

Results, Relevance,
and Impact
Software increasingly becomes integral to how we work, communicate, and
fight our nation’s adversaries. As we have come to depend more on software,
we face the risks that arise from this dependence. The size and complexity
of software, as well as the interconnectedness of software-enabled systems,
mean possible exposure to disruptive, damaging events. These stem from
not only software quality issues, emergent behavior, and unforeseen
dependencies—but also cyber-attack by hackers, insiders, criminals, nation
states, and terrorists.

Meeting challenges from these ever-evolving capabilities, use cases, and
threats requires continual innovation in the way we build and secure software
and the systems on which we depend.

Since its establishment in 1984 as a federally funded research and
development center (FFRDC) sponsored by the U.S. Department of Defense
(DoD), the Carnegie Mellon University Software Engineering Institute (SEI)
has delivered innovative methods, tools, algorithms, and frameworks to
meet current software and cybersecurity needs and serve as a foundation for
combatting future ones.

Because of our role as a research leader, SEI technical work often produces
fundamental approaches that bear fruit years later. For example, SEI
pioneering work in software architecture in the 1990s led to the accepted
understanding today that architecture determines the quality and longevity of
a software system.

We also address emergent needs with our work. For instance, SEI experts
closed gaps in network data collection and analysis by developing a suite of
cybersecurity tools and a system that now provides traffic monitoring and
protection throughout Federal networks (the Einstein system).

SEI innovation continually advances. Our compilation of capsule stories
in this booklet ends with work that made impact in 2015. However, our
researchers and engineers continue to investigate the toughest problems,
develop frameworks for solutions, create prototypes and algorithms, and
deliver software tools to help with critical areas such as trust in autonomous
systems, real-time system verification, and decision analytics.

2

Our Core Technical Areas

Cyber Missions

Data Modeling & Analytics

Human-Machine Interactions

Autonomy & Counter-Autonomy

Software & Information Assurance

C4ISR Mission Assurance

Systems Verification & Validation

We effect the transfer of our research into operations through work in our
seven core technical areas. Any innovation we produce stems from at least
one of these areas. In this compilation, we note the connection between
innovation and our core technical areas by a subtle color-coding on each
innovation capsule story.

3

Table of Contents
4 Creating a New Language to Verify Complex Systems

5 Enhancing Computing Power at the Edge

6 Integrating Early to Prevent Costly Problems

7 Taming Uncertainty in Software Cost Estimation

8 Enabling a Stronger Cyber Workforce

9 Attacking Software Vulnerabilities

10 Building Capability to Defend Against Malware

11 Assessing Cyber Risk Readiness

12 Certifying the Software Architect Role

13 Augmenting T&E with Assurance

14 Codifying Resilience Practice

15 Strengthening Network Traffic Analysis

16 Leading the Growth of an Architectural Modeling Standard

17 Defining Non-Functional System Qualities

18 Standardizing More Secure Software

19 Tailoring Risk Management Practice

20 Setting a Foundation for Software Architecture

21 Changing Software Contractor Selection Criteria

22 Bringing Science to Insider Threat Mitigation

23 Enabling Large-Scale Network Flow Analysis

24 Evaluating System Architecture

25 Meeting Real-Time Scheduling Needs

26 Transforming Software Quality Assessment

27 Establishing a Basis for Software Reuse

28 Building the Master of Software Engineering Curriculum

29 Pointing the way toward a Software Architecture Discipline

30 Fostering Growth in Professional Cyber Incident Management

4

Distributed Adaptive Real-Time (DART) systems (e.g., Unmanned
Air Systems) are key to DoD capability. These systems are
safety critical, resource constrained, and sensor rich, and they
adapt autonomously to their physical environments.

In general, formally verifying a DART system is intractable.
Coordination, adaptation, and uncertainty pose key challenges
to assuring their safety- and mission-critical behavior. The
typical approach to verifying DART systems is to test, rigorously
and exhaustively. Testing, however, is usually performed later
in development and cannot account for all reactions of an
essentially autonomous system.

One innovative approach that SEI researchers are using
involves creating a new programming language for DART
systems called the DART Modeling and Programming Language
(DMPL). DMPL is a C-like language that can express distributed,
real-time systems. The semantics of this language are precise;
they support formal assertions usable for model checking,
an evolving area for testing complex software systems. In
addition, system developers can express physical and logical
concurrency in DMPL to perform timing analysis.

SEI investigation into verifying DART systems will also produce
other tools for mixed criticality scheduling and model checking.
In addition, work to verify DART systems continues longer-term
SEI research into mixed-criticality and real-time scheduling,
model checking, and High Confidence Cyber-Physical Systems
(HCCPS).

Creating a New Language
to Verify Complex Systems

2015

5

As part of its mission to transition the technologies it develops
into use, the SEI in 2015 made its implementation of tactical
cloudlets, KD-Cloudlet, freely available in its open-source code
repository on GitHub.

To support their missions, military and emergency personnel
operating in crisis and hostile environments increasingly
use mobile applications. Most of these applications perform
computation-intensive tasks such as speech and image
recognition, natural language processing, and situational
awareness enhancement. These tasks take a heavy toll on
the mobile device’s battery power and computing resources.
Unfortunately, battlefield and disaster environments are
not only at the edge of the network infrastructure but also
resource constrained.

Cyber-foraging augments the capabilities of resource-limited
mobile devices by leveraging compute resources in the
surrounding environment. Cloudlet-based cyber-foraging relies
on discoverable, generic, and forward-deployed servers located
in single-hop proximity of mobile devices.

Using KD-Cloudlet, developers can turn any system running
Linux—from a laptop to a more powerful server—into a
discoverable source that can be used by nearby mobile
devices for computation offload and data staging.

The KD-Cloudlet tool’s release springs from several years of
SEI research into the use of cloud computing at the tactical
edge. The research into the needs and constraints of tactical
environments drove the development of the tactical cloudlets.
SEI researchers collaborate in this ongoing research with the
creator of the cyber-foraging and cloudlet concepts, Dr. Mahadev
Satyanarayanan of CMU.

Enhancing Computing
Power at the Edge

2015

6

In a 2014-15 shadow exercise, an SEI technical team rapidly
detected potential integration issues early in the military’s
Joint Multi-Role (JMR) technology demonstration program that
traditional approaches missed, using its Architecture-Centric
Virtual Integration Practice (ACVIP). The findings led to ACVIP
adoption by JMR contractors and its inclusion in RFPs for new
projects. JMR technology demonstrations are a precursor to the
Future Vertical Lift military helicopter program.

The roots of ACVIP are in SEI research into virtual integration
that began in 1998. Unlike the traditional development
approach of design-build components-integrate-test, the virtual
integration approach employs architectural modeling to make
sure the components work together before building components
in conformance to the model.

DoD line funding enabled SEI researchers to lead the
technical development of the SAE Architecture Analysis and
Design Language standard (established in 2004) for the
specification, analysis, automated integration, and code
generation of real-time, performance-critical, distributed
computer systems. Line funding, together with sponsored
work for the Army and others, enabled the SEI to produce the
Open Source AADL Tool Environment (OSATE) workbench for
implementing virtual integration.

In 2008, the international Aerospace Vehicle Systems
Institute (AVSI), whose membership includes defense
industry organizations, chose AADL and OSATE for its System
Architecture Virtual Integration Initiative (SAVI), based on
evidence that the technologies offer a means to achieve an
integrate-then-build approach to evolving complex systems.

Integrating Early to
Prevent Costly Problems

2015

7

In 2014, SEI researchers used their Quantifying Uncertainty
in Early Lifecycle Cost Estimation (QUELCE) method in a
workshop with a live major defense acquisition program
(MDAP). This milestone along the way to transitioning
innovation into the acquisition lifecycle is the result of
focused research and development.

DoD acquisition regulations call for early (pre-Milestone A)
estimates that stretch across the entire program lifecycle,
including operations and support. These early cost estimates
rely heavily on expert judgments about cost factors. However,
the ways in which cost factors may change through the lifecycle
has received little attention.

Based on research initiated in 2011, the QUELCE method
provides an explicit, quantified consideration of the uncertainty
of the change drivers. In doing so, QUELCE enables calculation
(and re-calculation) of the cost impacts caused by changes
that may occur during the program lifecycle. The result is that
this approach enhances decision-making through transparency
about the expert assumptions that underlie the cost estimate.

Taming Uncertainty in
Software Cost Estimation

2014

8

For more than 15 years, the SEI has been investing in
developing learning platforms and courseware for cyber warrior
readiness in DoD and other government organizations.

The SEI CERT Division developed an initial Virtual Training
Environment (VTE) platform using DoD Research funding in
2001. By 2005, VTE was being used to address DoD training
and capability-building challenges related to information
security. In 2012, VTE was redesigned to meet cyber
workforce training requirements and transitioned as FedVTE
to serve tens of thousands of government and military
users. The CERT Division estimates that FedVTE has saved
the government over $70M through 2015 by providing the
equivalent of 24,000, 5-day training courses.

The CERT Division followed VTE with a web-based system, the
CERT Exercise Network (XNET). The USCYBERCOM Exercise
Network is a customized instantiation of XNET. In 2012, CERT
introduced the Simulation, Training and Exercise Platform
(STEP), a flexible, multimedia, e-learning environment that
students can access anywhere, anytime. STEP has formed the
backbone infrastructure for USCYBERCOM’s Cyber Flag and
Cyber Guard joint exercises since their inception.

Most recently, in 2015, CERT researchers prototyped an
Automated Cyber Readiness Evaluator platform to provide a
scalable, objective assessment that validates the technical
knowledge and skills of the government’s cyber workforce.

Enabling a Stronger Cyber
Workforce

2014

9

In 2014, SEI’s CERT division introduced the Tapioca tool to
check Android apps for vulnerabilities. In the first year of use,
Tapioca was used to check more than 1 million Android apps.

The release of the open source Tapioca tool, a network-layer
man-in-the-middle proxy virtual machine, is one bit of evidence
of the CERT Division’s continuing commitment to proactive
vulnerability discovery. The CERT Division vulnerability
analysis team maintains over 1,400 vendor contacts, creating
vulnerability reports that eventually appear as entries in the
National Vulnerability Database.

The SEI also works directly with US-CERT to publish
Vulnerability Notes directly to the US-CERT website, where
they are considered the authoritative statement from the
government regarding a given vulnerability. In addition, CERT is
the only organization that has proven to be able to, repeatedly
and successfully, coordinate responses to a vulnerability
across industry, the DoD, and the federal government.

Attacking Software
Vulnerabilities

2014

10

Malicious code, or malware, is a piece of software that runs
without the user’s explicit consent, maybe without the user’s
knowledge. Historically, malware has caused seen nuisance-type
results (such as delivering some unwanted content). In the last
decade or so, more malware has focused on committing crimes,
such as stealing identity or taking control of a computer.

For malware analysts, a significant challenge derives from the
fact that malware rarely has source code available. Analysts
must grapple with sophisticated data structures exclusively at
the machine code level.

To help analyze malware, SEI CERT researchers are developing
a suite of binary static analysis tools based on a framework
called Pharos. SEI built this framework on Lawrence Livermore
National Laboratory’s (LLNL) ROSE compiler infrastructure.
The Pharos tool suite includes many extensions to the binary
analysis features of ROSE that SEI has jointly developed with
LLNL. The Pharos tools use static analysis techniques, such as
control flow analysis and dataflow analysis, to reason about the
behavior of data structures in binary files.

In 2014, SEI’s CERT Division completed research to eliminate
bottlenecks in the process of deriving actionable insight from
malware by automating tasks and providing more semantically
rich abstractions used by a malware analyst.

Building Capability to
Defend Against Malware

2014

11

One lesson of the past 20 years is that
organizations cannot expect to prevent every
cyber-attack. Instead, they must be ready to
continue operations and meet their missions when
disruption occurs.

The SEI’s CERT Division tools for cyber risk and
resilience promote a structured approach to
managing security risks, business continuity,
and information technology operations within the
context of business objectives.

Created by the CERT Division for the U.S.
Department of Homeland Security (DHS) in
2011, the Cyber Resilience Review (CRR) is a
no-cost, voluntary, non-technical assessment to
evaluate an organization’s operational resilience
and cybersecurity practices. The CRR assesses
enterprise programs and practices across a range
of 10 domains based on the CERT Resilience
Management Model (CERT-RMM), including asset
management, vulnerability management, incident
management, risk management, and situational
awareness. In 2014, DHS released a CRR self-
assessment guide to allow organizations to
conduct a CRR without outside facilitation. In 2015
alone, the CERT Division conducted 48 CRRs in 10
critical infrastructure sectors.

In 2012, the CERT Division developed the Risk
and Vulnerability Assessment (RVA) to aggregate
vulnerability data in support of informed decisions
regarding the security and safety of information
systems. An RVA combines national level threat
and vulnerability information with assessment
data to provide specific risk analysis reporting and
remediation steps. An RVA provides information
on network mapping, penetration testing, wireless
networks, databases, and other areas. During
2015, the CERT Division worked with DHS to
conduct 46 RVAs.

In 2015, the CERT Division and DHS launched
the External Dependencies Management (EDM)
assessment. This in-person, DHS-facilitated
evaluation measures how well an organization can
handle cyber disruptions in key services provided
by third parties. Any external dependency presents
possible risk, from service agreements for cloud
computing to business relationships that depend on
a third-party’s computing infrastructure and security.

Assessing Cyber Risk
Readiness

2011

12

In 2009, the U.S. Army mandated that all Project Executive
Offices (PEOs) appoint a chief software architect (CSWA) to
be responsible for oversight and management of software
development within each PEO. The memo specified that
the CSWA must earn a Software Architecture Professional
Certificate from the SEI (or equivalent). The Army based
its decision on an understanding of SEI work in software
architecture and, in particular, a recent impact study of the
use of SEI architecture evaluation techniques in the Army [SEI
2009, Nord 2009].

The Army’s mandate reflected appreciation for the value of more
than 15 years of SEI innovation and leadership in software
architecture definition, evaluation, analysis, and documentation.
SEI work included the first software architecture book for
practitioners, Software Architecture in Practice, winner of the
prestigious JOLT award from Software Development magazine.
Three other equally seminal books followed. All SEI software
architecture books are cited often, have been updated in multiple
editions, and have collectively sold more than 150,000 copies.

These books form the foundation of training courses and
certificate programs, in which people from more than 900
organizations in industries such as defense, financial,
healthcare, insurance, and energy have been trained by SEI
experts. More than 80 colleges and universities around the
world have adopted SEI software architecture curriculum. The
work also spawned the annual Software Engineering Institute
(SEI) Architecture Technology User Network Conference.

Certifying the Software
Architect Role

2009

13

SEI work on the use of assurance cases in the development
of medical devices [Weinstock 2009] led directly to the FDA’s
issuing draft guidance to manufacturers recommending
the use of assurance cases. As a result, infusion pump
manufacturers are beginning to make use of them.

It is difficult to assure the safety, security, or reliability of
complex, net-centric systems of systems (such as medical
devices and military weapons systems) because of their size,
complexity, and continuing evolution. In addition, those types
of systems can exhibit undesired and unanticipated emergent
behavior (that is, actions of a system as a whole that are
not simple combinations of the actions of the individual
constituents of the system).

Traditional software and systems engineering techniques,
including conventional test and evaluation (T&E) approaches,
cannot provide the justified confidence needed. The assurance
case provides a means to structure the reasoning that
engineers use implicitly to gain confidence that systems
will work as expected. It also becomes a key element in the
documentation of the system and provides a map to more
detailed information.

The concept of an assurance case derives from the safety
case, a construct that has been used successfully in Europe
for over two decades to document safety for nuclear power
plants, transportation systems, automotive systems, and
avionics systems.

Augmenting T&E with
Assurance

2009

14

In the aftermath of the 9/11 terror attacks, organizations
began to seek answers to predictably and systematically
controlling operational resilience through activities such as
security and business continuity.

In October 2003, a group of 20 Information Technology
(IT) and security professionals from defense organizations,
the financial services sector, IT, and security services met
at the SEI to identify what could enable and accelerate IT
operational and security process improvement. The bodies
of knowledge identified included IT and information security
governance, audit, risk management, IT operations, security,
project management, and process management.

Soon after, in March 2005, the SEI began work with the
Business Continuity Committee of the Financial Services
Technology Consortium (FSTC), exploring the development of a
reference model to help determine an organization’s capability
to manage operational resilience. Drawing on its experience
with developing and evolving the widely used Capability Maturity
Model Integration (CMMI) framework, the SEI developed the
CERT Resilience Management Model (CERT-RMM) of 26
process areas.

Since 2009, organizations in the DoD, the U.S. defense
industrial base, U.S. federal civilian agencies, the financial
services sector, and academia have been using the CERT-RMM
to institutionalize improved processes for managing operational
resilience and measure their benefit.

Codifying Resilience
Practice

2009

15

In 2007, the National Cyber Initiative made Einstein
mandatory for all federal civilian agencies. The Department
of Homeland Security (DHS) Einstein program helps protect
federal computer networks and the delivery of essential
government services.

First deployed in 2004, Einstein’s capabilities for situational
awareness are used throughout the federal government in
part because of a casual conversation between SEI staff
members and the DoD. That conversation led to the research
and collaboration that produced a sophisticated suite of tools
that can characterize network threats, assess the impact of
security events, and identify vulnerable network infrastructure.
Einstein integrates several distinct data collection/analysis
systems and toolsets for network traffic analysis developed at
the SEI CERT Division.

Initially, Einstein collected summary network traffic
information at agency gateways and provided a high-level
view of federal government network connections. The
program has grown to provide an automated process for
collecting, correlating, analyzing, and sharing computer
security information across the federal government to
improve our nation’s situational awareness.

Strengthening Network
Traffic Analysis

2007

16

In 2004, SAE International published the industry standard SAE
Architecture Analysis and Design Language (AADL). Growing
from DARPA-funded research into MetaH and Acme architectural
languages a decade or more before, the development of the
AADL was shepherded by the U.S. Army Aviation and Missile
Research Division (AMRDEC) Software Engineering Directorate
(SED) with technical leadership by the SEI.

Focused for several years in its research on architectural
modeling and analysis for safety- and mission-critical systems,
the SEI worked effectively across industry, government,
and academic organizations to fashion the initial standard
language and subsequent annexes. As technical lead for the
standard, the SEI integrated several research technologies
into the AADL standard, making it extensible, semantically well
defined, and consistent.

Through its creation of the Open Source AADL Tool
Environment (OSATE), in addition, the SEI has fostered pilot
applications of AADL in a range of industrial pilot projects.
Also, developers and researchers are finding that AADL and
OSATE provide a technology transition platform, as shown by
their integration with formal analytical frameworks such as
SysML (Systems Modeling Language) and MARTE (Modeling
and Analysis of Real-Time and Embedded systems).

Leading the Growth of an
Architectural Modeling
Standard

2004

17

Quality (or non-functional) attribute scenarios form a common
language between users and software developers, playing
a significant role in both requirements specification for an
architecture and integration testing to see that requirements
will be met. Assessing how secure, timely, reliable, and
usable systems must be is now a fundamental component of
the processes used in all software development projects.

The ideas that quality attributes influence the shape of the
architecture and that the architecture is fundamental to the
system emerged from SEI work in Rate Monotonic Analysis
(RMA) in the early 1990s. From work on the RMA, SEI
gained the insight of considering system structure using an
analytical framework. By analogy, SEI researchers realized
that such a framework could be applied to quality attributes.

Developing systematic ways to relate the software quality
attributes of a system to the system’s architecture provides
a sound basis for making objective decisions about design
tradeoffs. It also enables engineers to make reasonably
accurate predictions about a system’s attributes that are
free from bias and hidden assumptions.

SEI researchers tested and validated this insight into the
primacy of quality attributes through conducting architecture
evaluations. Whether they were evaluating a financial system
or an avionics system, or any other system, they succeeded
in finding risks by evaluating the systems from the point of
view of different quality attributes. A lasting influence of the
SEI work in the field of software architecture and software
development can be seen in the pervasive attention paid
to quality attributes and a general acknowledgment that
requirement specifications need to include them.

Defining Non-Functional
System Qualities

2003

18

Software vulnerabilities expose the DoD, other
federal agencies, our nation’s critical infrastructure,
and businesses to attacks that could compromise
their systems’ integrity or modify their critical
information. Preventing the introduction of software
vulnerabilities during software development is a
proactive, efficient way to reduce risk before the
software is deployed.

Since forming its Secure Coding Initiative in
2003, the SEI CERT Division has analyzed and
cataloged thousands of software vulnerabilities
and discovered that many share the same common
errors. By engaging more than a thousand security
researchers, language experts, and software
developers, CERT Division produced secure coding
standards for common software development
languages such as C and Java. These standards
guide programmers to avoid coding errors that lead
to vulnerabilities and provide example solutions.

The U.S. military, other government agencies, and
system developers from industry have adopted

CERT Division secure coding standards, and
Siemens and Computer Associates have licensed
the SEI’s training courses on secure coding in
C and C++. Programmers and others in military,
government, and industry organizations have taken
the SEI courses.

In addition, courses based on the CERT Division
standards for C and C++ are taught at major
software engineering universities and colleges,
such as Carnegie Mellon University, Purdue,
Stevens Institute, University of Florida, and Santa
Clara University.

Finally, through its security contributions to the ISO/
IEC C-language specification, the CERT Division is
also influencing developers of C language compilers,
who conform their code to the ISO/IEC C-Standard
and thus to countless software products written in
the C language.

Standardizing More Secure
Software

2003

19

SEI research in the 1990s produced standards for
software risk management, enabling managers in all
types of software-relevant programs to do a better
job of identifying what could go wrong and mitigating
the worst of those risks.

In 1996, SEI produced the Continuous Risk

Management Guidebook [Dorofee 1996], which
brought together several concepts developed
through work with DoD agencies and Service
branches in the preceding five years. This
approach had widespread influence. A Cutter
Consortium’s report a few years later, The State

of Risk Management 2002, revealed that 21% of
respondents to a survey about risk management
techniques said that they used SEI standards for
risk management. Only ISO ranked higher, with 36%
of respondents.

In the decades since it published the Guidebook,
the SEI has continued to conduct research
and development in various aspects of risk
management. In 1998, SEI CERT researchers

began developing a new approach for managing
cybersecurity risks within an organization, the
Operationally Critical Threat, Asset, and Vulnerability
Evaluation (OCTAVE) [Alberts 2003]. OCTAVE
continues to be a widely used information security
risk assessment method.

Other SEI-developed applications of risk
management principles include the COTS
Usage Risk Evaluation (CURE), the widely used
Architecture Trade-off Analysis Method (ATAM), and
the Mission Risk Diagnostic (MRD) (to assess risk
in interactively complex, socio-technical systems
across the lifecycle and supply chain).

Much of the SEI’s risk management work today is
focused on software assurance. SEI researchers are
developing the Security Engineering Risk Analysis
(SERA) method, a systematic risk-based method for
building security into software-reliant systems rather
than deferring security to later lifecycle activities
such as operations.

Tailoring Risk Management
Practice

2002

20

Safety-critical components need to interact safely with less
reliable and even unsafe components. For example, the flight
control component in an autopilot is certified to DO178B Level
A (the highest level). However, it needs to accept guidance
commands from a flight guidance system that is only certified
to Level C. Nevertheless, avionics certification requires that
Level A software must still function correctly in spite of the
software failures in less critical components [RCTA 1992].

The SEI developed an architecture template, called the Simplex
architecture, which supports overall safety when a system is
composed of both reliable/safe components and less reliable/
less-safe components [Sha 2001].

The Simplex architecture divides a system into two parts:
(1) a complex component that cannot be fully verified but is
needed to provide important service and (2) a high-assurance
control subsystem that is simple and fully verified. The Simplex
architecture also ensures predictable and guaranteed timing
behaviors (in spite of failures of complex components) and
allows restarting or replacing complex components during
operation. Notable applications of Simplex architecture
principles include the F-22 and F-35 aircraft.

Setting a Foundation for
Software Architecture

2001

21

At the beginning of the 21st century, the Capability Maturity
Model Integration (CMMI) framework team published CMMI
appraisal requirements, ushering in a new era for appraisals
[CMMI 2001]. In partnership with government and industry,
SEI published the Standard CMMI Appraisal Method for
Process Improvement (SCAMPI) [AMIT 2001], along with the
specification for two other appraisal classes.

Later, the SEI developed SCAMPI B and C as a 100 percent
community-funded project [Hayes 2005]. Factors that might
influence an organization’s choice of a SCAMPI (A, B, or C)
include cost, schedule, accuracy, efficiency, and the desired
results. SCAMPI continues to have wide range of uses,
including internal process improvement and external capability
determinations.

The SEI’s contribution also includes creating the SCAMPI Lead
Appraiser role through certification (500 as of 2013), based
on the SCAMPI Lead Appraiser Body of Knowledge (SLA BOK)
[Masters 2007].

SEI work on assessing/evaluating contractors led the DoD
and other government acquisition organizations to change
their criteria for selecting contractors. In awarding contracts,
they now consider the how well the contractors’ software
development practice follows the defined processes.

Changing Software
Contractor Selection
Criteria

2001

22

For nearly two decades, the SEI CERT Division has
focused on gathering and analyzing data about actual
malicious insider acts—including espionage, IT
sabotage, fraud, theft of confidential information—
and potential threats to U.S. critical infrastructures.

In 2001, the DoD Personnel Security Research
Center (PERSEC) sponsored the first CERT Division
research into the malicious actions of insiders.
A few years later, the Department of Homeland
Security (DHS) added its sponsorship to build a
database of information on more than 150 actual
insider threat cases. The database now contains
more than 1,000 cases, which CERT analyzes from
technical and behavioral perspectives.

Carnegie Mellon University’s CyLab published
the first edition of the Common Sense Guide

for Mitigating Insider Threats in 2005, based on
CERT Division research. Cylab establishes public-
private partnerships to develop new technologies
for measurable, secure, available, trustworthy,
and sustainable computing and communications
systems. Subsequent editions of the Guide were
released in 2006, 2009, and 2012.

Applying analytical methods to the cases, the CERT
Division has produced additional guidance and
tools for government programs to detect, mitigate,
and prevent insider threats that include

• Interactive training simulation and workshop
(since 2007)

• Insider Threat Vulnerability Assessment
(since 2009)

• The CERT Guide to Insider Threats
(first published in 2012)

• Transition of linguistic analysis tools to DoD/IC
customers (2015)

• Certificate programs to build skills in
preventing and handling insider threats (2015)

Bringing Science to Insider
Threat Mitigation

2000

23

Today, network analysts in the DoD and federal agencies use
SEI CERT Division network situational awareness technologies
to characterize network threats, assess the impact of security
events, and identify vulnerable network infrastructure.

In the early 1990s, the CERT Division developed Argus, one
of the first software-based network flow analysis tools, to
support incident response activity. In 2000, the Automated
Incident Reporting to CERT (AirCERT) initiative released data
conversion, sharing, and analysis tools (Analysis Console
for Incident Data—ACID) and supported the development of
Internet Engineering Task Force (IETF) standards to establish
a data format for exchanging information on computer security
incidents among response teams around the world.

The Einstein program, mandatory for all federal civilian
agencies, integrates several distinct data collection and
analysis systems and use toolsets for network traffic analysis
developed by CERT. Continually through the years, the CERT
Division has developed and released open source tools such
as the System for Internet Level Knowledge (SiLK) tool suite,
for the DoD to conduct security analysis not driven by known-
bad signatures; and Yet Another Flowmeter (YAF) [Inacio
2010], which leverages additional data sources, including
Domain Name System, Secure Socket Layer certificates, and
application banners stored in the IPFIX standard format.

Industry has adopted these tools. Telecommunication
providers, government defense contractors, and many other
high tech companies use this technology to help protect their
own networks and the networks of their clients.

Enabling Large-Scale
Network Flow Analysis

2000

24

One recurring theme in defense challenge problems is the
need to predict runtime behavior before a software-reliant
system has been built. Maintenance and improvement
costs represent more than half the total cost of a system,
a percentage that has grown steadily since 1960 [Jones
2006]. The problem for DoD is to predict problems with
modifiability before the system is constructed and before
these problems occur.

SEI pioneered the use of scenario-based methods in the
evaluation of software architectures for modifiability and
other qualities. The first SEI-developed architecture analysis
method, the Software Architecture Analysis Method (SAAM),
introduced the concept of a quality attribute scenario, giving
specific modifications against which the system is to be
tested. The SAAM led directly to the Architectural Trade-off
Analysis Method (ATAM), which evaluated a system for a
collection of quality attributes.

Major defense contractors, such as Boeing and Raytheon,
now include architecture evaluation in their architect
certification process. The U.S. Army staff reported that use
of scenario-based architecture evaluation methods reduced
risk in schedule and cost, improved documentation, and
resulted in a higher quality product [Nord 2009].

Evaluating System
Architecture

1994

25

Today, rate-monotonic analysis (RMA) is part of real-time
computing textbooks and the only real-time scheduling
technology approved by FAA for Level A avionics software in
networked control applications with distributed computers,
sensors, and actuators.

The importance of RMA became clear when a software bug that
caused the computer on the Mars Pathfinder to reset put the
1997 mission in jeopardy. Computer scientists patched the
software to fix the bug, using the rate-monotonic scheduling
algorithm. Years before, the SEI had been instrumental in the
development of the rate monotonic scheduling paradigm, and
its technical staff played a crucial role in the development of
the theory.

In 1993, the SEI published A Practitioner’s Handbook for Real-

Time Analysis: Guide to Rate Monotonic Analysis for Real-Time

Systems, which contains quantitative methods that enable real-
time systems developers to understand, analyze, and predict
the timing behavior of many real-time systems. In addition, SEI
technical staff created workshops and consultation services for
RMA early adopters.

SEI’s and others’ work in RMA transformed not only real-
time engineering practice. Emerging from SEI work in RMA
in the following years were two other ideas that underpin
contemporary practice in software system development:
(1) quality attributes influence the shape of the architecture and
(2) the right architecture is fundamental to system success.

Meeting Real-Time
Scheduling Needs

1993

26

SEI’s publication of the Software Capability Maturity
Model (Software CMM) in 1991 changed the view in
government and industry about software quality. The
model consisted of best practices in key process
areas, giving organizations an objective standard for
software development.

By 1986, the DoD and defense contractors
recognized that some software engineering practices
produced working software with greater consistency.
Unfortunately, those practices were not documented
or widely recognized.

Asked to conduct a study of “best practices,” the
SEI met with leading software professionals in the
DoD, defense industry, commercial industry, and
academia to develop a consensus on the practices
that consistently lead to improved software
development. To help organizations determine how
well their work stacked up against these practices,
the SEI produced a Maturity Questionnaire
[Humphrey 1988]. Response to this questionnaire
was overwhelmingly positive, from both the DoD and
the defense industry.

After assisting several organizations with their
assessments and subsequent improvement efforts,
the SEI produced a guide for how organizations
might manage that process [Fowler 1990]. As
the community began to adopt these ideas, they
expressed a need for a more precise definition of
the practices and the underlying model. As a result,
the SEI published the Software CMM.

Many people contributed to the ideas in the
Software CMM, and more than a few of those
ideas preceded the SEI effort. The SEI’s
leadership brought software community experts
and practitioners together. Its role as assimilator
filtered the ideas into a consistent framework, which
became a worldwide de facto standard for software
process improvement. The new structure for
improvement, the capability maturity model, became
a seminal information architecture that has been
mimicked and adapted over time.

Eventually, the Capability Maturity Model Integration
(CMMI) framework, managed with software
community guidance by the SEI for more than a
decade, evolved from the Software CMM.

Transforming Software
Quality Assessment

1991

27

Systematic software reuse is a strategy that can bring
products to market or field more quickly, improve quality, and
lower costs. Recently, this strategy has become more popular
in the increased competitive development environment
brought about by budgetary restrictions. For example, the
DoD Systems Engineering FY 2014 Annual Report (issued in
March 2015) notes that the CH-53K Heavy Lift Replacement
Helicopter includes 7 million software lines of code with 64
percent reuse.

Underlying today’s efforts to reuse software is a 1990s
technology called feature-oriented domain analysis (FODA).
Developed by the SEI, FODA [Kang 1990] analyzes a
problem domain across multiple similar systems to identify
common and variable features. In developing FODA, the
SEI demonstrated that managing variation was essential to
systematic software reuse and that simply identifying common
elements and features is insufficient.

At the SEI, FODA later evolved into product line analysis, which
extended the analysis of commonality and variability beyond
features to quality attributes.

Establishing a Basis for
Software Reuse

1990

28

Today, there are more than 100 accredited
software engineering schools in the U.S. and
about 1.5 million people work in software-
development-related fields. Nearly all university
software engineering-related curricula trace their
lineage to SEI-led efforts.

The SEI education effort provided needed
leadership during the early years of curriculum
development in software engineering education.
In shaping a software engineering curriculum, the
SEI engaged the academic community in creating
the materials and amplified technology transition
with government and industry by making materials
available to allow other organizations to teach
material it had developed.

In the winter of 1988, the SEI held a workshop
of leading software engineering educators to
design a recommended curriculum for a Master
of Software Engineering (MSE) degree. The SEI
curriculum recommendations that grew from

that workshop were published at the annual
Conference on Software Engineering Education
and Training (CSEE&T) [Ardis 1989], a series
started by the SEI that continues today with
its own independent steering committee and
sponsorship.

The number of software engineering programs
nearly doubled in the first three years after the
publication of the guidelines. Most of those
programs followed the recommended guidelines.
Another outgrowth of the curriculum project was
the development of materials called curriculum
modules, which helped to transition the MSE
curriculum and support faculty members who
wished to offer software engineering courses.

In subsequent years, the SEI worked with the
Association of Computing Machinery, the Institute
of Electrical and Electronics Engineers, and
others to influence on the quantity and quality of
undergraduate software education.

Building the Master of
Software Engineering
Curriculum

1989

29

In studies dating back to 1978, data showed that the cost of
development and modification of the user interface contributed
over 50 percent of the total cost of ownership [Sutton 1978].
Attempts to reduce the cost of developing defense systems
clearly had to include reduction in the cost of developing and
maintaining the user interface.

The high cost of developing and modifying the user interface
led to a class of systems intended to reduce this cost, user
interface management systems (UIMSs). Serpent was a UIMS
that separated the user interface and functional portions of a
system, allowing for modifications to the user interface with
minimal impact on the remainder of the system.

Through its work on Serpent, the SEI contributed to a greater
understanding by a generation of user interface researchers
about the impact of software engineering architectural
decisions on the ease of modifying the user interface,
introducing an important concept to the discipline of software
architecture that emerged in the 1990s.

Pointing the way toward
a Software Architecture
Discipline

1988

30

The SEI CERT Coordination Center (CERT/CC) was born
from newfound national concern about malicious attacks on
communications networks. Graduate student Robert Morris
jarred the network-connected world from ambivalence regarding
cybersecurity on November 2, 1988, by releasing a worm that
brought the nascent internet to its knees [Marsan 2008].

In the aftermath of the Morris Worm attack, DARPA asked the
SEI to establish a computer emergency response team, which
has come to be known as the CERT/CC. As a neutral third
party, the CERT/CC reports vulnerabilities to vendors without
revealing the identity of the reporter. This position allows CERT/
CC to work with competing vendors whose products contain the
same vulnerability, free of conflict of interest.

Since its formation, the CERT/CC has facilitated mitigation
vulnerabilities and disseminated the information through the
publication of Vulnerability Notes, which include summaries,
technical details, remediation information, and lists of
affected vendors. CERT/CC maintains a knowledgebase of
that includes a publicly available Vulnerability Notes Database.

In addition, the organization has been instrumental in building
and supporting a network of more than 50 national computer
security incident response teams (CSIRTs), with tools and
training to help managers, project leaders, CSIRT staff, and
computer forensic professionals.

Fostering Growth in
Professional Cyber
Incident Management

1988

31

[Alberts 2003] Alberts, Christopher & Dorofee Audrey.
Managing Information Security Risks: The OCTAVE

Approach. Addison-Wesley Professional, 2003 (ISBN
03211188630).

[AMIT 2001] Members of the Assessment Method
Integrated Team. Standard CMMI Appraisal Method

for Process Improvement (SCAMPI), Version 1.1:

Method Definition Document (CMU/SEI-2001-
HB-001). Software Engineering Institute, Carnegie
Mellon University, 2001. resources.sei.cmu.edu/
library/asset-view.cfm?AssetID=5325

[Ardis 1989] Ardis, M. & Ford, G. “SEI Report
on Graduate Software Engineering Education.”
Proceedings of the Third SEI Conference on Software

Engineering Education. CSEE, Pittsburgh, PA, July
18-21, 1989. Published as Springer Lecture Notes
in Computer Science 376, 1989.

[CMMI 2001] CMMI Product Team. Appraisal

Requirements for CMMI, Version 1.1 (ARC, V1.1)
(CMU/SEI-2001-TR-034). Software Engineering
Institute, Carnegie Mellon University, 2001.
resources.sei.cmu.edu/library/asset-view.
cfm?AssetID=5781

[Dorofee 1996] Dorofee, Audrey et al. Continuous

Risk Management Guidebook. Software Engineering
Institute, Carnegie Mellon University, 1996.
resources.sei.cmu.edu/library/asset-view.
cfm?assetID=30856

[Fowler 1990] Fowler, Priscilla & Rifkin, Stanley.
Software Engineering Process Group Guide (CMU/
SEI-90-TR-024). Software Engineering Institute,
Carnegie Mellon University, 1990. resources.sei.
cmu.edu/library/asset-view.cfm?AssetID=11253

[Hayes 2005] Hayes, William et al. Handbook for

Conducting Standard CMMI Appraisal Method for

Process Improvement (SCAMPI) B and C Appraisals,
Version 1.1 (CMU/SEI-2005-HB-005). Software
Engineering Institute, Carnegie Mellon University,
2005. resources.sei.cmu.edu/library/asset-view.
cfm?AssetID=7281

[Humphrey 1988] Humphrey, Watts et al. A Method

for Assessing the Software Engineering Capability

of Contractors (CMU/SEI-87-TR-023). Software
Engineering Institute, Carnegie Mellon University,
1988. resources.sei.cmu.edu/library/asset-view.
cfm?AssetID=10345

[Inacio 2010] Inacio, Chris & Trammell, Brian,
“YAF: Yet Another Flowmeter” Proceedings of Large

Information System Administration Workshop (LISA)
https://www.usenix.org/legacy/events/lisa10/
tech/slides/inacio.pdf

[Jones 2006] Jones, C. “The Economics of Software
Maintenance in the Twenty First Century.” 2006.
compaid.com/caiinternet/ezine/capersjones-
maintenance.pdf

[Kang 1990] Kang, Kyo et al. Feature-Oriented

Domain Analysis (FODA) Feasibility Study (CMU/SEI-
90-TR-021). Software Engineering Institute, Carnegie
Mellon University, 1990. resources.sei.cmu.edu/
library/asset-view.cfm?AssetID=11231

[Marsan 2008] Marsan, Carolyn Duffy. “Morris
Worm turns 20: Look what it’s done” Network World.
networkworld.com/news/2008/103008-morris-
worm.html (October 30, 2008).

[Masters 2007] Masters, Steve et al. SCAMPI Lead

Appraiser Body of Knowledge (SLA BOK) (CMU/
SEI-2007-TR-019). Software Engineering Institute,
Carnegie Mellon University, 2007. resources.sei.
cmu.edu/library/asset-view.cfm?AssetID=8455

[Nord 2009] Nord, Robert et al. Impact of Army

Architecture Evaluations (CMU/SEI-2009-SR-007).
Software Engineering Institute, Carnegie Mellon
University, 2009. resources.sei.cmu.edu/library/
asset-view.cfm?assetid=8859

[RCTA 1992] RCTA, Inc. Software Considerations in

Airborne Systems and Equipment Certification. (DO-

178B), December 1, 1992.

References

32

[SEI 2009] Software Engineering Institute. “Army
Requires PEOs to Appoint Chief Software Architect.”
2009 Year in Review. Software Engineering Institute,
Carnegie Mellon University, 2010.

[Sha 2001] Sha, L. “Using Simplicity to Control
Complexity.” IEEE Software (July/August 2001):
20-28.

[Sutton 1978] Sutton, Jimmy A & Sprague, Ralph H.,
Jr. A Study of Display Generation and Management in

Interactive Business Applications (Technical Report
RJ2392), IBM Research, November 1978.

[Weinstock 2009] Weinstock, Charles &
Goodenough, John. Towards an Assurance Case

Practice for Medical Devices (CMU/SEI-2009-
TN-018). Software Engineering Institute, Carnegie
Mellon University, 2009. resources.sei.cmu.edu/
library/asset-view.cfm?AssetID=8999

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and
supported by the Department of Defense under
Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software
Engineering Institute, a federally funded research
and development center.

Any opinions, findings and conclusions or
recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the
views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON
UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS”
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has
been approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution.

Internal use:* Permission to reproduce this material
and to prepare derivative works from this material
for internal use is granted, provided the copyright
and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced
in its entirety, without modification, and freely
distributed in written or electronic form without
requesting formal permission. Permission is
required for any other external and/or commercial
use. Requests for permission should be directed to
the Software Engineering Institute at permission@
sei.cmu.edu.

* These restrictions do not apply to U.S.
government entities.

ATAM®, Carnegie Mellon®, CERT®, CERT
Coordination Center® and OCTAVE® are registered
marks of Carnegie Mellon University.

DM-0003954

Copyright

iv

Locations
SEI Pittsburgh, PA
4500 Fifth Avenue Pittsburgh,
PA 15213-2612

SEI Arlington, VA
Suite 200
4301 Wilson Boulevard
Arlington, VA 22203

SEI Los Angeles, CA
2401 East El Segundo Boulevard
El Segundo, CA 90245

Contact Us
Phone: 412.268.5800 | 888.201.4479
Web: sei.cmu.edu | cert.org
Email: info@sei.cmu.edu

