software Engineering Notes Page 38 September 2012 Volume 37 Number 5

