
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780321822130
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780321822130
https://plusone.google.com/share?url=http://www.informit.com/title/9780321822130
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780321822130
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780321822130/Free-Sample-Chapter

Secure Coding
in C and C++
Second Edition

The SEI Series in Software Engineering is a collaborative undertaking of the
Carnegie Mellon Software Engineering Institute (SEI) and Addison-Wesley to develop

and publish books on software engineering and related topics. The common goal of the
SEI and Addison-Wesley is to provide the most current information on these topics in a
form that is easily usable by practitioners and students.

Titles in the series describe frameworks, tools, methods, and technologies designed to
help organizations, teams, and individuals improve their technical or management capa-
bilities. Some books describe processes and practices for developing higher-quality soft-
ware, acquiring programs for complex systems, or delivering services more effectively.
Other books focus on software and system architecture and product-line development.
Still others, from the SEI’s CERT Program, describe technologies and practices needed
to manage software and network security risk. These and all titles in the series address
critical problems in software engineering for which practical solutions are available.

Visit informit.com/sei for a complete list of available publications.

The SEI Series in Software Engineering
 Software Engineering Institute of Carnegie Mellon University and Addison-Wesley

Make sure to connect with us!
informit.com/socialconnect

Secure Coding
in C and C++
Second Edition

Robert C. Seacord

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT
Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC;
Evolutionary Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL;
Interim Profile; OAR; OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Anal-
ysis for Reengineering; Personal Software Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI
Lead Appraiser; SCAMPI Lead Assessor; SCE; SEI; SEPG; Team Software Process; and TSP are service marks of
Carnegie Mellon University.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trade-
marks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business, train-
ing goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging Control Number: 2013932290

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To
obtain permission to use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to
(201) 236-3290.

ISBN-13: 978-0-321-82213-0
ISBN-10: 0-321-82213-7
Text printed in the United States on recycled paper at Edwards Brothers Malloy in Ann Arbor, Michigan.
First printing, March 2013

To my wife, Rhonda, and our children, Chelsea and Jordan

This page intentionally left blank

 vii

Contents

Foreword xvii

Preface xxi

Acknowledgments xxv

About the Author xxvii

Chapter 1 Running with Scissors 1

1.1 Gauging the Threat 5
What Is the Cost? 6
Who Is the Threat? 8
Software Security 11

1.2 Security Concepts 12
Security Policy 14
Security Flaws 14
Vulnerabilities 15
Exploits 16
Mitigations 17

1.3 C and C++ 17
A Brief History 19
What Is the Problem with C? 21
Legacy Code 24
Other Languages 25

1.4 Development Platforms 25
Operating Systems 26
Compilers 26

viii Contents

1.5 Summary 27
1.6 Further Reading 28

Chapter 2 Strings 29

2.1 Character Strings 29
String Data Type 30
UTF-8 32
Wide Strings 33
String Literals 34
Strings in C++ 36
Character Types 37
Sizing Strings 39

2.2 Common String Manipulation Errors 42
Improperly Bounded String Copies 42
Off-by-One Errors 47
Null-Termination Errors 48
String Truncation 49
String Errors without Functions 49

2.3 String Vulnerabilities and Exploits 50
Tainted Data 51
Security Flaw: IsPasswordOK 52
Buffer Overflows 53
Process Memory Organization 54
Stack Management 55
Stack Smashing 59
Code Injection 64
Arc Injection 69
Return-Oriented Programming 71

2.4 Mitigation Strategies for Strings 72
String Handling 73
C11 Annex K Bounds-Checking Interfaces 73
Dynamic Allocation Functions 76
C++ std::basic_string 80
Invalidating String Object References 81
Other Common Mistakes in basic_string Usage 83

2.5 String-Handling Functions 84
gets() 84
C99 84
C11 Annex K Bounds-Checking Interfaces: gets_s() 86
Dynamic Allocation Functions 87
strcpy() and strcat() 89
C99 89
strncpy() and strncat() 93
memcpy() and memmove() 100
strlen() 100

Contents ix

2.6 Runtime Protection Strategies 101
Detection and Recovery 101
Input Validation 102
Object Size Checking 102
Visual Studio Compiler-Generated Runtime Checks 106
Stack Canaries 108
Stack-Smashing Protector (ProPolice) 110
Operating System Strategies 111
Detection and Recovery 111
Nonexecutable Stacks 113
W^X 113
PaX 115
Future Directions 116

2.7 Notable Vulnerabilities 117
Remote Login 117
Kerberos 118

2.8 Summary 118
2.9 Further Reading 120

Chapter 3 Pointer Subterfuge 121

3.1 Data Locations 122
3.2 Function Pointers 123
3.3 Object Pointers 124
3.4 Modifying the Instruction Pointer 125
3.5 Global Offset Table 127
3.6 The .dtors Section 129
3.7 Virtual Pointers 131
3.8 The atexit() and on_exit() Functions 133
3.9 The longjmp() Function 134
3.10 Exception Handling 136

Structured Exception Handling 137
System Default Exception Handling 139

3.11 Mitigation Strategies 139
Stack Canaries 140
W^X 140
Encoding and Decoding Function Pointers 140

3.12 Summary 142
3.13 Further Reading 143

Chapter 4 Dynamic Memory Management 145

4.1 C Memory Management 146
C Standard Memory Management Functions 146
Alignment 147
alloca() and Variable-Length Arrays 149

x Contents

4.2 Common C Memory Management Errors 151
Initialization Errors 151
Failing to Check Return Values 153
Dereferencing Null or Invalid Pointers 155
Referencing Freed Memory 156
Freeing Memory Multiple Times 157
Memory Leaks 158
Zero-Length Allocations 159
DR #400 161

4.3 C++ Dynamic Memory Management 162
Allocation Functions 164
Deallocation Functions 168
Garbage Collection 169

4.4 Common C++ Memory Management Errors 172
Failing to Correctly Check for Allocation Failure 172
Improperly Paired Memory Management Functions 172
Freeing Memory Multiple Times 176
Deallocation Function Throws an Exception 179

4.5 Memory Managers 180
4.6 Doug Lea’s Memory Allocator 182

Buffer Overflows on the Heap 185
4.7 Double-Free Vulnerabilities 191

Writing to Freed Memory 195
RtlHeap 196
Buffer Overflows (Redux) 204

4.8 Mitigation Strategies 212
Null Pointers 212
Consistent Memory Management Conventions 212
phkmalloc 213
Randomization 215
OpenBSD 215
The jemalloc Memory Manager 216
Static Analysis 217
Runtime Analysis Tools 218

4.9 Notable Vulnerabilities 222
CVS Buffer Overflow Vulnerability 222
Microsoft Data Access Components (MDAC) 223
CVS Server Double-Free 223
Vulnerabilities in MIT Kerberos 5 224

4.10 Summary 224

Chapter 5 Integer Security 225

5.1 Introduction to Integer Security 225
5.2 Integer Data Types 226

Unsigned Integer Types 227

Contents xi

Wraparound 229
Signed Integer Types 231
Signed Integer Ranges 235
Integer Overflow 237
Character Types 240
Data Models 241
Other Integer Types 241

5.3 Integer Conversions 246
Converting Integers 246
Integer Conversion Rank 246
Integer Promotions 247
Usual Arithmetic Conversions 249
Conversions from Unsigned Integer Types 250
Conversions from Signed Integer Types 253
Conversion Implications 256

5.4 Integer Operations 256
Assignment 258
Addition 260
Subtraction 267
Multiplication 269
Division and Remainder 274
Shifts 279

5.5 Integer Vulnerabilities 283
Vulnerabilities 283
Wraparound 283
Conversion and Truncation Errors 285
Nonexceptional Integer Logic Errors 287

5.6 Mitigation Strategies 288
Integer Type Selection 289
Abstract Data Types 291
Arbitrary-Precision Arithmetic 292
Range Checking 293
Precondition and Postcondition Testing 295
Secure Integer Libraries 297
Overflow Detection 299
Compiler-Generated Runtime Checks 300
Verifiably In-Range Operations 301
As-If Infinitely Ranged Integer Model 303
Testing and Analysis 304

5.7 Summary 307

Chapter 6 Formatted Output 309

6.1 Variadic Functions 310
6.2 Formatted Output Functions 313

Format Strings 314

xii Contents

GCC 318
Visual C++ 318

6.3 Exploiting Formatted Output Functions 319
Buffer Overflow 320
Output Streams 321
Crashing a Program 321
Viewing Stack Content 322
Viewing Memory Content 324
Overwriting Memory 326
Internationalization 331
Wide-Character Format String Vulnerabilities 332

6.4 Stack Randomization 332
Defeating Stack Randomization 332
Writing Addresses in Two Words 334
Direct Argument Access 335

6.5 Mitigation Strategies 337
Exclude User Input from Format Strings 338
Dynamic Use of Static Content 338
Restricting Bytes Written 339
C11 Annex K Bounds-Checking Interfaces 340
iostream versus stdio 341
Testing 342
Compiler Checks 342
Static Taint Analysis 343
Modifying the Variadic Function Implementation 344
Exec Shield 346
FormatGuard 346
Static Binary Analysis 347

6.6 Notable Vulnerabilities 348
Washington University FTP Daemon 348
CDE ToolTalk 348
Ettercap Version NG-0.7.2 349

6.7 Summary 349
6.8 Further Reading 351

Chapter 7 Concurrency 353

7.1 Multithreading 354
7.2 Parallelism 355

Data Parallelism 357
Task Parallelism 359

7.3 Performance Goals 359
Amdahl’s Law 361

7.4 Common Errors 362
Race Conditions 362

Contents xiii

Corrupted Values 364
Volatile Objects 365

7.5 Mitigation Strategies 368
Memory Model 368
Synchronization Primitives 371
Thread Role Analysis (Research) 380
Immutable Data Structures 383
Concurrent Code Properties 383

7.6 Mitigation Pitfalls 384
Deadlock 386
Prematurely Releasing a Lock 391
Contention 392
The ABA Problem 393

7.7 Notable Vulnerabilities 399
DoS Attacks in Multicore Dynamic Random-Access Memory
 (DRAM) Systems 399
Concurrency Vulnerabilities in System Call Wrappers 400

7.8 Summary 401

Chapter 8 File I/O 403

8.1 File I/O Basics 403
File Systems 404
Special Files 406

8.2 File I/O Interfaces 407
Data Streams 408
Opening and Closing Files 409
POSIX 410
File I/O in C++ 412

8.3 Access Control 413
UNIX File Permissions 413
Process Privileges 415
Changing Privileges 417
Managing Privileges 422
Managing Permissions 428

8.4 File Identification 432
Directory Traversal 432
Equivalence Errors 435
Symbolic Links 437
Canonicalization 439
Hard Links 442
Device Files 445
File Attributes 448

8.5 Race Conditions 450
Time of Check, Time of Use (TOCTOU) 451

xiv Contents

Create without Replace 453
Exclusive Access 456
Shared Directories 458

8.6 Mitigation Strategies 461
Closing the Race Window 462
Eliminating the Race Object 467
Controlling Access to the Race Object 469
Race Detection Tools 471

8.7 Summary 472

Chapter 9 Recommended Practices 473

9.1 The Security Development Lifecycle 474
TSP-Secure 477
Planning and Tracking 477
Quality Management 479

9.2 Security Training 480
9.3 Requirements 481

Secure Coding Standards 481
Security Quality Requirements Engineering 483
Use/Misuse Cases 485

9.4 Design 486
Secure Software Development Principles 488
Threat Modeling 493
Analyze Attack Surface 494
Vulnerabilities in Existing Code 495
Secure Wrappers 496
Input Validation 497
Trust Boundaries 498
Blacklisting 501
Whitelisting 502
Testing 503

9.5 Implementation 503
Compiler Security Features 503
As-If Infinitely Ranged (AIR) Integer Model 505
Safe-Secure C/C++ 505
Static Analysis 506
Source Code Analysis Laboratory (SCALe) 510
Defense in Depth 511

9.6 Verification 512
Static Analysis 512
Penetration Testing 513
Fuzz Testing 513
Code Audits 515
Developer Guidelines and Checklists 516

Contents xv

Independent Security Review 516
Attack Surface Review 517

9.7 Summary 518
9.8 Further Reading 518

References 519

Acronyms 539

Index 545

This page intentionally left blank

 xvii

Foreword

Society’s increased dependency on networked software systems has been
matched by an increase in the number of attacks aimed at these systems.
These attacks—directed at governments, corporations, educational institu-
tions, and individuals—have resulted in loss and compromise of sensitive
data, system damage, lost productivity, and financial loss.

While many of the attacks on the Internet today are merely a nuisance,
there is growing evidence that criminals, terrorists, and other malicious
actors view vulnerabilities in software systems as a tool to reach their goals.
Today, software vulnerabilities are being discovered at the rate of over 4,000
per year. These vulnerabilities are caused by software designs and implemen-
tations that do not adequately protect systems and by development practices
that do not focus sufficiently on eliminating implementation defects that
result in security flaws.

While vulnerabilities have increased, there has been a steady advance
in the sophistication and effectiveness of attacks. Intruders quickly develop
exploit scripts for vulnerabilities discovered in products. They then use these
scripts to compromise computers, as well as share these scripts so that other
attackers can use them. These scripts are combined with programs that auto-
matically scan the network for vulnerable systems, attack them, compromise
them, and use them to spread the attack even further.

With the large number of vulnerabilities being discovered each year,
administrators are increasingly overwhelmed with patching existing systems.
Patches can be difficult to apply and might have unexpected side effects. After

xviii Foreword

a vendor releases a security patch it can take months, or even years, before 90
to 95 percent of the vulnerable computers are fixed.

Internet users have relied heavily on the ability of the Internet community
as a whole to react quickly enough to security attacks to ensure that damage
is minimized and attacks are quickly defeated. Today, however, it is clear that
we are reaching the limits of effectiveness of our reactive solutions. While
individual response organizations are all working hard to streamline and
automate their procedures, the number of vulnerabilities in commercial soft-
ware products is now at a level where it is virtually impossible for any but the
best-resourced organizations to keep up with the vulnerability fixes.

There is little evidence of improvement in the security of most products;
many software developers do not understand the lessons learned about the
causes of vulnerabilities or apply adequate mitigation strategies. This is evi-
denced by the fact that the CERT/CC continues to see the same types of vul-
nerabilities in newer versions of products that we saw in earlier versions.

These factors, taken together, indicate that we can expect many attacks
to cause significant economic losses and service disruptions within even the
best response times that we can realistically hope to achieve.

Aggressive, coordinated response continues to be necessary, but we must
also build more secure systems that are not as easily compromised.

■ About Secure Coding in C and C++

Secure Coding in C and C++ addresses fundamental programming errors in C
and C++ that have led to the most common, dangerous, and disruptive soft-
ware vulnerabilities recorded since CERT was founded in 1988. This book
does an excellent job of providing both an in-depth engineering analysis of
programming errors that have led to these vulnerabilities and mitigation
strategies that can be effectively and pragmatically applied to reduce or elimi-
nate the risk of exploitation.

I have worked with Robert since he first joined the SEI in April, 1987.
Robert is a skilled and knowledgeable software engineer who has proven him-
self adept at detailed software vulnerability analysis and in communicating
his observations and discoveries. As a result, this book provides a meticulous
treatment of the most common problems faced by software developers and
provides practical solutions. Robert’s extensive background in software devel-
opment has also made him sensitive to trade-offs in performance, usability,
and other quality attributes that must be balanced when developing secure

Foreword xix

code. In addition to Robert’s abilities, this book also represents the knowledge
collected and distilled by CERT operations and the exceptional work of the
CERT/CC vulnerability analysis team, the CERT operations staff, and the edi-
torial and support staff of the Software Engineering Institute.

— Richard D. Pethia
CERT Director

This page intentionally left blank

 xxi

Preface

CERT was formed by the Defense Advanced Research Projects Agency
(DARPA) in November 1988 in response to the Morris worm incident, which
brought 10 percent of Internet systems to a halt in November 1988. CERT
is located in Pittsburgh, Pennsylvania, at the Software Engineering Institute
(SEI), a federally funded research and development center sponsored by the
U.S. Department of Defense.

The initial focus of CERT was incident response and analysis. Incidents
include successful attacks such as compromises and denials of service, as well
as attack attempts, probes, and scans. Since 1988, CERT has received more
than 22,665 hotline calls reporting computer security incidents or requesting
information and has handled more than 319,992 computer security incidents.
The number of incidents reported each year continues to grow.

Responding to incidents, while necessary, is insufficient to secure the
Internet and interconnected information systems. Analysis indicates that the
majority of incidents is caused by trojans, social engineering, and the exploita-
tion of software vulnerabilities, including software defects, design decisions,
configuration decisions, and unexpected interactions among systems. CERT
monitors public sources of vulnerability information and regularly receives
reports of vulnerabilities. Since 1995, more than 16,726 vulnerabilities have
been reported. When a report is received, CERT analyzes the potential vul-
nerability and works with technology producers to inform them of security
deficiencies in their products and to facilitate and track their responses to
those problems.1

1. CERT interacts with more than 1,900 hardware and software developers.

xxii Preface

Similar to incident reports, vulnerability reports continue to grow at an
alarming rate.2 While managing vulnerabilities pushes the process upstream,
it is again insufficient to address the issues of Internet and information system
security. To address the growing number of both vulnerabilities and incidents,
it is increasingly apparent that the problem must be attacked at the source by
working to prevent the introduction of software vulnerabilities during software
development and ongoing maintenance. Analysis of existing vulnerabilities
indicates that a relatively small number of root causes accounts for the majority
of vulnerabilities. The goal of this book is to educate developers about these root
causes and the steps that can be taken so that vulnerabilities are not introduced.

■ Audience

Secure Coding in C and C++ should be useful to anyone involved in the devel-
opment or maintenance of software in C and C++.

■ If you are a C/C++ programmer, this book will teach you how to
identify common programming errors that result in software vulner-
abilities, understand how these errors are exploited, and implement a
solution in a secure fashion.

■ If you are a software project manager, this book identifies the risks
and consequences of software vulnerabilities to guide investments in
developing secure software.

■ If you are a computer science student, this book will teach you pro-
gramming practices that will help you to avoid developing bad habits
and enable you to develop secure programs during your professional
career.

■ If you are a security analyst, this book provides a detailed description
of common vulnerabilities, identifies ways to detect these vulnerabili-
ties, and offers practical avoidance strategies.

■ Organization and Content

Secure Coding in C and C++ provides practical guidance on secure practices in
C and C++ programming. Producing secure programs requires secure designs.

2. See www.cert.org/stats/cert_stats.html for current statistics.

http://www.cert.org/stats/cert_stats.html

Preface xxiii

However, even the best designs can lead to insecure programs if developers
are unaware of the many security pitfalls inherent in C and C++ program-
ming. This book provides a detailed explanation of common programming
errors in C and C++ and describes how these errors can lead to code that is
vulnerable to exploitation. The book concentrates on security issues intrinsic
to the C and C++ programming languages and associated libraries. It does not
emphasize security issues involving interactions with external systems such
as databases and Web servers, as these are rich topics on their own. The intent
is that this book be useful to anyone involved in developing secure C and C++
programs regardless of the specific application.

Secure Coding in C and C++ is organized around functional capabilities
commonly implemented by software engineers that have potential security
consequences, such as formatted output and arithmetic operations. Each
chapter describes insecure programming practices and common errors that
can lead to vulnerabilities, how these programming flaws can be exploited,
the potential consequences of exploitation, and secure alternatives. Root
causes of software vulnerabilities, such as buffer overflows, integer type range
errors, and invalid format strings, are identified and explained where applica-
ble. Strategies for securely implementing functional capabilities are described
in each chapter, as well as techniques for discovering vulnerabilities in exist-
ing code.

This book contains the following chapters:

■ Chapter 1 provides an overview of the problem, introduces security
terms and concepts, and provides insight into why so many vulnera-
bilities are found in C and C++ programs.

■ Chapter 2 describes string manipulation in C and C++, common secu-
rity flaws, and resulting vulnerabilities, including buffer overflow and
stack smashing. Both code and arc injection exploits are examined.

■ Chapter 3 introduces arbitrary memory write exploits that allow an
attacker to write a single address to any location in memory. This
chapter describes how these exploits can be used to execute arbitrary
code on a compromised machine. Vulnerabilities resulting from arbi-
trary memory writes are discussed in later chapters.

■ Chapter 4 describes dynamic memory management. Dynamically
allocated buffer overflows, writing to freed memory, and double-free
vulnerabilities are described.

■ Chapter 5 covers integral security issues (security issues dealing with
integers), including integer overflows, sign errors, and truncation
errors.

xxiv Preface

■ Chapter 6 describes the correct and incorrect use of formatted output
functions. Both format string and buffer overflow vulnerabilities
resulting from the incorrect use of these functions are described.

■ Chapter 7 focuses on concurrency and vulnerabilities that can result
from deadlock, race conditions, and invalid memory access sequences.

■ Chapter 8 describes common vulnerabilities associated with file I/O,
including race conditions and time of check, time of use (TOCTOU)
vulnerabilities.

■ Chapter 9 recommends specific development practices for improving
the overall security of your C / C++ application. These recommenda-
tions are in addition to the recommendations included in each chapter
for addressing specific vulnerability classes.

Secure Coding in C and C++ contains hundreds of examples of secure and
insecure code as well as sample exploits. Almost all of these examples are
in C and C++, although comparisons are drawn with other languages. The
examples are implemented for Windows and Linux operating systems. While
the specific examples typically have been compiled and tested in one or more
specific environments, vulnerabilities are evaluated to determine whether
they are specific to or generalizable across compiler version, operating system,
microprocessor, applicable C or C++ standards, little or big endian architec-
tures, and execution stack architecture.

This book, as well as the online course based on it, focuses on common
programming errors using C and C++ that frequently result in software vul-
nerabilities. However, because of size and space constraints, not every poten-
tial source of vulnerabilities is covered. Additional and updated information,
event schedules, and news related to Secure Coding in C and C++ are available
at www.cert.org/books/secure-coding/. Vulnerabilities discussed in the book
are also cross-referenced with real-world examples from the US-CERT Vul-
nerability Notes Database at www.kb.cert.org/vuls/.

Access to the online secure coding course that accompanies this book
is available through Carnegie Mellon’s Open Learning Initiative (OLI) at
https://oli.cmu.edu/. Enter the course key: 0321822137.

http://www.cert.org/books/secure-coding/
http://www.kb.cert.org/vuls/
https://oli.cmu.edu/

 xxv

Acknowledgments

I would like to acknowledge the contributions of all those who made this
book possible. First, I would like to thank Noopur Davis, Chad Dougherty,
Doug Gwyn, David Keaton, Fred Long, Nancy Mead, Robert Mead, Gerhard
Muenz, Rob Murawski, Daniel Plakosh, Jason Rafail, David Riley, Martin
Sebor, and David Svoboda for contributing chapters to this book. I would
also like to thank the following researchers for their contributions: Omar
Alhazmi, Archie Andrews , Matthew Conover, Jeffrey S. Gennari, Oded Hor-
ovitz, Poul-Henning Kamp, Doug Lea, Yashwant Malaiya, John Robert, and
Tim Wilson.

I would also like to thank SEI and CERT managers who encouraged and
supported my efforts: Jeffrey Carpenter, Jeffrey Havrilla, Shawn Hernan, Rich
Pethia, and Bill Wilson.

Thanks also to my editor, Peter Gordon, and to the folks at Addison- Wesley:
Jennifer Andrews, Kim Boedigheimer, John Fuller, Eric Garulay, Stephane
Nakib, Elizabeth Ryan, and Barbara Wood.

I would also like to thank everyone who helped develop the Open Learn-
ing Initiative course, including the learning scientist who helped design
the course, Marsha Lovett, and everyone who helped implement the course,
including Norman Bier and Alexandra Drozd.

I would also like to thank the following reviewers for their thoughtful com-
ments and insights: Tad Anderson, John Benito, William Bulley, Corey Cohen,
Will Dormann, William Fithen, Robin Eric Fredericksen, Michael Howard,
Michael Kaelbling, Amit Kalani, John Lambert, Jeffrey Lanza, David LeBlanc,

xxvi Acknowledgments

Ken MacInnis, Gary McGraw, Randy Meyers, Philip Miller, Patrick Mueller,
Dave Mundie, Craig Partridge, Brad Rubbo, Tim Shimeall, Michael Wang, and
Katie Washok.

I would like to thank the remainder of the CERT team for their support and
assistance, without which I would never have been able to complete this book.
And last but not least, I would like to thank our in-house editors and librari-
ans who helped make this work possible: Rachel Callison, Pamela Curtis, Len
Estrin, Eric Hayes, Carol J. Lallier, Karen Riley, Sheila Rosenthal, Pennie Wal-
ters, and Barbara White.

 xxvii

About the Author

Robert C. Seacord is the Secure Coding Tech-
nical Manager in the CERT Program of Car-
negie Mellon’s Software Engineering Institute
(SEI) in Pittsburgh, Pennsylvania. The CERT
Program is a trusted provider of operation-
ally relevant cybersecurity research and inno-
vative and timely responses to our nation’s
cybersecurity challenges. The Secure Coding
Initiative works with software developers and
software development organizations to elim-
inate vulnerabilities resulting from coding
errors before they are deployed. Robert is also

an adjunct professor in the School of Computer Science and the Information
Networking Institute at Carnegie Mellon University. He is the author of The
CERT C Secure Coding Standard (Addison-Wesley, 2008) and coauthor of Build-
ing Systems from Commercial Components (Addison-Wesley, 2002), Modernizing
Legacy Systems (Addison-Wesley, 2003), and The CERT Oracle Secure Coding
Standard for Java (Addison-Wesley, 2011). He has also published more than
forty papers on software security, component-based software engineering,
Web-based system design, legacy-system modernization, component reposi-
tories and search engines, and user interface design and development. Robert
has been teaching Secure Coding in C and C++ to private industry, academia,
and government since 2005. He started programming professionally for IBM

in 1982, working in communications and operating system software, proces-
sor development, and software engineering. Robert has also worked at the
X Consortium, where he developed and maintained code for the Common
Desktop Environment and the X Window System. He represents Carnegie
Mellon University (CMU) at the ISO/IEC JTC1/SC22/WG14 international
standardization working group for the C programming language.

Current and former members of the CERT staff who contributed to the development of
this book. From left to right: Daniel Plakosh, Archie Andrews, David Svoboda, Dean
Sutherland, Brad Rubbo, Jason Rafail, Robert Seacord, Chad Dougherty.

 29

Chapter 2
Strings
with Dan Plakosh, Jason Rafail, and Martin Sebor1

1. Daniel Plakosh is a senior member of the technical staff in the CERT Program of
Carnegie Mellon’s Software Engineering Institute (SEI). Jason Rafail is a Senior Cyber
Security Consultant at Impact Consulting Solutions. Martin Sebor is a Technical Leader
at Cisco Systems.

But evil things, in robes of sorrow,
Assailed the monarch’s high estate.

—Edgar Allan Poe,
“The Fall of the House of Usher”

■ 2.1 Character Strings

Strings from sources such as command-line arguments, environment vari-
ables, console input, text files, and network connections are of special con-
cern in secure programming because they provide means for external input
to influence the behavior and output of a program. Graphics- and Web-based
applications, for example, make extensive use of text input fields, and because
of standards like XML, data exchanged between programs is increasingly in
string form as well. As a result, weaknesses in string representation, string
management, and string manipulation have led to a broad range of software
vulnerabilities and exploits.

30 Strings

Strings are a fundamental concept in software engineering, but they are
not a built-in type in C or C++. The standard C library supports strings of
type char and wide strings of type wchar_t.

String Data Type

A string consists of a contiguous sequence of characters terminated by and
including the first null character. A pointer to a string points to its initial
character. The length of a string is the number of bytes preceding the null
character, and the value of a string is the sequence of the values of the con-
tained characters, in order. Figure 2.1 shows a string representation of “hello.”

Strings are implemented as arrays of characters and are susceptible to the
same problems as arrays.

As a result, secure coding practices for arrays should also be applied to
null-terminated character strings; see the “Arrays (ARR)” chapter of The CERT
C Secure Coding Standard [Seacord 2008]. When dealing with character arrays,
it is useful to define some terms:

Bound
The number of elements in the array.

Lo
The address of the first element of the array.

Hi
The address of the last element of the array.

TooFar
The address of the one-too-far element of the array, the element just past
the Hi element.

h e l l o \ 0

Length

Figure 2.1 String representation of “hello”

2.1 Character Strings 31

Target size (Tsize)
Same as sizeof(array).

The C Standard allows for the creation of pointers that point one past the
last element of the array object, although these pointers cannot be derefer-
enced without invoking undefined behavior. When dealing with strings, some
extra terms are also useful:

Null-terminated
At or before Hi, the null terminator is present.

Length
Number of characters prior to the null terminator.

Array Size. One of the problems with arrays is determining the number
of elements. In the following example, the function clear() uses the idiom
sizeof(array) / sizeof(array[0]) to determine the number of elements in
the array. However, array is a pointer type because it is a parameter. As a
result, sizeof(array) is equal to sizeof(int *). For example, on an architec-
ture (such as x86-32) where sizeof(int) == 4 and sizeof(int *) == 4, the
expression sizeof(array) / sizeof(array[0]) evaluates to 1, regardless of
the length of the array passed, leaving the rest of the array unaffected.

01 void clear(int array[]) {
02 for (size_t i = 0; i < sizeof(array) / sizeof(array[0]); ++i) {
03 array[i] = 0;
04 }
05 }
06
07 void dowork(void) {
08 int dis[12];
09
10 clear(dis);
11 /* ... */
12 }

This is because the sizeof operator yields the size of the adjusted (pointer)
type when applied to a parameter declared to have array or function type.
The strlen() function can be used to determine the length of a properly null-
terminated character string but not the space available in an array. The CERT

32 Strings

C Secure Coding Standard [Seacord 2008] includes “ARR01-C. Do not apply the
sizeof operator to a pointer when taking the size of an array,” which warns
against this problem.

The characters in a string belong to the character set interpreted in the
execution environment—the execution character set. These characters consist
of a basic character set, defined by the C Standard, and a set of zero or more
extended characters, which are not members of the basic character set. The val-
ues of the members of the execution character set are implementation defined
but may, for example, be the values of the 7-bit U.S. ASCII character set.

C uses the concept of a locale, which can be changed by the setlocale()
function, to keep track of various conventions such as language and punctu-
ation supported by the implementation. The current locale determines which
characters are available as extended characters.

The basic execution character set includes the 26 uppercase and 26 lower-
case letters of the Latin alphabet, the 10 decimal digits, 29 graphic characters,
the space character, and control characters representing horizontal tab, verti-
cal tab, form feed, alert, backspace, carriage return, and newline. The repre-
sentation of each member of the basic character set fits in a single byte. A byte
with all bits set to 0, called the null character, must exist in the basic execution
character set; it is used to terminate a character string.

The execution character set may contain a large number of characters and
therefore require multiple bytes to represent some individual characters in the
extended character set. This is called a multibyte character set. In this case, the
basic characters must still be present, and each character of the basic character
set is encoded as a single byte. The presence, meaning, and representation of
any additional characters are locale specific. A string may sometimes be called
a multibyte string to emphasize that it might hold multibyte characters. These
are not the same as wide strings in which each character has the same length.

A multibyte character set may have a state-dependent encoding, wherein each
sequence of multibyte characters begins in an initial shift state and enters other
locale-specific shift states when specific multibyte characters are encountered in
the sequence. While in the initial shift state, all single-byte characters retain
their usual interpretation and do not alter the shift state. The interpretation for
subsequent bytes in the sequence is a function of the current shift state.

UTF-8

UTF-8 is a multibyte character set that can represent every character in the
Unicode character set but is also backward compatible with the 7-bit U.S.
ASCII character set. Each UTF-8 character is represented by 1 to 4 bytes (see
Table 2.1). If the character is encoded by just 1 byte, the high-order bit is 0
and the other bits give the code value (in the range 0 to 127). If the character

2.1 Character Strings 33

is encoded by a sequence of more than 1 byte, the first byte has as many lead-
ing 1 bits as the total number of bytes in the sequence, followed by a 0 bit, and
the succeeding bytes are all marked by a leading 10-bit pattern. The remain-
ing bits in the byte sequence are concatenated to form the Unicode code point
value (in the range 0x80 to 0x10FFFF). Consequently, a byte with lead bit 0 is a
single-byte code, a byte with multiple leading 1 bits is the first of a multibyte
sequence, and a byte with a leading 10-bit pattern is a continuation byte of
a multibyte sequence. The format of the bytes allows the beginning of each
sequence to be detected without decoding from the beginning of the string.

The first 128 characters constitute the basic execution character set; each
of these characters fits in a single byte.

UTF-8 decoders are sometimes a security hole. In some circumstances,
an attacker can exploit an incautious UTF-8 decoder by sending it an octet
sequence that is not permitted by the UTF-8 syntax. The CERT C Secure Coding
Standard [Seacord 2008] includes “MSC10-C. Character encoding—UTF-8-re-
lated issues,” which describes this problem and other UTF-8-related issues.

Wide Strings

To process the characters of a large character set, a program may represent
each character as a wide character, which generally takes more space than an
ordinary character. Most implementations choose either 16 or 32 bits to rep-
resent a wide character. The problem of sizing wide strings is covered in the
section “Sizing Strings.”

Table 2.1 Well-Formed UTF-8 Byte Sequences

Code Points First Byte Second Byte Third Byte Fourth Byte

U+0000..U+007F 00..7F

U+0080..U+07FF C2..DF 80..BF

U+0800..U+0FFF E0 A0..BF 80..BF

U+1000..U+CFFF E1..EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF F0 90..BF 80..BF 80..BF

U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF

U+100000..U+10FFFF F4 80..8F 80..BF 80..BF

Source: [Unicode 2012]

34 Strings

A wide string is a contiguous sequence of wide characters terminated by
and including the first null wide character. A pointer to a wide string points
to its initial (lowest addressed) wide character. The length of a wide string
is the number of wide characters preceding the null wide character, and the
value of a wide string is the sequence of code values of the contained wide
characters, in order.

String Literals

A character string literal is a sequence of zero or more characters enclosed in
double quotes, as in "xyz". A wide string literal is the same, except prefixed by
the letter L, as in L"xyz".

In a character constant or string literal, members of the character set used
during execution are represented by corresponding members of the character
set in the source code or by escape sequences consisting of the backslash \ fol-
lowed by one or more characters. A byte with all bits set to 0, called the null
character, must exist in the basic execution character set; it is used to termi-
nate a character string.

During compilation, the multibyte character sequences specified by any
sequence of adjacent characters and identically prefixed string literal tokens
are concatenated into a single multibyte character sequence. If any of the
tokens have an encoding prefix, the resulting multibyte character sequence is
treated as having the same prefix; otherwise, it is treated as a character string
literal. Whether differently prefixed wide string literal tokens can be concate-
nated (and, if so, the treatment of the resulting multibyte character sequence)
is implementation defined. For example, each of the following sequences of
adjacent string literal tokens

"a" "b" L"c"

"a" L"b" "c"

L"a" "b" L"c"

L"a" L"b" L"c"

is equivalent to the string literal

L"abc"

Next, a byte or code of value 0 is appended to each character sequence
that results from a string literal or literals. (A character string literal need not
be a string, because a null character may be embedded in it by a \0 escape
sequence.) The character sequence is then used to initialize an array of static

2.1 Character Strings 35

storage duration and length just sufficient to contain the sequence. For char-
acter string literals, the array elements have type char and are initialized
with the individual bytes of the character sequence. For wide string literals,
the array elements have type wchar_t and are initialized with the sequence
of wide characters corresponding to the character sequence, as defined by
the mbstowcs() (multibyte string to wide-character string) function with an
implementation-defined current locale. The value of a string literal containing
a character or escape sequence not represented in the execution character set
is implementation defined.

The type of a string literal is an array of char in C, but it is an array of
const char in C++. Consequently, a string literal is modifiable in C. However,
if the program attempts to modify such an array, the behavior is undefined—
and therefore such behavior is prohibited by The CERT C Secure Coding Stan-
dard [Seacord 2008], “STR30-C. Do not attempt to modify string literals.”
One reason for this rule is that the C Standard does not specify that these
arrays must be distinct, provided their elements have the appropriate values.
For example, compilers sometimes store multiple identical string literals at
the same address, so that modifying one such literal might have the effect of
changing the others as well. Another reason for this rule is that string literals
are frequently stored in read-only memory (ROM).

The C Standard allows an array variable to be declared both with a bound
index and with an initialization literal. The initialization literal also implies
an array size in the number of elements specified. For strings, the size speci-
fied by a string literal is the number of characters in the literal plus one for the
terminating null character.

Array variables are often initialized by a string literal and declared with
an explicit bound that matches the number of characters in the string literal.
For example, the following declaration initializes an array of characters using
a string literal that defines one more character (counting the terminating '\0')
than the array can hold:

const char s[3] = "abc";

The size of the array s is 3, although the size of the string literal is 4; conse-
quently, the trailing null byte is omitted. Any subsequent use of the array as
a null-terminated byte string can result in a vulnerability, because s is not
properly null-terminated.

A better approach is to not specify the bound of a string initialized with a
string literal because the compiler will automatically allocate sufficient space
for the entire string literal, including the terminating null character:

const char s[] = "abc";

36 Strings

This approach also simplifies maintenance, because the size of the array can
always be derived even if the size of the string literal changes. This issue is
further described by The CERT C Secure Coding Standard [Seacord 2008],
“STR36-C. Do not specify the bound of a character array initialized with a
string literal.”

Strings in C++

Multibyte strings and wide strings are both common data types in C++ pro-
grams, but many attempts have been made to also create string classes. Most
C++ developers have written at least one string class, and a number of widely
accepted forms exist. The standardization of C++ [ISO/IEC 1998] promotes
the standard class template std::basic_string. The basic_string template
represents a sequence of characters. It supports sequence operations as well
as string operations such as search and concatenation and is parameterized by
character type:

■ string is a typedef for the template specialization
basic_string<char>.

■ wstring is a typedef for the template specialization
basic_string<wchar_t>.

Because the C++ standard defines additional string types, C++ also
defines additional terms for multibyte strings. A null-terminated byte string,
or NTBS, is a character sequence whose highest addressed element with
defined content has the value 0 (the terminating null character); no other ele-
ment in the sequence has the value 0. A null-terminated multibyte string, or
NTMBS, is an NTBS that constitutes a sequence of valid multibyte characters
beginning and ending in the initial shift state.

The basic_string class template specializations are less prone to errors
and security vulnerabilities than are null-terminated byte strings. Unfortu-
nately, there is a mismatch between C++ string objects and null-terminated
byte strings. Specifically, most C++ string objects are treated as atomic enti-
ties (usually passed by value or reference), whereas existing C library func-
tions accept pointers to null-terminated character sequences. In the standard
C++ string class, the internal representation does not have to be null-termi-
nated [Stroustrup 1997], although all common implementations are null-ter-
minated. Some other string types, such as Win32 LSA_UNICODE_STRING, do
not have to be null-terminated either. As a result, there are different ways to
access string contents, determine the string length, and determine whether a
string is empty.

2.1 Character Strings 37

It is virtually impossible to avoid multiple string types within a C++ pro-
gram. If you want to use basic_string exclusively, you must ensure that there
are no

■ basic_string literals. A string literal such as "abc" is a static null-
terminated byte string.

■ Interactions with the existing libraries that accept null-terminated
byte strings (for example, many of the objects manipulated by func-
tion signatures declared in <cstring> are NTBSs).

■ Interactions with the existing libraries that accept null-terminated
wide-character strings (for example, many of the objects manipu-
lated by function signatures declared in <cwchar> are wide-character
sequences).

Typically, C++ programs use null-terminated byte strings and one string
class, although it is often necessary to deal with multiple string classes within
a legacy code base [Wilson 2003].

Character Types

The three types char, signed char, and unsigned char are collectively called
the character types. Compilers have the latitude to define char to have the
same range, representation, and behavior as either signed char or unsigned
char. Regardless of the choice made, char is a distinct type.

Although not stated in one place, the C Standard follows a consistent
 philosophy for choosing character types:

signed char and unsigned char

■ Suitable for small integer values

plain char

■ The type of each element of a string literal

■ Used for character data (where signedness has little meaning) as
opposed to integer data

The following program fragment shows the standard string-handling
function strlen() being called with a plain character string, a signed
character string, and an unsigned character string. The strlen() function
takes a single argument of type const char *.

38 Strings

1 size_t len;
2 char cstr[] = "char string";
3 signed char scstr[] = "signed char string";
4 unsigned char ucstr[] = "unsigned char string";
5
6 len = strlen(cstr);
7 len = strlen(scstr); /* warns when char is unsigned */
8 len = strlen(ucstr); /* warns when char is signed */

Compiling at high warning levels in compliance with “MSC00-C.
Compile cleanly at high warning levels” causes warnings to be issued
when

■ Converting from unsigned char[] to const char * when char is
signed

■ Converting from signed char[] to const char * when char is
defined to be unsigned

Casts are required to eliminate these warnings, but excessive casts
can make code difficult to read and hide legitimate warning messages.

If this code were compiled using a C++ compiler, conversions from
unsigned char[] to const char * and from signed char[] to const char
* would be flagged as errors requiring casts. “STR04-C. Use plain char for
characters in the basic character set” recommends the use of plain char
for compatibility with standard narrow-string-handling functions.

int

The int type is used for data that could be either EOF (a negative value)
or character data interpreted as unsigned char to prevent sign exten-
sion and then converted to int. For example, on a platform in which the
int type is represented as a 32-bit value, the extended ASCII code 0xFF
would be returned as 00 00 00 FF.

■ Consequently, fgetc(), getc(), getchar(), fgetwc(), getwc(), and
getwchar() return int.

■ The character classification functions declared in <ctype.h>, such
as isalpha(), accept int because they might be passed the result of
fgetc() or the other functions from this list.

In C, a character constant has type int. Its value is that of a plain
char converted to int. The perhaps surprising consequence is that for all
character constants c, sizeof c is equal to sizeof int. This also means,

2.1 Character Strings 39

for example, that sizeof 'a' is not equal to sizeof x when x is a variable
of type char.

In C++, a character literal that contains only one character has type
char and consequently, unlike in C, its size is 1. In both C and C++, a
wide-character literal has type wchar_t, and a multicharacter literal has
type int.

unsigned char

The unsigned char type is useful when the object being manipulated
might be of any type, and it is necessary to access all bits of that object,
as with fwrite(). Unlike other integer types, unsigned char has the
unique property that values stored in objects of type unsigned char are
guaranteed to be represented using a pure binary notation. A pure binary
notation is defined by the C Standard as “a positional representation for
integers that uses the binary digits 0 and 1, in which the values repre-
sented by successive bits are additive, begin with 1, and are multiplied by
successive integral powers of 2, except perhaps the bit with the highest
position.”

Objects of type unsigned char are guaranteed to have no padding
bits and consequently no trap representation. As a result, non-bit-field
objects of any type may be copied into an array of unsigned char (for
example, via memcpy()) and have their representation examined 1 byte at
a time.

wchar_t

■ Wide characters are used for natural-language character data.

“STR00-C. Represent characters using an appropriate type” recom-
mends that the use of character types follow this same philosophy. For
characters in the basic character set, it does not matter which data type is
used, except for type compatibility.

Sizing Strings

Sizing strings correctly is essential in preventing buffer overflows and other
runtime errors. Incorrect string sizes can lead to buffer overflows when used,
for example, to allocate an inadequately sized buffer. The CERT C Secure Cod-
ing Standard [Seacord 2008], “STR31-C. Guarantee that storage for strings has
sufficient space for character data and the null terminator,” addresses this
issue. Several important properties of arrays and strings are critical to allocat-
ing space correctly and preventing buffer overflows:

40 Strings

Size
Number of bytes allocated to the array (same as sizeof(array)).

Count
Number of elements in the array (same as the Visual Studio 2010
_countof(array)).

Length
Number of characters before null terminator.

Confusing these concepts frequently leads to critical errors in C and C++
programs. The C Standard guarantees that objects of type char consist of a
single byte. Consequently, the size of an array of char is equal to the count of
an array of char, which is also the bounds. The length is the number of char-
acters before the null terminator. For a properly null-terminated string of type
char, the length must be less than or equal to the size minus 1.

Wide-character strings may be improperly sized when they are mistaken
for narrow strings or for multibyte character strings. The C Standard defines
wchar_t to be an integer type whose range of values can represent distinct
codes for all members of the largest extended character set specified among
the supported locales. Windows uses UTF-16 character encodings, so the size
of wchar_t is typically 2 bytes. Linux and OS X (GCC/g++ and Xcode) use
UTF-32 character encodings, so the size of wchar_t is typically 4 bytes. On
most platforms, the size of wchar_t is at least 2 bytes, and consequently, the
size of an array of wchar_t is no longer equal to the count of the same array.
Programs that assume otherwise are likely to contain errors. For example, in
the following program fragment, the strlen() function is incorrectly used to
determine the size of a wide-character string:

1 wchar_t wide_str1[] = L"0123456789";
2 wchar_t *wide_str2 = (wchar_t *)malloc(strlen(wide_str1) + 1);
3 if (wide_str2 == NULL) {
4 /* handle error */
5 }
6 /* ... */
7 free(wide_str2);
8 wide_str2 = NULL;

2.1 Character Strings 41

When this program is compiled, Microsoft Visual Studio 2012 generates
an incompatible type warning and terminates translation. GCC 4.7.2 also gen-
erates an incompatible type warning but continues compilation.

The strlen() function counts the number of characters in a null-
terminated byte string preceding the terminating null byte (the length). How-
ever, wide characters can contain null bytes, particularly when taken from the
ASCII character set, as in this example. As a result, the strlen() function will
return the number of bytes preceding the first null byte in the string.

In the following program fragment, the wcslen() function is correctly
used to determine the size of a wide-character string, but the length is not
multiplied by sizeof(wchar_t):

1 wchar_t wide_str1[] = L"0123456789";
2 wchar_t *wide_str3 = (wchar_t *)malloc(wcslen(wide_str1) + 1);
3 if (wide_str3 == NULL) {
4 /* handle error */
5 }
6 /* ... */
7 free(wide_str3);
8 wide_str3 = NULL;

The following program fragment correctly calculates the number of bytes
required to contain a copy of the wide string (including the termination
character):

01 wchar_t wide_str1[] = L"0123456789";
02 wchar_t *wide_str2 = (wchar_t *)malloc(
03 (wcslen(wide_str1) + 1) * sizeof(wchar_t)
04);
05 if (wide_str2 == NULL) {
06 /* handle error */
07 }
08 /* ... */
09 free(wide_str2);
10 wide_str2 = NULL;

The CERT C Secure Coding Standard [Seacord 2008], “STR31-C. Guarantee
that storage for strings has sufficient space for character data and the null
terminator,” correctly provides additional information with respect to sizing
wide strings.

42 Strings

■ 2.2 Common String Manipulation Errors

Manipulating strings in C or C++ is error prone. Four common errors are
unbounded string copies, off-by-one errors, null-termination errors, and
string truncation.

Improperly Bounded String Copies

Improperly bounded string copies occur when data is copied from a source
to a fixed-length character array (for example, when reading from standard
input into a fixed-length buffer). Example 2.1 shows a program from Annex A
of ISO/IEC TR 24731-2 that reads characters from standard input using the
gets() function into a fixed-length character array until a newline character
is read or an end-of-file (EOF) condition is encountered.

Example 2.1 Reading from stdin()

01 #include <stdio.h>
02 #include <stdlib.h>
03
04 void get_y_or_n(void) {
05 char response[8];
06 puts("Continue? [y] n: ");
07 gets(response);
08 if (response[0] == 'n')
09 exit(0);
10 return;
11 }

This example uses only interfaces present in C99, although the gets() func-
tion has been deprecated in C99 and eliminated from C11. The CERT C Secure
Coding Standard [Seacord 2008], “MSC34-C. Do not use deprecated or obso-
lescent functions,” disallows the use of this function.

This program compiles and runs under Microsoft Visual C++ 2010 but
warns about using gets() at warning level /W3. When compiled with G++
4.6.1, the compiler warns about gets() but otherwise compiles cleanly.

This program has undefined behavior if more than eight characters
(including the null terminator) are entered at the prompt. The main problem
with the gets() function is that it provides no way to specify a limit on the
number of characters to read. This limitation is apparent in the following con-
forming implementation of this function:

2.2 Common String Manipulation Errors 43

01 char *gets(char *dest) {
02 int c = getchar();
03 char *p = dest;
04 while (c != EOF && c != '\n') {
05 *p++ = c;
06 c = getchar();
07 }
08 *p = '\0';
09 return dest;
10 }

Reading data from unbounded sources (such as stdin()) creates an inter-
esting problem for a programmer. Because it is not possible to know before-
hand how many characters a user will supply, it is not possible to preallocate
an array of sufficient length. A common solution is to statically allocate an
array that is thought to be much larger than needed. In this example, the
programmer expects the user to enter only one character and consequently
assumes that the eight-character array length will not be exceeded. With
friendly users, this approach works well. But with malicious users, a fixed-
length character array can be easily exceeded, resulting in undefined behav-
ior. This approach is prohibited by The CERT C Secure Coding Standard
[Seacord 2008], “STR35-C. Do not copy data from an unbounded source to a
fixed-length array.”

Copying and Concatenating Strings. It is easy to make errors when copy-
ing and concatenating strings because many of the standard library calls that
perform this function, such as strcpy(), strcat(), and sprintf(), perform
unbounded copy operations.

Arguments read from the command line are stored in process memory.
The function main(), called when the program starts, is typically declared as
follows when the program accepts command-line arguments:

1 int main(int argc, char *argv[]) {
2 /* ...*/
3 }

Command-line arguments are passed to main() as pointers to null-terminated
strings in the array members argv[0] through argv[argc-1]. If the value of
argc is greater than 0, the string pointed to by argv[0] is, by convention, the
program name. If the value of argc is greater than 1, the strings referenced by
argv[1] through argv[argc-1] are the actual program arguments. In any case,
argv[argc] is always guaranteed to be NULL.

44 Strings

Vulnerabilities can occur when inadequate space is allocated to copy a
program input such as a command-line argument. Although argv[0] con-
tains the program name by convention, an attacker can control the contents
of argv[0] to cause a vulnerability in the following program by providing a
string with more than 128 bytes. Furthermore, an attacker can invoke this
program with argv[0] set to NULL:

1 int main(int argc, char *argv[]) {
2 /* ... */
3 char prog_name[128];
4 strcpy(prog_name, argv[0]);
5 /* ... */
6 }

This program compiles and runs under Microsoft Visual C++ 2012 but warns
about using strcpy() at warning level /W3. The program also compiles and
runs under G++ 4.7.2. If _FORTIFY_SOURCE is defined, the program aborts at
runtime as a result of object size checking if the call to strcpy() results in a
buffer overflow.

The strlen() function can be used to determine the length of the strings
referenced by argv[0] through argv[argc-1] so that adequate memory can
be dynamically allocated. Remember to add a byte to accommodate the null
character that terminates the string. Note that care must be taken to avoid
assuming that any element of the argv array, including argv[0], is non-null.

01 int main(int argc, char *argv[]) {
02 /* Do not assume that argv[0] cannot be null */
03 const char * const name = argv[0] ? argv[0] : "";
04 char *prog_name = (char *)malloc(strlen(name) + 1);
05 if (prog_name != NULL) {
06 strcpy(prog_name, name);
07 }
08 else {
09 /* Failed to allocate memory - recover */
10 }
11 /* ... */
12 }

The use of the strcpy() function is perfectly safe because the destination array
has been appropriately sized. It may still be desirable to replace the strcpy()
function with a call to a “more secure” function to eliminate diagnostic mes-
sages generated by compilers or analysis tools.

2.2 Common String Manipulation Errors 45

The POSIX strdup() function can also be used to copy the string. The
strdup() function accepts a pointer to a string and returns a pointer to a
newly allocated duplicate string. This memory can be reclaimed by passing
the returned pointer to free(). The strdup() function is defined in ISO/IEC
TR 24731-2 [ISO/IEC TR 24731-2:2010] but is not included in the C99 or C11
standards.

sprintf() Function. Another standard library function that is frequently
used to copy strings is the sprintf() function. The sprintf() function
writes output to an array, under control of a format string. A null charac-
ter is written at the end of the characters written. Because sprintf() speci-
fies how subsequent arguments are converted according to the format string,
it is often difficult to determine the maximum size required for the target
array. For example, on common ILP32 and LP64 platforms where INT_MAX
= 2,147,483,647, it can take up to 11 characters to represent the value of an
argument of type int as a string (commas are not output, and there might be a
minus sign). Floating-point values are even more difficult to predict.

The snprintf() function adds an additional size_t parameter n. If n is
0, nothing is written, and the destination array may be a null pointer. Oth-
erwise, output characters beyond the n-1st are discarded rather than written
to the array, and a null character is written at the end of the characters that
are actually written into the array. The snprintf() function returns the num-
ber of characters that would have been written had n been sufficiently large,
not counting the terminating null character, or a negative value if an encod-
ing error occurred. Consequently, the null-terminated output is completely
written if and only if the returned value is nonnegative and less than n. The
snprintf() function is a relatively secure function, but like other formatted
output functions, it is also susceptible to format string vulnerabilities. Values
returned from snprintf() need to be checked because the function may fail,
not only because of insufficient space in the buffer but for other reasons as
well, such as out-of-memory conditions during the execution of the function.
See The CERT C Secure Coding Standard [Seacord 2008], “FIO04-C. Detect and
handle input and output errors,” and “FIO33-C. Detect and handle input out-
put errors resulting in undefined behavior,” for more information.

Unbounded string copies are not limited to the C programming language.
For example, if a user inputs more than 11 characters into the following C++
program, it will result in an out-of-bounds write:

1 #include <iostream>
2
3 int main(void) {

46 Strings

4 char buf[12];
5
6 std::cin >> buf;
7 std::cout << "echo: " << buf << '\n';
8 }

This program compiles cleanly under Microsoft Visual C++ 2012 at warn-
ing level /W4. It also compiles cleanly under G++ 4.7.2 with options: -Wall
- Wextra -pedantic.

The type of the standard object std::cin is the std::stream class. The
istream class, which is really a specialization of the std::basic_istream class
template on the character type char, provides member functions to assist in
reading and interpreting input from a stream buffer. All formatted input is
performed using the extraction operator operator>>. C++ defines both mem-
ber and nonmember overloads of operator>>, including

istream& operator>> (istream& is, char* str);

This operator extracts characters and stores them in successive elements
of the array pointed to by str. Extraction ends when the next element is either
a valid white space or a null character or EOF is reached. The extraction opera-
tion can be limited to a certain number of characters (avoiding the possibility
of buffer overflow) if the field width (which can be set with ios_base::width
or setw()) is set to a value greater than 0. In this case, the extraction ends
one character before the count of characters extracted reaches the value of
field width, leaving space for the ending null character. After a call to this
extraction operation, the value of the field width is automatically reset to 0. A
null character is automatically appended after the extracted characters.

The extraction operation can be limited to a specified number of char-
acters (thereby avoiding the possibility of an out-of-bounds write) if the field
width inherited member (ios_base::width) is set to a value greater than 0.
In this case, the extraction ends one character before the count of characters
extracted reaches the value of field width, leaving space for the ending null
character. After a call to this extraction operation, the value of the field width
is reset to 0.

The program in Example 2.2 eliminates the overflow in the previous
example by setting the field width member to the size of the character array
buf. The example shows that the C++ extraction operator does not suffer from
the same inherent flaw as the C function gets().

2.2 Common String Manipulation Errors 47

Example 2.2 Field width Member

1 #include <iostream>
2
3 int main(void) {
4 char buf[12];
5
6 std::cin.width(12);
7 std::cin >> buf;
8 std::cout << "echo: " << buf << '\n';
9 }

Off-by-One Errors

Off-by-one errors are another common problem with null-terminated strings.
Off-by-one errors are similar to unbounded string copies in that both involve
writing outside the bounds of an array. The following program compiles and
links cleanly under Microsoft Visual C++ 2010 at /W4 and runs without error
on Windows 7 but contains several off-by-one errors. Can you find all the off-
by-one errors in this program?

01 #include <string.h>
02 #include <stdio.h>
03 #include <stdlib.h>
04
05 int main(void) {
06 char s1[] = "012345678";
07 char s2[] = "0123456789";
08 char *dest;
09 int i;
10
11 strcpy_s(s1, sizeof(s2), s2);
12 dest = (char *)malloc(strlen(s1));
13 for (i=1; i <= 11; i++) {
14 dest[i] = s1[i];
15 }
16 dest[i] = '\0';
17 printf("dest = %s", dest);
18 /* ... */;
19 }

Many of these mistakes are rookie errors, but experienced programmers
sometimes make them as well. It is easy to develop and deploy programs simi-
lar to this one that compile and run without error on most systems.

48 Strings

Null-Termination Errors

Another common problem with strings is a failure to properly null-terminate
them. A string is properly null-terminated if a null terminator is present at
or before the last element in the array. If a string lacks the terminating null
character, the program may be tricked into reading or writing data outside the
bounds of the array.

Strings must contain a null-termination character at or before the address
of the last element of the array before they can be safely passed as arguments
to standard string-handling functions, such as strcpy() or strlen(). The
null-termination character is necessary because these functions, as well as
other string-handling functions defined by the C Standard, depend on its exis-
tence to mark the end of a string. Similarly, strings must be null- terminated
before the program iterates on a character array where the termination con-
dition of the loop depends on the existence of a null-termination character
within the memory allocated for the string:

1 size_t i;
2 char ntbs[16];
3 /* ... */
4 for (i = 0; i < sizeof(ntbs); ++i) {
5 if (ntbs[i] == '\0') break;
6 /* ... */
7 }

The following program compiles under Microsoft Visual C++ 2010 but
warns about using strncpy() and strcpy() at warning level /W3. It is also
diagnosed (at runtime) by GCC on Linux when the _FORTIFY_SOURCE macro is
defined to a nonzero value.

1 int main(void) {
2 char a[16];
3 char b[16];
4 char c[16];
5 strncpy(a, "0123456789abcdef", sizeof(a));
6 strncpy(b, "0123456789abcdef", sizeof(b));
7 strcpy(c, a);
8 /* ... */
9 }

In this program, each of three character arrays—a[], b[], and c[]—is
declared to be 16 bytes. Although the strncpy() to a is restricted to writing
sizeof(a) (16 bytes), the resulting string is not null-terminated as a result of
the historic and standard behavior of the strncpy() function.

2.2 Common String Manipulation Errors 49

According to the C Standard, the strncpy() function copies not more
than n characters (characters that follow a null character are not copied) from
the source array to the destination array. Consequently, if there is no null
character in the first n characters of the source array, as in this example, the
result will not be null-terminated.

The strncpy() to b has a similar result. Depending on how the compiler
allocates storage, the storage following a[] may coincidentally contain a null
character, but this is unspecified by the compiler and is unlikely in this exam-
ple, particularly if the storage is closely packed. The result is that the strcpy()
to c may write well beyond the bounds of the array because the string stored
in a[] is not correctly null-terminated.

The CERT C Secure Coding Standard [Seacord 2008] includes “STR32-C.
Null-terminate byte strings as required.” Note that the rule does not preclude
the use of character arrays. For example, there is nothing wrong with the fol-
lowing program fragment even though the string stored in the ntbs character
array may not be properly null-terminated after the call to strncpy():

1 char ntbs[NTBS_SIZE];
2
3 strncpy(ntbs, source, sizeof(ntbs)-1);
4 ntbs[sizeof(ntbs)-1] = '\0';

Null-termination errors, like the other string errors described in this sec-
tion, are difficult to detect and can lie dormant in deployed code until a par-
ticular set of inputs causes a failure. Code cannot depend on how the compiler
allocates memory, which may change from one compiler release to the next.

String Truncation

String truncation can occur when a destination character array is not large
enough to hold the contents of a string. String truncation may occur while
the program is reading user input or copying a string and is often the result
of a programmer trying to prevent a buffer overflow. Although not as bad as a
buffer overflow, string truncation results in a loss of data and, in some cases,
can lead to software vulnerabilities.

String Errors without Functions

Most of the functions defined in the standard string-handling library <string.h>,
including strcpy(), strcat(), strncpy(), strncat(), and strtok(), are sus-
ceptible to errors. Microsoft Visual Studio, for example, has consequently
deprecated many of these functions.

50 Strings

However, because null-terminated byte strings are implemented as char-
acter arrays, it is possible to perform an insecure string operation even with-
out invoking a function. The following program contains a defect resulting
from a string copy operation but does not call any string library functions:

01 int main(int argc, char *argv[]) {
02 int i = 0;
03 char buff[128];
04 char *arg1 = argv[1];
05 if (argc == 0) {
06 puts("No arguments");
07 return EXIT_FAILURE;
08 }
10 while (arg1[i] != '\0') {
11 buff[i] = arg1[i];
12 i++;
13 }
14 buff[i] = '\0';
15 printf("buff = %s\n", buff);
16 exit(EXIT_SUCCESS);
17 }

The defective program accepts a string argument, copies it to the buff charac-
ter array, and prints the contents of the buffer. The variable buff is declared
as a fixed array of 128 characters. If the first argument to the program equals
or exceeds 128 characters (remember the trailing null character), the program
writes outside the bounds of the fixed-size array.

Clearly, eliminating the use of dangerous functions does not guarantee
that your program is free from security flaws. In the following sections you
will see how these security flaws can lead to exploitable vulnerabilities.

■ 2.3 String Vulnerabilities and Exploits

Previous sections described common errors in manipulating strings in C or
C++. These errors become dangerous when code operates on untrusted data
from external sources such as command-line arguments, environment vari-
ables, console input, text files, and network connections. Depending on how
a program is used and deployed, external data may be trusted or untrusted.
However, it is often difficult to predict all the ways software may be used. Fre-
quently, assumptions made during development are no longer valid when the
code is deployed. Changing assumptions is a common source of vulnerabili-
ties. Consequently, it is safer to view all external data as untrusted.

2.3 String Vulnerabilities and Exploits 51

In software security analysis, a value is said to be tainted if it comes from
an untrusted source (outside of the program’s control) and has not been sani-
tized to ensure that it conforms to any constraints on its value that consumers
of the value require—for example, that all strings are null-terminated.

Tainted Data

Example 2.3 is a simple program that checks a user password (which should
be considered tainted data) and grants or denies access.

Example 2.3 The IsPasswordOK Program

01 bool IsPasswordOK(void) {
02 char Password[12];
03
04 gets(Password);
05 r eturn 0 == strcmp(Password, "goodpass");
06 }
07
08 int main(void) {
09 bool PwStatus;
10
11 puts("Enter password:");
12 PwStatus = IsPasswordOK();
13 if (PwStatus == false) {
14 puts("Access denied");
15 exit(-1);
16 }
17 }

This program shows how strings can be misused and is not an exemplar
for password checking. The IsPasswordOK program starts in the main() func-
tion. The first line executed is the puts() call that prints out a string literal.
The puts() function, defined in the C Standard as a character output function,
is declared in <stdio.h> and writes a string to the output stream pointed to by
stdout followed by a newline character ('\n'). The IsPasswordOK() function
is called to retrieve a password from the user. The function returns a Boolean
value: true if the password is valid, false if it is not. The value of PwStatus is
tested, and access is allowed or denied.

The IsPasswordOK() function uses the gets() function to read charac-
ters from the input stream (referenced by stdin) into the array pointed to by
Password until end-of-file is encountered or a newline character is read. Any
newline character is discarded, and a null character is written immediately
after the last character read into the array. The strcmp() function defined in

52 Strings

<string.h> compares the string pointed to by Password to the string literal
"goodpass" and returns an integer value of 0 if the strings are equal and a
nonzero integer value if they are not. The IsPasswordOK() function returns
true if the password is "goodpass", and the main() function consequently
grants access.

In the first run of the program (Figure 2.2), the user enters the correct
password and is granted access.

In the second run (Figure 2.3), an incorrect password is provided and
access is denied.

Unfortunately, this program contains a security flaw that allows an
attacker to bypass the password protection logic and gain access to the pro-
gram. Can you identify this flaw?

Security Flaw: IsPasswordOK

The security flaw in the IsPasswordOK program that allows an attacker to gain
unauthorized access is caused by the call to gets(). The gets() function, as
already noted, copies characters from standard input into Password until end-
of-file is encountered or a newline character is read. The Password array, how-
ever, contains only enough space for an 11-character password and a trailing
null character. This condition results in writing beyond the bounds of the
Password array if the input is greater than 11 characters in length. Figure 2.4
shows what happens if a program attempts to copy 16 bytes of data into a
12-byte array.

Figure 2.2 Correct password grants access to user.

Figure 2.3 Incorrect password denies access to user.

2.3 String Vulnerabilities and Exploits 53

The condition that allows an out-of-bounds write to occur is referred to
in software security as a buffer overflow. A buffer overflow occurs at runtime;
however, the condition that allows a buffer overflow to occur (in this case) is an
unbounded string read, and it can be recognized when the program is compiled.
Before looking at how this buffer overflow poses a security risk, we first need to
understand buffer overflows and process memory organization in general.

The IsPasswordOK program has another problem: it does not check the
return status of gets(). This is a violation of “FIO04-C. Detect and handle
input and output errors.” When gets() fails, the contents of the Password
buffer are indeterminate, and the subsequent strcmp() call has undefined
behavior. In a real program, the buffer might even contain the good password
previously entered by another user.

Buffer Overflows

Buffer overflows occur when data is written outside of the boundaries of the
memory allocated to a particular data structure. C and C++ are susceptible to
buffer overflows because these languages

■ Define strings as null-terminated arrays of characters

■ Do not perform implicit bounds checking

■ Provide standard library calls for strings that do not enforce bounds
checking

Depending on the location of the memory and the size of the overflow, a
buffer overflow may go undetected but can corrupt data, cause erratic behav-
ior, or terminate the program abnormally.

Destination
memory

Source
memory

Allocated memory (12 bytes) Other memory

16 Bytes of data

Copy
operation

Figure 2.4 Copying 16 bytes of data into a 12-byte array

54 Strings

Buffer overflows are troublesome in that they are not always discovered
during the development and testing of software applications. Not all C and
C++ implementations identify software flaws that can lead to buffer overflows
during compilation or report out-of-bound writes at runtime. Static analysis
tools can aid in discovering buffer overflows early in the development pro-
cess. Dynamic analysis tools can be used to discover buffer overflows as long
as the test data precipitates a detectable overflow.

Not all buffer overflows lead to software vulnerabilities. However, a buffer
overflow can lead to a vulnerability if an attacker can manipulate user-con-
trolled inputs to exploit the security flaw. There are, for example, well-known
techniques for overwriting frames in the stack to execute arbitrary code. Buf-
fer overflows can also be exploited in heap or static memory areas by over-
writing data structures in adjacent memory.

Before examining how these exploits behave, it is useful to understand
how process memory is organized and managed. If you are already familiar
with process memory organization, execution stack, and heap management,
skip to the section “Stack Smashing,” page 59.

Process Memory Organization

Process
A program instance that is loaded into memory and managed by the
operating system.

Process memory is generally organized into code, data, heap, and stack seg-
ments, as shown in column (a) of Figure 2.5.

The code or text segment includes instructions and read-only data. It can
be marked read-only so that modifying memory in the code section results
in faults. (Memory can be marked read-only by using memory management
hardware in the computer hardware platform that supports that feature or
by arranging memory so that writable data is not stored in the same page
as read-only data.) The data segment contains initialized data, uninitialized
data, static variables, and global variables. The heap is used for dynamically
allocating process memory. The stack is a last-in, first-out (LIFO) data struc-
ture used to support process execution.

The exact organization of process memory depends on the operating sys-
tem, compiler, linker, and loader—in other words, on the implementation of
the programming language. Columns (b) and (c) show possible process mem-
ory organization under UNIX and Win32.

2.3 String Vulnerabilities and Exploits 55

Stack Management

The stack supports program execution by maintaining automatic process-state
data. If the main routine of a program, for example, invokes function a(),
which in turn invokes function b(), function b() will eventually return con-
trol to function a(), which in turn will return control to the main() function
(see Figure 2.6).

To return control to the proper location, the sequence of return addresses
must be stored. A stack is well suited for maintaining this information
because it is a dynamic data structure that can support any level of nesting
within memory constraints. When a subroutine is called, the address of the
next instruction to execute in the calling routine is pushed onto the stack.
When the subroutine returns, this return address is popped from the stack,
and program execution jumps to the specified location (see Figure 2.7). The
information maintained in the stack reflects the execution state of the process
at any given instant.

Start

End

of
memory

of
memory

Code

Data

Heap

Stack

(a) Generic

Text

Data

BSS

Stack

Heap

(b) UNIX (c) Win32

Stack

Heap

Code

Constants

Static variables

Uninitialized variables

Reserved by OS

Figure 2.5 Process memory organization

b() {...}
a() {
 b();
}
main() {
 a();
}

Figure 2.6 Stack management

56 Strings

In addition to the return address, the stack is used to store the arguments
to the subroutine as well as local (or automatic) variables. Information pushed
onto the stack as a result of a function call is called a frame. The address of
the current frame is stored in the frame or base pointer register. On x86-32,
the extended base pointer (ebp) register is used for this purpose. The frame
pointer is used as a fixed point of reference within the stack. When a subrou-
tine is called, the frame pointer for the calling routine is also pushed onto the
stack so that it can be restored when the subroutine exits.

There are two notations for Intel instructions. Microsoft uses the Intel
notation

mov eax, 4 # Intel Notation

GCC uses the AT&T syntax:

mov $4, %eax # AT&T Notation

Both of these instructions move the immediate value 4 into the eax register.
Example 2.4 shows the x86-32 disassembly of a call to foo(MyInt, MyStrPtr)
using the Intel notation.

Example 2.4 Disassembly Using Intel Notation

01 void foo(int, char *); // function prototype
02

Low memory

High memory

Unallocated

Stack frame
for b ()

Stack frame
for a ()

Stack frame
for main ()

Figure 2.7 Calling a subroutine

2.3 String Vulnerabilities and Exploits 57

03 int main(void) {
04 int MyInt=1; // stack variable located at ebp-8
05 char *MyStrPtr="MyString"; // stack var at ebp-4
06 /* ... */
07 foo(MyInt, MyStrPtr); // call foo function
08 mov eax, [ebp-4]
09 push eax # Push 2nd argument on stack
10 mov ecx, [ebp-8]
11 push ecx # Push 1st argument on stack
12 call foo # Push the return address on stack and
13 # jump to that address
14 add esp, 8
15 /* ... */
16 }

The invocation consists of three steps:

 1. The second argument is moved into the eax register and pushed onto
the stack (lines 8 and 9). Notice how these mov instructions use the
ebp register to reference arguments and local variables on the stack.

 2. The first argument is moved into the ecx register and pushed onto the
stack (lines 10 and 11).

 3. The call instruction pushes a return address (the address of the
instruction following the call instruction) onto the stack and trans-
fers control to the foo() function (line 12).

The instruction pointer (eip) points to the next instruction to be exe-
cuted. When executing sequential instructions, it is automatically incre-
mented by the size of each instruction, so that the CPU will then execute
the next instruction in the sequence. Normally, the eip cannot be modified
directly; instead, it must be modified indirectly by instructions such as jump,
call, and return.

When control is returned to the return address, the stack pointer is incre-
mented by 8 bytes (line 14). (On x86-32, the stack pointer is named esp.
The e prefix stands for “extended” and is used to differentiate the 32-bit stack
pointer from the 16-bit stack pointer.) The stack pointer points to the top of
the stack. The direction in which the stack grows depends on the implementa-
tion of the pop and push instructions for that architecture (that is, they either
increment or decrement the stack pointer). For many popular architectures,
including x86, SPARC, and MIPS processors, the stack grows toward lower
memory. On these architectures, incrementing the stack pointer is equivalent
to popping the stack.

58 Strings

foo() Function Prologue. A function prologue contains instructions that
are executed by a function upon its invocation. The following is the function
prologue for the foo() function:

1 void foo(int i, char *name) {
2 char LocalChar[24];
3 int LocalInt;
4 push ebp # Save the frame pointer.
5 mov ebp, esp # Frame pointer for subroutine is set to the
6 # current stack pointer.
7 sub esp, 28 # Allocates space for local variables.
8 /* ... */

The push instruction pushes the ebp register containing the pointer to the
caller’s stack frame onto the stack. The mov instruction sets the frame pointer
for the function (the ebp register) to the current stack pointer. Finally, the
function allocates 28 bytes of space on the stack for local variables (24 bytes
for LocalChar and 4 bytes for LocalInt).

The stack frame for foo() following execution of the function prologue is
shown in Table 2.2. On x86, the stack grows toward low memory.

foo() Function Epilogue. A function epilogue contains instructions that
are executed by a function to return to the caller. The following is the func-
tion epilogue to return from the foo() function:

1 /* ... */
2 return;
3 mov esp, ebp # Restores the stack pointer.
4 pop ebp # Restores the frame pointer.
5 ret # Pops the return address off the stack
6 # and transfers control to that location.
7 }

Table 2.2 Stack Frame for foo() following Execution of the Function Prologue

Address Value Description Length

0x0012FF4C ? Last local variable—integer: LocalInt 4

0x0012FF50 ? First local variable—string: LocalChar 24

0x0012FF68 0x12FF80 Calling frame of calling function: main() 4

0x0012FF6C 0x401040 Return address of calling function: main() 4

0x0012FF70 1 First argument: MyInt (int) 4

0x0012FF74 0x40703C Second argument: pointer toMyString (char *) 4

2.3 String Vulnerabilities and Exploits 59

This return sequence is the mirror image of the function prologue shown
earlier. The mov instruction restores the caller’s stack pointer (esp) from the
frame pointer (ebp). The pop instruction restores the caller’s frame pointer
from the stack. The ret instruction pops the return address in the calling
function off the stack and transfers control to that location.

Stack Smashing

Stack smashing occurs when a buffer overflow overwrites data in the mem-
ory allocated to the execution stack. It can have serious consequences for the
reliability and security of a program. Buffer overflows in the stack segment
may allow an attacker to modify the values of automatic variables or execute
arbitrary code.

Overwriting automatic variables can result in a loss of data integrity or,
in some cases, a security breach (for example, if a variable containing a user
ID or password is overwritten). More often, a buffer overflow in the stack seg-
ment can lead to an attacker executing arbitrary code by overwriting a pointer
to an address to which control is (eventually) transferred. A common example
is overwriting the return address, which is located on the stack. Additionally,
it is possible to overwrite a frame- or stack-based exception handler pointer,
function pointer, or other addresses to which control may be transferred.

The example IsPasswordOK program is vulnerable to a stack-smash-
ing attack. To understand why this program is vulnerable, it is necessary to
understand exactly how the stack is being used.

Figure 2.8 illustrates the contents of the stack before the program calls
the IsPasswordOK() function.

The operating system (OS) or a standard start-up sequence puts the return
address from main() on the stack. On entry, main() saves the old incoming frame
pointer, which again comes from the operating system or a standard start-up
sequence. Before the call to the IsPasswordOK() function, the stack contains the
local Boolean variable PwStatus that stores the status returned by the function
IsPasswordOK() along with the caller’s frame pointer and return address.

While the program is executing the function IsPasswordOK(), the stack
contains the information shown in Figure 2.9.

Notice that the password is located on the stack with the return address
of the caller main(), which is located after the memory that is used to store the
password. It is also important to understand that the stack will change during
function calls made by IsPasswordOK().

After the program returns from the IsPasswordOK() function, the stack is
restored to its initial state, as in Figure 2.10.

Execution of the main() function resumes; which branch is executed
depends on the value returned from the IsPasswordOK() function.

60 Strings

Code

Stack

EIP

ESP

int main (void) {
 bool PwStatus;
 puts("Enter Password: ");
 PwStatus=IsPasswordOK();
 if (!PwStatus) {
 puts("Access denied");
 exit(–1);
 }
 else
 puts("Access granted");
}

Storage for PwStatus (4 bytes)

Caller EBP—Frame Ptr OS (4 bytes)

Return Addr of main—OS (4 bytes)

...

Figure 2.8 The stack before IsPasswordOK() is called

Code Stack

Storage for Password (12 bytes)

Caller EBP—Frame Ptr main (4 bytes)

Return Addr Caller—main (4 bytes)

Storage for PwStatus (4 bytes)

Caller EBP—Frame Ptr OS (4 bytes)

Return Addr of main—OS (4 bytes)

...

Note: The stack grows and shrinks
as a result of function calls made
by IsPasswordOK(void).

puts("Enter Password: ");
PwStatus=IsPasswordOK();
if (!PwStatus) {
 puts("Access denied");
 exit(–1) ;
 }
else puts("Access granted");

bool IsPasswordOK(void) {
 char Password [12];

 gets(Password);
 return 0 == strcmp (Password,
 "goodpass");
}

EIP ESP

Figure 2.9 Information in stack while IsPasswordOK() is executed

2.3 String Vulnerabilities and Exploits 61

Security Flaw: IsPasswordOK. As discussed earlier, the IsPasswordOK pro-
gram has a security flaw because the Password array is improperly bounded
and can hold only an 11-character password plus a trailing null byte. This
flaw can easily be demonstrated by entering a 20-character password of
“12345678901234567890” that causes the program to crash, as shown in Fig-
ure 2.11.

To determine the cause of the crash, it is necessary to understand the
effect of storing a 20-character password in a 12-byte stack variable. Recall
that when 20 bytes are input by the user, the amount of memory required
to store the string is actually 21 bytes because the string is terminated by a
null-terminator character. Because the space available to store the password
is only 12 bytes, 9 bytes of the stack (21 − 12 = 9) that have already been
allocated to store other information will be overwritten with password data.
Figure 2.12 shows the corrupted program stack that results when the call to
gets() reads a 20-byte password and overflows the allocated buffer. Notice
that the caller’s frame pointer, return address, and part of the storage space
used for the PwStatus variable have all been corrupted.

Code

Stack

EIP

ESP

puts("Enter Password: ");
PwStatus=IsPasswordOK();
if (!PwStatus) {
 puts("Access denied");
 exit(–1);
}
else puts("Access granted");

Storage for PwStatus (4 bytes)

Caller EBP—Frame Ptr OS (4 bytes)

Return Addr of main—OS (4 bytes)

Storage for Password (12 bytes)

Caller EBP—Frame Ptr main
(4 bytes)

Return Addr Caller—main (4 bytes)

...

Figure 2.10 Stack restored to initial state

62 Strings

When a program fault occurs, the typical user generally does not assume
that a potential vulnerability exists. The typical user only wants to restart the
program. However, an attacker will investigate to see if the programming flaw
can be exploited.

The program crashes because the return address is altered as a result of
the buffer overflow, and either the new address is invalid or memory at that

Figure 2.11 An improperly bounded Password array crashes the program if its
character limit is exceeded.

EIP

ESP

bool IsPasswordOK(void) {
 char Password [12];

 gets (Password);
 return 0 == strcmp (Password,
 "goodpass");
}

Storage for Password (12 bytes)
“123456789012”

Caller EBP—Frame Ptr main (4 bytes)
“3456”

Return Addr Caller—main (4 bytes)
“7890”

Storage for PwStatus (4 bytes)
‘\0’

Caller EBP—Ptr OS (4 bytes)

Return Addr of main—OS (4 bytes)

...

Figure 2.12 Corrupted program stack

2.3 String Vulnerabilities and Exploits 63

address (1) does not contain a valid CPU instruction; (2) does contain a valid
instruction, but the CPU registers are not set up for proper execution of the
instruction; or (3) is not executable.

A carefully crafted input string can make the program produce unex-
pected results, as shown in Figure 2.13.

Figure 2.14 shows how the contents of the stack have changed when the
contents of a carefully crafted input string overflow the storage allocated for
Password.

The input string consists of a number of funny-looking characters: j▸*!.
These are all characters that can be input using the keyboard or character
map. Each of these characters has a corresponding hexadecimal value: j =
0x6A, ▸ = 0x10, * = 0x2A, and ! = 0x21. In memory, this sequence of four
characters corresponds to a 4-byte address that overwrites the return address
on the stack, so instead of returning to the instruction immediately following
the call in main(), the IsPasswordOK() function returns control to the “Access

Figure 2.13 Unexpected results from a carefully crafted input string

Line Statement

1

2

3

4

5

6

puts("Enter Password: ");

PwStatus=IsPasswordOK();

if (!PwStatus)

puts("Access denied");

exit(–1);

else
 puts("Access granted");

Storage for Password (12 bytes)
"123456789012"

Caller EBP—Frame Ptr main (4 bytes)
"3456"

Return Addr Caller—main (4 bytes)
"W *!" (return to line 6 was line 3)

Storage for PwStatus (4 bytes)
'\0'

Caller EBP—Frame Ptr OS (4 bytes)

Return Addr of main—OS (4 bytes)

Stack

Figure 2.14 Program stack following buffer overflow using crafted input string

64 Strings

granted” branch, bypassing the password validation logic and allowing unau-
thorized access to the system. This attack is a simple arc injection attack. Arc
injection attacks are covered in more detail in the “Arc Injection” section.

Code Injection

When the return address is overwritten because of a software flaw, it seldom
points to valid instructions. Consequently, transferring control to this address
typically causes a trap and results in a corrupted stack. But it is possible for
an attacker to create a specially crafted string that contains a pointer to some
malicious code, which the attacker also provides. When the function invo-
cation whose return address has been overwritten returns, control is trans-
ferred to this code. The malicious code runs with the permissions that the
vulnerable program has when the subroutine returns, which is why programs
running with root or other elevated privileges are normally targeted. The
malicious code can perform any function that can otherwise be programmed
but often simply opens a remote shell on the compromised machine. For this
reason, the injected malicious code is referred to as shellcode.

The pièce de résistance of any good exploit is the malicious argument. A
malicious argument must have several characteristics:

■ It must be accepted by the vulnerable program as legitimate input.

■ The argument, along with other controllable inputs, must result in
execution of the vulnerable code path.

■ The argument must not cause the program to terminate abnormally
before control is passed to the shellcode.

The IsPasswordOK program can also be exploited to execute arbitrary
code because of the buffer overflow caused by the call to gets(). The gets()
function also has an interesting property in that it reads characters from the
input stream pointed to by stdin until end-of-file is encountered or a newline
character is read. Any newline character is discarded, and a null character is
written immediately after the last character read into the array. As a result,
there might be null characters embedded in the string returned by gets()
if, for example, input is redirected from a file. It is important to note that the
gets() function was deprecated in C99 and eliminated from the C11 stan-
dard (most implementations are likely to continue to make gets() available
for compatibility reasons). However, data read by the fgets() function may
also contain null characters. This issue is further documented in The CERT C
Secure Coding Standard [Seacord 2008], “FIO37-C. Do not assume that fgets()
returns a nonempty string when successful.”

2.3 String Vulnerabilities and Exploits 65

The program IsPasswordOK was compiled for Linux using GCC. The mali-
cious argument can be stored in a binary file and supplied to the vulnerable
program using redirection, as follows:

%./BufferOverflow < exploit.bin

When the exploit code is injected into the IsPasswordOK program, the
program stack is overwritten as follows:

01 /* buf[12] */
02 00 00 00 00
03 00 00 00 00
04 00 00 00 00
05
06 /* %ebp */
07 00 00 00 00
08
09 /* return address */
10 78 fd ff bf
11
12 /* "/usr/bin/cal" */
13 2f 75 73 72
14 2f 62 69 6e
15 2f 63 61 6c
16 00 00 00 00
17
18 /* null pointer */
19 74 fd ff bf
20
21 /* NULL */
22 00 00 00 00
23
24 /* exploit code */
25 b0 0b /* mov $0xb, %eax */
26 8d 1c 24 /* lea (%esp), %ebx */
27 8d 4c 24 f0 /* lea -0x10(%esp), %ecx */
28 8b 54 24 ec /* mov -0x14(%esp), %edx */
29 cd 50 /* int $0x50 */

The lea instruction used in this example stands for “load effective
address.” The lea instruction computes the effective address of the second
operand (the source operand) and stores it in the first operand (destination
operand). The source operand is a memory address (offset part) specified with
one of the processor’s addressing modes; the destination operand is a gener-
al-purpose register. The exploit code works as follows:

66 Strings

 1. The first mov instruction is used to assign 0xB to the %eax register. 0xB
is the number of the execve() system call in Linux.

 2. The three arguments for the execve() function call are set up in the
subsequent three instructions (the two lea instructions and the mov
instruction). The data for these arguments is located on the stack, just
before the exploit code.

 3. The int $0x50 instruction is used to invoke execve(), which results in
the execution of the Linux calendar program, as shown in Figure 2.15.

The call to the fgets function is not susceptible to a buffer overflow, but
the call to strcpy() is, as shown in the modified IsPasswordOK program that
follows:

01 char buffer[128];
02
03 _Bool IsPasswordOK(void) {
04 char Password[12];
05
06 fgets(buffer, sizeof buffer, stdin);
07 if (buffer[strlen(buffer) - 1] == '\n')
08 buffer[strlen(buffer) - 1] = 0;
09 strcpy(Password, buffer);
10 return 0 == strcmp(Password, "goodpass");
11 }
12
13 int main(void) {
14 _Bool PwStatus;
15
16 puts("Enter password:");
17 PwStatus = IsPasswordOK();
18 if (!PwStatus) {
19 puts("Access denied");
20 exit(-1);
21 }
22 else
23 puts("Access granted");
24 return 0;
25 }

Because the strcpy() function copies only the source string (stored in
buffer), the Password array cannot contain internal null characters. Conse-
quently, the exploit is more difficult because the attacker has to manufacture
any required null bytes.

2.3 String Vulnerabilities and Exploits 67

The malicious argument in this case is in the binary file exploit.bin:

000: 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 1234567890123456
010: 37 38 39 30 31 32 33 34 04 fc ff bf 78 78 78 78 78901234....xxxx
020: 31 c0 a3 23 fc ff bf b0 0b bb 27 fc ff bf b9 1f 1..#......'.....
030: fc ff bf 8b 15 23 fc ff bf cd 80 ff f9 ff bf 31 #.....'...1
040: 31 31 31 2f 75 73 72 2f 62 69 6e 2f 63 61 6c 0a 111/usr/bin/cal.

This malicious argument can be supplied to the vulnerable program using
redirection, as follows:

%./BufferOverflow < exploit.bin

After the strcpy() function returns, the stack is overwritten as shown in
Table 2.3.

Table 2.3 Corrupted Stack for the Call to strcpy()

Row Address Content Description

 1 0xbffff9c0
–0xbffff9cf

"123456789012456" Storage for Password (16 bytes) and padding

 2 0xbffff9d0
–0xbffff9db

"789012345678" Additional padding

 3 0xbffff9dc (0xbffff9e0) New return address

 4 0xbffff9e0 xor %eax,%eax Sets eax to 0

continues

Figure 2.15 Linux calendar program

68 Strings

The exploit works as follows:

 1. The first 16 bytes of binary data (row 1) fill the allocated storage space
for the password. Even though the program allocated only 12 bytes
for the password, the version of the GCC that was used to compile the
program allocates stack data in multiples of 16 bytes.

 2. The next 12 bytes of binary data (row 2) fill the extra storage space
that was created by the compiler to keep the stack aligned on a
16-byte boundary. Only 12 bytes are allocated by the compiler
because the stack already contained a 4-byte return address when the
function was called.

 3. The return address is overwritten (row 3) to resume program execu-
tion (row 4) when the program executes the return statement in the
function IsPasswordOK(), resulting in the execution of code contained
on the stack (rows 4–10).

 4. A zero value is created and used to null-terminate the argument list
(rows 4 and 5) because an argument to a system call made by this

Row Address Content Description

5 0xbffff9e2 mov %eax,0xbffff9ff Terminates pointer array with null pointer

6 0xbffff9e7 mov $0xb,%al Sets the code for the execve() function call

7 0xbffff9e9 mov $0xbffffa03,%ebx Sets ebx to point to the first argument to
execve()

8 0xbffff9ee mov $0xbffff9fb,%ecx Sets ecx to point to the second argument to
execve()

9 0xbffff9f3 mov 0xbffff9ff,%edx Sets edx to point to the third argument to
execve()

10 0xbffff9f9 int $80 Invokes execve() system call

11 0xbffff9fb 0xbffff9ff Array of argument strings passed to the new
program

12 0xbffff9ff "1111" Changed to 0x00000000 to terminate the
pointer array and also used as the third
argument

13 0xbffffa03
–0xbffffa0f

"/usr/bin/cal\0" Command to execute

Table 2.3 Corrupted Stack for the Call to strcpy() (continued)

2.3 String Vulnerabilities and Exploits 69

exploit must contain a list of character pointers terminated by a null
pointer. Because the exploit cannot contain null characters until the
last byte, the null pointer must be set by the exploit code.

 5. The system call is set to 0xB, which equates to the execve() system
call in Linux (row 6).

 6. The three arguments for the execve() function call are set up (rows
7–9).

 7. The data for these arguments is located in rows 12 and 13.

 8. The execve() system call is executed, which results in the execution
of the Linux calendar program (row 10).

Reverse engineering of the code can be used to determine the exact off-
set from the buffer to the return address in the stack frame, which leads to
the location of the injected shellcode. However, it is possible to relax these
requirements [Aleph 1996]. For example, the location of the return address
can be approximated by repeating the return address several times in the
approximate region of the return address. Assuming a 32-bit architecture, the
return address is normally 4-byte aligned. Even if the return address is offset,
there are only four possibilities to test. The location of the shellcode can also
be approximated by prefixing a series of nop instructions before the shellcode
(often called a nop sled). The exploit need only jump somewhere in the field of
nop instructions to execute the shellcode.

Most real-world stack-smashing attacks behave in this fashion: they over-
write the return address to transfer control to injected code. Exploits that sim-
ply change the return address to jump to a new location in the code are less
common, partly because these vulnerabilities are harder to find (it depends
on finding program logic that can be bypassed) and less useful to an attacker
(allowing access to only one program as opposed to running arbitrary code).

Arc Injection

The first exploit for the IsPasswordOK program, described in the “Stack
Smashing” section, modified the return address to change the control flow
of the program (in this case, to circumvent the password protection logic).
The arc injection technique (sometimes called return-into-libc) involves trans-
ferring control to code that already exists in process memory. These exploits
are called arc injection because they insert a new arc (control-flow transfer)
into the program’s control-flow graph as opposed to injecting new code. More
sophisticated attacks are possible using this technique, including installing
the address of an existing function (such as system() or exec(), which can

70 Strings

be used to execute commands and other programs already on the local sys-
tem) on the stack along with the appropriate arguments. When the return
address is popped off the stack (by the ret or iret instruction in x86), control
is transferred by the return instruction to an attacker-specified function. By
invoking functions like system() or exec(), an attacker can easily create a
shell on the compromised machine with the permissions of the compromised
program.

Worse yet, an attacker can use arc injection to invoke multiple functions
in sequence with arguments that are also supplied by the attacker. An attacker
can now install and run the equivalent of a small program that includes
chained functions, increasing the severity of these attacks.

The following program is vulnerable to a buffer overflow:

01 #include <string.h>
02
03 int get_buff(char *user_input, size_t size){
04 char buff[40];
05 memcpy(buff, user_input, size);
06 return 0;
07 }
08
09 int main(void) {
10 /* ... */
11 get_buff(tainted_char_array, tainted_size);
12 /* ... */
13 }

Tainted data in user_input is copied to the buff character array using memcpy().
A buffer overflow can result if user_input is larger than the buff buffer.

An attacker may prefer arc injection over code injection for several rea-
sons. Because arc injection uses code already in memory on the target sys-
tem, the attacker merely needs to provide the addresses of the functions and
arguments for a successful attack. The footprint for this type of attack can
be significantly smaller and may be used to exploit vulnerabilities that can-
not be exploited by the code injection technique. Because the exploit consists
entirely of existing code, it cannot be prevented by memory-based protection
schemes such as making memory segments (such as the stack) nonexecutable.
It may also be possible to restore the original frame to prevent detection.

Chaining function calls together allows for more powerful attacks. A
security-conscious programmer, for example, might follow the principle of
least privilege [Saltzer 1975] and drop privileges when not required. By chain-
ing multiple function calls together, an exploit could regain privileges, for
example, by calling setuid() before calling system().

2.3 String Vulnerabilities and Exploits 71

Return-Oriented Programming

The return-oriented programming exploit technique is similar to arc injection,
but instead of returning to functions, the exploit code returns to sequences of
instructions followed by a return instruction. Any such useful sequence of
instructions is called a gadget. A Turing-complete set of gadgets has been iden-
tified for the x86 architecture, allowing arbitrary programs to be written in
the return-oriented language. A Turing-complete library of code gadgets using
snippets of the Solaris libc, a general-purpose programming language, and a
compiler for constructing return-oriented exploits have also been developed
[Buchanan 2008]. Consequently, there is an assumed risk that return- oriented
programming exploits could be effective on other architectures as well.

The return-oriented programming language consists of a set of gadgets.
Each gadget specifies certain values to be placed on the stack that make use of
one or more sequences of instructions in the code segment. Gadgets perform
well-defined operations, such as a load, an add, or a jump.

Return-oriented programming consists of putting gadgets together that
will perform the desired operations. Gadgets are executed by a return instruc-
tion with the stack pointer referring to the address of the gadget.

For example, the sequence of instructions

pop %ebx;
ret

forms a gadget that can be used to load a constant value into the ebx register,
as shown in Figure 2.16.

The left side of Figure 2.16 shows the x86-32 assembly language instruc-
tion necessary to copy the constant value $0xdeadbeef into the ebx register,
and the right side shows the equivalent gadget. With the stack pointer refer-
ring to the gadget, the return instruction is executed by the CPU. The result-
ing gadget pops the constant from the stack and returns execution to the next
gadget on the stack.

Return-oriented programming also supports both conditional and uncon-
ditional branching. In return-oriented programming, the stack pointer takes

mov $0xdeadbeef, %ebx

%ebx;

eip esp

pop ret

0xdeadbeef

Figure 2.16 Gadget built with return-oriented programming

72 Strings

the place of the instruction pointer in controlling the flow of execution. An
unconditional jump requires simply changing the value of the stack pointer
to point to a new gadget. This is easily accomplished using the instruction
sequence

pop %esp;
ret

The x86-32 assembly language programming and return-oriented pro-
gramming idioms for unconditional branching are contrasted in Figure 2.17.

An unconditional branch can be used to branch to an earlier gadget on
the stack, resulting in an infinite loop. Conditional iteration can be imple-
mented by a conditional branch out of the loop.

Hovav Shacham’s “The Geometry of Innocent Flesh on the Bone” [Sha-
cham 2007] contains a more complete tutorial on return-oriented program-
ming. While return-oriented programming might seem very complex, this
complexity can be abstracted behind a programming language and compiler,
making it a viable technique for writing exploits.

■ 2.4 Mitigation Strategies for Strings

Because errors in string manipulation have long been recognized as a leading
source of buffer overflows in C and C++, a number of mitigation strategies
have been devised. These include mitigation strategies designed to prevent
buffer overflows from occurring and strategies designed to detect buffer over-
flows and securely recover without allowing the failure to be exploited.

Rather than completely relying on a given mitigation strategy, it is often
advantageous to follow a defense-in-depth tactic that combines multiple strat-
egies. A common approach is to consistently apply a secure technique to
string handling (a prevention strategy) and back it up with one or more run-
time detection and recovery schemes.

jmp + 4

eip esp

%esp;pop ret

Figure 2.17 Unconditional branching in x86-32 assembly language (left) and
return-oriented programming idioms

2.4 Mitigation Strategies for Strings 73

String Handling

The CERT C Secure Coding Standard [Seacord 2008], “STR01-C. Adopt and
implement a consistent plan for managing strings,” recommends selecting
a single approach to handling character strings and applying it consistently
across a project. Otherwise, the decision is left to individual programmers
who are likely to make different, inconsistent choices. String-handling func-
tions can be categorized according to how they manage memory. There are
three basic models:

■ Caller allocates, caller frees (C99, OpenBSD, C11 Annex K)

■ Callee allocates, caller frees (ISO/IEC TR 24731-2)

■ Callee allocates, callee frees (C++ std::basic_string)

It could be argued whether the first model is more secure than the second
model, or vice versa. The first model makes it clearer when memory needs to
be freed, and it is more likely to prevent leaks, but the second model ensures
that sufficient memory is available (except when a call to malloc() fails).

The third memory management mode, in which the callee both allocates
and frees storage, is the most secure of the three solutions but is available only
in C++.

C11 Annex K Bounds-Checking Interfaces

The first memory management model (caller allocates, caller frees) is imple-
mented by the C string-handling functions defined in <string.h>, by the
OpenBSD functions strlcpy() and strlcat(), and by the C11 Annex K
bounds-checking interfaces. Memory can be statically or dynamically allo-
cated before invoking these functions, making this model optimally efficient.
C11 Annex K provides alternative library functions that promote safer, more
secure programming. The alternative functions verify that output buffers
are large enough for the intended result and return a failure indicator if they
are not. Data is never written past the end of an array. All string results are
null-terminated.

C11 Annex K bounds-checking interfaces are primarily designed to be
safer replacements for existing functions. For example, C11 Annex K defines
the strcpy_s(), strcat_s(), strncpy_s(), and strncat_s() functions as
replacements for strcpy(), strcat(), strncpy(), and strncat(), respectively,
suitable in situations when the length of the source string is not known or
guaranteed to be less than the known size of the destination buffer.

The C11 Annex K functions were created by Microsoft to help retrofit its
existing legacy code base in response to numerous well-publicized security

74 Strings

incidents. These functions were subsequently proposed to the ISO/IEC JTC1/
SC22/WG14 international standardization working group for the program-
ming language C for standardization. These functions were published as ISO/
IEC TR 24731-1 and later incorporated in C11 in the form of a set of optional
extensions specified in a normative annex. Because the C11 Annex K functions
can often be used as simple replacements for the original library functions in
legacy code, The CERT C Secure Coding Standard [Seacord 2008], “STR07-C.
Use TR 24731 for remediation of existing string manipulation code,” recom-
mends using them for this purpose on implementations that implement the
annex. (Such implementations are expected to define the __STDC_LIB_EXT1__
macro.)

Annex K also addresses another problem that complicates writing robust
code: functions that are not reentrant because they return pointers to static
objects owned by the function. Such functions can be troublesome because a
previously returned result can change if the function is called again, perhaps
by another thread.

C11 Annex K is a normative but optional annex—you should make sure
it is available on all your target platforms. Even though these functions were
originally developed by Microsoft, the implementation of the bounds- checking
library that ships with Microsoft Visual C++ 2012 and earlier releases does
not conform completely with Annex K because of changes to these functions
during the standardization process that have not been retrofitted to Microsoft
Visual C++.

Example 2.1 from the section “Improperly Bounded String Copies” can be
reimplemented using the C11 Annex K functions, as shown in Example 2.5.
This program is similar to the original example except that the array bounds
are checked. There is implementation-defined behavior (typically, the pro-
gram aborts) if eight or more characters are input.

Example 2.5 Reading from stdin Using gets_s()

01 #define __STDC_WANT_LIB_EXT1__ 1
02 #include <stdio.h>
03 #include <stdlib.h>
04
05 void get_y_or_n(void) {
06 char response[8];
07 size_t len = sizeof(response);
08 puts("Continue? [y] n: ");
09 gets_s(response, len);
10 if (response[0] == 'n')
11 exit(0);
12 }

2.4 Mitigation Strategies for Strings 75

Most bounds-checking functions, upon detecting an error such as invalid
arguments or not enough bytes available in an output buffer, call a special
 runtime-constraint-handler function. This function might print an error mes-
sage and/or abort the program. The programmer can control which handler
function is called via the set_constraint_handler_s() function and can
make the handler simply return if desired. If the handler simply returns,
the function that invoked the handler indicates a failure to its caller using
its return value. Programs that install a handler that returns must check the
return value of each call to any of the bounds-checking functions and han-
dle errors appropriately. The CERT C Secure Coding Standard [Seacord 2008],
“ERR03-C. Use runtime-constraint handlers when calling functions defined
by TR24731-1,” recommends installing a runtime-constraint handler to elimi-
nate implementation-defined behavior.

Example 2.1 of reading from stdin using the C11 Annex K bounds-
checking functions can be improved to remove the implementation-defined
behavior at the cost of some additional complexity, as shown by Example 2.6.

Example 2.6 Reading from stdin Using gets_s() (Improved)

01 #define __STDC_WANT_LIB_EXT1__ 1
02 #include <stdio.h>
03 #include <stdlib.h>
04
05 void get_y_or_n(void) {
06 char response[8];
07 size_t len = sizeof(response);
08
09 puts("Continue? [y] n: ");
10 if ((gets_s(response, len) == NULL) || (response[0] == 'n')) {
11 exit(0);
12 }
13 }
14
15 int main(void) {
16 constraint_handler_t oconstraint =
17 set_constraint_handler_s(ignore_handler_s);
18 get_y_or_n();
19 }

This example adds a call to set_constraint_handler_s() to install the
ignore_handler_s() function as the runtime-constraint handler. If the
 runtime-constraint handler is set to the ignore_handler_s() function, any
library function in which a runtime-constraint violation occurs will return

76 Strings

to its caller. The caller can determine whether a runtime-constraint vio-
lation occurred on the basis of the library function’s specification. Most
bounds-checking functions return a nonzero errno_t. Instead, the get_s()
function returns a null pointer so that it can serve as a close drop-in replace-
ment for gets().

In conformance with The CERT C Secure Coding Standard [Seacord
2008], “ERR00-C. Adopt and implement a consistent and comprehensive
error- handling policy,” the constraint handler is set in main() to allow for a
consistent error-handling policy throughout the application. Custom library
functions may wish to avoid setting a specific constraint-handler policy
because it might conflict with the overall policy enforced by the applica-
tion. In this case, library functions should assume that calls to bounds-
checked functions will return and check the return status accordingly. In
cases in which the library function does set a constraint handler, the func-
tion must restore the original constraint handler (returned by the function
set_constraint_ handler_s()) before returning or exiting (in case there are
atexit() registered functions).

Both the C string-handling and C11 Annex K bounds-checking functions
require that storage be preallocated. It is impossible to add new data once the
destination memory is filled. Consequently, these functions must either dis-
card excess data or fail. It is important that the programmer ensure that the
destination is of sufficient size to hold the character data to be copied and the
null-termination character, as described by The CERT C Secure Coding Stan-
dard [Seacord 2008], “STR31-C. Guarantee that storage for strings has suffi-
cient space for character data and the null terminator.”

The bounds-checking functions defined in C11 Annex K are not fool-
proof. If an invalid size is passed to one of the functions, it could still suffer
from buffer overflow problems while appearing to have addressed such issues.
Because the functions typically take more arguments than their traditional
counterparts, using them requires a solid understanding of the purpose of
each argument. Introducing the bounds-checking functions into a legacy code
base as replacements for their traditional counterparts also requires great care
to avoid inadvertently injecting new defects in the process. It is also worth
noting that it is not always appropriate to replace every C string-handling
function with its corresponding bounds-checking function.

Dynamic Allocation Functions

The second memory management model (callee allocates, caller frees) is
implemented by the dynamic allocation functions defined by ISO/IEC TR
24731-2. ISO/IEC TR 24731-2 defines replacements for many of the standard

2.4 Mitigation Strategies for Strings 77

C string-handling functions that use dynamically allocated memory to ensure
that buffer overflow does not occur. Because the use of such functions requires
introducing additional calls to free the buffers later, these functions are better
suited to new development than to retrofitting existing code.

In general, the functions described in ISO/IEC TR 24731-2 provide greater
assurance that buffer overflow problems will not occur, because buffers are
always automatically sized to hold the data required. Applications that use
dynamic memory allocation might, however, suffer from denial-of-service
attacks in which data is presented until memory is exhausted. They are also
more prone to dynamic memory management errors, which can also result in
vulnerabilities.

Example 2.1 can be implemented using the dynamic allocation functions,
as shown in Example 2.7.

Example 2.7 Reading from stdin Using getline()

01 #define __STDC_WANT_LIB_EXT2__ 1
02 #include <stdio.h>
03 #include <stdlib.h>
04
05 void get_y_or_n(void) {
06 char *response = NULL;
07 size_t len;
08
09 puts("Continue? [y] n: ");
10 if ((getline(&response, &len, stdin) < 0) ||
11 (len && response[0] == 'n')) {
12 free(response);
13 exit(0);
14 }
15 free(response);
16 }

This program has defined behavior for any input, including the assump-
tion that an extremely long line that exhausts all available memory to hold it
should be treated as if it were a “no” response. Because the getline() function
dynamically allocates the response buffer, the program must call free() to
release any allocated memory.

ISO/IEC TR 24731-2 allows you to define streams that do not correspond
to open files. One such type of stream takes input from or writes output to a
memory buffer. These streams are used by the GNU C library, for example, to
implement the sprintf() and sscanf() functions.

78 Strings

A stream associated with a memory buffer has the same operations for
text files that a stream associated with an external file would have. In addi-
tion, the stream orientation is determined in exactly the same fashion.

You can create a string stream explicitly using the fmemopen(),
open_ memstream(), or open_wmemstream() function. These functions allow
you to perform I/O to a string or memory buffer. The fmemopen() and
open_ memstream() functions are declared in <stdio.h> as follows:

1 FILE *fmemopen(
2 void * restrict buf, size_t size, const char * restrict mode
3);
4 FILE *open_memstream(
5 char ** restrict bufp, size_t * restrict sizep
6);

The open_wmemstream() function is defined in <wchar.h> and has the fol-
lowing signature:

FILE *open_wmemstream(wchar_t **bufp, size_t *sizep);

The fmemopen() function opens a stream that allows you to read from
or write to a specified buffer. The open_memstream() function opens a byte-
oriented stream for writing to a buffer, and the open_wmemstream() function
creates a wide-oriented stream. When the stream is closed with fclose() or
flushed with fflush(), the locations bufp and sizep are updated to contain
the pointer to the buffer and its size. These values remain valid only as long
as no further output on the stream takes place. If you perform additional out-
put, you must flush the stream again to store new values before you use them
again. A null character is written at the end of the buffer but is not included in
the size value stored at sizep.

Input and output operations on a stream associated with a memory buf-
fer by a call to fmemopen(), open_memstream(), or open_wmemstream() are
constrained by the implementation to take place within the bounds of the
memory buffer. In the case of a stream opened by open_memstream() or
open_wmemstream(), the memory area grows dynamically to accommodate
write operations as necessary. For output, data is moved from the buffer pro-
vided by setvbuf() to the memory stream during a flush or close operation.
If there is insufficient memory to grow the memory area, or the operation
requires access outside of the associated memory area, the associated opera-
tion fails.

The program in Example 2.8 opens a stream to write to memory on line 6.

2.4 Mitigation Strategies for Strings 79

Example 2.8 Opening a Stream to Write to Memory

01 #include <stdio.h>
02
03 int main(void) {
04 char *buf;
05 size_t size;
06 FILE *stream;
07
08 stream = open_memstream(&buf, &size);
09 if (stream == NULL) { /* handle error */ };
10 fprintf(stream, "hello");
11 fflush(stream);
12 printf("buf = '%s', size = %zu\n", buf, size);
13 fprintf(stream, ", world");
14 fclose(stream);
15 printf("buf = '%s', size = %zu\n", buf, size);
16 free(buf);
17 return 0;
18 }

The string "hello" is written to the stream on line 10, and the stream
is flushed on line 11. The call to fflush() updates buf and size so that the
printf() function on line 12 outputs

buf = 'hello', size = 5

After the string ", world" is written to the stream on line 13, the stream
is closed on line 14. Closing the stream also updates buf and size so that the
printf() function on line 15 outputs

buf = 'hello, world', size = 12

The size is the cumulative (total) size of the buffer. The open_ memstream()
function provides a safer mechanism for writing to memory because it uses a
dynamic approach that allocates memory as required. However, it does require
the caller to free the allocated memory, as shown on line 16 of the example.

Dynamic allocation is often disallowed in safety-critical systems. For
example, the MISRA standard requires that “dynamic heap memory alloca-
tion shall not be used” [MISRA 2005]. Some safety-critical systems can take
advantage of dynamic memory allocation during initialization but not during
operations. For example, avionics software may dynamically allocate memory
while initializing the aircraft but not during flight.

80 Strings

The dynamic allocation functions are drawn from existing implementa-
tions that have widespread usage; many of these functions are included in
POSIX.

C++ std::basic_string

Earlier we described a common programming flaw using the C++ extraction
operator operator>> to read input from the standard std::cin iostream
object into a character array. Although setting the field width eliminates the
buffer overflow vulnerability, it does not address the issue of truncation. Also,
unexpected program behavior could result when the maximum field width is
reached and the remaining characters in the input stream are consumed by
the next call to the extraction operator.

C++ programmers have the option of using the standard std::string
class defined in ISO/IEC 14882. The std::string class is a specialization of
the std::basic_string template on type char. The std::wstring class is a spe-
cialization of the std::basic_string template on type wchar_t.

The basic_string class represents a sequence of characters. It supports
sequence operations as well as string operations such as search and concate-
nation and is parameterized by character type.

The basic_string class uses a dynamic approach to strings in that mem-
ory is allocated as required—meaning that in all cases, size() <= capacity().
The basic_string class is convenient because the language supports the class
directly. Also, many existing libraries already use this class, which simplifies
integration.

The basic_string class implements the “callee allocates, callee frees”
memory management strategy. This is the most secure approach, but it is sup-
ported only in C++. Because basic_string manages memory, the caller does
not need to worry about the details of memory management. For example,
string concatenation is handled simply as follows:

1 string str1 = "hello, ";
2 string str2 = "world";
3 string str3 = str1 + str2;

Internally, the basic_string methods allocate memory dynamically;
buffers are always automatically sized to hold the data required, typically by
invoking realloc(). These methods scale better than their C counterparts and
do not discard excess data.

The following program shows a solution to extracting characters from
std::cin into a std::string, using a std::string object instead of a character
array:

2.4 Mitigation Strategies for Strings 81

01 #include <iostream>
02 #include <string>
03 using namespace std;
04
05 int main(void) {
06 string str;
07
08 cin >> str;
09 cout << "str 1: " << str << '\n';
10 }

This program is simple and elegant, handles buffer overflows and string trun-
cation, and behaves in a predictable fashion. What more could you possibly
want?

The basic_string class is less prone to security vulnerabilities than
null-terminated byte strings, although coding errors leading to security vul-
nerabilities are still possible. One area of concern when using the basic_string
class is iterators. Iterators can be used to iterate over the contents of a string:

1 string::iterator i;
2 for (i = str.begin(); i != str.end(); ++i) {
3 cout << *i;
4 }

Invalidating String Object References

References, pointers, and iterators referencing string objects are invalidated by
operations that modify the string, which can lead to errors. Using an invalid
iterator is undefined behavior and can result in a security vulnerability.

For example, the following program fragment attempts to sanitize
an e-mail address stored in the input character array before passing it to a
command shell by copying the null-terminated byte string to a string object
(email), replacing each semicolon with a space character:

01 char input[];
02 string email;
03 string::iterator loc = email.begin();
04 // copy into string converting ";" to " "
05 for (size_t i=0; i < strlen(input); i++) {
06 if (input[i] != ';') {
07 email.insert(loc++, input[i]); // invalid iterator
08 }
09 else email.insert(loc++, ' '); // invalid iterator
10 }

82 Strings

The problem with this code is that the iterator loc is invalidated after
the first call to insert(), and every subsequent call to insert() results in
undefined behavior. This problem can be easily repaired if the programmer is
aware of the issue:

01 char input[];
02 string email;
03 string::iterator loc = email.begin();
04 // copy into string converting ";" to " "
05 for (size_t i=0; i < strlen(input); ++i) {
06 if (input[i] != ';') {
07 loc = email.insert(loc, input[i]);
08 }
09 else loc = email.insert(loc, ' ');
10 ++loc;
11 }

In this version of the program, the value of the iterator loc is properly
updated as a result of each insertion, eliminating the undefined behavior.
Most checked standard template library (STL) implementations detect com-
mon errors automatically. At a minimum, run your code using a checked STL
implementation on a single platform during prerelease testing using your full
complement of tests.

The basic_string class generally protects against buffer overflow, but
there are still situations in which programming errors can lead to buffer over-
flows. While C++ generally throws an exception of type std::out_of_range
when an operation references memory outside the bounds of the string, for
maximum efficiency, the subscript member std::string::operator[] (which
does not perform bounds checking) does not. For example, the following pro-
gram fragment can result in a write outside the bounds of the storage allo-
cated to the bs string object if f() >= bs.size():

1 string bs("01234567");
2 size_t i = f();
3 bs[i] = '\0';

The at() method behaves in a similar fashion to the index operator[] but
throws an out_of_range exception if pos >= size():

1 string bs("01234567");
2 try {
3 size_t i = f();
4 bs.at(i) = '\0';
5 }

2.4 Mitigation Strategies for Strings 83

6 catch (out_of_range& oor) {
7 cerr << "Out of Range error: " << oor.what() << '\n';
8 }

Although the basic_string class is generally more secure, the use of
null-terminated byte strings in a C++ program is generally unavoidable except
in rare circumstances in which there are no string literals and no interaction
with existing libraries that accept null-terminated byte strings. The c_str()
method can be used to generate a null-terminated sequence of characters with
the same content as the string object and returns it as a pointer to an array of
characters.

string str = x;
cout << strlen(str.c_str());

The c_str() method returns a const value, which means that calling
free() or delete on the returned string is an error. Modifying the returned
string can also lead to an error, so if you need to modify the string, make a
copy first and then modify the copy.

Other Common Mistakes in basic_string Usage

Other common mistakes using the basic_string class include

■ Using an invalidated or uninitialized iterator

■ Passing an out-of-bounds index

■ Using an iterator range that really is not a range

■ Passing an invalid iterator position

These issues are discussed in more detail in C++ Coding Standards: 101 Rules,
Guidelines, and Best Practices by Herb Sutter and Andrei Alexandrescu [Sutter
2005].

Finally, many existing C++ programs and libraries use their own string
classes. To use these libraries, you may have to use these string types or con-
stantly convert back and forth. Such libraries are of varying quality when it
comes to security. It is generally best to use the standard library (when pos-
sible) or to understand completely the semantics of the selected library. Gen-
erally speaking, libraries should be evaluated on the basis of how easy or
complex they are to use, the type of errors that can be made, how easy those
errors are to make, and what the potential consequences may be.

84 Strings

■ 2.5 String-Handling Functions

gets()

If there were ever a hard-and-fast rule for secure programming in C and C++,
it would be this: never invoke the gets() function. The gets() function has
been used extensively in the examples of vulnerable programs in this book.
The gets() function reads a line from standard input into a buffer until a ter-
minating newline or end-of-file (EOF) is found. No check for buffer overflow
is performed. The following quote is from the manual page for the function:

Never use gets(). Because it is impossible to tell without knowing the data
in advance how many characters gets() will read, and because gets() will
continue to store characters past the end of the buffer, it is extremely danger-
ous to use. It has been used to break computer security.

As already mentioned, the gets() function has been deprecated in ISO/
IEC 9899:TC3 and removed from C11.

Because the gets() function cannot be securely used, it is necessary
to use an alternative replacement function, for which several good options
are available. Which function you select primarily depends on the overall
approach taken.

C99

Two options for a strictly C99-conforming application are to replace gets()
with either fgets() or getchar().

The C Standard fgets() function has similar behavior to gets(). The
fgets() function accepts two additional arguments: the number of characters
to read and an input stream. When stdin is specified as the stream, fgets()
can be used to simulate the behavior of gets().

The program fragment in Example 2.9 reads a line of text from stdin
using the fgets() function.

Example 2.9 Reading from stdin Using fgets()

01 char buf[LINE_MAX];
02 int ch;
03 char *p;
04
05 if (fgets(buf, sizeof(buf), stdin)) {
06 /* fgets succeeds, scan for newline character */
07 p = strchr(buf, '\n');

2.5 String-Handling Functions 85

08 if (p) {
09 *p = '\0';
10 }
11 else {
12 /* newline not found, flush stdin to end of line */
13 while (((ch = getchar()) != '\n')
14 && !feof(stdin)
15 && !ferror(stdin)
16);
17 }
18 }
19 else {
20 /* fgets failed, handle error */
21 }

Unlike gets(), the fgets() function retains the newline character, mean-
ing that the function cannot be used as a direct replacement for gets().

When using fgets(), it is possible to read a partial line. Truncation of
user input can be detected because the input buffer will not contain a newline
character.

The fgets() function reads, at most, one less than the number of charac-
ters specified from the stream into an array. No additional characters are read
after a newline character or EOF. A null character is written immediately after
the last character read into the array.

It is possible to use fgets() to securely process input lines that are too long
to store in the destination array, but this is not recommended for performance
reasons. The fgets() function can result in a buffer overflow if the specified
number of characters to input exceeds the length of the destination buffer.

A second alternative for replacing the gets() function in a strictly
C99-conforming application is to use the getchar() function. The getchar()
function returns the next character from the input stream pointed to by stdin.
If the stream is at EOF, the EOF indicator for the stream is set and getchar()
returns EOF. If a read error occurs, the error indicator for the stream is set and
getchar() returns EOF. The program fragment in Example 2.10 reads a line of
text from stdin using the getchar() function.

Example 2.10 Reading from stdin Using getchar()

01 char buf[BUFSIZ];
02 int ch;
03 int index = 0;
04 int chars_read = 0;
05
06 while (((ch = getchar()) != '\n')

86 Strings

07 && !feof(stdin)
08 && !ferror(stdin))
09 {
10 if (index < BUFSIZ-1) {
11 buf[index++] = (unsigned char)ch;
12 }
13 chars_read++;
14 } /* end while */
15 buf[index] = '\0'; /* null-terminate */
16 if (feof(stdin)) {
17 /* handle EOF */
18 }
19 if (ferror(stdin)) {
20 /* handle error */
21 }
22 if (chars_read > index) {
23 /* handle truncation */
24 }

If at the end of the loop feof(stdin) ! = 0, the loop has read through to
the end of the file without encountering a newline character. If at the end of
the loop ferror(stdin) ! = 0, a read error occurred before the loop encoun-
tered a newline character. If at the end of the loop chars_read > index, the
input string has been truncated. The CERT C Secure Coding Standard [Seacord
2008], “FIO34-C. Use int to capture the return value of character IO func-
tions,” is also applied in this solution.

Using the getchar() function to read in a line can still result in a buffer
overflow if writes to the buffer are not properly bounded.

Reading one character at a time provides more flexibility in controlling
behavior without additional performance overhead. The following test for the
while loop is normally sufficient:

while (((ch = getchar()) ! = '\n') && ch ! = EOF)

See The CERT C Secure Coding Standard [Seacord 2008], “FIO35-C. Use
feof() and ferror() to detect end-of-file and file errors when sizeof(int) ==
sizeof(char),” for the case where feof() and ferror() must be used instead.

C11 Annex K Bounds-Checking Interfaces: gets_s()

The C11 gets_s() function is a compatible but more secure version of gets().
The gets_s() function is a closer replacement for the gets() function than
fgets() in that it only reads from the stream pointed to by stdin and does
not retain the newline character. The gets_s() function accepts an additional

2.5 String-Handling Functions 87

argument, rsize_t, that specifies the maximum number of characters to
input. An error condition occurs if this argument is equal to zero or greater
than RSIZE_MAX or if the pointer to the destination character array is NULL. If
an error condition occurs, no input is performed and the character array is
not modified. Otherwise, the gets_s() function reads, at most, one less than
the number of characters specified, and a null character is written immedi-
ately after the last character read into the array. The program fragment shown
in Example 2.11 reads a line of text from stdin using the gets_s() function.

Example 2.11 Reading from stdin Using gets_s()

1 char buf[BUFSIZ];
2
3 if (gets_s(buf, sizeof(buf)) == NULL) {
4 /* handle error */
5 }

The gets_s() function returns a pointer to the character array if success-
ful. A null pointer is returned if the function arguments are invalid, an end-
of-file is encountered, and no characters have been read into the array or if a
read error occurs during the operation.

The gets_s() function succeeds only if it reads a complete line (that is,
it reads a newline character). If a complete line cannot be read, the function
returns NULL, sets the buffer to the null string, and clears the input stream to
the next newline character.

The gets_s() function can still result in a buffer overflow if the specified
number of characters to input exceeds the length of the destination buffer.

As noted earlier, the fgets() function allows properly written programs
to safely process input lines that are too long to store in the result array. In
general, this requires that callers of fgets() pay attention to the presence or
absence of a newline character in the result array. Using gets_s() with input
lines that might be too long requires overriding its runtime-constraint han-
dler (and resetting it to its default value when done). Consider using fgets()
(along with any needed processing based on newline characters) instead of
gets_s().

Dynamic Allocation Functions

ISO/IEC TR 24731-2 describes the getline() function derived from POSIX.
The behavior of the getline() function is similar to that of fgets() but offers
several extra features. First, if the input line is too long, rather than truncating
input, the function resizes the buffer using realloc(). Second, if successful, it

88 Strings

returns the number of characters read, which is useful in determining whether
the input has any null characters before the newline. The getline() func-
tion works only with buffers allocated with malloc(). If passed a null pointer,
 getline() allocates a buffer of sufficient size to hold the input. As such, the user
must explicitly free() the buffer later. The getline() function is equivalent to
the getdelim() function (also defined in ISO/IEC TR 24731-2) with the delim-
iter character equal to the newline character. The program fragment shown in
Example 2.12 reads a line of text from stdin using the getline() function.

Example 2.12 Reading from stdin Using getline()

01 int ch;
02 char *p;
03 size_t buffer_size = 10;
04 char *buffer = malloc(buffer_size);
05 ssize_t size;
06
07 if ((size = getline(&buffer, &buffer_size, stdin)) == -1) {
08 /* handle error */
09 } else {
10 p = strchr(buffer, '\n');
11 if (p) {
12 *p = '\0';
13 } else {
14 /* newline not found, flush stdin to end of line */
15 while (((ch = getchar()) != '\n')
16 && !feof(stdin)
17 && !ferror(stdin)
18);
19 }
20 }
21
22 /* ... work with buffer ... */
23
24 free(buffer);

The getline() function returns the number of characters written into the
buffer, including the newline character if one was encountered before end-
of-file. If a read error occurs, the error indicator for the stream is set, and
getline() returns −1. Consequently, the design of this function violates The
CERT C Secure Coding Standard [Seacord 2008], “ERR02-C. Avoid in-band
error indicators,” as evidenced by the use of the ssize_t type that was created
for the purpose of providing in-band error indicators.

2.5 String-Handling Functions 89

Note that this code also does not check to see if malloc() succeeds. If
 malloc() fails, however, it returns NULL, which gets passed to getline(), which
promptly allocates a buffer of its own.

Table 2.4 summarizes some of the alternative functions for gets()
described in this section. All of these functions can be used securely.

strcpy() and strcat()

The strcpy() and strcat() functions are frequent sources of buffer over-
flows because they do not allow the caller to specify the size of the destina-
tion array, and many prevention strategies recommend more secure variants
of these functions.

C99

Not all uses of strcpy() are flawed. For example, it is often possible to dynam-
ically allocate the required space, as illustrated in Example 2.13.

Example 2.13 Dynamically Allocating Required Space

1 dest = (char *)malloc(strlen(source) + 1);
2 if (dest) {
3 strcpy(dest, source);
4 } else {
5 /* handle error */
6 ...
7 }

For this code to be secure, the source string must be fully validated
[Wheeler 2004], for example, to ensure that the string is not overly long. In
some cases, it is clear that no potential exists for writing beyond the array
bounds. As a result, it may not be cost-effective to replace or otherwise secure
every call to strcpy(). In other cases, it may still be desirable to replace the

Table 2.4 Alternative Functions for gets()

Standard/TR
Retains Newline
Character

Dynamically
Allocates Memory

fgets() C99 Yes No

getline() TR 24731-2 Yes Yes

gets_s() C11 No No

90 Strings

strcpy() function with a call to a safer alternative function to eliminate diag-
nostic messages generated by compilers or analysis tools.

The C Standard strncpy() function is frequently recommended as an
alternative to the strcpy() function. Unfortunately, strncpy() is prone to
null-termination errors and other problems and consequently is not consid-
ered to be a secure alternative to strcpy().

OpenBSD. The strlcpy() and strlcat() functions first appeared in
OpenBSD 2.4. These functions copy and concatenate strings in a less error-
prone manner than the corresponding C Standard functions. These functions’
prototypes are as follows:

size_t strlcpy(char *dst, const char *src, size_t size);
size_t strlcat(char *dst, const char *src, size_t size);

The strlcpy() function copies the null-terminated string from src to dst
(up to size characters). The strlcat() function appends the null-terminated
string src to the end of dst (but no more than size characters will be in the
destination).

To help prevent writing outside the bounds of the array, the strlcpy() and
strlcat() functions accept the full size of the destination string as a size parameter.

Both functions guarantee that the destination string is null-terminated for
all nonzero-length buffers.

The strlcpy() and strlcat() functions return the total length of the
string they tried to create. For strlcpy(), that is simply the length of the
source; for strlcat(), it is the length of the destination (before concatenation)
plus the length of the source. To check for truncation, the programmer must
verify that the return value is less than the size parameter. If the resulting
string is truncated, the programmer now has the number of bytes needed to
store the entire string and may reallocate and recopy.

Neither strlcpy() nor strlcat() zero-fills its destination string (other
than the compulsory null byte to terminate the string). The result is perfor-
mance close to that of strcpy() and much better than that of strncpy().

C11 Annex K Bounds-Checking Interfaces. The strcpy_s() and strcat_s()
functions are defined in C11 Annex K as close replacement functions for
strcpy() and strcat(). The strcpy_s() function has an additional parameter
giving the size of the destination array to prevent buffer overflow:

1 errno_t strcpy_s(
2 char * restrict s1, rsize_t s1max, const char * restrict s2
3);

2.5 String-Handling Functions 91

The strcpy_s() function is similar to strcpy() when there are no con-
straint violations. The strcpy_s() function copies characters from a source
string to a destination character array up to and including the terminating
null character.

The strcpy_s() function succeeds only when the source string can be
fully copied to the destination without overflowing the destination buffer. The
function returns 0 on success, implying that all of the requested characters
from the string pointed to by s2 fit within the array pointed to by s1 and that
the result in s1 is null-terminated. Otherwise, a nonzero value is returned.

The strcpy_s() function enforces a variety of runtime constraints. A
 runtime-constraint error occurs if either s1 or s2 is a null pointer; if the maxi-
mum length of the destination buffer is equal to zero, greater than RSIZE_MAX,
or less than or equal to the length of the source string; or if copying takes
place between overlapping objects. The destination string is set to the null
string, and the function returns a nonzero value to increase the visibility of
the problem.

Example 2.15 shows the Open Watcom implementation of the strcpy_s()
function. The runtime-constraint error checks are followed by comments.

Example 2.14 Open Watcom Implementation of the strcpy_s() Function

01 errno_t strcpy_s(
02 char * restrict s1,
03 rsize_t s1max,
04 const char * restrict s2
05) {
06 errno_t rc = -1;
07 const char *msg;
08 rsize_t s2len = strnlen_s(s2, s1max);
09 // Verify runtime constraints
10 if (nullptr_msg(msg, s1) && // s1 not NULL
11 nullptr_msg(msg, s2) && // s2 not NULL
12 maxsize_msg(msg, s1max) && // s1max <= RSIZE_MAX
13 zero_msg(msg, s1max) && // s1max != 0
14 a_gt_b_msg(msg, s2len, s1max - 1) &&
15 // s1max > strnlen_s(s2, s1max)
16 overlap_msg(msg,s1,s1max,s2,s2len) // s1 s2 no overlap
17) {
18 while (*s1++ = *s2++);
19 rc = 0;
20 } else {
21 // Runtime constraints violated, make dest string empty
22 if ((s1 != NULL) && (s1max > 0) && lte_rsizmax(s1max)) {
23 s1[0] = NULLCHAR;
24 }

92 Strings

25 // Now call the handler
26 __rtct_fail(__func__, msg, NULL);
27 }
28 return(rc);
29 }

The strcat_s() function appends the characters of the source string, up
to and including the null character, to the end of the destination string. The
initial character from the source string overwrites the null character at the
end of the destination string.

The strcat_s() function returns 0 on success. However, the destination
string is set to the null string and a nonzero value is returned if either the
source or destination pointer is NULL or if the maximum length of the destina-
tion buffer is equal to 0 or greater than RSIZE_MAX. The strcat_s() function
will also fail if the destination string is already full or if there is not enough
room to fully append the source string.

The strcpy_s() and strcat_s() functions can still result in a buffer over-
flow if the maximum length of the destination buffer is incorrectly specified.

Dynamic Allocation Functions. ISO/IEC TR 24731-2 [ISO/IEC TR 24731-
2:2010] describes the POSIX strdup() function, which can also be used to
copy a string. ISO/IEC TR 24731-2 does not define any alternative functions
to strcat(). The strdup() function accepts a pointer to a string and returns a
pointer to a newly allocated duplicate string. This memory must be reclaimed
by passing the returned pointer to free().

Summary Alternatives. Table 2.5 summarizes some of the alternative func-
tions for copying strings described in this section.

Table 2.5 String Copy Functions

Standard/TR

Buffer
Overflow
Protection

Guarantees
Null
Termination

May
Truncate
String

Allocates
Dynamic
Memory

strcpy() C99 No No No No

strncpy() C99 Yes No Yes No

strlcpy() OpenBSD Yes Yes Yes No

strdup() TR 24731-2 Yes Yes No Yes

strcpy_s() C11 Yes Yes No No

2.5 String-Handling Functions 93

Table 2.6 summarizes some of the alternative functions for strcat()
described in this section. TR 24731-2 does not define an alternative function
to strcat().

strncpy() and strncat()

The strncpy() and strncat() functions are similar to the strcpy() and
 strcat() functions, but each has an additional size_t parameter n that limits
the number of characters to be copied. These functions can be thought of as
truncating copy and concatenation functions.

The strncpy() library function performs a similar function to strcpy()
but allows a maximum size n to be specified:

1 char *strncpy(
2 char * restrict s1, const char * restrict s2, size_t n
3);

The strncpy() function can be used as shown in the following example:

strncpy(dest, source, dest_size - 1);
dest[dest_size - 1] = '\0';

Because the strncpy() function is not guaranteed to null-terminate the
destination string, the programmer must be careful to ensure that the destina-
tion string is properly null-terminated without overwriting the last character.

The C Standard strncpy() function is frequently recommended as a
“more secure” alternative to strcpy(). However, strncpy() is prone to string
termination errors, as detailed shortly under “C11 Annex K Bounds-Checking
Interfaces.”

Table 2.6 String Concatenation Functions

Standard/TR

Buffer
Overflow
Protection

Guarantees
Null
Termination

May
Truncate
String

Allocates
Dynamic
Memory

strcat() C99 No No No No

strncat() C99 Yes No Yes No

strlcat() OpenBSD Yes Yes Yes No

strcat_s() C11 Yes Yes No No

94 Strings

The strncat() function has the following signature:

1 char *strncat(
2 char * restrict s1, const char * restrict s2, size_t n
3);

The strncat() function appends not more than n characters (a null char-
acter and characters that follow it are not appended) from the array pointed
to by s2 to the end of the string pointed to by s1. The initial character of s2
overwrites the null character at the end of s1. A terminating null character is
always appended to the result. Consequently, the maximum number of char-
acters that can end up in the array pointed to by s1 is strlen(s1) + n + 1.

The strncpy() and strncat() functions must be used with care, or should
not be used at all, particularly as less error-prone alternatives are available.
The following is an actual code example resulting from a simplistic trans-
formation of existing code from strcpy() and strcat() to strncpy() and
strncat():

strncpy(record, user, MAX_STRING_LEN - 1);
strncat(record, cpw, MAX_STRING_LEN - 1);

The problem is that the last argument to strncat() should not be the total buf-
fer length; it should be the space remaining after the call to strncpy(). Both
functions require that you specify the remaining space and not the total size
of the buffer. Because the remaining space changes every time data is added
or removed, programmers must track or constantly recompute the remaining
space. These processes are error prone and can lead to vulnerabilities. The
following call correctly calculates the remaining space when concatenating a
string using strncat():

strncat(dest, source, dest_size-strlen(dest)-1)

Another problem with using strncpy() and strncat() as alternatives to
strcpy() and strcat() functions is that neither of the former functions pro-
vides a status code or reports when the resulting string is truncated. Both
functions return a pointer to the destination buffer, requiring significant effort
by the programmer to determine whether the resulting string was truncated.

There is also a performance problem with strncpy() in that it fills the
entire destination buffer with null bytes after the source data is exhausted.
Although there is no good reason for this behavior, many programs now
depend on it, and as a result, it is difficult to change.

2.5 String-Handling Functions 95

The strncpy() and strncat() functions serve a role outside of their use as
alternative functions to strcpy() and strcat(). The original purpose of these
functions was to allow copying and concatenation of a substring. However,
these functions are prone to buffer overflow and null-termination errors.

C11 Annex K Bounds-Checking Interfaces. C11 Annex K specifies the
strncpy_s() and strncat_s() functions as close replacements for strncpy()
and strncat().

The strncpy_s() function copies not more than a specified number of
successive characters (characters that follow a null character are not copied)
from a source string to a destination character array. The strncpy_s() func-
tion has the following signature:

1 errno_t strncpy_s(
2 char * restrict s1,
3 rsize_t s1max,
4 const char * restrict s2,
5 rsize_t n
6);

The strncpy_s() function has an additional parameter giving the size of
the destination array to prevent buffer overflow. If a runtime-constraint vio-
lation occurs, the destination array is set to the empty string to increase the
visibility of the problem.

The strncpy_s() function stops copying the source string to the destina-
tion array when one of the following two conditions occurs:

 1. The null character terminating the source string is copied to the
destination.

 2. The number of characters specified by the n argument has been
copied.

The result in the destination is provided with a null character terminator
if one was not copied from the source. The result, including the null termina-
tor, must fit within the destination, or a runtime-constraint violation occurs.
Storage outside of the destination array is never modified.

The strncpy_s() function returns 0 to indicate success. If the input argu-
ments are invalid, it returns a nonzero value and sets the destination string to
the null string. Input validation fails if either the source or destination pointer
is NULL or if the maximum size of the destination string is 0 or greater than
RSIZE_MAX. The input is also considered invalid when the specified number of
characters to be copied exceeds RSIZE_MAX.

96 Strings

A strncpy_s() operation can actually succeed when the number of char-
acters specified to be copied exceeds the maximum length of the destination
string as long as the source string is shorter than the maximum length of the
destination string. If the number of characters to copy is greater than or equal
to the maximum size of the destination string and the source string is longer
than the destination buffer, the operation will fail.

Because the number of characters in the source is limited by the n param-
eter and the destination has a separate parameter giving the maximum num-
ber of elements in the destination, the strncpy_s() function can safely copy a
substring, not just an entire string or its tail.

Because unexpected string truncation is a possible security vulnerability,
strncpy_s() does not truncate the source (as delimited by the null terminator
and the n parameter) to fit the destination. Truncation is a runtime-constraint
violation. However, there is an idiom that allows a program to force trunca-
tion using the strncpy_s() function. If the n argument is the size of the des-
tination minus 1, strncpy_s() will copy the entire source to the destination
or truncate it to fit (as always, the result will be null-terminated). For exam-
ple, the following call will copy src to the dest array, resulting in a properly
null-terminated string in dest. The copy will stop when dest is full (including
the null terminator) or when all of src has been copied.

strncpy_s(dest, sizeof dest, src, (sizeof dest)-1)

Although the OpenBSD function strlcpy() is similar to strncpy(), it is
more similar to strcpy_s() than to strncpy_s(). Unlike strlcpy(), strncpy_s()
supports checking runtime constraints such as the size of the destination array,
and it will not truncate the string.

Use of the strncpy_s() function is less likely to introduce a security flaw
because the size of the destination buffer and the maximum number of char-
acters to append must be specified. Consider the following definitions:

1 char src1[100] = "hello";
2 char src2[7] = {'g','o','o','d','b','y','e'};
3 char dst1[6], dst2[5], dst3[5];
4 errno_t r1, r2, r3;

Because there is sufficient storage in the destination character array,
the following call to strncpy_s() assigns the value 0 to r1 and the sequence
hello\0 to dst1:

r1 = strncpy_s(dst1, sizeof(dst1), src1, sizeof(src1));

2.5 String-Handling Functions 97

The following call assigns the value 0 to r2 and the sequence good\0 to
dst2:

r2 = strncpy_s(dst2, sizeof(dst2), src2, 4);

However, there is inadequate space to copy the src1 string to dst3. Con-
sequently, if the following call to strncpy_s() returns, r3 is assigned a non-
zero value and dst3[0] is assigned '\0':

r3 = strncpy_s(dst3, sizeof(dst3), src1, sizeof(src1));

If strncpy() had been used instead of strncpy_s(), the destination array
dst3 would not have been properly null-terminated.

The strncat_s() function appends not more than a specified number of
successive characters (characters that follow a null character are not copied)
from a source string to a destination character array. The initial character
from the source string overwrites the null character at the end of the destina-
tion array. If no null character was copied from the source string, a null char-
acter is written at the end of the appended string. The strncat_s() function
has the following signature:

1 errno_t strncat_s(
2 char * restrict s1,
3 rsize_t s1max,
4 const char * restrict s2,
5 rsize_t n
6);

A runtime-constraint violation occurs and the strncat_s() function
returns a nonzero value if either the source or destination pointer is NULL or
if the maximum length of the destination buffer is equal to 0 or greater than
RSIZE_MAX. The function fails when the destination string is already full or if
there is not enough room to fully append the source string. The strncat_s()
function also ensures null termination of the destination string.

The strncat_s() function has an additional parameter giving the size of
the destination array to prevent buffer overflow. The original string in the
destination plus the new characters appended from the source must fit and
be null-terminated to avoid a runtime-constraint violation. If a runtime-
constraint violation occurs, the destination array is set to a null string to
increase the visibility of the problem.

98 Strings

The strncat_s() function stops appending the source string to the desti-
nation array when the first of the following two conditions occurs:

 1. The null-terminating source string is copied to the destination.

 2. The number of characters specified by the n parameter has been
copied.

The result in the destination is provided with a null character terminator
if one was not copied from the source. The result, including the null termina-
tor, must fit within the destination, or a runtime-constraint violation occurs.
Storage outside of the destination array is never modified.

Because the number of characters in the source is limited by the n parame-
ter and the destination has a separate parameter giving the maximum number
of elements in the destination, the strncat_s() function can safely append a
substring, not just an entire string or its tail.

Because unexpected string truncation is a possible security vulnerability,
strncat_s() does not truncate the source (as specified by the null terminator
and the n parameter) to fit the destination. Truncation is a runtime-constraint
violation. However, there is an idiom that allows a program to force trun-
cation using the strncat_s() function. If the n argument is the number of
elements minus 1 remaining in the destination, strncat_s() will append the
entire source to the destination or truncate it to fit (as always, the result will
be null-terminated). For example, the following call will append src to the
dest array, resulting in a properly null-terminated string in dest. The concat-
enation will stop when dest is full (including the null terminator) or when all
of src has been appended:

1 strncat_s(
2 dest,
3 sizeof dest,
4 src,
5 (sizeof dest) - strnlen_s(dest, sizeof dest) - 1
6);

Although the OpenBSD function strlcat() is similar to strncat(), it is
more similar to strcat_s() than to strncat_s(). Unlike strlcat(), strncat_s()
supports checking runtime constraints such as the size of the destination array,
and it will not truncate the string.

The strncpy_s() and strncat_s() functions can still overflow a buffer
if the maximum length of the destination buffer and number of characters to
copy are incorrectly specified.

2.5 String-Handling Functions 99

Dynamic Allocation Functions. ISO/IEC TR 24731-2 [ISO/IEC TR 24731-
2:2010] describes the strndup() function, which can also be used as an
alternative function to strncpy(). ISO/IEC TR 24731-2 does not define any
alternative functions to strncat(). The strndup() function is equivalent to
the strdup() function, duplicating the provided string in a new block of mem-
ory allocated as if by using malloc(), with the exception being that strndup()
copies, at most, n plus 1 byte into the newly allocated memory, terminating
the new string with a null byte. If the length of the string is larger than n, only
n bytes are duplicated. If n is larger than the length of the string, all bytes in
the string are copied into the new memory buffer, including the terminating
null byte. The newly created string will always be properly terminated. The
allocated string must be reclaimed by passing the returned pointer to free().

Summary of Alternatives. Table 2.7 summarizes some of the alternative
functions for truncating copy described in this section.

Table 2.8 summarizes some of the alternative functions for truncating
concatenation described in this section. TR 24731-2 does not define an alter-
native truncating concatenation function.

Table 2.7 Truncating Copy Functions

Standard/TR

Buffer
Overflow
Protection

Guarantees
Null
Termination

May
Truncate
String

Allocates
Dynamic
Memory

Checks
Runtime
Constraints

strncpy() C99 Yes No Yes No No

strlcpy() OpenBSD Yes Yes Yes No No

strndup() TR 24731-2 Yes Yes Yes Yes No

strncpy_s() C11 Yes Yes No No Yes

Table 2.8 Truncating Concatenation Functions

Standard/TR

Buffer
Overflow
Protection

Guarantees
Null
Termination

May
Truncate
String

Allocates
Dynamic
Memory

Checks
Runtime
Constraints

strncat() C99 Yes No Yes No No

strlcat() OpenBSD Yes Yes Yes No No

strncat_s() C11 Yes Yes No No Yes

100 Strings

memcpy() and memmove()

The C Standard memcpy() and memmove() functions are prone to error because
they do not allow the caller to specify the size of the destination array.

C11 Annex K Bounds-Checking Interfaces. The memcpy_s() and memmove_s()
functions defined in C11 Annex K are similar to the corresponding, less
secure memcpy() and memmove() functions but provide some additional safe-
guards. To prevent buffer overflow, the memcpy_s() and memmove_s() func-
tions have additional parameters that specify the size of the destination array.
If a runtime-constraint violation occurs, the destination array is zeroed to
increase the visibility of the problem. Additionally, to reduce the number of
cases of undefined behavior, the memcpy_s() function must report a constraint
violation if an attempt is being made to copy overlapping objects.

The memcpy_s() and memmove_s() functions return 0 if successful. A non-
zero value is returned if either the source or destination pointer is NULL, if the
specified number of characters to copy/move is greater than the maximum
size of the destination buffer, or if the number of characters to copy/move or
the maximum size of the destination buffer is greater than RSIZE_MAX.

strlen()

The strlen() function is not particularly flawed, but its operations can be sub-
verted because of the weaknesses of the underlying string representation. The
strlen() function accepts a pointer to a character array and returns the num-
ber of characters that precede the terminating null character. If the charac-
ter array is not properly null-terminated, the strlen() function may return an
erroneously large number that could result in a vulnerability when used. Fur-
thermore, if passed a non-null-terminated string, strlen() may read past the
bounds of a dynamically allocated array and cause the program to be halted.

C99. C99 defines no alternative functions to strlen(). Consequently, it is
necessary to ensure that strings are properly null-terminated before passing
them to strlen() or that the result of the function is in the expected range
when developing strictly conforming C99 programs.

C11 Annex K Bounds-Checking Interfaces. C11 provides an alternative to
the strlen() function—the bounds-checking strnlen_s() function. In addi-
tion to a character pointer, the strnlen_s() function accepts a maximum size.
If the string is longer than the maximum size specified, the maximum size
rather than the actual size of the string is returned. The strnlen_s() func-
tion has no runtime constraints. This lack of runtime constraints, along with

2.6 Runtime Protection Strategies 101

the values returned for a null pointer or an unterminated string argument,
makes strnlen_s() useful in algorithms that gracefully handle such excep-
tional data.

There is a misconception that the bounds-checking functions are always
inherently safer than their traditional counterparts and that the traditional
functions should never be used. Dogmatically replacing calls to C99 functions
with calls to bounds-checking functions can lead to convoluted code that is
no safer than it would be if it used the traditional functions and is inefficient
and hard to read. An example is obtaining the length of a string literal, which
leads to silly code like this:

#define S "foo"
size_t n = strnlen_s(S, sizeof S);

The strnlen_s() function is useful when dealing with strings that might
lack their terminating null character. That the function returns the number
of elements in the array when no terminating null character is found causes
many calculations to be more straightforward.

Because the bounds-checking functions defined in C11 Annex K do not
produce unterminated strings, in most cases it is unnecessary to replace calls
to the strlen() function with calls to strnlen_s().

The strnlen_s() function is identical to the POSIX function strnlen().

■ 2.6 Runtime Protection Strategies

Detection and Recovery

Detection and recovery mitigation strategies generally make changes to the
runtime environment to detect buffer overflows when they occur so that the
application or operating system can recover from the error (or at least fail
safely). Because attackers have numerous options for controlling execution
after a buffer overflow occurs, detection and recovery are not as effective as
prevention and should not be relied on as the only mitigation strategy. How-
ever, detection and recovery mitigations generally form a second line of defense
in case the “outer perimeter” is compromised. There is a danger that program-
mers can believe they have solved the problem by using an incomplete detec-
tion and recovery strategy, giving them false confidence in vulnerable software.
Such strategies should be employed and then forgotten to avoid such biases.

Buffer overflow mitigation strategies can be classified according to which
component of the entire system provides the mitigation mechanism:

102 Strings

■ The developer via input validation

■ The compiler and its associated runtime system

■ The operating system

Input Validation

The best way to mitigate buffer overflows is to prevent them. Doing so requires
developers to prevent string or memory copies from overflowing their desti-
nation buffers. Buffer overflows can be prevented by ensuring that input data
does not exceed the size of the smallest buffer in which it is stored. Exam-
ple 2.15 is a simple function that performs input validation.

Example 2.15 Input Validation

1 void f(const char *arg) {
2 char buff[100];
3 if (strlen(arg) >= sizeof(buff)) {
4 abort();
5 }
6 strcpy(buff, arg);
7 /* ... */
8 }

Any data that arrives at a program interface across a trust boundary
requires validation. Examples of such data include the argv and argc argu-
ments to function main() and environment variables, as well as data read from
sockets, pipes, files, signals, shared memory, and devices.

Although this example is concerned only with string length, many other
types of validation are possible. For example, input that is meant to be sent
to a SQL database will require validation to detect and prevent SQL injection
attacks. If the input may eventually go to a Web page, it should also be vali-
dated to guard against cross-site scripting (XSS) attacks.

Fortunately, input validation works for all classes of string exploits, but it
requires that developers correctly identify and validate all of the external inputs
that might result in buffer overflows or other vulnerabilities. Because this pro-
cess is error prone, it is usually prudent to combine this mitigation strategy
with others (for example, replacing suspect functions with more secure ones).

Object Size Checking

The GNU C Compiler (GCC) provides limited functionality to access the size
of an object given a pointer into that object. Starting with version 4.1, GCC

2.6 Runtime Protection Strategies 103

introduced the __builtin_object_size() function to provide this capabil-
ity. Its signature is size_t __builtin_object_size(void *ptr, int type).
The first argument is a pointer into any object. This pointer may, but is not
required to, point to the start of the object. For example, if the object is a
string or character array, the pointer may point to the first character or to any
character in the array’s range. The second argument provides details about the
referenced object and may have any value from 0 to 3. The function returns
the number of bytes from the referenced byte to the final byte of the refer-
enced object.

This function is limited to objects whose ranges can be determined at
compile time. If GCC cannot determine which object is referenced, or if it
cannot determine the size of this object, then this function returns either 0 or
−1, both invalid sizes. For the compiler to be able to determine the size of the
object, the program must be compiled with optimization level -O1 or greater.

The second argument indicates details about the referenced object. If this
argument is 0 or 2, then the referenced object is the largest object containing
the pointed-to byte; otherwise, the object in question is the smallest object
containing the pointed-to byte. To illustrate this distinction, consider the fol-
lowing code:

struct V { char buf1[10]; int b; char buf2[10]; } var;
void *ptr = &var.b;

If ptr is passed to __builtin_object_size() with type set to 0, then the
value returned is the number of bytes from var.b to the end of var, inclusive.
(This value will be at least the sum of sizeof(int) and 10 for the buf2 array.)
However, if type is 1, then the value returned is the number of bytes from
var.b to the end of var.b, inclusive (that is, sizeof(int)).

If __builtin_object_size() cannot determine the size of the pointed-to
object, it returns (size_t) -1 if the second argument is 0 or 1. If the second
argument is 2 or 3, it returns (size_t) 0. Table 2.9 summarizes how the type
argument affects the behavior of __builtin_object_size().

Table 2.9 Behavior Effects of type on __builtin_object_size()

Value of type Argument Operates on If Unknown, Returns

0 Maximum object (size_t) -1

1 Minimum object (size_t) -1

2 Maximum object (size_t) 0

3 Minimum object (size_t) 0

104 Strings

Use of Object Size Checking. The __builtin_object_size() function is
used to add lightweight buffer overflow protection to the following standard
functions when _FORTIFY_SOURCE is defined:

memcpy() strcpy() strcat() sprintf() vsprintf()

memmove() strncpy() strncat() snprintf() vsnprintf()

memset() fprintf() vfprintf() printf() vprintf()

Many operating systems that support GCC turn on object size check-
ing by default. Others provide a macro (such as _FORTIFY_SOURCE) to enable
the feature as an option. On Red Hat Linux, for example, no protection is
performed by default. When _FORTIFY_SOURCE is set at optimization level 1
(_FORTIFY_SOURCE=1) or higher, security measures that should not change the
behavior of conforming programs are taken. _FORTIFY_SOURCE=2 adds some
more checking, but some conforming programs might fail.

For example, the memcpy() function may be implemented as follows when
_FORTIFY_SOURCE is defined:

1 __attribute__ ((__nothrow__)) memcpy(
2 void * __restrict __dest,
3 __const void * __restrict __src,
4 size_t __len
5) {
6 return ___memcpy_chk(
7 __dest, __src, __len, __builtin_object_size(__dest, 0)
8);
9 }

When using the memcpy() and strcpy() functions, the following behav-
iors are possible:

 1. The following case is known to be correct:
1 char buf[5];
2 memcpy(buf, foo, 5);
3 strcpy(buf, "abcd");

No runtime checking is needed, and consequently the memcpy()
and strcpy() functions are called.

 2. The following case is not known to be correct but is checkable at
runtime:
1 memcpy(buf, foo, n);
2 strcpy(buf, bar);

2.6 Runtime Protection Strategies 105

The compiler knows the number of bytes remaining in the object
but does not know the length of the actual copy that will happen.
Alternative functions __memcpy_chk() or __strcpy_chk() are used in
this case; these functions check whether buffer overflow happened.
If buffer overflow is detected, __chk_fail() is called and typically
aborts the application after writing a diagnostic message to stderr.

 3. The following case is known to be incorrect:
1 memcpy(buf, foo, 6);
2 strcpy(buf, "abcde");

The compiler can detect buffer overflows at compile time. It issues
warnings and calls the checking alternatives at runtime.

 4. The last case is when the code is not known to be correct and is not
checkable at runtime:
1 memcpy(p, q, n);
2 strcpy(p, q);

The compiler does not know the buffer size, and no checking is
done. Overflows go undetected in these cases.

Learn More: Using _builtin_object_size(). This function can be used in
conjunction with copying operations. For example, a string may be safely cop-
ied into a fixed array by checking for the size of the array:

01 char dest[BUFFER_SIZE];
02 char *src = /* valid pointer */;
03 size_t src_end = __builtin_object_size(src, 0);
04 if (src_end == (size_t) -1 && /* don't know if src is too big */
05 strlen(src) < BUFFER_SIZE) {
06 strcpy(dest, src);
07 } else if (src_end <= BUFFER_SIZE) {
08 strcpy(dest, src);
09 } else {
10 /* src would overflow dest */
11 }

The advantage of using __builtin_object_size() is that if it returns a
valid size (instead of 0 or −1), then the call to strlen() at runtime is unneces-
sary and can be bypassed, improving runtime performance.

GCC implements strcpy() as an inline function that calls __builtin___
strcpy_chk() when _FORTIFY_SOURCE is defined. Otherwise, strcpy() is an
ordinary glibc function. The __builtin___strcpy_chk() function has the fol-
lowing signature:

106 Strings

char *__builtin___strcpy_chk(char *dest, const char *src,
 size_t dest_end)

This function behaves like strcpy(), but it first checks that the dest buf-
fer is big enough to prevent buffer overflow. This is provided via the dest_end
parameter, which is typically the result of a call to __builtin_object_size().
This check can often be performed at compile time. If the compiler can
determine that buffer overflow never occurs, it can optimize away the run-
time check. Similarly, if the compiler determines that buffer overflow always
occurs, it issues a warning, and the call aborts at runtime. If the compiler
knows the space in the destination string but not the length of the source
string, it adds a runtime check. Finally, if the compiler cannot guarantee that
adequate space exists in the destination string, then the call devolves to stan-
dard strcpy() with no check added.

Visual Studio Compiler-Generated Runtime Checks

The MS Visual Studio C++ compiler provides several options to enable certain
checks at runtime. These options can be enabled using a specific compiler
flag. In particular, the /RTCs compiler flag turns on checks for the following
errors:

■ Overflows of local variables such as arrays (except when used in a
structure with internal padding)

■ Use of uninitialized variables

■ Stack pointer corruption, which can be caused by a calling convention
mismatch

These flags can be tweaked on or off for various regions in the code. For
example, the following pragma:

#pragma runtime_checks("s", off)

turns off the /RTCs flag checks for any subsequent functions in the code. The
check may be restored with the following pragma:

#pragma runtime_checks("s", restore)

Runtime Bounds Checkers. Although not publicly available, some existing
C language compiler and runtime systems do perform array bounds checking.

2.6 Runtime Protection Strategies 107

Libsafe and Libverify. Libsafe, available from Avaya Labs Research, is a
dynamic library for limiting the impact of buffer overflows on the stack. The
library intercepts and checks the bounds of arguments to C library functions
that are susceptible to buffer overflow. The library makes sure that frame
pointers and return addresses cannot be overwritten by an intercepted func-
tion. The Libverify library, also described by Baratloo and colleagues [Baratloo
2000], implements a return address verification scheme similar to Libsafe’s
but does not require recompilation of source code, which allows it to be used
with existing binaries.

CRED. Richard Jones and Paul Kelley [Jones 1997] proposed an approach for
bounds checking using referent objects. This approach is based on the princi-
ple that an address computed from an in-bounds pointer must share the same
referent object as the original pointer. Unfortunately, a surprisingly large
number of programs generate and store out-of-bounds addresses and later
retrieve these values in their computation without causing buffer overflows,
making these programs incompatible with this bounds-checking approach.
This approach to runtime bounds checking also has significant performance
costs, particularly in pointer-intensive programs in which performance may
slow down by up to 30 times [Cowan 2000].

Olatunji Ruwase and Monica Lam [Ruwase 2004] improved the Jones
and Kelley approach in their C range error detector (CRED). According to the
authors, CRED enforces a relaxed standard of correctness by allowing pro-
gram manipulations of out-of-bounds addresses that do not result in buffer
overflows. This relaxed standard of correctness provides greater compatibility
with existing software.

CRED can be configured to check all bounds of all data or of string data
only. Full bounds checking, like the Jones and Kelley approach, imposes
significant performance overhead. Limiting the bounds checking to strings
improves the performance for most programs. Overhead ranges from 1 per-
cent to 130 percent depending on the use of strings in the application.

Bounds checking is effective in preventing most overflow conditions but is
not perfect. The CRED solution, for example, cannot detect conditions under
which an out-of-bounds pointer is cast to an integer, used in an arithmetic
operation, and cast back to a pointer. The approach does prevent overflows
in the stack, heap, and data segments. CRED, even when optimized to check
only for overflows in strings, was effective in detecting 20 different buffer
overflow attacks developed by John Wilander and Mariam Kamkar [Wilander
2003] for evaluating dynamic buffer overflow detectors.

CRED has been merged into the latest Jones and Kelley checker for GCC
3.3.1, which is currently maintained by Herman ten Brugge.

108 Strings

Dinakar Dhurjati and Vikram Adve proposed a collection of improve-
ments, including pool allocation, which allows the compiler to generate code
that knows where to search for an object in an object table at runtime [Dhur-
jati 2006]. Performance was improved significantly, but overhead was still as
high as 69 percent.

Stack Canaries

Stack canaries are another mechanism used to detect and prevent stack-
smashing attacks. Instead of performing generalized bounds checking, canar-
ies are used to protect the return address on the stack from sequential writes
through memory (for example, resulting from a call to strcpy()). Canaries
consist of a value that is difficult to insert or spoof and are written to an
address before the section of the stack being protected. A sequential write
would consequently need to overwrite this value on the way to the protected
region. The canary is initialized immediately after the return address is saved
and checked immediately before the return address is accessed. A canary
could consist, for example, of four different termination characters (CR, LF,
NULL, and –1). The termination characters would guard against a buffer over-
flow caused by an unbounded strcpy() call, for example, because an attacker
would need to include a null byte in his or her buffer. The canary guards
against buffer overflows caused by string operations but not memory copy
operations. A hard-to-spoof or random canary is a 32-bit secret random num-
ber that changes each time the program is executed. This approach works
well as long as the canary remains a secret.

Canaries are implemented in StackGuard as well as in GCC’s Stack-Smash-
ing Protector, also known as ProPolice, and Microsoft’s Visual C++ .NET as
part of the stack buffer overrun detection capability.

The stack buffer overrun detection capability was introduced to the C/C++
compiler in Visual Studio .NET 2002 and has been updated in subsequent
versions. The /GS compiler switch instructs the compiler to add start-up code
and function epilogue and prologue code to generate and check a random
number that is placed in a function’s stack. If this value is corrupted, a han-
dler function is called to terminate the application, reducing the chance that
the shellcode attempting to exploit a buffer overrun will execute correctly.

Note that Visual C++ 2005 (and later) also reorders data on the stack to
make it harder to predictably corrupt that data. Examples include

■ Moving buffers to higher memory than nonbuffers. This step can help
protect function pointers that reside on the stack.

■ Moving pointer and buffer arguments to lower memory at runtime to
mitigate various buffer overrun attacks.

2.6 Runtime Protection Strategies 109

Visual C++ 2010 includes enhancements to /GS that expand the heuristics
used to determine when /GS should be enabled for a function and when it can
safely be optimized away.

To take advantage of enhanced /GS heuristics when using Visual C++
2005 Service Pack 1 or later, add the following instruction in a commonly
used header file to increase the number of functions protected by /GS:

#pragma strict_gs_check(on)

The rules for determining which functions require /GS protection are
more aggressive in Visual C++ 2010 than they are in the compiler’s earlier
versions; however, the strict_gs_check rules are even more aggressive than
Visual C++ 2010’s rules. Even though Visual C++ 2010 strikes a good balance,
strict_gs_check should be used for Internet-facing products.

To use stack buffer overrun detection for Microsoft Visual Studio, you
should

■ Compile your code with the most recent version of the compiler. At
the time of writing, this version is VC++ 2010 (cl.exe version 16.00).

■ Add #pragma string_gs_check(on) to a common header file when
using versions of VC++ older than VC++ 2010.

■ Add #pragma string_gs_check(on) to Internet-facing products when
using VC++ 2010 and later.

■ Compile with the /GS flag.

■ Link with libraries that use /GS.

As currently implemented, canaries are useful only against exploits that
attempt to overwrite the stack return address by overflowing a buffer on the
stack. Canaries do not protect the program from exploits that modify vari-
ables, object pointers, or function pointers. Canaries cannot prevent buffer
overflows from occurring in any location, including the stack segment. They
detect some of these buffer overflows only after the fact. Exploits that over-
write bytes directly to the location of the return address on the stack can
defeat terminator and random canaries [Bulba 2000]. To solve these direct
access exploits, StackGuard added Random XOR canaries [Wagle 2003] that
XOR the return address with the canary. Again, this works well for protecting
the return address provided the canary remains a secret. In general, canaries
offer weak runtime protection.

110 Strings

Stack-Smashing Protector (ProPolice)

In version 4.1, GCC introduced the Stack-Smashing Protector (SSP) feature,
which implements canaries derived from StackGuard [Etoh 2000]. Also
known as ProPolice, SSP is a GCC extension for protecting applications writ-
ten in C from the most common forms of stack buffer overflow exploits and
is implemented as an intermediate language translator of GCC. SSP provides
buffer overflow detection and variable reordering to avoid the corruption of
pointers. Specifically, SSP reorders local variables to place buffers after point-
ers and copies pointers in function arguments to an area preceding local vari-
able buffers to avoid the corruption of pointers that could be used to further
corrupt arbitrary memory locations.

The SSP feature is enabled using GCC command-line arguments. The
-fstack-protector and -fno-stack-protector options enable and disable
stack-smashing protection for functions with vulnerable objects (such as
arrays). The -fstack-protector-all and -fno-stack-protector-all options
enable and disable the protection of every function, not just the functions with
character arrays. Finally, the -Wstack-protector option emits warnings about
functions that receive no stack protection when -fstack-protector is used.

SSP works by introducing a canary to detect changes to the arguments, return
address, and previous frame pointer in the stack. SSP inserts code fragments into
appropriate locations as follows: a random number is generated for the guard
value during application initialization, preventing discovery by an unprivileged
user. Unfortunately, this activity can easily exhaust a system’s entropy.

SSP also provides a safer stack structure, as in Figure 2.18.
This structure establishes the following constraints:

■ Location (A) has no array or pointer variables.

■ Location (B) has arrays or structures that contain arrays.

■ Location (C) has no arrays.

Placing the guard after the section containing the arrays (B) prevents a
buffer overflow from overwriting the arguments, return address, previous
frame pointer, or local variables (but not other arrays). For example, the com-
piler cannot rearrange struct members so that a stack object of a type such as

1 struct S {
2 char buffer[40];
3 void (*f)(struct S*);
4 };

would remain unprotected.

2.6 Runtime Protection Strategies 111

Operating System Strategies

The prevention strategies described in this section are provided as part of the
platform’s runtime support environment, including the operating system and
the hardware. They are enabled and controlled by the operating system. Pro-
grams running under such an environment may not need to be aware of these
added security measures; consequently, these strategies are useful for execut-
ing programs for which source code is unavailable.

Unfortunately, this advantage can also be a disadvantage because extra
security checks that occur during runtime can accidentally alter or halt the
execution of nonmalicious programs, often as a result of previously unknown
bugs in the programs. Consequently, such runtime strategies may not be
applied to all programs that can be run on the platform. Certain programs
must be allowed to run with such strategies disabled, which requires main-
taining a whitelist of programs exempt from the strategy; unless carefully
maintained, such a whitelist enables attackers to target whitelisted programs,
bypassing the runtime security entirely.

Detection and Recovery

Address space layout randomization (ASLR) is a security feature of many oper-
ating systems; its purpose is to prevent arbitrary code execution. The feature
randomizes the address of memory pages used by the program. ASLR cannot
prevent the return address on the stack from being overwritten by a stack-
based overflow. However, by randomizing the address of stack pages, it may
prevent attackers from correctly predicting the address of the shellcode, system
function, or return-oriented programming gadget that they want to invoke.

Stack pointer

Frame pointer

local variables (C)

arrays (B)

guard

previous frame pointer

return address

arguments (A)

. . .

. . .

Figure 2.18 Stack-Smashing Protector (SSP) stack structure

112 Strings

Some ASLR implementations randomize memory addresses every time a pro-
gram runs; as a result, leaked memory addresses become useless if the pro-
gram is restarted (perhaps because of a crash).

ASLR reduces the probability but does not eliminate the possibility of a
successful attack. It is theoretically possible that attackers could correctly pre-
dict or guess the address of their shellcode and overwrite the return pointer
on the stack with this value.

Furthermore, even on implementations that randomize addresses on each
invocation, ASLR can be bypassed by an attacker on a long-running process.
Attackers can execute their shellcode if they can discover its address without
terminating the process. They can do so, for example, by exploiting a for-
mat-string vulnerability or other information leak to reveal memory contents.

Linux. ASLR was first introduced to Linux in the PaX project in 2000.
While the PaX patch has not been submitted to the mainstream Linux kernel,
many of its features are incorporated into mainstream Linux distributions.
For example, ASLR has been part of Ubuntu since 2008 and Debian since
2007. Both platforms allow for fine-grained tuning of ASLR via the following
command:

sysctl -w kernel.randomize_va_space=2

Most platforms execute this command during the boot process. The
 randomize_va_space parameter may take the following values:

0 Turns off ASLR completely. This is the default only for platforms
that do not support this feature.

1 Turns on ASLR for stacks, libraries, and position-independent
binary programs.

2 Turns on ASLR for the heap as well as for memory randomized by
option 1.

Windows. ASLR has been available on Windows since Vista. On Windows,
ASLR moves executable images into random locations when a system boots,
making it harder for exploit code to operate predictably. For a component
to support ASLR, all components that it loads must also support ASLR. For
example, if A.exe depends on B.dll and C.dll, all three must support ASLR.
By default, Windows Vista and subsequent versions of the Windows operat-
ing system randomize system dynamic link libraries (DLLs) and executables

2.6 Runtime Protection Strategies 113

(EXEs). However, developers of custom DLLs and EXEs must opt in to sup-
port ASLR using the /DYNAMICBASE linker option.

Windows ASLR also randomizes heap and stack memory. The heap manager
creates the heap at a random location to help reduce the chances that an attempt
to exploit a heap-based buffer overrun will succeed. Heap randomization is
enabled by default for all applications running on Windows Vista and later.
When a thread starts in a process linked with /DYNAMICBASE, Windows Vista and
later versions of Windows move the thread’s stack to a random location to help
reduce the chances that a stack-based buffer overrun exploit will succeed.

To enable ASLR under Microsoft Windows, you should

■ Link with Microsoft Linker version 8.00.50727.161 (the first version to
support ASLR) or later

■ Link with the /DYNAMICBASE linker switch unless using Microsoft
Linker version 10.0 or later, which enables /DYNAMICBASE by default

■ Test your application on Windows Vista and later versions, and note
and fix failures resulting from the use of ASLR

Nonexecutable Stacks

A nonexecutable stack is a runtime solution to buffer overflows that is
designed to prevent executable code from running in the stack segment. Many
operating systems can be configured to use nonexecutable stacks.

Nonexecutable stacks are often represented as a panacea in securing
against buffer overflow vulnerabilities. However, nonexecutable stacks pre-
vent malicious code from executing only if it is in stack memory. They do not
prevent buffer overflows from occurring in the heap or data segments. They
do not prevent an attacker from using a buffer overflow to modify a return
address, variable, object pointer, or function pointer. And they do not prevent
arc injection or injection of the execution code in the heap or data segments.
Not allowing an attacker to run executable code on the stack can prevent the
exploitation of some vulnerabilities, but it is often only a minor inconvenience
to an attacker.

Depending on how they are implemented, nonexecutable stacks can affect
performance. Nonexecutable stacks can also break programs that execute code
in the stack segment, including Linux signal delivery and GCC trampolines.

W^X

Several operating systems, including OpenBSD, Windows, Linux, and OS X,
enforce reduced privileges in the kernel so that no part of the process address
space is both writable and executable. This policy is called W xor X, or more

114 Strings

concisely W^X, and is supported by the use of a No eXecute (NX) bit on sev-
eral CPUs.

The NX bit enables memory pages to be marked as data, disabling the
execution of code on these pages. This bit is named NX on AMD CPUs, XD
(for eXecute Disable) on Intel CPUs, and XN (for eXecute Never) on ARM ver-
sion 6 and later CPUs. Most modern Intel CPUs and all current AMD CPUs
now support this capability.

W^X requires that no code is intended to be executed that is not part
of the program itself. This prevents the execution of shellcode on the stack,
heap, or data segment. W^X also prevents the intentional execution of code
in a data page. For example, a just-in-time (JIT) compiler often constructs
assembly code from external data (such as bytecode) and then executes it.
To work in this environment, the JIT compiler must conform to these restric-
tions, for example, by ensuring that pages containing executable instructions
are appropriately marked.

Data Execution Prevention. Data execution prevention (DEP) is an imple-
mentation of the W^X policy for Microsoft Visual Studio. DEP uses NX tech-
nology to prevent the execution of instructions stored in data segments. This
feature has been available on Windows since XP Service Pack 2. DEP assumes
that no code is intended to be executed that is not part of the program itself.
Consequently, it does not properly handle code that is intended to be executed
in a “forbidden” page. For example, a JIT compiler often constructs assembly
code from external data (such as bytecode) and then executes it, only to be
foiled by DEP. Furthermore, DEP can often expose hidden bugs in software.

If your application targets Windows XP Service Pack 3, you should call
SetProcessDEPPolicy() to enforce DEP/NX. If it is unknown whether or not
the application will run on a down-level platform that includes support for
SetProcessDEPPolicy(), call the following code early in the start-up code:

01 BOOL __cdecl EnableNX(void) {
02 HMODULE hK = GetModuleHandleW(L"KERNEL32.DLL");
03 BOOL (WINAPI *pfnSetDEP)(DWORD);
04
05 *(FARPROC *) &pfnSetDEP =
06 GetProcAddress(hK, "SetProcessDEPPolicy");
07 if (pfnSetDEP)
08 return (*pfnSetDEP)(PROCESS_DEP_ENABLE);
09 return(FALSE);
10 }

If your application has self-modifying code or performs JIT compilation,
DEP may cause the application to fail. To alleviate this issue, you should still

2.6 Runtime Protection Strategies 115

opt in to DEP (see the following linker switch) and mark any data that will be
used for JIT compilation as follows:

01 PVOID pBuff = VirtualAlloc(NULL,4096,MEM_COMMIT,PAGE_READWRITE);
02 if (pBuff) {
03 // Copy executable ASM code to buffer
04 memcpy_s(pBuff, 4096);
05
06 // Buffer is ready so mark as executable and protect from writes
07 DWORD dwOldProtect = 0;
08 if (!VirtualProtect(pBuff,4096,PAGE_EXECUTE_READ,&dwOldProtect)
09) {
10 // error
11 } else {
12 // Call into pBuff
13 }
14 VirtualFree(pBuff,0,MEM_RELEASE);
15 }

DEP/NX has no performance impact on Windows. To enable DEP, you
should link your code with /NXCOMPAT or call SetProcessDEPPolicy() and
test your applications on a DEP-capable CPU, then note and fix any failures
resulting from the use of DEP. The use of /NXCOMPAT is similar to calling
 SetProcessDEPPolicy() on Vista or later Windows versions. However, Win-
dows XP’s loader does not recognize the /NXCOMPAT link option. Consequently,
the use of SetProcessDEPPolicy() is generally preferred.

ASLR and DEP provide different protections on Windows platforms. Con-
sequently, you should enable both mechanisms (/DYNAMICBASE and / NXCOMPAT)
for all binaries.

PaX

In Linux, the concept of the nonexecutable stack was pioneered by the PaX
kernel patch. PaX specifically labeled program memory as nonwritable and
data memory as nonexecutable. PaX also provided address space layout ran-
domization (ASLR, discussed under “Detection and Recovery”). It terminates
any program that tries to transfer control to nonexecutable memory. PaX can
use NX technology, if available, or can emulate it otherwise (at the cost of
slower performance). Interrupting attempts to transfer control to nonexecut-
able memory reduces any remote-code-execution or information-disclosure
vulnerability to a mere denial of service (DoS), which makes PaX ideal for sys-
tems in which DoS is an acceptable consequence of protecting information or
preventing arc injection attacks. Systems that cannot tolerate DoS should not

116 Strings

use PaX. PaX is now part of the grsecurity project, which provides several
additional security enhancements to the Linux kernel.

StackGap. Many stack-based buffer overflow exploits rely on the buffer
being at a known location in memory. If the attacker can overwrite the func-
tion return address, which is at a fixed location in the overflow buffer, execu-
tion of the attacker-supplied code starts. Introducing a randomly sized gap of
space upon allocation of stack memory makes it more difficult for an attacker
to locate a return value on the stack and costs no more than one page of real
memory. This offsets the beginning of the stack by a random amount so the
attacker will not know the absolute address of any item on the stack from one
run of the program to the next. This mitigation can be relatively easy to add
to an operating system by adding the same code to the Linux kernel that was
previously shown to allow JIT compilation.

Although StackGap may make it more difficult for an attacker to exploit
a vulnerability, it does not prevent exploits if the attacker can use relative,
rather than absolute, values.

Other Platforms. ASLR has been partially available on Mac OS X since 2007
(10.5) and is fully functional since 2011 (10.7). It has also been functional on
iOS (used for iPhones and iPads) since version 4.3.

Future Directions

Future buffer overflow prevention mechanisms will surpass existing capabil-
ities in HP aCC, Intel ICC, and GCC compilers to provide complete coverage
by combining more thorough compile-time checking with runtime checks
where necessary to minimize the required overhead. One such mechanism is
Safe-Secure C/C++ (SSCC).

SSCC infers the requirements and guarantees of functions and uses them
to discover whether all requirements are met. For example, in the following
function, n is required to be a suitable size for the array pointed to by s. Also,
the returned string is guaranteed to be null-terminated.

1 char *substring_before(char *s, size_t n, char c) {
2 for (int i = 0; i < n; ++i)
3 if (s[i] == c) {
4 s[i] = '\0';
5 return s;
6 }
7 s[0] = '\0';
8 return s;
9 }

2.7 Notable Vulnerabilities 117

To discover and track requirements and guarantees between functions
and source files, SSCC uses a bounds data file. Figure 2.19 shows one possible
implementation of the SSCC mechanism.

If SSCC is given the entire source code to the application, including all
libraries, it can guarantee that there are no buffer overflows.

■ 2.7 Notable Vulnerabilities

This section describes examples of notable buffer overflow vulnerabilities
resulting from incorrect string handling. Many well-known incidents, includ-
ing the Morris worm and the W32.Blaster.Worm, were the result of buffer
overflow vulnerabilities.

Remote Login

Many UNIX systems provide the rlogin program, which establishes a remote
login session from its user’s terminal to a remote host computer. The rlogin
program passes the user’s current terminal definition as defined by the TERM
environment variable to the remote host computer. Many implementations of

Diagnostics

C
om

pi
le

r

Parser

Safety check
+ optimizer

IR with checks

Bounds
recorder

Back end

Internal representation (IR)

Bounds
information

Object code

Linker Safe-secure
executable

Pre-linker

Runtime
pointer-
checking

library

Source file

Figure 2.19 A possible Safe-Secure C/C++ (SSCC) implementation

118 Strings

the rlogin program contained an unbounded string copy—copying the TERM
environment variable into an array of 1,024 characters declared as a local
stack variable. This buffer overflow can be exploited to smash the stack and
execute arbitrary code with root privileges.

CERT Advisory CA-1997-06, “Vulnerability in rlogin/term,” released on
February 6, 1997, describes this issue.2 Larry Rogers provides an in-depth
description of the rlogin buffer overflow vulnerability [Rogers 1998].

Kerberos

Kerberos is a network authentication protocol designed to provide strong
authentication for client/server applications by using secret-key cryptography.
A free implementation of this protocol is available from the Massachusetts
Institute of Technology. Kerberos is available in many commercial products
as well.3

A vulnerability exists in the Kerberos 4 compatibility code contained within
the MIT Kerberos 5 source distributions. This vulnerability allows a buffer over-
flow in the krb_rd_req() function, which is used by all Kerberos-authenticated
services that use Kerberos 4 for authentication. This vulnerability is described
further in the following:

■ “Buffer Overrun Vulnerabilities in Kerberos,” http://web.mit.edu/ker-
beros/www/advisories/krb4buf.txt

■ CERT Advisory CA-2000-06, “Multiple Buffer Overflows in Kerberos
Authenticated Services,” www.cert.org/advisories/CA-2000-06.html

It is possible for an attacker to gain root access over the network by
exploiting this vulnerability. This vulnerability is notable not only because
of the severity and impact but also because it represents the all-too-common
case of vulnerabilities appearing in products that are supposed to improve the
security of a system.

■ 2.8 Summary

A buffer overflow occurs when data is written outside of the boundaries of
the memory allocated to a particular data structure. Buffer overflows occur

2. See www.cert.org/advisories/CA-1997-06.html.
3. See http://web.mit.edu/kerberos/www/.

http://web.mit.edu/ker-beros/www/advisories/krb4buf.txt
http://web.mit.edu/ker-beros/www/advisories/krb4buf.txt
http://www.cert.org/advisories/CA-2000-06.html
http://www.cert.org/advisories/CA-1997-06.html
http://web.mit.edu/kerberos/www/

2.8 Summary 119

frequently in C and C++ because these languages (1) define strings as null-
terminated arrays of characters, (2) do not perform implicit bounds checking,
and (3) provide standard library calls for strings that do not enforce bounds
checking. These properties have proven to be a highly reactive mixture when
combined with programmer ignorance about vulnerabilities caused by buffer
overflows.

Buffer overflows are troublesome in that they can go undetected during
the development and testing of software applications. Common C and C++
compilers do not identify possible buffer overflow conditions at compilation
time or report buffer overflow exceptions at runtime. Dynamic analysis tools
can be used to discover buffer overflows only as long as the test data precipi-
tates a detectable overflow.

Not all buffer overflows lead to an exploitable software vulnerability.
However, a buffer overflow can cause a program to be vulnerable to attack
when the program’s input data is manipulated by a (potentially malicious)
user. Even buffer overflows that are not obvious vulnerabilities can introduce
risk.

Buffer overflows are a primary source of software vulnerabilities.
Type-unsafe languages, such as C and C++, are especially prone to such vul-
nerabilities. Exploits can and have been written for Windows, Linux, Solaris,
and other common operating systems and for most common hardware archi-
tectures, including Intel, SPARC, and Motorola.

A common mitigation strategy is to adopt a new library that provides an
alternative, more secure approach to string manipulation. There are a number
of replacement libraries and functions of this kind with varying philosophies,
and the choice of a particular library depends on your requirements. The
C11 Annex K bounds-checking interfaces, for example, are designed as easy
drop-in replacement functions for existing calls. As a result, these functions
may be used in preventive maintenance to reduce the likelihood of vulnerabil-
ities in an existing, legacy code base. Selecting an appropriate approach often
involves a trade-off between convenience and security. More-secure functions
often have more error conditions, and less-secure functions try harder to pro-
vide a valid result for a given set of inputs. The choice of libraries is also con-
strained by language choice, platform, and portability issues.

There are practical mitigation strategies that can be used to help eliminate
vulnerabilities resulting from buffer overflows. It is not practical to use all of
the avoidance strategies because each has a cost in effort, schedule, or licens-
ing fees. However, some strategies complement each other nicely. Static anal-
ysis can be used to identify potential problems to be evaluated during source
code audits. Source code audits share common analysis with testing, so it is

120 Strings

possible to split some costs. Dynamic analysis can be used in conjunction
with testing to identify overflow conditions.

Runtime solutions such as bounds checkers, canaries, and safe libraries
also have a runtime performance cost and may conflict. For example, it may
not make sense to use a canary in conjunction with safe libraries because
each performs more or less the same function in a different way.

Buffer overflows are the most frequent source of software vulnerabilities
and should not be taken lightly. We recommend a defense-in-depth strategy
of applying multiple strategies when possible. The first and foremost strategy
for avoiding buffer overflows, however, is to educate developers about how to
avoid creating vulnerable code.

■ 2.9 Further Reading

“Smashing the Stack for Fun and Profit” is the seminal paper on buffer over-
flows from Aleph One [Aleph 1996]. Building Secure Software [Viega 2002]
contains an in-depth discussion of both heap and stack overflows.

 545

Index
Note: Page numbers followed by f and t indicate

figures and tables, respectively. Footnotes
are indicated by n.

A
ABA problem, 393–398
ABI (application binary interface), 127–128
Absolute path name, 405–406, 432
Accelerated Requirements Method (ARM), 484
Access control lists (ACLs), 413
Access right(s), analysis and reduction, 494–495
ACLs. See Access control lists (ACLs)
ActiveX controls, vulnerabilities in, 515
Addition operations, 260–267

one’s complement, 233
Address space layout randomization (ASLR),

111–116
Adve, Vikram, 506
AHP (Analytical Hierarchical Process), 485
AIR. See As-if infinitely ranged (AIR) integer

model
Alert TA06-081A, 428
aligned_alloc() function, 146, 148–149, 153

return values on success and error, 217, 217t
Alignment(s)

definition, 147
extended, 148
fundamental, 148
stronger/stricter, 148
weaker, 148

alloca() function, 149–150
Allocation function(s), 163–168

for array types, 163
and deallocation functions, correct pairings,

176, 176t
failure, 164–168, 172
incorrect pairing of C and C++ allocation and

deallocation functions and, 172–173
for nonarray types, 163

Amdahl’s law, 361, 362f
American National Standards Institute (ANSI)

C Standard, 20
X3J11 committee, 19–20

Analytical Hierarchical Process (AHP), 485
The Annotated C++ Reference Manual (Ellis and

Stroustrup), 20
ANSI. See American National Standards Insti-

tute (ANSI)
Apple file system forks, and equivalence errors,

436–437
Application binary interface (ABI), 127–129
Application Verifier, 222
Arbitrary memory write, 124–125, 127

and atexit() function, 133–134
and .dtors section, 129–131

546 Index

Arbitrary memory write (continued)
and global offset table, 127–129
and longjmp() function, 134–136
and structured exception handling, 138–139
and system default exception handling, 139
and virtual pointers, 133

Arbitrary write condition, 288
Arbitrary-precision arithmetic, 227, 292–293
Arc injection, 64, 69–70
Architecture and design, in software develop-

ment, 486–503
Arena(s), jemalloc, 216
Argument(s), 309–310

command-line, 43–44
direct access to, 335–337
malicious, 64
naming, 313
passing, 313
sequentially ordered, 312–313, 312f
variable number of, 309–312

Argument pointer(s), 323, 323f
advancing, 324–325

and buffer expansion, 346
and variadic function implementation,

344–345
moving, 324–325

Ariane 5 launcher, 301
Arithmetic. See also Integer(s)

arbitrary-precision, 227, 292–293
C language solution, 293

bignum, 227
GMP (GNU Multiple-Precision Arithmetic

Library), 292
Java BigInteger, 292
modulo (modwrap semantics), 302
one’s complement, 233
pointer, 260, 304
usual integer conversions, 249

Arithmetic operations
addition, 260–267

one’s complement, 233
division and remainder, 274–279
multiplication, 269–274
subtraction, 267–269

ARM (Accelerated Requirements Method), 484
Arrays, 30

character, 30
count, 40

fixed-length, and data from unbounded
sources, 43

length, 40
scalars and, 174–175
size, 31–32, 40
variable-length (VLAs), 150–151

The Art of Computer Programming (Knuth),
181–182

As-if infinitely ranged (AIR) integer model,
303–304, 505

and observation point, 303–304
As-if rule, 369
ASLR (address space layout randomization),

111–116
asprintf() function, 340
atexit() function, 133–134
ATM, application-specific misuse case, 485, 486t
Atomic operations, 376–378

relaxed, 371
use, 463

Attack surface
analyzing, 494
reducing, 494–495
review, 516–517

Attack Surface Analyzer, 517
Attackers, definition, 14
AusCERT, 28

Advisory AA-2000.02, 348
Automated teller machine (ATM), applica-

tion-specific misuse case, 485, 486t
Autovectorization, 358–359
Avoidance strategy(ies). See Mitigation(s)

B
Basic character set, 32
Basic Combined Programming Language

(BCPL), 19
Basic Fuzzing Framework (BFF), 514
basic_string, 36–37
basic_string class, 80–81

mistakes using, 81–83
BCPL. See Basic Combined Programming Lan-

guage (BCPL)
Best-fit memory allocation, 181
BFF (Basic Fuzzing Framework), 514
Black-box fuzzing, 513–514
Blacklisting, 501–502

Index 547

Blaster worm, 1–5, 2f, 117
flawed logic exploited by, 5, 5f

Block devices, 407
Boehm-Demers-Weiser conservative garbage

collector, 169
Bound, definition, 30
Boundary(ies), exploitable, 500–501, 501f
Boundary tags, 181, 181n, 201–202, 201f
Branching

conditional, 71–72
unconditional, 71–72, 72f

BSS segment, 123–124
Buffer overflow(s), 53–54, 53f, 70, 118–120. See

also String(s)
arc injection, 64, 69–70
code injection, 64–70
detection, 72, 101–102
dlmalloc

frontlink technique, 191–195
unlink technique, 185–191

formatted output functions and, 319–321
in heap, 185–191

frontlink technique, 191–195
unlink technique, 185–191

inadequately bounded loops and, 122–123
mitigation strategies, detection and recovery,

72, 101–102
prevention, 72, 102
RtlHeap, 202–207
secure recovery from, 72, 101–102
in stack segment, 59
vulnerabilities, 117–118

__builtin_object_size() function, 102–106
__builtin___strcpy_chk() function, 105–106
Butenhof, David, 368

C
C*, 20
C and C++

alternatives to, 25
descendants of, 20
history of, 19–20
and implementation-defined behavior, 22, 23
legacy code, 24
and locale-specific behavior, 21, 23
popularity, 17–18, 18t, 19t

portability, 23–24
security problems with, 21–24
standards, 20
and type safety, 24
and undefined behavior, 22–24
and unspecified behavior, 21–22
and vulnerabilities, 21

C11 Annex K bounds-checking interfaces,
73–76, 282, 340–341

C++ Coding Standards: 101 Rules, Guidelines, and
Best Practices (Sutter and Alexandrescu),
83

The C Programming Language (Kernighan and
Ritchie), 19, 181–182

C range error detector (CRED), 107–108
C runtime (CRT) library, in Win32, 197–198
C Standard, memory management functions,

146–147
calloc() function, 147, 152, 153–154, 173

and integer wraparound vulnerability, 284
return values on success and error, 217, 217t

Canary(ies)
Random XOR, 109
stack, 108–109, 140

Canonicalization, 439–442, 499–500
Case sensitivity, and equivalence errors, 436
Casts, 38
CDE ToolTalk, 348–349
__cdec1, 313
Center for Strategic and International Studies

(CSIS), list of significant cyber events, 10
Cerb CerbNG, concurrency vulnerabilities, 400
CERT Advisory

CA-1996-20, 428
CA-1996-24, 428
CA-1996-25, 428
CA-1997-05, 428
CA-1997-06, 118
CA-2000-06, 118
CA-2000-13, 348
CA-2001-27, 349
CA-2002-33, 223
CA-2003-02, 223
CA-2003-07, 428
CA-2003-12, 428
CA-2003-16, 2
CA-2003-25, 428

548 Index

The CERT C Secure Coding Standard (Seacord),
482–483, 510

“Arrays (ARR),” 30
ARR01-C, 31–32
ARR32-C, 150
DCL03-C, 273
DCL12-C, 292
DCL34-C, 366–367
ERR00-C, 76
ERR02-C, 88
ERR03-C, 75
ERR38-CPP, 179–180
EXP33-C, 151
EXP34-C, 155
FIO01-C, 429, 432
FIO02-C, 440
FIO03-C, 432, 455, 456
FIO04-C, 45, 53
FIO05-C, 450, 464
FIO15-C, 429
FIO30-C, 338
FIO32-C, 445
FIO33-C, 45
FIO34-C, 86
FIO35-C, 86
FIO37-C, 64
FIO43-C, 460
INT01-C, 290
INT06-C, 339
INT07-C, 240
INT13-C, 281
INT15-C, 244
INT30-C, 293–294, 296
INT31-C, 293, 296–297
INT32-C, 293, 297
INT34-C, 280
MEM03-C, 152
MEM04-C, 156, 159
MEM07-C, 152
MEM09-C, 151
MEM11-C, 153
MEM32-C, 153–154
MEM35-C, 156
MEM36-C, 149
MEM08-CPP, 172–173
MEM39-CPP, 176
MSC06-C, 153
MSC10-C, 33
MSC14-C, 264, 268

MSC23-C, 162
MSC34-C, 42
POS01-C, 467
POS35-C, 466
POS36-C, 426
POS37-C, 428
SIG30-C, 355
“Signals (SIG),” 279
STR00-C, 39
STR01-C, 73
STR07-C, 74, 282
STR30-C, 35
STR31-C, 39, 41, 76
STR32-C, 49
STR35-C, 43
STR36-C, 36

CERT Vulnerability Note, 11
VU#29823, 348
VU#159523, 154
VU#192038, 222
VU#210409, 433
VU#286468, 349
VU#542081, 223
VU#568148, 2
VU#595507, 349
VU#650937, 223
VU#866472, 224

CERT/CC
and coding standards, 482–483
Insider Threat Center, 9
role in security training, 481
ROSE Checkers SourceForge, 305
vulnerabilities reported to, 11, 12, 18
Vulnerability Disclosure Policy, 9n

Chamber of Commerce, U.S., computer network,
hacker penetration of, 10

Change state property, 363, 469
Channel(s), analysis and reduction, 494–495
char, 30, 35, 37–39
Character devices, 407
Character set

basic, 32
execution, 32
multibyte, 32. See also UTF-8

Character string literals, 34–36
Character strings, 29–41
Character types, 37–39

integer, 240–241
Checklists, for software development, 516

Index 549

Check-use-check pattern, 463–466
chroot jail, 470, 487n
chroot() system call, 487, 487n
clear(), 31
close() function, 410–411, 411t
cmd.exe, 4
Code audits, 515

for integer range errors, 306
Code injection, 64–69, 70
CodeSonar, 506
COFF (common object file format), 207n
Common desktop environment (CDE), 348
Common object file format (COFF), 207n
Compass/ROSE tool, 506–507, 511
Competitive intelligence professionals, as threat,

9–10
Compilation flags, 503–504, 504f
Compiler(s), 26–27

security features, 503–505
Compiler checks, 342–343
Compiler optimization, undefined behaviors in

C and, 23
Compiler reordering, and thread safety, 369–370
Compiler-generated runtime error checks, 106,

300–301
Complete mediation, 488–489, 490f
Complete object, 148
Computer Crime and Security Survey, 2010/2011, 6
Computer security, 12
Concatenating strings, 43–47
Concatenation functions, 89–93, 93t

truncating, 93–99, 99t
Concurrency

and ABA problem, 393–398
deadlocks, 385–391, 462
definition, 353
interleaved, 355, 356f
livelock, 385
and lock contention, 383, 392–393
mitigation pitfalls, 384–398
mitigation strategies, 368–384

atomic operations, 376–378
concurrent code properties, 383–384
data races, 370–371
happens before, 371
immutable data structures, 383
lock guards, 375
lock-free approaches, 379–380
memory barriers (fences), 378–379

memory model, 368–370
message queues, 380
mutexes, 374–375
reentrant functions, 383–384
relaxed atomic operations, 371
semaphores, 379
synchronization primitives, 371–374
thread safety, 383–384

parallel, 355, 356f
and parallelism, 355–359
and prematurely releasing a lock, 391–392
programming for, common errors, 362–368

corrupted values, 364–365
race conditions, 362–364
volatile objects, 365–368

single-threaded programs and, 354–355
spinlocks, 398
starvation, 385
vulnerabilities, 399–401

DoS attacks in multicore DRAM systems,
399

in system call wrappers, 400–401
time-of-audit-to-time-of-use (TOATTOU),

401
time-of-check-to-time-of-use (TOCTTOU),

401
time-of-replacement-to-time-of-use

(TORTTOU), 401
Concurrent Versions System (CVS). See CVS
Concurrent-C, 20
Conforming program, 23
Conover, Matt, 198
const char, 35
Constructor attribute, 129–131
Container virtualization, 470
Contention, 383, 392–393
Control flow(s)

trusted, 450–451
untrusted, 450–451

Control transfer instructions, 125
Conversion specification, 314–315
Conversion specifier(s), 315, 315t–316t
Conversions, integer. See Integer conversions
Copy functions, string, 89–92, 92t

truncating, 93–99, 99t
Copying strings, 43–47
Costs

of Blaster worm, 4
of cybercrime, 6–7, 7t–8t

550 Index

Counted minus loop, 290
Countermeasure(s). See Mitigation strategy(ies)
_countof(array), 40
cqual, 343–344
Crackers. See also Attackers

definition, 9
CRED (C range error detector), 107–108
Crimes. See Cybercrime
Criminals. See also Attackers

as threat, 9
Critical section, 363
Critical undefined behavior, 303–304
CSIS. See Center for Strategic and International

Studies (CSIS)
.ctors section, 130
CVS buffer overflow vulnerability, 222
CVS server double-free, 214, 223–224
Cybercrime

costs of, 6–7, 7t–8t
traditional crimes becoming, 6, 8t
trends in, 6
underreporting of, 6
unnoticed, 6
unreported, 6

CyberSecurity Watch Survey, 2010, 6
Cyberterrorism, 10
Cyclone, 25
Cygwin, 25, 25n

D
D programming language, 25
DAG. See Directed acyclic graph (DAG)
Data

ad hoc, processing, 498
encapsulation, 497
external, trusted vs. untrusted, 50
input validation and, 497–498
locations, 122–123
in nonstandard formats, processing, 498
sanitization, 500. See also Blacklisting;

Whitelisting
specifications for, 497
tainted, 51–52

Data execution prevention (DEP), 114–115
Data model(s), 241, 241t
Data parallelism, 357–359, 357f
Data pointer(s), 121, 124–125

Data races, 370–371. See also Deadlocks
Data streams, 408
Deadlocks, 385–391, 462
Deallocation function(s), 163, 164, 168–169

and allocation functions
correct pairings, 176, 176t
incorrect pairing, 172–173

for array types, 163
for nonarray types, 163
throwing an exception, 179–180

decode_pointer() function, 140–142
Defect report (DR) 400, 161–162
Defense in depth, 72, 120, 511–512
Defensive strategy(ies). See Mitigation

strategy(ies)
Déjà vul, 152
Dekker’s example, 369, 378
delete expression, 162, 172–173
Denial-of-service (DoS), 4, 4n
DEP (data execution prevention), 114–115
Department of Homeland Security, Software

Assurance Curriculum Project, 481
Destructor attribute, 129–131
Detection and recovery strategy(ies)

buffer overflow, 72, 101–102
runtime protection, 111–113

Development, software. See Software
development

Development platforms, 25–27
Device files, 407, 445–448

preventing operations on, 445–448
Dhurjati, Dinakar, 506
Direct access, to arguments, 335–337
Directed acyclic graph (DAG), 404
Directory(ies), 405, 406

secure, 429, 470
shared, 458–461

Directory traversal, 432–435
vulnerable products, 434, 434t

Division operations, 274–279
dlmalloc, 182–191

allocated and free memory chunks, structure,
182–183, 183f

buffer overflow
frontlink technique, 191–195
unlink technique, 185–191

double-free vulnerabilities, 191–195
free list double-linked structure, 183–184, 183f

Index 551

unlink() macro, 184, 185f
writing to freed memory, 195–196

DoS. See Denial-of-service (DoS)
Double-free vulnerability(ies), 157, 158, 160,

177–178. See also CVS server double-free
dlmalloc, 191–195
RtlHeap, 208–211

DRAM. See Dynamic random-access memory
(DRAM) systems

Dranzer tool, 515, 515n
.dtors section, 129–131
Dynamic analysis, in race condition detection,

471
Dynamic memory allocator, 146
Dynamic memory management, 145–224

aligned_alloc() function, 146, 148–149, 153
alignment, 147–149
alloca() function, 149–150
allocation functions, 146–147
best-fit allocation, 181
C++, 162–172

common errors, 172–180
handling of allocation failures, 172

calloc() function, 147, 152–154
common errors, 151–162, 172–180

checking return values, 153–155
dereferencing null or invalid pointers,

155–156
DR #400, 161–162
freeing memory multiple times, 157–158
improperly paired functions, 172–176
initialization, 151–153
memory leaks, 158
referencing freed memory, 156–157
scalars and arrays, 174–175
zero-length allocations, 159–160

consistent conventions for, 212–213
first-fit allocation, 181
free() function, 147
improperly paired memory management

functions and, 172–176
incorrect pairing of C and C++ allocation and

deallocation functions and, 172–173
incorrect pairing of scalar and array opera-

tors and, 174–175
malloc function, 146–147
mitigation strategies, 212–222

notable vulnerabilities, 222–224
and randomization, 215
realloc() function, 146, 149, 153

Dynamic random-access memory (DRAM) sys-
tems, multicore, DoS attacks in, 399

Dynamic randomized-input functional testing,
513–514

Dynamic storage allocation, 181–182
Dynamic storage duration, 162
Dynamic use of static content, 338–339

E
ECLAIR, 506, 506n
Economy of mechanism, 488–489
e-crime. See Cybercrime
Edison Design Group (EDG) compiler, 507
Education

online secure coding course, 481
in secure coding, 480–481

Effective C++ (Meyers), 341
Effective group ID (EGID), 416–427
Effective user ID (EUID), 415–427
Eiffel, 20
eip register. See Instruction pointer (eip)
ELF (executable and linking format), 127–129
encode_pointer() function, 140–142
Environment(s), supervised, 496
Equivalence errors, 435–437
Error conditions

concurrency programming, 362–368
corrupted values, 364–365
race conditions, 362–364
volatile objects, 365–368

dynamic memory management, 151–162,
172–180

checking return values, 153–155
dereferencing null or invalid pointers,

155–156
DR #400, 161–162
freeing memory multiple times, 157–158
improperly paired functions, 172–176
initialization, 151–153
memory leaks, 158
referencing freed memory, 156–157
scalars and arrays, 174–175
zero-length allocations, 159–160

552 Index

Error conditions (continued)
integers, 242t, 255t–256t. See also Integer

overflow
conversion errors, 285, 288
exceptional condition errors, 256–257,

257t
integer type range errors, 288
nonexceptional integer logic errors,

287–288
sign errors, 251, 254
truncation errors, 251, 254, 256–257,

257t, 259–260, 285–287, 288
string manipulation, 42–50

null-termination errors, 48–49
off-by-one errors, 47
string truncation, 49
unbounded string copies, 42–47
without functions, 49–50

Escape sequences, 34
EServ password-protected file access vulnerabil-

ity, 436
Ettercap version NG-0.7.2, 349
Evans, Jason, 216. See also jemalloc memory

manager
Event thread, 380
Exception, definition, 136
Exception handling, 136–139, 206

for new operator, 165
structured, 136–139
system default, 136–137, 139
vectored, 136–137

Exec Shield, 346
Executable and linking format (ELF), 127–129
eXecute Disable (XD) bit, 114
eXecute Never (XN) bit, 114
Execution character set, 32
“Exploiting Concurrency Vulnerabilities in Sys-

tem Call Wrappers” (Watson), 400
Exploits, 16–17

arc injection, 69–70
code injection, 64–69, 70
definition, 16
for IsPasswordOK program, stack smashing,

59–64
proof-of-concept, 16
remote procedure call, Blaster worm and, 3–4
return-oriented programming, 71–72

Extended alignment, 148
Extended base pointer (ebp) register, 56–57

Extended characters, 32
Extended integers, 226, 241
Extraction operator, 46–47

F
Fail-safe defaults, 488–489
Failure Observation Engine (FOE), 514, 514n
Fallon, Elias, 512
False negatives, in static analysis, 507–509, 508t
False positives, 304

in static analysis, 507–509, 508t
__fastcall, 313
fchmod() function, 430–431
fclose() function, 410
fgets() function, 64, 84–86, 87, 89t
File(s)

attributes, 448–450
closing, 217
create without replace, 453–456
identification, 432–450

using multiple file attributes, 448–450
opening and closing, 409–410
secure delete, 444
special, 406–407, 445
stream, 408
temporary

and appropriate privileges, 460, 461t
create without replace, 460, 461t
creation functions, 459–460, 461t
creation in shared directories, 459–460,

461t
and exclusive access, 460, 461t
and removal before termination, 460, 461t
with unique and unpredictable file names,

459–460, 461t
File I/O

access control, 413–432
changing privileges, 417–421
privilege management functions, 419–421
process privileges, 415–417
UNIX file permissions, 413–415

basics of, 403–407
byte input/output functions, 407
in C++, 412
concurrency, 467–469

advisory locks, 458
exclusive locks, 458
file locking, 456–458

Index 553

mandatory locks, 458
named mutex object, 457–458
named semaphores, 457–458
shared locks, 458
synchronization primitives, 456–458
synchronizing across processes, 456–458
trusted/untrusted control flows, 450–451

data streams, 408
and exclusive access, 456–458
interfaces, 407–412
mitigation strategies, 461–471

atomic operations, 463
checking for symbolic links, 464–467
chroot jail, 470
closing the race window, 462–467
container virtualization, 470
controlling access to race object, 469–471
dynamic analysis tools, 471
eliminating race objects, 467–469
exposure control, 470–471
file descriptors versus file names, 468–469
Helgrind tool, 471
mutual exclusion migration, 462
principle of least privilege, 469
race detection tools, 471
reopening files, 463–464
secure directories, 470
shared resources, 467–468
static analysis tools, 471
Thread Checker, 471
thread-safe functions, 462–463

and synchronizing across processes,
456–458

vulnerabilities
directory traversal, 432–435
path equivalence, 435–437
privilege escalation, 418
symlink-related, 438–439
time of check, time of use (TOCTOU),

451–453, 455
wide-character input/output functions, 408,

412
File lock, 458

advisory, 458
exclusive, 458
mandatory, 458
shared, 458

File name(s), 405–406
binding to file objects, 432

canonicalization, 439–442
unique and unpredictable, for temporary

files, 459–460, 461t
using file descriptors instead of, 468–469

File system(s), 404–406
distributed, 404
hierarchical, 404

Financial loss(es). See Costs
Finite-state automaton (FSA), 420, 420f
First-fit memory allocation, 181
Flags, 316

compilation, 503–504, 504f
Floating point, 299–300, 324
fmemopen() function, 78–79
FOE (Failure Observation Engine), 514, 514n
foo() function, 57

function epilogue for, 58–59
function prologue for, 58, 58t

Foote, Jonathan, 514
fopen() function, 409–410, 411t

and file creation, 453–456
and permissions, 429–432

fopen_s() function, 456
Format string(s), 309–310, 314–318

conversion specifications in, 314–315
conversion specifier, 315, 315t–316t
dynamic, 338–339
excluding user input from, 338
flags, 316
interpretation, 314
length modifier, 317, 317t–318t
ordinary characters in, 314
precision, 316
width, 316

Format string vulnerability(ies), 319–320,
349–351

brute-forcing, 351
and crashing a program, 321–322
defeating stack randomization and, 332–333
detection, static taint analysis and, 343–344
and direct parameter access memory write,

335–337
exploitable, 321, 349–351
heap-based, exploiting, 351
and viewing memory content, 324–326, 325f
and viewing stack content, 322–324, 323f
wide-character, 332
and writing addresses in two words, 334–335
WU-FTP, 319

554 Index

FormatGuard, 346–347
Formatted output, 309–351

mitigation strategies, 337–348
C11 Annex K bounds-checking interfaces,

340–341
compiler checks, 342–343
dynamic use of static content, 338–339
excluding user input from format strings,

338
Exec Shield, 346
FormatGuard, 346–347
iostream versus stdio, 341–342
modifying variadic function implementa-

tion, 344–346
restricting bytes written, 339–340
static binary analysis, 347–348
static taint analysis, 343–344
testing, 342
-Wformat flag, 343
-Wformat-nonliteral flag, 343
-Wformat-security flag, 343

variadic functions, 309–313, 344–346
vulnerabilities

buffer overflow, 319–321
CDE ToolTalk, 348–349
crashing a program, 321–322
direct argument access, 335–337
Ettercap version NG-0.7.2, 349
internationalization, 331
output streams, 321
overwriting memory, 326–331
viewing memory content, 324–326, 325f
viewing stack content, 322–324, 323f
Washington university FTP daemon, 348
wide-character, 332
writing addresses in two words, 334–335

Formatted output functions, 313–319
and buffer overflow, 319–321
exploiting, 319–332
GCC implementation, 318

limits, 318
Visual C++ implementation, 318–319

length modifier, 319
limits, 319
precision, 319, 319t

Forrester, Justin, 514
Fortify, 506

fprintf(), 314
Frame, definition, 56
Free lists, 198–200, 200f
FreeBSD, 214–215, 216
free() function, 152, 156–157, 162, 173, 181,

181n
fstat() function, 449–450
FTP session, directory traversal vulnerability,

433–434
Function(s). See specific function
Function epilogue, 58–59
Function pointer(s), 121, 123–124

decoding, 140–142
decryption, 140–142
encoding, 140–142
encryption, 140–142

Function prologue, 58
Fuzz testing, 513–515
fwrite() function, 39

G
Gadget(s)

definition, 71
return-oriented programming set of, 71–72,

71f
Turing-complete set of, 71

Garbage collection, 169–172, 212
GCC (GNU Compiler Collection), 26–27, 506

object size checking, 102–106
security diagnostics, 507

“The Geometry of Innocent Flesh on the Bone”
(Shacham), 72

getchar() function, 84–86
getdelim() function, 88
GetFileType() function, 448
getline() function, 77, 87–89, 89t
gets() function, 42–43, 46, 51–53, 64, 84

alternatives to, 84–89, 89t
gets_s() function, 86–87, 89t
Global offset table (GOT), 128–129
Gloger, Wolfram, 182
GLSA 200506-07, 349
GMP (GNU Multiple-Precision Arithmetic

Library), 292
GNU Compiler Collection (GCC), 26–27, 506

object size checking, 102–106

Index 555

GNU libc allocator, 182
GNU Multiple-Precision Arithmetic Library

(GMP), 292
GOT (global offset table), 128–129
Group ID (GID), 413
/GS flag, 503–504, 504f
GSWKT (Generic Software Wrappers Toolkit),

concurrency vulnerabilities, 400
Guard pages, OpenBSD, 216
Guide to the Software Engineering Body of Knowl-

edge (Bourque and Dupuis), 483–484
Guidelines, for software development, 516

H
Hackers

politically motivated attacks by, 10
as threat, 8–9

Hacker’s Delight (Warren), 299
Happens before, 371
Hard links, 442–445, 443f

versus soft links, 444, 444t
Hazard pointers, 395–396
Heap exhaustion, 153–155
Heap memory

randomization, in Windows, 113
Win32 API, 197, 197f

Heap-based exploits, 146. See also Dynamic
memory management

Heap-based vulnerabilities
mitigation strategies, 212–222
RtlHeap, 196–212

Helgrind tool, 471
Hi, definition, 30
Hocevar, Sam, 514, 514n
Horovitz, Oded, 198
Householder, Allen, 514–515
Howard, Michael, 298
HP Fortify Static Code Analyzer, 344
Hyperthreading, 354

I
IAT (import address table), 129
Implementation

definition, 22
and undefined behavior, 22–23

Import address table (IAT), 129
Independent security reviews, 516–517
Information warriors, as threat, 10
i-node, 405, 405f

and hard links, 442–444, 444t
Input validation, 102, 497–498, 500, 518
Insiders, as threat, 9
Instruction pointer (eip), 57

modifying, 125–127
Insure++, 221
int, 232

minimum width, 237
int type, 38–39
Integer(s)

character types, 240–241
compiler- and platform-specific integral

limits, 228, 228t
data types, 226–246

abstract, 291–292
selection, 289–291

definition, 225
error conditions, 242t, 255t–256t. See also

Integer overflow
conversion errors, 285, 288
exceptional condition errors, 256–257,

257t
integer type range errors, 288
nonexceptional integer logic errors,

287–288
sign errors, 251, 254
truncation errors, 251, 254, 256–257,

257t, 259–260, 285–287, 288
extended, 226, 241
int, 232

minimum width, 237
intmax_t, 243–244
intptr_t, 245
long int, 232

minimum width, 237
long long int, 232

minimum width, 237
mitigation strategies, 288–306

abstract data types, 291–292
arbitrary-precision arithmetic, 292–293
as-if infinitely ranged (AIR) integer

model, 303–304
GCC -ftrapv flag, 300–301

556 Index

Integer(s), mitigation strategies (continued)
GNU Multiple-Precision Arithmetic

Library (GMP), 292
integer type selection, 289–291
Java BigInteger, 292
Microsoft Visual Studio c4244 warning,

305
Microsoft Visual Studio runtime error

checks, 106, 300
modwrap semantics, 302
overflow detection, 299–300
postcondition testing, 297
precondition testing, 295–297
range checking, 288, 293–295
restricted range usage, 302–303
saturation semantics, 302
secure integer libraries, 297–299
source code audit, 306
static analysis, 304–305
testing, 305–306
type safety, 292
verifiably in-range operations, 301–303

one’s complement, 232, 233, 234–235, 235t
operations, 256–283

addition, 260–267
assignment, 258–260
data parallelism and, 357–358
division and remainder, 274–279

error detection, 275–276
postcondition, 277–279
precondition, 276–277

and exceptional condition errors,
256–257, 257t

multiplication, 269–274
downcast from a larger type, 272–273
postcondition test using status flags,

270–272
precondition test, general, 273–274

shifts, 279–283
subtraction, 267–269

postcondition test using status flags,
267–268

verifiably in-range, 301–303
operators

that can result in overflow, 239, 239t–240t
that can result in wrapping, 231, 231t

packed, 358
platform-independent types for controlling

width, 245

platform-specific types, 245–246
ptrdiff_t, 242–243
range checking, 293–295

and integer wraparound vulnerability,
284–285

representation, 226–227
comparisons of, 234–235, 235t
paddings bits, 226–227
precision, 227
width, 227, 237

rsize_t, 289–290
security flaws involving, 225–226, 283
shifts, 279–283

arithmetic (signed), 281, 281f
left shift, 279–281, 280f, 283
logical (unsigned), 281, 281f
right shift, 279, 281–282

short int, 232
minimum width, 237

sign and magnitude, 232, 234–235, 235t
signed, 231–235, 240–241

ranges, 235–237, 235t–236t, 236f
signed char, 232, 240

minimum width, 237
size_t, 242, 289–291
standard, 226, 232
truncation toward zero, 274
two’s complement, 232–233, 234–235, 234f,

234t, 235t, 239
and unary negation (–), 279
to unsigned conversion, 254, 255f

typedefs, 241
uintmax_t, 243–244
uintptr_t, 245
unary negation (–), 279
unsigned, 227–229, 240–241

to two’s complement conversion, 251, 251f
unsigned char, 232, 240–241
vulnerabilities, 283–288. See also Integer

wraparound
conversion errors, 285
nonexceptional integer logic errors,

287–288
truncation errors, 285–287

Integer conversions, 246–256
explicit, 246
implicit, 246, 256
and loss of sign, 251, 254, 256
and loss of value, 251, 254, 256

Index 557

promotions, 247–249
rank, 246–247
from signed types, 253–255, 255t–256t

loss of precision, 253, 255t–256t
to unsigned, 253–255, 255t–256t

from unsigned types, 250–253, 252t
loss of precision, 250, 252t
to signed, 250–252, 252t

usual arithmetic, 249
Integer overflow, 237–239, 239t–240t, 256–257,

257t, 261, 288
detection, 299–300
fussy, 294–295
signed

resulting from addition, 261–262
avoiding or detecting, 262–265
downcast from a larger type, 265
postcondition test using status flags,

263–264
precondition test, general, 264–265
precondition test, two’s complement,

264
resulting from division, 274

detecting and avoiding, 276–279
resulting from multiplication, 269

detecting or avoiding, 271–274
resulting from subtraction

avoiding or detecting, 268
precondition test, 268

Integer wraparound, 229–231, 256–257, 257t,
283–285

resulting from addition, 261
avoiding or detecting, 265–267
postcondition test, 266–267

using status flags, 265–266
precondition test, 266

resulting from multiplication, detecting or
avoiding, 271–274

resulting from subtraction
avoiding or detecting, 269
postcondition test, 269
postcondition test using status flags, 269
precondition test, 269

Intellectual property, theft of, 9
Interface(s), exploitable, 500–501, 501f
Internationalization, formatted output vulnera-

bility, 331
Internet Security Glossary, version 2, 483

Internet Security Systems Security Advisory,
349

Interprocess communication (IPC) mecha-
nism(s), 459

intmax_t, 243–244
intptr_t, 245
I/O. See File I/O
iOS, ASLR (address space layout randomiza-

tion), 116
iostream, 341–342
islower() function, 21
ISO/IEC

9899-1990, 20
9899:1999, 482
14882:2011, 20
24731, 74
TR 24731-1, 282, 299, 483
TR 24731-2, 76–77, 87–88, 92, 93, 99, 483
TS 17961 C Secure Coding Rules, 15, 217, 483,

509–510
conformance test suite for, 510

IsPasswordOK(), 51–53, 52f
security flaw in, 52–53, 53f, 59–64, 62f, 63f

istream class, 46
Iterators, 81

invalid, 81–82

J
Java, 25
Java BigInteger, 292
Java Native Interface (JNI), 25
jemalloc memory manager, 216–217
JIT. See Just-in-time (JIT) compiler
jmp_buf type, 134–136
Jones, Richard, 506
JPEG files, comment field, unsigned integer

wraparound vulnerability, 283–284
Just-in-time (JIT) compiler, and W^X policy,

114–115

K
Kamp, Poul-Henning, 213. See also phkmalloc
Kelly, Paul, 506
Kerberos

buffer overrun vulnerability, 118
double-free vulnerabilities, 224

558 Index

Klocwork, 506
Knuth, Donald, 181–182
K&R. See The C Programming Language

L
Lam, Monica, 506
Last Stage of Delirium (LSD) Research Group, 2
LDRA, 506
Lea, Doug, 146

memory allocator (dlmalloc), 182–191. See
also dlmalloc

lea instruction, 65–66
Least common mechanism, 489, 492
Least privilege, 70, 489–492, 494
Legacy code, C and C++, 24
Lesk, M. E., 309n
libpng library, 155–156
Libsafe, 107
libsafe library, 496
Libverify, 107
Linux, 26

address space layout randomization, 112
file systems supported, 404
PaX patch, 112, 115–116

Livelock, 462
Lo, definition, 30
Load effective address (lea) instruction, 65–66
Locale, 32
Lock guards, 375
long int, 232

minimum width, 237
long long int, 232

minimum width, 237
longjmp() function, 134–136
Look-aside lists, 200, 200f, 212
LSD (Last Stage of Delirium Research Group), 2

M
Mac OS X

ASLR (address space layout randomization),
116

file systems supported, 404
Mail transfer agent (MTA), privilege manage-

ment, 424
main() function, 43
malloc, return values on success and error, 217,

217t

malloc() function, 151–155, 173, 181
Manadhata, Pratyusa, 517
mbstowcs(), 35
MDAC. See Microsoft Data Access Components

(MDAC)
Memcheck, 219–221
memcpy() function, 39, 100

and object size checking, 104–105
memcpy_s() function, 100
memmove() function, 100
memmove_s() function, 100
Memory. See also Dynamic memory

management
chunks, 201–202, 201f
double-free, 157, 158, 160

RtlHeap, 208–211
freed

accessing, 217
referencing, 156–157
writing to, dlmalloc, 195–196
writing to, RtlHeap, 207–208

freeing, 217
multiple times, 157–158, 176–179, 218

heap
randomization, in Windows, 113
Win32 API, 197, 197f

management modes, string-handling func-
tions, 73

overwriting, 326–331
process, organization, 54, 55f

data declarations and, 123
read-only, 54
stack, randomization, in Windows, 113
uninitialized, referencing, 218
virtual, Win32 API, 196–197, 197f
zero-length allocations, 159–160

Memory fence(s), 368, 378–379
Memory leak(s), 158, 177

automatic detection of, 158
detection

Insure++, 221
Purify, 218
Valgrind tool, 221

Memory manager(s), 146, 180–182
memset() function, 152
memset_s() function, 152
Message queues, 380
Messier, Matt, 498
Metasploit Project, 3

Index 559

Meyers, Scott, 341
Microsoft Data Access Components (MDAC),

buffer overflow vulnerability, 223
Microsoft Office, vulnerabilities in, SDL and,

474, 475f
Microsoft OpenOffice, vulnerabilities in, SDL

and, 474, 475f
Microsoft Security Bulletin

MS02-65, 223
MS03-026, 2

Microsoft Visual Studio. See Visual Studio
Microsoft Windows. See Windows
Miller, Barton, 514
MIT krb5 library, 213
MIT krb5 Security Advisory 2004-002, 224
Mitigation(s), definition, 17
Mitigation pitfalls, concurrency, 384–398
Mitigation strategy(ies)

applications, 474
broad, 473
buffer overflow, detection and recovery, 72,

101–102
concurrency, 368–384

atomic operations, 376–378
concurrent code properties, 383–384
data races, 370–371
happens before, 371
immutable data structures, 383
lock guards, 375
lock-free approaches, 379–380
memory barriers (fences), 378–379
memory model, 368–370
message queues, 380
mutexes, 374–375
reentrant functions, 383–384
relaxed atomic operations, 371
semaphores, 379
synchronization primitives, 371–374
thread safety, 383–384

dynamic memory management, 212–222
file I/O, 461–471

atomic operations, 463
checking for symbolic links, 464–467
chroot jail, 470
closing the race window, 462–467
container virtualization, 470
controlling access to race object, 469–471
dynamic analysis tools, 471
eliminating race objects, 467–469

exposure control, 470–471
file descriptors versus file names, 468–469
Helgrind tool, 471
mutual exclusion migration, 462
principle of least privilege, 469
race detection tools, 471
reopening files, 463–464
secure directories, 470
shared resources, 467–468
static analysis tools, 471
Thread Checker, 471
thread-safe functions, 462–463

formatted output, 337–348
C11 Annex K bounds-checking interfaces,

340–341
compiler checks, 342–343
dynamic use of static content, 338–339
excluding user input from format strings,

338
Exec Shield, 346
FormatGuard, 346–347
iostream versus stdio, 341–342
modifying variadic function implementa-

tion, 344–346
restricting bytes written, 339–340
static binary analysis, 347–348
static taint analysis, 343–344
testing, 342
-Wformat flag, 343
-Wformat-nonliteral flag, 343
-Wformat-security flag, 343

heap-based vulnerabilities, 212–222
integers, 288–306

abstract data types, 291–292
arbitrary-precision arithmetic, 292–293
as-if infinitely ranged (AIR) integer

model, 303–304
GCC -ftrapv flag, 300–301
GNU Multiple-Precision Arithmetic

Library (GMP), 292
integer type selection, 289–291
Java BigInteger, 292
Microsoft Visual Studio C4244 warning,

305
Microsoft Visual Studio runtime error

checks, 106, 300
modwrap semantics, 302
overflow detection, 299–300
postcondition testing, 297

560 Index

Mitigation strategy(ies), integers (continued)
precondition testing, 295–297
range checking, 288, 293–295
restricted range usage, 302–303
saturation semantics, 302
secure integer libraries, 297–299
source code audit, 306
static analysis, 304–305
testing, 305–306
type safety, 292
verifiably in-range operations, 301–303

pointer subterfuge, 139–142
race conditions, 461
strings, 72–83

C11 Annex K bounds-checking interfaces,
73–76, 282, 340–341

C++ std::basic_string, 80–81
detection and recovery, 101–102
dynamic allocation functions, 76–80
input validation, 102
invalidating string object references,

81–83
object size checking, 102–106
runtime protection, 101–117

mkstemp function, secure and insecure use of,
461t

mkstemp() function, 431–432
mktemp function, secure and insecure use of, 461t
Mode(s), file opening, 409–410
Modula 3, 20
Moore, H. D., 3
Morris worm, 117
msblast.exe, 4
MTA. See Mail transfer agent (MTA)
Multibyte character set, 32. See also UTF-8
Multibyte string, 32
Multiplication operations, 269–274
Multithreading, 354–355, 368
Mutex(es), 374–375. See also Named mutex

object

N
Named mutex object, 457–458
Named pipes, 407
Named semaphores, 457–458
NASA. See National Aeronautics and Space

Administration (NASA)

National Aeronautics and Space Administra-
tion (NASA), advanced persistent threat
attacks against, 10

National Institute of Standards and Technology
(NIST), Static Analysis Tool Exposition
(SATE), 509

National Vulnerability Database (NVD), vulner-
abilities cataloged by, 11, 11f

Negative zero, 234
NEON instructions, 357
NetBSD Security Advisory 2000-002, 284
Network administrators, definition, 13
New expression, 162–163, 172–173, 175

incorrect use, 172
nothrow form, 172

New handler, 167–168
NIST. See National Institute of Standards and

Technology (NIST)
No eXecute (NX) bit, 114
Normalization, 499–500
NTBS (null-terminated byte string), 36–37
NTMBS (null-terminated multibyte string), 36
Null character, 32, 34, 332
Null pointer(s), 212
Null-terminated byte string (NTBS), 36–37
Null-terminated multibyte string (NTMBS), 36
NVD. See National Vulnerability Database

(NVD)
NX (No eXecute) bit, 114

O
Object pointer(s), 121, 124–125
Objective-C, 20
Obsolescent feature(s), 162
Off-the-shelf software, 495–496
on_exit() function, 133–134
Open design, 489, 490
OpenBSD, 215–216

security options for, 216, 216t
open() function, 410–411, 411t

and file creation, 453–456
and permissions, 429–431

open_memstream() function, 78
OpenSHH

privilege escalation vulnerability, 418
secure shell implementation, 487–488, 487f

open_wmemstream() function, 78

Index 561

Operating system(s), 26
and runtime protection strategies, 111–116

detection and recovery, 111–113
operator delete() function, 163, 164, 168–169,

173, 174
operator delete[]() function, 163, 168, 173–175
operator new, 162–163
operator new() function, 163, 164, 173–175

and member new() function, failure to prop-
erly pair, 175

operator new[]() function, 163, 173–175
Out-of-bounds store, 304
_output() function, 318–319
Overaligned type, 148

P
Padding bits, 226–227
Page(s), in Win32 virtual memory API, 196
Parallelism, 355–359

achievable, program structure and, 360, 360f
Amdahl’s law, 361, 362f
data, 357–359, 357f
limits, 360, 361f
and performance goals, 359–361
task, 359, 359f
and work-to-span ratio, 360, 361f

passwd program, 422
Path(s), canonical, 499–500
Path equivalence errors, 435–437
Path name(s), 405–406, 406f

absolute, 405–406, 432
canonicalization, 439–442
relative, 406, 432, 435
resolution, 432

PCLint, 506
Penetration testing, 513
Permission(s)

definition, 413
management, 428–432
on newly created files, 429–432

Pethia, Richard, 4
Phishing, 9
phkmalloc, 213–215. See also OpenBSD

security implications, 214, 214t
ping program, 423–424
Placement new, 163

correct and incorrect use of, 175–176

PLT (procedure linkage table), 129
Pointer(s), 30, 31

data, 121, 124–125
disguised, and garbage collection, 169–170
function, 121, 123–124

decoding, 140–142
decryption, 140
encoding, 140–142
encryption, 140

hazard, 395–396
invalid

dereferencing, 155–156
formed by library function, 218

to member type, 121
null, 212

dereferencing, 155–156
object, 121, 124–125
out-of-domain, dereferencing, 217
safely derived, 170
safety, management, 170–171
smart, 178–179

reference-counted, 178–179
to wide string, 34

Pointer arithmetic, 260, 304
Pointer subterfuge

definition, 121
mitigation strategies, 139–142

pointer_safety, 170
Portability, C and C++, 23–24
Portable executable (PE) file, 129, 207, 207n
“A Portable I/O Package” (Lesk), 309n
POSIX

file descriptors, 410–411
open and close file functions, 410–411
threading library, 368
umask process, 429–432, 430f

Preservation, and type safety, 24
Prevent, 506, 512
printf() function, 309, 314
Privilege(s)

appropriate, 420
changing, 417–421
definition, 413
dropping, 418, 425–426

revocation order for, 426
elevated, 418
escalation, 418
least, 489–492, 494

562 Index

Privilege(s) (continued)
management, vulnerabilities associated with,

427–428
management functions, 419–421
managing, 422–428
process, 415–417
separation of, 489, 490

Procedure linkage table (PLT), 129
Process, definition, 54
Process environment block (PEB), 198, 199f
Process group IDs, 416
Process memory, organization, 54, 55f

data declarations and, 123
Process privileges, 415–417
Process user IDs, 415–416
Programmer, definition, 13
Programming language(s)

alternatives to C, 25
popularity

long-term trends in, 18, 19t
TIOBE index of, 17–18, 18t

Progress, and type safety, 24
Promotions, integer conversions, 247–249
ProPolice. See Stack-Smashing Protector

(ProPolice)
Psychological acceptability, 489, 492–493
Pure binary notation, 39
Purify, 218–219, 512
PurifyPlus, 218–219
puts() function, 51

Q
Quality management, software development,

479–480
Quality requirements engineering, 483–485

R
Race conditions, 362–364, 450–461

canonicalization and, 441
change state property, 363, 469
and concurrency property, 363
detection

dynamic analysis tools, 471
static analysis tools, 471
using check-use-check pattern, 465–466

and exclusive access, 456–458
file-related, eliminating, 467–469
from GNU file utilities, 451
and shared directories, 458–461
and shared object property, 363
time of check, time of use (TOCTOU),

451–453, 455
vulnerabilities related to, mitigation strate-

gies, 461
Race object

controlling access to, 469–471
eliminating, 467–469

Race window, 451
closing, 462–467
critical section, 363
definition, 363
identification, 363

RAII. See Resource Acquisition Is Initialization
(RAII)

rand() function, 285
Random XOR canaries, 109
Range checking, integers, 293–295
Ranges of integers, 235–237, 235t–236t, 236f
Read-only memory, 54
Real group ID (RGID), 416
Real user ID (RUID), 415–417
realloc, return values on success and error, 217,

217t
realloc() function, 146, 149, 153, 159–162
realpath() function, 440–441, 495–496
Reentrant functions, 383–384
Reference-counted smart pointer(s), 178–179
Region(s), in Win32 virtual memory API, 196
Relative path name, 406, 432, 435
Remote login, 117–118
Remote procedure call (RPC), buffer overflow

vulnerability, 2–3, 2n
Resource Acquisition Is Initialization (RAII),

165–166, 375
Resource-exhaustion attack, 158
Return-oriented programming, 71–72
Risk assessment. See Threat assessment
rlogin program, 117–118
ROSE, 304–305, 506–507
RPC (remote procedure call), buffer overflow

vulnerability, 2–3, 2n
RTL (runtime linker), 129

Index 563

RtlHeap, 146, 146n
buffer overflows, 202–207
data structures, 198–202

free lists, 198–200, 200f
look-aside lists, 200, 200f, 212
memory chunks, 201–202, 201f
process environment block, 198, 199f

double-free vulnerabilities, 208–211
heap-based vulnerabilities, 196–212
and writing to freed memory, 207–208

Runtime analysis tools, 218–222
Runtime bounds checkers, 106–108, 506
Runtime error checks

compiler-generated, 106, 300–301
GCC -ftrapv flag, 300–301
Microsoft Visual Studio, 106, 300

Runtime linker (RTL), 129
Runtime protection strategies, 101–117

advances in (future directions for), 116–117
operating system, 111–116

Runtime-constraint handler, 75–76, 299–300
RUS-CERT Advisory 2002-08:02, 284
Ruwase, Olatunji, 506

S
Safe-Secure C/C++ (SSCC), 116–117, 117f,

505–506, 507f
SAFE SEH, 138, 138n
Sanitization, 500. See also Blacklisting;

Whitelisting
Saved set-group-ID (SSGID), 416
Saved set-user-ID (SSUID), 415–416
SCADA (supervisory control and data acquisi-

tion), terrorist threat to, 10
Scalar registers, 357
SCALe (Source Code Analysis Laboratory),

510–511
Scott, Roger, 512
SDL. See Security Development Lifecycle (SDL)
Secunia Advisory SA15535, 349
Secure design patterns, 488
Secure wrappers, 496
Security

developmental elements, 12
independent reviews, 516–517
operational elements, 12
requirements, 481–486

Security analyst, definition, 13
Security concepts, 12–17, 13f
Security Development Lifecycle (SDL), 474–480,

474f, 505. See also Simplified SDL
Security flaw(s)

definition, 14
elimination of, 17
and vulnerabilities, 15

Security policy
definition, 14
explicit, 14
implicit, 14

Security quality requirements engineering
(SQUARE), 483–485

Security researcher, definition, 14
Security Tracker Alert ID 1014084, 349
Security training, 480–481
Security use/misuse cases, 485, 485t, 486t
SecurityFocus Bugtraq ID 1387, 348
SEH. See Structured exception handling (SEH)
Semaphores, 379. See also Named semaphores
Sendmail, vulnerabilities, 428
Separation of privilege, 489, 490
SESS (Summit on Education in Secure Software),

480–481
setegid() function, 419, 425
seteuid() function, 419–421
Setgid programs, 422
setgid() function, 425
setjmp() macro, 134–135
setlocale() function, 32
setresgid() function, 425
setresuid() function, 419, 421
setreuid() function, 419, 421
Setuid programs, 422–428
setuid() function, 419–428
Set-user-ID-root program, 422–424
Shacham, Hovav, 72
Shannon, Gregory E., 11
Shared directories, 458–461
Shellcode, 64

injected, location of, 69
Shift state(s)

initial, 32
locale-specific, 32

short int, 232
minimum width, 237

Shortcuts, 453

564 Index

Signal(s), in management of division errors,
278–279

Signal handler(s), concurrency issues and,
354–355

signed char, 37–38, 232, 240–241
minimum width, 237

Signed integer(s), 231–235, 240–241
ranges, 235–237, 235t–236t, 236f

Simplified Implementation of the Microsoft SDL,
475

Simplified SDL, mapping of resources and tools
to, 475, 475t–476t

Single instruction, multiple data (SIMD) com-
puting, 148–149, 357

sizeof(array), 31, 40
sizeof operator, 31–32
slprint() function, 340
Smart pointer(s), 178–179
snprintf() function, 45, 314, 339–340
Sockets, 407
Software, off-the-shelf, 495–496
Software components, 12
Software defect(s), 14–15

definition, 14
per thousand lines of code, 27
static analysis, 512

Software development
architecture and design, 486–503
blacklisting, 501–502
code audits, 515
data sanitization, 500
defect removal in, 479–480
defense in depth, 511–512
fuzz testing, 513–515
guidelines and checklists, 516
implementation, 503–512
independent security reviews in, 516–517
input validation, 497–498
penetration testing, 513
planning, 477–479, 478f
quality management, 479–480
requirements, 481–486
secure launch, 477–479, 478f
secure wrappers, 496
security principles, 488–493

complete mediation, 488–489, 490f
economy of mechanism, 488–489
fail-safe defaults, 488–489

least common mechanism, 489, 492
least privilege, 489–492, 494
open design, 489, 490
psychological acceptability, 489, 492–493
separation of privilege, 489, 490

testing, 503
threat modeling, 493–494
tracking, 477–479, 478f
trust boundaries, 498–501
TSP-Secure, 477–480
validation, 500
verification, 512–517
and vulnerabilities in existing code, 495–496
whitelisting, 502–503

Software security, threats to, 11–12
Source code, 12–13

audits, 515
for integer range errors, 306

Source Code Analysis Laboratory (SCALe),
510–511

SourceForge, 511, 511n
Special files, 406–407, 445
Spies, corporate. See Competitive intelligence

professionals
Spinlocks, 398, 457
Splint, 305
sprintf() function, 43, 45–47, 77, 309, 314,

339–340
SQUARE. See Security quality requirements

engineering (SQUARE)
sscanf() function, 77
SSCC. See Safe-Secure C/C++ (SSCC)
SSE. See Streaming SIMD Extensions (SSE)
SSP. See Stack-Smashing Protector (ProPolice)
StackShield, 143
Stack(s)

and calling a subroutine, 55–56, 56f
management, 55–59, 55f
nonexecutable, 113
randomization, 332–337

defeating, 332–333
Exec Shield and, 346

smashing, 59, 60f, 61f. See also Stack-Smash-
ing Protector (ProPolice)

structure, 55, 55f
Stack-Smashing Protector (ProPolice) and,

110, 111f
Stack buffer overrun detection, 108–109

Index 565

Stack canaries, 108–109
Stack memory, randomization, in Windows, 113
Stack pointer, 57
StackGap, 116
StackGuard, 108, 109, 143
Stack-Smashing Protector (ProPolice), 108, 110,

111f
Standard library error, detection and handling

of, 217
Standard template library (STL), checked imple-

mentation, 82
Standards, secure coding, 481–483
State-dependent encoding, 32
stat() function, 449–450
Static analysis, 217–218, 304–305

for format string vulnerabilities, 343–344
and implementation, 506–510
in race condition detection, 471
thread role analysis, 382–383
and verification, 512

Static assertion, 273
Static binary analysis, 347–348
-std flag, 27
std::bad_array_new_length, 166–167
std::basic_string, 36
__stdcall, 313
stdio, 341–342
std::stream class, 46
std::string class, 80–81
Sticky bit, 415
STL (standard template library), checked imple-

mentation, 82
Storage duration, 147, 162

allocated, 147
dynamic, 162

strcat() function, 43, 49, 73, 89, 93t, 94
strcat_s() function, 73, 90–92, 93t
strcmp() function, 51–53
strcpy() function, 43–44, 48, 66–67, 67t–68t,

73, 89–90, 92t, 94
and object size checking, 104–105

strcpy_s() function, 73, 90–92, 92t
strdup() function, 45, 92, 92t
Stream

associated with memory buffer, 77–78
opening, to write to memory, 78–79

Stream files, 408
Streaming SIMD Extensions (SSE), 148–149, 357

Strictly conforming program, 23
String(s)

in C++, 36–37
concatenating, 43–47
concatenation functions, 89–93, 93t
copy functions, 89–92, 92t
copying, 43–47
data type, 30–32
definition, 30
error conditions, 42–50

null-termination errors, 48–49
off-by-one errors, 47
string truncation, 49
unbounded string copies, 42–47
without functions, 49–50

length, 30, 30f, 40
definition, 31

mitigation strategies, 72–83
C11 Annex K bounds-checking interfaces,

73–76, 282, 340–341
C++ std::basic_string, 80–81
detection and recovery, 101–102
dynamic allocation functions, 76–80
input validation, 102
invalidating string object references,

81–83
object size checking, 102–106
runtime protection, 101–117

multibyte, 32
null-terminated, 36–37, 48–49

definition, 31
pointer to, 30
sizing, 39–41
storage for, 76
symbolic verification technique (Yu et al.),

306
truncating concatenation functions, 93–99,

99t
truncating copy functions, 93–99, 99t
truncation, 49
value of, 30
vulnerabilities and exploits, 50–72, 117–118
wide, 33–34

sizing, 40–41
String class(es), 36–37
String literals, 34–36
String-handling functions, 73, 84–101
strlcat() function, 90, 93t, 98, 99t

566 Index

strlcpy() function, 90, 92t, 96, 99t
strlen() function, 31, 37, 40–41, 44, 48,

100–101
strncat() function, 49, 73, 93–95, 93t, 98, 99t
strncat_s() function, 73, 95, 97–98, 99t
strncpy() function, 48–49, 73, 90, 92t, 93–95,

96, 99t
strncpy_s() function, 73, 95–98, 99t
strndup() function, 99, 99t
strnlen() function, 101
strnlen_s() function, 100–101
strtok() function, 49
Structured exception handling (SEH), 136–139,

277–278
Subobject(s), 148
Subroutine, calling, 55–56, 56f
Summit on Education in Secure Software (SESS),

480–481
Sun tarball vulnerability, 152
Supervised environments, 496
Supervisory control and data acquisition

(SCADA), terrorist threat to, 10
Supplementary group IDs, 416, 426–427
svchost.exe, 4
Symbolic links, 406, 437–439, 437f, 452–453

checking for, 464–467
symlink() system call, 437
SYN flooding, 4, 4n
syslog() function, 314
System administrator, definition, 13
System call wrappers, concurrency vulnerabili-

ties, 400–401
System default exception handling, 136–137, 139
System integrator, definition, 13
Systrace, 496

concurrency vulnerabilities, 400

T
Tainted value(s), 51
tar program, 152, 152n
tar utility, 152
Target(s), analysis and reduction, 494–495
Target size, definition, 31
Task parallelism, 359, 359f
tcp_wrappers package, 502–503
Team Software Process for Secure Software

Development (TSP-Secure), 477–480

TEBs. See Thread environment blocks (TEBs)
Temporary file(s)

and appropriate privileges, 460, 461t
create without replace, 460, 461t
creation functions, 459–460, 461t
creation in shared directories, 459–460, 461t
and exclusive access, 460, 461t
and removal before termination, 460, 461t
with unique and unpredictable file names,

459–460, 461t
Terrorists. See also Attackers

as threat, 10
Thread Checker, 471
Thread environment blocks (TEBs), 198
Thread role(s), 381, 381n
Thread role analysis, 380–383

annotation language, 381–382
static analysis, 382–383

Thread safety, 368–370, 383–384
Thread support, 368
Thread usage policies, 380–381
Thread-safe functions, 462–463
Threat(s)

competitive intelligence professionals as,
9–10

criminals as, 9
definition, 8
hackers as, 8–9
information warriors as, 10
insiders as, 9
to software security, 11–12
terrorists as, 10

Threat assessment, 5–12
Threat modeling, 493–494
Threat Modeling Tool, 494, 494n
Time of check, time of use (TOCTOU), 401,

451–453, 455
Time-of-audit-to-time-of-use (TOATTOU), 401
Time-of-check-to-time-of-use (TOCTTOU), 401
Time-of-replacement-to-time-of-use (TORT-

TOU), 401
TIOBE index, 17–18, 18t
TIS. See Tool Interface Standards committee (TIS)
tmpfile function, secure and insecure use of,

461t
tmpfile_s function, secure and insecure use of,

461t
tmpnam function, secure and insecure use of, 461t

Index 567

tmpnam_s function, secure and insecure use of,
461t

TOATTOU. See Time-of-audit-to-time-of-use
(TOATTOU)

TOCTOU. See Time of check, time of use
(TOCTOU)

TOCTTOU. See Time-of-check-to-time-of-use
(TOCTTOU)

TooFar, definition, 30
Tool Interface Standards committee (TIS),

127–128, 128n
TORTTOU. See Time-of-replacement-to-time-of-

use (TORTTOU)
Training, in secure coding, 480–481
Trampoline(s), 206–207
Truncation toward zero, 274
Trust boundaries, 498–501, 499f
Tsize, definition, 31
TSP-Secure, 477–480
Type safety, 24

preservation and, 24
progress and, 24

typedefs, 241

U
Uadd() function, 298
UFS. See UNIX file system (UFS)
Umask process, 429–432, 430f
Unhandled exception filter, 206–207
Unicode, wide-character format string vulnera-

bility, 332
Uniform resource locator. See URL
UNIX

file permissions, 413–415, 414f
process memory organization, 54, 55f

data declarations and, 123
UNIX file system (UFS), 404–405
unsigned char, 37–39, 232, 240–241
Unsigned integer(s), 227–229, 240–241

to two’s complement conversion, 251, 251f
URL, host and path name in, 435
Usability problems, 489, 492–493
US-CERT

Technical Cyber Security Alert
TA04-147A, 222
TA04-247A, 224

Vulnerability Note, VU#132110, 390

Use/misuse cases, 485, 485t, 486t
User ID (UID), 413
User name, 413
UTF-8, 32–33

decoders, as security hole, 33
encoding, 32–33, 33t

UTF-16, 40

V
Valgrind tool, 219–221, 512
Validation, 500. See also Input validation
Variable-length arrays (VLAs), 150–151
Variadic functions, 309–313, 344–346
vasprintf() function, 340
Vector registers, 357–358
Vectored exception handling (VEH), 136–137
Vectorization, 358
VEH. See Vectored exception handling (VEH)
Venema, Wietse, 502–503
vfprintf() function, 314
Viega, John, 498
Virtual function(s), 131–132
Virtual function table (VTBL), 132–133, 132f
Virtual pointer (VPTR), 132–133, 132f
Visibility, and thread safety, 370
Visual C++, 26

/GS and function protection, 108–109
/GS flag, 503–504, 504f
security diagnostics, 507
stack canary implementation, 108

Visual C++ 2012
autovectorizer, 358–359
loop pragma, 358
/Qpar compiler switch, 358

Visual Studio
C4244 warning, 305
compiler-generated runtime checks, 106,

300
/GS flag, 504–505
/sdl switch, 505
stack buffer overrun detection, 108–109

Visual Studio 2010, formatted output vulnerabil-
ity, 326n

VLAs. See Variable-length arrays (VLAs)
volatile type qualifier, 366–368
vprintf() function, 314
VPTR (virtual pointer), 132–133, 132f

568 Index

vsnprintf() function, 314, 339–340
vsprintf() function, 314
VTBL (virtual function table), 132–133, 132f
Vulnerability(ies), 21

in ActiveX controls, 515
buffer overflow, 117–118
concurrency, 399–401

DoS attacks in multicore DRAM systems,
399

in system call wrappers, 400–401
time-of-audit-to-time-of-use (TOATTOU),

401
time-of-check-to-time-of-use (TOCTTOU),

401
time-of-replacement-to-time-of-use

(TORTTOU), 401
definition, 15
disclosure of, by hackers, 8–9
double-free, 157, 158, 160, 177–178. See also

CVS server double-free
dlmalloc, 191–195
RtlHeap, 208–211

dynamic memory management, 222–224
in existing code, 495–496
file I/O

directory traversal, 432–435
path equivalence, 435–437
privilege escalation, 418
symlink-related, 438–439
time of check, time of use (TOCTOU),

451–453, 455
filtering out, in software development,

479–480
format string. See Format string

vulnerability(ies)
formatted output

buffer overflow, 319–321
CDE ToolTalk, 348–349
crashing a program, 321–322
direct argument access, 335–337
Ettercap version NG-0.7.2, 349
internationalization, 331
output streams, 321
overwriting memory, 326–331
viewing memory content, 324–326, 325f
viewing stack content, 322–324, 323f
Washington University FTP daemon, 348

wide-character, 332
writing addresses in two words, 334–335

heap-based, 196–212
mitigation strategies, 212–222

integer, 283–288. See also Integer
wraparound

conversion errors, 285
nonexceptional integer logic errors,

287–288
truncation errors, 285–287

intentional, 16
in Microsoft Office versus OpenOffice, 474, 475f
in programs, versus in systems and networks,

16
security flaws and, 15
string, 50–72, 117–118

Vulnerability analyst, definition, 13
Vulnerability reports, sources of, 11

W
W xor X. See W^X policy
wall program, 422
Warren, Henry S., 299
Washington University FTP daemon, 348
Watson, Robert, 400
W32.Blaster.Worm, 1–5, 2f, 117

flawed logic exploited by, 5, 5f
wchar_t, 30, 35, 39, 40
wcslen() function, 41
-Wformat flag, 343
-Wformat-nonliteral flag, 343
-Wformat-security flag, 343
Whitelisting, 111, 502–503
Wide string(s), 33–34

sizing, 40–41
Wide-character input/output functions, 408,

412
Wide-character vulnerability, 332
Widening-multiplication instruction, 271
Win32

CRT memory functions, 197–198, 197f
heap memory API, 197, 197f
local, global memory API, 197, 197f
memory management APIs, 196, 197f
memory-mapped file API, 197f, 198
virtual memory API, 196–197, 197f

Index 569

Windows, 26
address space layout randomization, 112–113
process memory organization, 54, 55f

data declaration and, 123
Wing, Jeannette, 517
Worms, damage potential of, 4
Wraparound, 229–231
Wrappers, secure, 496
Writing addresses in two words, 334–335
Writing to freed memory

dlmalloc, 195–196
RtlHeap, 207–208

WU-FTP, format string vulnerability, 319
wu-ftpd vunerability, 348
W^X policy, 113–115, 140

X
XD (eXecute Disable) bit, 114
Xfocus, 3
XN (eXecute Never) bit, 114

Y
Yu, Fang, et al., symbolic string verification

technique, 306

Z
zzuf tool, 514, 514n

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 2 Strings
	2.1 Character Strings
	String Data Type
	UTF-8
	Wide Strings
	String Literals
	Strings in C++
	Character Types
	Sizing Strings

	2.2 Common String Manipulation Errors
	Improperly Bounded String Copies
	Off-by-One Errors
	Null-Termination Errors
	String Truncation
	String Errors without Functions

	2.3 String Vulnerabilities and Exploits
	Tainted Data
	Security Flaw: IsPasswordOK
	Buffer Overflows
	Process Memory Organization
	Stack Management
	Stack Smashing
	Code Injection
	Arc Injection
	Return-Oriented Programming

	2.4 Mitigation Strategies for Strings
	String Handling
	C11 Annex K Bounds-Checking Interfaces
	Dynamic Allocation Functions
	C++ std::basic_string
	Invalidating String Object References
	Other Common Mistakes in basic_string Usage

	2.5 String-Handling Functions
	gets()
	C99
	C11 Annex K Bounds-Checking Interfaces: gets_s()
	Dynamic Allocation Functions
	strcpy() and strcat()
	C99
	strncpy() and strncat()
	memcpy() and memmove()
	strlen()

	2.6 Runtime Protection Strategies
	Detection and Recovery
	Input Validation
	Object Size Checking
	Visual Studio Compiler-Generated Runtime Checks
	Stack Canaries
	Stack-Smashing Protector (ProPolice)
	Operating System Strategies
	Detection and Recovery
	Nonexecutable Stacks
	W^X
	PaX
	Future Directions

	2.7 Notable Vulnerabilities
	Remote Login
	Kerberos

	2.8 Summary
	2.9 Further Reading

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

