
NOVEMBER 2005 28 www.LinuxWorld.com

Secure Coding in C and C++
An interview with Robert Seacord, senior
vulnerability analyst at CERT

I N T E R V I E W B Y I B R A H I M H A D D A D

LWM: There’s an ongoing debate over
whether Linux is more secure than
Windows. Some people argue that since
Linux’s source code is freely avail-
able, it makes it easy for hackers to
implement hacks and break into Linux
systems, whereas this becomes more
difficult with proprietary operating sys-
tems. What’s your take on this topic?
RCS: I agree there’s no real security through
obscurity, but obscurity does provide an im-
pediment. Attackers can “reuse” sections of
code to develop exploits that have the same
properties as the code they’re attacking
— an unintended but unfortunate conse-
quence of reuse.
 A number of security experts have argued
that Open Source software is more secure
because it’s open to review by a broad
range of individuals. However, Open Source
software provides no guarantee that the
software is reviewed or that those review-
ing it understand the program’s context in
a larger system or the program’s external

interactions. In other words, just being able
to read the code doesn’t mean you have the
wherewithal to do anything with it or about
it.
 On the other hand, attackers have also
become adept at reverse-engineering
executables so not releasing the source
only slows attackers down. An analysis of
CERT/CC vulnerability reports conducted
by Omar Alhazmi at Colorado State Univer-
sity shows vulnerabilities accruing in both
Windows and Linux operating systems at
similar rates.

LWM: In your experience, which pro-
gramming languages (e.g., C, C++,
Java) provide the most secure program-
ming safeguards and the most tools to
ensure the code doesn’t contain vulner-
abilities?

RCS: While languages like Java that have
automatic garbage collection, lack pointers,
and have strict type checking can limit or
prevent vulnerabilities resulting from buffer
overflows and common dynamic memory
management errors, programming errors
that result in security vulnerabilities can
happen in any language. There are tradeoffs
that have to be considered in language
and application development platforms
that can’t always be objectively reduced to
“Which is more secure?”
 Java programs can be vulnerable to SQL
injection and cross-site scripting (XSS)
vulnerabilities. Integer errors can also occur
undetected, although the consequence of
these errors is typically not as severe as they
may be in C and C++ language programs.
 Interestingly, Java language security may be
due more to the reasons given above and less
to Java bytecodes than typically understood.
C++ programs compiled to MSIL in the Mi-
crosoft .NET environment are as susceptible
to buffer overflows and other common vul-
nerabilities as their compiled counterparts,
although additional security can be gained by
using the new system-level data structures for
arrays, strings, and other data types.
 Because of the history of security vulner-
abilities in C and C++, a number of tools
and products have been developed to make
these languages more secure. So, ironically,
these languages generally have the best tool
support.

LWM: What’s the most important cod-
ing practice that we can implement to
develop more secure software? Can you
also provide us your Top 5 best prac-
tices for writing secure C/C++ code?
RCS: The most important coding practice
is to be extremely paranoid in handling any
data that originated with the user, either
directly or indirectly.
 As for the remaining four:
1. Many vulnerabilities in C/C++ result

from the incautious manipulation of
strings. Your entire development team
should select a clear and unambiguous

 Robert C. Seacord, a senior vulnerability analyst at the CERT/Coordination Center

at Carnegie Mellon University, has just published the book Secure Coding in C and C++

(Addison-Wesley, 2005). I sat down with him to discuss software security in the Linux

environment and elsewhere.

INTERVIEW

A B O U T T H E I N T E R V I E W E R

Ibrahim Haddad is a Strategic Program Manager
at the Open Source Development Labs (OSDL),

leading the Carrier Grade Linux Initiative and the
Mobile Linux Initiative, promoting the develop-
ment and adoption of Linux in the communica-
tion industry. Prior to joining OSDL, Ibrahim was
a senior researcher in the “Research and Innova-
tion” Department of Ericsson Corporate Unit of
Research, where he was involved with the server
system architecture for 3G wireless IP networks.
He is currently a Doctoral of Science Candidate
at Concordia University in Montreal, Canada,
researching “Scalable Architectures for High-

Availability Web Server Clusters.”
ibrahim@osdl.org

NOVEMBER 200529www.LinuxWorld.com

approach to dealing with strings in your
application and apply it consistently. C++
programmers have the option of using
the standard std::string class, which is
generally less error prone than standard
C-style strings. C language programmers
may want to consider using or building a
string library so that all string operations
(and potential vulnerabilities) can be
isolated to a single module. CERT has be-
gun developing a managed string library
that could be used as the basis of such
an effort and submitted it as a paper to
the J11 WG14 C standard working group.
Eventually we hope to release the source
code for this library on the Secure Coding
web site at http://www.cert.org/.

2. Your entire development team should
select a clear and unambiguous approach
to dealing with integers and apply it
consistently. Operations on integers can
result in overflow, truncation, sign errors,
and other related issues that can lead to
exploitable vulnerabilities. Having a plan
to deal with integers up-front is critical
because almost every integer operation
can result in an exceptional condition,
particularly when the inputs can be con-
trolled by an attacker. Generally speak-
ing, you should limit all integer inputs to
acceptable values and use safe integer
operations that detect and report error
conditions when dealing with “tainted”
inputs.

3. Sit down together as a development
team and do code inspections. Maintain
a list of common programming defects
you find and make sure you check for
these until they cease to be found. The
inspections serve several purposes. First,
they can be effective in identifying and
removing defects in the code that can
lead to vulnerabilities. Second, and po-
tentially more importantly, it lets more
experienced coders mentor less experi-
enced team members about what to look
for and how to correct problems. Third,
inspections provide a mechanism for
fostering a consistent approach to apply-
ing security-coding practices throughout
the project.

4. Use the defense-in-depth approach of
applying multiple strategies so that a
single error isn’t necessarily fatal. Start
with secure coding practices and then
evaluate your code using a variety of

manual processes and automated tools.
Use a secure runtime environment as a
final line of defense.

LWM: What are the three most danger-
ous C lib functions to use and why?
RCS: I would have to say gets(), strcpy(), and
sprintf().
 The gets() function is on the list because
it can’t be used safely. The function reads a
line from standard input into the buffer un-
til a terminating new line or EOF is found.
In fact, the Linux man page for this function
contains the following advice:
 Because it is impossible to tell without
knowing the data in advance how many
characters gets() will read, and because gets()
will continue to store characters past the end
of the buffer, it is extremely dangerous to use.
 There are two alternative functions that
can be used: fgets() and gets_s(). The follow-
ing example shows how these calls are used:

 1. #define BUFFSIZE 8
 2. int main(int argc, char *argv[]){
 3. char buff[BUFFSIZE];
 // insecure use of gets()
 4. gets(buff);
 5. printf(“gets: %s.\n”, buff);
 // more secure use of fgets()
 6. if (fgets(buff, BUFFSIZE, stdin) == NULL) {
 7. printf(“read error.\n”);
 8. abort();
 9. }
10. printf(“fgets: %s.\n”, buff);
 // more secure use of gets_s()
11. if (gets_s(buff, BUFFSIZE) == NULL) {
12. printf(“invalid input.\n”);
13. abort();
14. }
15. printf(“gets_s: %s.\n”, buff);
16. return 0;
17. }

 The fgets() function is defined in C99 and
has similar behavior to gets().The fgets() func-
tion accepts two additional arguments: the
number of characters to read and an input
stream. The gets_s() function is defined in ISO/
IEC TR 24731 to provide a compatible version
of gets() that was less prone to buffer overflow.
 The strcpy() function is on the list be-
cause, even though it can generally be used
safely, it’s often used in an insecure fashion,
for example by dynamically allocating the
required storage as shown below:

 1 int main(int argc, char *argv[]) {
 2. char *buff = (char *)malloc(strlen(argv[1])+1);
 3. if (buff != NULL) {
 4. strcpy(buff, argv[1]);
 5. printf(“argv[1] = %s.\n”, buff);
 6. }
 7. else {
 /* Couldn’t get the memory - recover */
 8. }
 9. return 0;
10. }

 There are also many, many alternatives
to using strcpy() that are generally less
error prone, including strcpy_s(), strlcpy()
(available for many flavors of Unix but not
GCC/Linux), strdup(), and others.
 Finally sprintf() is a triple threat. Incau-
tious use of this function can result in a buf-
fer overflow vulnerability if, for example, an
attacker provides a string argument for the
user variable below that exceeds 495 bytes
(512 bytes – 16 character bytes – 1 null byte):

1. char buffer[512];
2. sprintf(buffer, “Wrong command: %s\n”, user);

 Secondly, because the sprintf() func-
tion accepts a formatted output function
that accepts a format string and variable
number of arguments, it’s subject to format
string exploits.
 Third, if you Google for sprintf() on the
Internet you can usually find some code
that looks like this code (that I found in the
first link I selected) from the Linux kernel
mailing list at http://lkml.org/:

int i;
ssize_t count = 0;

for (i = 0; i < 9; ++i)
 count += sprintf(buf + count, “%02x “, ((u8 *)&sl-
reg_num)[i]);

count += sprintf(buf + count, “\n”);

 So what’s wrong with this code? Well,
sprintf() can (and will) return -1 on error
conditions such as an encoding error. In
this case, the count variable, already at
zero, can be decremented further — almost
always with unexpected results. While this
particular error isn’t commonly associated
with software vulnerabilities, it can easily
lead to abnormal program termination.

INTERVIEW

NOVEMBER 2005 30 www.LinuxWorld.com

LWM: Does gcc or Visual Studio produce
more secure executables? How do you
assess this?
RCS: In general both compilers are con-
strained by conformance to C language
standards such as ISO/IEC 9899. In some
places, Microsoft intentionally disregards
strict conformance to improve security, for
example, by disallowing the %n conversion
specifiers for formatted input/output func-
tions in the 2005 version of Visual C++.
 I think the most interesting area for dif-
ferentiation from a security perspective is in
each implementation’s handling of integers.
In a perfect world, C and C++ compilers
would identify the potential for exceptional
conditions to occur at runtime and provide
a mechanism (such as an exception, trap, or
signal handler) for applications to handle
these events. Unfortunately, the world we
live in is far from perfect.
 The Visual C++ .NET 2003 compiler gen-
erates a compiler warning (C4244) when an
integer value is assigned to a smaller integer
type. At warning level 1, a warning is issued
if a value of type __int64 is assigned to a
variable of type unsigned int. At warning
level 3 and 4, a “possible loss of data” warn-
ing is issued if an integer type is converted
to a smaller integer type. For example, the
assignment in the following example is
flagged at warning level 4:

// C4244.cpp
// compile with: /W4
int main() {
 int b = 0, c = 0;
 short a = b + c; // C4244
}

 Visual C++ .NET 2003 also provides
runtime error checks that are enabled by
the /RTC flag. The /RTCc compiler flag,
in particular, provides a similar function
to compiler warning C4244 by reporting
when a value assigned to a smaller data
type results in a loss of data. Visual C++
also includes a runtime_checks pragma
that disables or restores the /RTC settings,
but it doesn’t include flags for catching
other runtime errors such as overflows.
Visual C++ 2005 adds the ability to catch
overflows in operator::new (and is on by
default).
 Runtime error checks aren’t valid in a
release (optimized) build for performance
reasons.

 The gcc and g++ compilers include an
-ftrapv compiler option that provides lim-
ited support for detecting signed integer
exceptions at runtime. According to the
gcc man page, this option “generates traps
for signed overflow on addition, subtrac-
tion, and multiplication operations.” In
practice, this means that the gcc compiler
generates calls to existing library func-
tions rather than generating assembler
instructions to perform these arithmetic
operations on signed integers. These are
enforced at runtime even when optimiza-
tion is enabled.
 If you use this feature, make sure you use
gcc version 3.4 or later because the checks
implemented by the runtime system before
this version don’t adequately detect all over-
flows and shouldn’t be relied on to do so.
 Neither compiler passes an argument or
byte count on calls to variadic functions im-
plemented using the ANSI stdargs, although
it’s permitted by the C99 specification and
would make variadic functions such as the
formatted input/output functions more
secure.

LWM: Are there any security issues that
are unique to Linux/gcc? How can they
be overcome? Are there any solutions in
sight?
RCS: Data pointers are used in C and C++
to refer to dynamically allocated structures,
call-by-reference function arguments, ar-
rays, and other data structures. An attacker
can modify these data pointers (when ex-
ploiting a buffer overflow vulnerability, for
example). If a pointer is subsequently used
as a target for an assignment, an attacker
can control the address to modify other
memory locations with a technique known
as an arbitrary memory write.
 Most Linux implementations contain a
large number of suitable targets for arbi-
trary memory writes — addresses that can
be overwritten and then used to transfer
control to attacker-injected code (or exist-
ing code selected by the attacker). Linux
uses the executable and linking format
(ELF) that uses a global offset table (GOT).
The GOT contains the absolute addresses of
functions in the executable. An attacker can
overwrite a GOT entry for a function with
the shellcode address using an arbitrary
memory write.
 A similar problem exists when an attacker
overwrites function pointers directly. The

GCC compiler generates a .dtors section in
an easily identifiable location that contains
destructor functions that are invoked fol-
lowing execution of the main C program.
These functions can be overwritten and
used to transfer control to arbitrary code
even when the destructor functions aren’t
used in the program!
 Arbitrary memory writes can easily defeat
canary-based protection schemes. Write-
protecting targets is difficult because of the
number of targets and because there’s a
requirement to modify many of these targets
(for example, function pointers) at runtime.
Buffer overflows occurring in any memory
segment can be exploited to execute arbi-
trary code, so moving variables from the
stack to the data segment or heap isn’t a
solution. The best approach to preventing
pointer subterfuge resulting from buffer
overflows is to eliminate possible buffer
overflow conditions.
 One way to limit the exposure from some
of these targets is to reduce the privileges of
potentially vulnerable processes. OpenBSD,
for example, enforces a policy called “W xor
X” or “W^X” that requires that no part of
the process memory address space is both
writable and executable. If implemented on
Linux systems, this policy could elimi-
nate some (but not all) targets of arbitrary
memory write.

LWM: Are there any other sources of
information on secure coding in C/C++
on Linux?
RCS: In addition to my book Secure Cod-
ing in C and C++, you should also check
out Secure Programming for Linux and
Unix HOWTO—Creating Secure Software
from David Wheeler online at http://www.
dwheeler.com/secure-programs.
LINUXWORLD MAGAZINE WWW.LINUXWORLD.COM

Book: Secure Coding in C and C++
Author: Robert C. Seacord
Publisher: Addison Wesley Professional
List Price: $39.99
ISBN: 0321335724
Published: Sep 9, 2005
Pages: 368
Web Site: http://www.awprofessional.com/
title/0321335724#

About the Book

INTERVIEW

