
074 0 -74 5 9 /13 / $ 31. 0 0 © 2 013 I E E E July/August 2013 | IEEE softwArE 9

InsIghts: Architecture-centric teAm SoftwAre ProceSS

On 3 September 2012, with sin-
gle-order latency under 100 micro-
seconds and sustained throughput of
100,000 transactions per second, la
Bolsa Mexicana de Valores (BMV;
the Mexican Stock Exchange) stock-
trading engine joined the world’s
largest high-performance exchanges—
Nasdaq OMX, NYSE, Euronext,
Deutsche Börse, and the London Stock
Exchange.1

The software development proj-
ect to build the new trading engine
was completed in house by Bursatec,
BMV’s technology arm. The Bursatec

development team faced a significant
challenge in designing and implement-
ing the new trading system: the last
system they developed was more than
20 years old, implemented in COBOL,
and running on a mainframe. In addi-
tion to transitioning to modern soft-
ware engineering practices and tech-
nologies, Bursatec wanted to combine
stock market trading with derivatives
trading on the same platform. Achiev-
ing these goals would reduce operat-
ing costs and provide a single, high-
throughput, low-latency interface to
external financial markets.

To meet these demands, the lead ar-
chitect (author Luis Carballo) brought
in experts from the Software Engineer-
ing Institute (SEI) to help the Bursatec
team select and adapt the appropriate
methods, processes, and techniques to
ensure the development of a very fast
and highly reliable system, a must in
modern financial markets. The Team
Software Process (TSP) helped devel-
opers avoid mistakes or fix them early,
rather than during multiple test phases.
In addition, architecture-centric engi-
neering (ACE) guided the design and
implementation of a system architec-
ture that not only supports what BMV
needs today but also enables the sys-
tem to evolve to support envisioned fu-
ture features.

Interplay of Architecture
and process
ACE methods focus on what to build;
TSP methods focus on how to build
it. TSP provides process discipline for
management and measurement across
the project life cycle and for building
high-performance teams.2 ACE pro-
vides the technical discipline for de-
signing and implementing a system
that meets the organization’s business
objectives.3

Blending architecture and process
discipline provided Bursatec with a
strategy to integrate early and to ad-
dress technical risk in the form of un-
certainty, complexity, and the cost of
developing and maintaining quality
systems.4,5 In this article, we call out
three interesting integration points:
at the project’s start to establish crite-
ria; nine months later, when the first
hard evidence is available; and at the
project’s end as marked by system, ac-
ceptance, and user testing. Because
technical transparency is a benefit of

Integrate End
to End Early
and Often
Felix H. Bachmann, Software Engineering Institute

Luis Carballo, Bursatec

James McHale and Robert L. Nord, Software Engineering Institute

This column is all about stories, and this one is as
exciting as a paperback whodunit. The details are
all included, and I hate to spoil it, but there’s a happy
ending. The story is about something old—designing
and implementing a new system when the old one was
really old (two decades!) and something new—using
outside research consultants to save the day with a
secret sauce. Enjoy! –Linda Rising, associate editor

10 IEEE softwArE | www.computEr.org/softwArE

InsIghts: Architecture-centric teAm SoftwAre ProceSS

the combined approach, this strategy
meant that both the development team
and their managers knew what was go-
ing on—and why—and could act early
to investigate areas of uncertainty and
prevent small problems from turning
into the large ones that kill projects.

After the project kickoff in August
2009, one of the first steps was to con-
duct a Quality Attribute Workshop
(QAW) that refined, extended, and
validated early formulations of the sys-
tem’s quality attributes with stakehold-
ers into the quality attribute scenarios
that are standard, measurable formula-
tions of the architecturally significant
requirements. Not surprisingly, given
the importance of speed for the new
system, the stakeholders identified run-
time performance as one of the most
important quality attribute scenarios.
For the developers, one benefit of defin-
ing quality attributes is that the practice
placed significant emphasis on ensur-
ing that the attributes be measurable.
For example, the performance attribute
was measured in two ways: the time for
individual transactions (how fast each
one was processed) and the through-
put (how many transactions per second
were processed on an on going basis).

These quality attribute scenarios also
acted as a contract between the devel-
opers and the stakeholders because
they captured objective criteria of what
a good system would be from the stake-
holders’ perspective.

The week after the QAW, the ini-
tial TSP launch took place, bringing
together a project team of 14 members
to produce the necessary planning arti-
facts. The team divided the project into
six cycles, each with specific deliver-
ables that either BMV’s users or man-
agement would see, and subdivided
each cycle into iterations that built on
each other to complete the cycles (see
Table 1). During the launch, the team
split into two groups: the core architec-
ture team and the developer team. They
built detailed plans for both the archi-
tects and developers that covered the
first two iterations of cycle 1. The goal
was to plan the architecture activities
in the context of supporting the team
within their existing time and budget
constraints, as the architecture was the
first deliverable in the project’s cycles.

To guide system design, the archi-
tects used the architecture-driven de-
sign (ADD) method, which is based on
transforming quality attribute scenar-

ios into an appropriate design. It’s also
an iterative approach; the architects
might need to rethink a decision that
they made earlier when incorporat-
ing additional quality attributes or re-
viewing feedback from analysis of fur-
ther decompositions. The performance
quality attribute scenario coupled with
the high-availability requirements led
the architects to realize that conven-
tional approaches—such as a three-tier
architecture separating responsibilities
into presentation, business services,
and data—didn’t provide the best so-
lution for their new system. Conse-
quently, the architects spent the next
two weeks exploring alternative solu-
tions and their potential negative out-
comes. While the architects spent ap-
proximately three months on the initial
architecture, the developers worked on
prototypes (mostly for nonproduction
or throw-away code), evaluated high-
speed communications packages, and
built different pieces of frameworks
that they could integrate into the sys-
tem as the architecture evolved.

The architects subdivided the ADD
process into several two-week periods.
At the end of the first two-week period,
they presented their findings with evi-
dence (rationale, design decisions, trade-
offs, and measures) that their chosen
approach was correct to SEI software
architecture experts, who challenged
each scenario using rigorous scenario-
based peer review techniques. Every
two weeks thereafter, the software ar-
chitects presented solutions with ap-
propriate evidence for the scenarios
they had created and any changes and
additions made to earlier scenarios.
For example, with respect to the per-
formance requirement, the architects
demonstrated how a stock order would
traverse the system, estimating and
measuring the timing required for ev-
ery step. With each review, SEI coaches
identified risks associated with a par-
ticular approach. Among the risks they

tA
b

l
e

 1 Project plan for BMV stock-trading engine.

Cycle Duration Activities

1 14 weeks Developed two architecture versions, evaluated communication
packages, and built initial testing framework

2 10 weeks Developed third architecture version for review and built early
core framework

3 18 weeks Developed, integrated, and tested basic round-trip trading
functionality/performance

4 2 weeks Performed technical reviews with external Java and
communications experts

5 25 weeks Developed, integrated, and tested full trading-day functionality/
performance

6 21 weeks Developed, integrated, and tested maintenance and changes/
extensions to functionality

 July/August 2013 | IEEE softwArE 11

identified with respect to performance
was that synchronizing with backup
systems would affect the timing. In all,
there were three iterations of the archi-
tecture, each lasting six weeks.

At a replanning event six weeks
into the project, a TSP coach helped
the architects adjust the plan for the
next six weeks. The architects based
adjustments to the plan both on the
architecture’s current state—crude
at that point, but with a good idea of
what the next set of challenges was—
and on the data that they had gath-
ered so far from their own work. The
developers made similar adjustments
that included working on a critical
capability for automating transaction
testing and building evaluation pro-
totypes for competitive commercial
packages for high-speed, redundant,
persistent messaging, a key compo-
nent of the new system.

At the start of the second iteration,
the SEI architecture coaches brought
in the developers to begin working on
prototypes, specifically focusing on
risks (such as the timing of querying
complex data structures and internal
queuing) that couldn’t be addressed
solely via software architecture. This
important step allowed developers to
deepen their understanding of the ar-
chitecture and familiarize themselves
with the problems, which was a lengthy
process. The developers had six weeks
to implement the prototypes; at the be-
ginning of the third iteration, the de-
velopers returned and presented their
results to the architects. This process
enabled the architects to finalize their
architecture design using the results
from the prototypes.

One important activity during ar-
chitecture design was to create a proto-
type to evaluate the quality attributes
of the messaging components and how
the product fit in the architecture. As
a result of the findings, the architects
decided to create a specific layer that

encapsulated that functionality and
incorporated the high-availability fea-
tures of the system while reducing the
estimated size of code to be written.
The architects also measured the queu-
ing mechanisms used internally, which
informed their decision on the best im-
plementation to use.

During the early prototype produc-
tion and performance measurement,
Java’s automatic garbage collection to
reclaim memory became an issue, so
the team created development guide-
lines to minimize the impact of the
overhead garbage collection adds that
can affect performance in order pro-
cessing latency.

After two cycles and three major
iterations over five calendar months,
the team participated in a two-
day Architecture Tradeoff Analysis
Method (ATAM) review to evaluate
the architecture. The review provided
a final stakeholder validation of the
quality attributes as well as indepen-
dent verification that the proposed ar-
chitecture should work to implement
those attributes.

Once the architecture was stable
enough, as evaluated by the ATAM,
the SEI architecture coaches conducted
an active design review in which the

architects communicated the entire ar-
chitecture to the developers in a struc-
tured way. Next, the team conducted
conformance reviews for which the
developers needed to provide evidence
to the architects that the systems they
were building conformed to the archi-
tecture. These reviews reinforced the
rationale that the whole system would

meet stakeholder needs. Subsequently,
the architects and developers regrouped
into a single, integrated team, remov-
ing the potential issues that sometimes
arise when software architects throw
their artifacts “over the wall” to devel-
opers. The architects dealt with issues
and revised the architecture as neces-
sary while shouldering a normal de-
velopment workload. The team iden-
tified role managers to focus on issues
surrounding performance and garbage
collection, two implementation issues
critical to the trading system’s success.

Figure 1 summarizes the iterations
that occurred during the first three
cycles. The team established two main
feedback loops—architecture design
and implementation—that constantly
informed each other, for which the ar-
chitecture and the development plan
acted as the coordination mechanism.
The architecture design loop enabled
the architects to react to new and
changing requirements from the stake-
holders, while the implementation loop
ensured that the developers would im-
plement those requirements correctly.
The team measured not just its de-
signs and code but also its own work-
ing processes. Together, these loops en-
sured the development of a system that

behaved as envisioned while making
progress visible to management.

Soon after, the integrated team im-
plemented enough “round-trip” func-
tionality that they could make mean-
ingful performance measurements for
basic trades. Based on early integration
feedback, architectural and nonarchi-
tectural tweaking pushed performance

The review validated the quality attributes
as well as independent verification that the

proposed architecture should work.

12 IEEE softwArE | www.computEr.org/softwArE

InsIghts: Architecture-centric teAm SoftwAre ProceSS

to levels exceeding the initial goals of
1 millisecond and 10,000 transac-
tions per second. The team knew that
they would likely need that cushion
because more complicated order types
would take longer as new and changed
requirements continued to arrive
throughout the project. Still, almost a
year before the scheduled end of devel-
opment, the team knew that it would
achieve the project’s most challenging
performance goal.

Accomplishments
The new trading system’s development
progressed on schedule and within bud-
get. Moreover, early tests confirmed
that the trading system’s performance
far exceeded initial expectations. The

combination of TSP and ACE brought
discipline, measurement, and a set of
robust architectural techniques.

Through six major development cy-
cles including 14 or so iterations over
21 months, the overall team developed
over 287 KLOC, spending about 12
percent of their effort on architecture
and approximately 14.5 percent in unit
testing and integration testing. In ad-
dition, performance testing occurred
more frequently during unit testing
early in development and in integration
testing later.

In contrast, the SEI would normally
expect almost twice as much testing
effort, with potentially much more in
system testing, to push the overall to-
tal close to or beyond the 50 percent

mark—an unfortunately realistic ex-
pectation in our industry. Validation
testing showed a very low defect count,
less than 50 defects in more than 200
KLOC (less than 0.25 defects per
KLOC, well below the 1,000 to 2,000
that’s more typical in our experience);
fixing the defects hasn’t modified the
architecture. The testing framework
allowed for a smooth, continuous in-
tegration. Due to the early investment
in architecture and a detailed, data-
driven approach to managing both
schedule and quality, the system re-
quired less testing throughout devel-
opment. Bursatec put the system into
production on 3 September 2012, and
as of this writing, it has worked with-
out major defects, including support of

Stakeholders

Developer team(s)

Requirements/
architecture drivers

Iteration(6 weeks)

Quality Attribute
Workshop

Find problems

Design known

Design rest

Fix architecture

Architecture Tradeoff Analysis
Method

Adjust from feedback
Prototype problems

Skeleton + features
Skeleton + features

Corrections + features

Architecture team

figure 1. Architecture-centric engineering with TSP. At recurring intervals: stakeholders communicate requirements; the architecture team

assigns tasks to developers and delivers status reports to the stakeholders; and the developer team delivers the latest version of software to

architects and release version updates to the stakeholders.

 July/August 2013 | IEEE softwArE 13

the largest initial public offering in
Mexican market history.

Another benefit to using TSP
and ACE is that the team of devel-
opers were prepared for inevitable
changes in architecture require-
ments—indeed, for changes of any
sort—over the 21 months of devel-
opment. When the team received
new requirements, it could evaluate
them quickly for technical impact
and implementation cost in terms
of time and effort, using the archi-
tecture that accurately reflected the
current implementation.

With the quality attributes for-
mally captured, the architecture
in place, and detailed development
plans at every step, a project with
enormous risk potential in both
technical and business terms ran on
time, within budget, and generally
free of the drama that large devel-
opment efforts often exhibit. One of
the quality attributes that can drift
easily is performance. Measuring
performance in terms of latency and
throughput on a constant basis and
including those measurements in
the continuous integration process
enabled the team to tightly control
any changes that could affect that
attribute. It also allowed the team
to consider external factors such as
the correct configuration of the Java
Virtual Machine and the server’s BIOS
parameters. At the end of the project,
latency and throughput greatly exceed
initial expectations.

I nvestment in early architecture
and team practices drives a de-
velopment effort’s life cycle and

plays a role in managing risk. Con-
stant integration allows early detection
and correction of any inconsistency or
problems. End-to-end integration is
preferred, and integrating all the com-
ponents (or as many as possible, de-

pending on which stage the project is
in) will facilitate a smooth integration
test while also revealing any system
bottlenecks or requirement and cou-
pling changes that are needed.

Investment in architecture doesn’t
mean a big design up front. Delay-
ing implementation while waiting for
the architecture to be complete—and
therefore the requirements to be com-
plete—wasn’t necessary. Some of the
development started at very early stages
of the design process. Early implemen-
tation allowed the team to measure
some of the design decisions they made
at early stages, allowing them to con-

firm that those decisions were correct
and providing feedback to help them
modify the design as early as possible.
It also gave the stakeholders a feel for
the system at early stages and kept ev-
erybody informed. Setting up the ar-
chitecture design as an iterative process
enables the development team to start
with the architecture design before all
the requirements are clear and ensures
that they can react to new and chang-
ing requirements quickly.

This strategy helps development
teams ensure as early as possible that
the end-to-end integration works. As in
any inspection process, the outcome will

About the AuthorS

FelIx H. bAcHmAnn is a senior member of the technical staff in the
Software Solutions Division at the Software Engineering Institute. Contact him
at fb@sei.cmu.edu.

luIS cArbAllO is the software engineering director at Bursatec. Contact
him at lcarballo@bursatec.com.mx.

JAmeS mcHAle is a senior member of the technical staff in the Software
Solutions Division at the Software Engineering Institute. Contact him at jdm@
sei.cmu.edu.

rObert l. nOrd is a senior member of the technical staff in the Software
Solutions Division at the Software Engineering Institute. Contact him at rn@sei.
cmu.edu.

14 IEEE softwArE | www.computEr.org/softwArE

InsIghts: Architecture-centric teAm SoftwAre ProceSS

probably include feedback and recom-
mendations to change or correct some-
thing. Plan some time to adjust the sys-
tem based on review input. Identifying
and resolving integration defects earlier
reduces the cost of rework. An iterative
and incremental approach fosters col-
laboration and facilitates handoffs, re-

ducing the cost of delay. It also allows
better communication among teams,
team members, and stakeholders.

Acknowledgments
This material is based on work funded and
supported by the Department of Defense un-
der contract no. FA8721-05-C-0003 with
Carnegie Mellon University for the opera-
tion of the Software Engineering Institute, a
federally funded research and development
center. This material has been approved for
public release and unlimited distribution.
ATAM and Architecture Tradeoff Analysis
Method are registered in the US Patent and
Trademark Office by Carnegie Mellon Uni-
versity. TSP and Team Software Process are
service marks of Carnegie Mellon University.

references
 1. A. Puaar, “BMW Targets HFT with Trading

System Revamp,” TRADE News, 20 Sept.
2012; http://thetradenews.com/newsarticle.
aspx?id=9696.

 2. W.S. Humphrey and J.W. Over, Leadership,
Teamwork, and Trust, Pearson Education,
2011.

 3. L. Bass, P. Clements, and R. Kazman,
Software Architecture in Practice, 3rd ed.,
Addison-Wesley 2013.

 4. R. Nord, J. McHale, and F. Bachmann,
Combining Architecture-centric Engineering
with the Team Software Process, tech. report
CMU/SEI-2010-TR-031, Software Eng. Inst.,
Carnegie Mellon Univ., 2010; www.sei.cmu.
edu/library/abstracts/reports/10tr031.cfm.

 5. W. Royce, “Measuring Agility and Architec-
tural Integrity,” Int’l J. Software and Infor-
matics, vol. 5, no. 3, 2011, pp. 415–433.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

IEEE SoftwarE CALL FOR PAPERS

Special Issue on Next Generation
Mobile Computing

Submission deadline: 30 June 2013 • Publication: Mar./Apr. 2014

Ubiquitous, pervasive mobile computing is all around
us. We use mobile computing not only when we interact
with our smartphones to connect with friends and family
across states and countries, but also when we use ticketing
systems on a bus or train to work or home, purchase food
from a mobile vendor at a park, watch videos and listen to
music on our phones and portable music playing devices. In
other words, mobile computing is not only the interaction
of smart phones with each other. Any computation system
that is expected to move and interact with end users or
other computational systems despite potential changes
in network connectivity—including loss of connectivity
or changes in type of connectivity or access point—
participates in mobile computing infrastructure, and the
number of such systems is expected to grow significantly
each year over the coming decades.

Questions?
For more information about the focus, contact the guest
editors:

• James Edmondson, Carnegie Mellon Software
Engineering Institute: jredmondson@sei.cmu.edu

• William Anderson, Carnegie Mellon Software
Engineering Institute

• Joe Loyall, BBN
• Jeff Gray, University of Alabama
• Jules White, Virginia Tech
• Klaus Schmid, University of Hildesheim

Full call for paper: www.computer.org/software/cfp2
Full author guidelines: www.computer.org/software/
author.htm
Submission details: software@computer.org
Submit an article: https://mc.manuscriptcentral.com/sw-cs

www.computer.org/itpro

