
Fables in Software Acquisition 1

RRIICCKKYY
SSTT CCKKII

&&
Fables in Software Acquisition

by

David Carney and David Biber

ADVENTURES
THE

OF

2 The Adventures of RICKY & STICK

This work was prepared for the United States Air Force.
The Software Engineering Institute is a federally funded research
and development center sponsored by the U.S. Department of Defense.

Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document
for external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Fables in Software Acquisition 1

To the members of the acquisition community:

On a short plane ride recently, I had the enjoyable experience
of reading this little “comic book.” It’s a brief excursion into the
complexities of software acquisition processes, using the metaphor
of two well-meaning kids who, despite the best of intentions,
always end up in trouble.

This book isn’t an offi cial guide to best practice, and it certainly
isn’t a textbook. But in a kind of off-beat way, it’s an entertaining
yet insightful look at some of the things that can really happen in
software acquisition; each fable is based on true examples where
our acquisition system has broken down.

I’d be surprised if, for most everyone in the acquisition
business, there isn’t something in this book that will ring a bell.
For a pleasant respite from the standard offi cial documents
we all read daily, I recommend it highly.

JANET C. WOLFENBARGER,
Brig. Gen., USAF
Director, Acquisition Center of Excellence
SAF/ACE,
(703) 253-1333

2 The Adventures of RICKY & STICK

I decided that these little stories should be
“fables,” each of which includes a “moral”
relevant to software, to acquisition, or to
government programs. Possibly the most
important point (and yet another similarity to
the Red Book) is that these fables are based
on real-world experiences: all of the situations
in this book are inspired by programs that are
known to me. Those programs encountered—
and often foundered on—issues familiar to
any observer of DoD acquisition: require-
ments, testing, integration, maintenance, com-
mercial products, laws, mandates, funding,
schedules, and, of course, bureaucracy. From
observations of these programs, I selected
some of the most representative as candidates
for my anecdotal descriptive method. Aside
from their topics, a common thread among
these fables is that, for the Program Manager
working in the complex and chaotic reality of
government acquisition, the need is to keep
sight of a few simple, fundamental realities.
These realities are all too easy to dismiss as
mere common sense, which they are. But in
the frantic weeks before Milestone B, when

It is always dangerous to try to repeat good
fortune. However, I was recently asked to of-
fer a few suggestions that address some high-
level topics related to software acquisition.
The request was for “something short and
to the point,” that would prepare beginning
program managers for the delights that await
when they fi nd themselves stuck between
demanding users, angry PEOs, and frustrated
software engineers.

Perhaps against my better judgment, I chose
to use an approach similar to the Red Book
in writing this little book. While I have tried
to keep the present volume from looking too
much like a new version of the Red Book,
there are some obvious similarities. It has (I
hope) a certain humorous quality. Like the
Red Book, it is premised on the idea that a
brief, metaphoric approach can often convey
more than verbose papers that are technically
worthy, but aesthetically dull. And it is also
patterned after well-known models, the most
familiar of which was a comic strip fi xture
during the 1980s and 90s.

Several years ago, I had the good fortune to
take a brief vacation from my normal chores
of writing technical papers about software. I
left the realm of data, executive summaries,
issues, and fi ndings, and spent several enjoy-
able days writing a short, rather tongue-in-
cheek essay about the dangers and challenges
of using commercial, off-the-shelf (COTS)
software in government systems. The essay
was written as a pastiche of Mao-Tse Tung’s
famous “Little Red Book” and my hope for
the essay was simply that it would amuse a
few people. I was thoroughly unprepared for
how deeply it resonated in the DoD commu-
nity. The Red Book has been reprinted numer-
ous times, and I am still gratifi ed to receive
email from people for whom its “quotations,”
in the form of spurious Chinese aphorisms,
are considerably more meaningful than any of
my dry technical reports about the challenges
of using commercial software.

Foreward
by David Carney

Fables in Software Acquisition 3

to Ricky and Stick. He took my rather bland
prose descriptions and made them so real
that, by now, these likable rascals have truly
become alive in my mind, and their exploits
seem more like memories than fi ction. His
contribution to this work is inestimable.

Finally, I have tried to keep this work short.
This was partly a pragmatic concern. A reader
of the Red Book once complimented me that
I had written it “so that it could be read on the
fl ight from Washington up to Boston.” Since
that reader has recently been transferred back
to the Pentagon, I hope that this little book
will at least keep his attention on the return
fl ight from Logan down to Reagan.

Software Engineering Institute
Carnegie Mellon University
October, 2005

the world seems to be coming apart at the
seams, it is amazing how easy it is to let such
common sense fl y out the window. At that
point, a besieged Program Manager, no matter
the level of experience, can sometimes make
decisions that appear reasonable in the pres-
sure cooker of the SPO, but in retrospect seem
harebrained. It is precisely at that point that
the Program Manager needs a lifeline to basic
principles and calm rationality.

There are many topics that his book could
address: common sense is in need on many
fronts. From the large number of possibilities,
I chose the following:

 Testing and Modeling

 Estimation and Metrics

 Requirements

 Integration and Interoperability

 Deployment

 Business processes

These are nothing more than starting points,
of course, since they all blur, and it is impos-

sible to keep a discussion of any of these top-
ics from wandering into some of the others.
I beg the reader’s indulgence in this matter,
since I wanted, in the spirit of fables going as
far back as Aesop, to use each fable merely
as an entry point for discussion and refl ec-
tion. Thus, many of these fables will have
multiple interpretations. This is not, I think,
a fatal fl aw: if the adventures of my hapless
heroes provide a number of useful metaphors
for the woes faced by Program Managers, so
much the better. In the same vein, there is a
certain redundancy in many of these tales that
is not accidental. Familiar problems, even if
seen many times before, can appear novel and
strange when they pop up in unfamiliar con-
texts, and so telling the same story in different
ways may have some value.

I began these ramblings talking about good
fortune, and I have gone on too long. But it
must be said that an additional pleasure for
me was the enormous good fortune to collab-
orate with David Biber, whose brilliance and
invention gave life, personality, and character

4 The Adventures of RICKY & STICK

Ricky and Stick
were best friends.
They lived on the
same street, and
played together
a lot. Ricky was
a month older
than Stick, and he
always told Stick
that this made him
a lot smarter.

Their parents could not quite understand
why Ricky and Stick got into trouble so often.

It seemed that
they always
started out
with great
ideas, but
somehow,
one thing led
to another,

and they ended up behind the eight-ball most
of the time.

ADVENTURES
THE

OF

Fables in Software Acquisition
by

David Carney and David Biber
with Book Design and Production

by Bob Fantazier

RRIICCKKYY
SSTT CCKKII

&&

Fables in Software Acquisition 5

Ricky and Stick had another
friend, a boy named Bob. Bob
was usually nice to Ricky and
Stick, and he often tried to help
them on their projects. But they
seldom took his advice. Bob
was older than Ricky and Stick,
and his hair was white all over.
They called him Coconut Bob
because of his white hair.

Other children lived in the same neighbor-
hood as Ricky and Stick. There was one boy
that they called Mean
Wally. Wally was really
a pretty nice kid. But
he was always criticiz-
ing them, which they
thought was a mean
thing to do.

Gloria lived in the next block and was in
the same class as Ricky and
Stick. Ricky was annoyed
that she was such a better
student that he was, since
their teacher, Mrs. Perillo,
was always praising Gloria.

Table of Contents Page

Testing and Modeling 7

Estimates and Metrics 15

Requirements 23

Integration and Interoperability 31

Deployment 39

Business Processes 47

6 The Adventures of RICKY & STICK

Fables in Software Acquisition 7

NO NEED TO TRY IT OUT—
IT’LL WORK JUST FINE

Testing and Modeling

8 The Adventures of RICKY & STICK

BUT RICKY --
 WE DON’T HAVE
 A SOAPBOX RACER.

BUT THE
WHEELS ARE
ALL BENT,
RICKY.

SURE WE DO!
MY DAD’S
OLD RACER.
WILL BE FINE.

WALLY,
LOOK OUT!
WE CAN’T
STOP!!!

 BOY, ARE YOU TWO DUMB.
 WHY DIDN’T YOU TEST
THE BRAKES?

DON’T BE A PAIN, WALLY --
WE DIDN’T HAVE TIME!

LOOK STICK,
WE BETTER
HURRY!

NO TIME, STICK.
WE HAVE TO
GET GOING.
ANYWAY, THEY
LOOK FINE TO
ME.

WHAT ABOUT
THE BRAKES?
SHOULDN’T WE
TRY THEM OUT?

I WONDER
IF THE
BRAKES
WORK...?

I’LL JUST
STRAIGHTEN
THEM OUT!
THERE!!

Fables in Software Acquisition 9

The stories about the pain and failure caused
by inadequate testing are probably the best
known tales in the software community; some
of them have taken on a near-legendary status.
Nor are they all legends, since testing really
is a messy isssue. It’s costly, it’s time-
consuming, and (so the theorists insist) nearly
impossible to do perfectly. Even worse,
testing tends, whether rightly or wrongly, to
come late in the day, and for managers already
behind schedule, it’s often tempting to cut the
testing resources to the bone.

But in yielding to that temptation, you’re
potentially adding to the painful tales and

legends. You may really think that there’s
a compelling reason for skipping a crucial
testing cycle. (Maybe, if you don’t hurry up,
you’ll miss the race…). But chances are that
by taking that route, by doing the real-world
equivalent of operating a downhill racer
without testing the brakes, the eventual crash
is almost guaranteed. In retrospect, so were
most of the DoD testing failures that have
occurred over the years.

To be sure, there’s no easy answer to the ques-
tion: How much testing is enough? But there’s
a very easy answer when we get into a situa-
tion like Ricky and Stick: You’ve got to do at

least some. And it must be real testing
of the parts that really need to be tested.

Bottom line: No matter what schedule pressure
you may be under, the outcome of a battle may
someday depend on the system you’re build-
ing. So if testing is getting squeezed, you may
want to ask the contractor: “What are we risk-
ing by skipping this set of tests?” When lives
are at stake, the “but we’re way behind sched-
ule” argument just isn’t good enough.

10 The Adventures of RICKY & STICK

STICK, I KNOW
A WAY TO GET US
SOME HONEY.

C’MON, LET’S GO FILL
AN OLD JUG WITH WATER
AND PRACTICE.

HOW,
RICKY?

CAREFUL RICKY,
DON’T LET IT
SPILL OUT
TOO FAST.

RICKY,
IT’S
FALLING!

GET READY
STICK, HERE
IT COMES!

THIS IS HOW
WE’LL DO IT.

I’LL USE THIS POLE TO TILT
THE HIVE AND YOU CATCH
THE HONEY IN THIS PAIL
WHEN IT SPILLS OUT.

MUCH LATER . . .

GREAT RICKY,
IT’S POURING
RIGHT IN.

PRACTICE MAKES
PERFECT, STICK.
NOW LET’S GO
GET SOME
HONEY!

STICK,
LOOK
OUT!

OOWWWWW!

Fables in Software Acquisition 11

Models are great, but they’re not the real
thing. And they can be very deceptive when
misused. It’s all too easy to use a model that
is grossly oversimplifi ed; even worse is to use
a model that takes no account of the real risk
conditions that will be present (like the risk
of getting stung by a fl ock of angry bees!). So
we’re constantly in danger of letting the most
optimal scenario be the basis of our models,
convincing ourselves that we’re modeling the
true context that the system will encounter.

This pitfall is sooo prevalent in software
development; it’s almost too easy to construct
happy models that will give you happy results.

But happiness isn’t what you want, truthful-
ness is. If the model doesn’t truly mimic the
conditions the system will face in the fi eld,
then none of the simulations you run will tell
you much about how the system will actually
perform.

Bottom line: It’s great if your testing plan
includes using models and simulation.
But don’t model what you hope to fi nd;
model what will really be out there. Two good
questions for the contractor might be: “What
does that model leave out? And what’s the
delta between the model and reality?”

12 The Adventures of RICKY & STICK

HEY, STICK,
YOU KNOW
WHAT? WE
NEED A
TELEVISION
UP HERE.

WE DO?

SURE. NO ONE’S
USING THIS OLD TV.
IF WE HOOK A BUNCH
OF EXTENSION CORDS
TOGETHER, THEY’LL
REACH FROM MY
LIVING ROOM TO
THE TREE HOUSE.

I HOPE IT’LL
BE OK. THERE’S
SOME PRETTY
RATTY-LOOKING
PLACES ON
THOSE CORDS.

HEY GUYS, I SEE
YOU’RE PLAYING
WITH ELECTRICITY.
WANT ME TO TAKE
A LOOK TO SEE IF
EVERYTHING’S OK?

NO NEED,
BOB, WE’RE
JUST FOOLING
AROUND.

OK, STICK, I’M
GOING TO PLUG
‘ER IN. GET
READY
TO WATCH
SPONGEBOB!

AARRGGHHH!

RICKY!
WHAT’S
GOING ON?
WHAT’S
BURNING
DOWN THERE?

HEY GUYS, I WONDERED
WHAT THE COMMOTION
WAS ABOUT.

NEXT TIME, DON’T BE SO
QUICK TO TURN DOWN
A HELPING HAND!

Fables in Software Acquisition 13

Given the realities of human nature and proj-
ect schedules, it’s a very common situation:
we turn down an offer of outside assistance
because (we tell ourselves) we want to keep
on schedule, and some meddling outsider will
only slow things down. But that’s only part of
the reason. What’s really lurking in the back
of our minds is that, if we let someone else
look too closely (like letting Bob check out
Ricky’s wiring scheme), he might fi nd some-
thing seriously wrong, which would screw
everything up.

And that’s precisely why the independent
observer is there. Because everyone has blind
spots; it’s just a fact of life. The impartial and
independent observer can often help you see
through those blind spots; that’s why the “I”
in IV&V is so important. So while the tempta-
tion is to keep the IV&V guy from prying too
much (lest he fi nd something that you’d really
prefer not to know about), a more productive
approach, hard as it is, is to welcome him
in and give him free rein to fi nd what faults
he can.

The moral is that the IV&V guy isn’t the
enemy. On the contrary, he’s often the only
one who can keep your house from burning
down, just because a bit of wire has frayed
and he’s the only one who has noticed.

14 The Adventures of RICKY & STICK

Fables in Software Acquisition 15

THERE, THAT SHOULD BE
ENOUGH.

Estimates and Metrics

16 The Adventures of RICKY & STICK

THIS IS GREAT,
STICK. THIS BRIGHT
GREEN PAINT WILL
MAKE OUR PLANE
PERFECT!

DO YOU REALLY
THINK SO RICKY?

SURE IT WILL
– OOPS!

HEY!!! YOU
GOT PAINT ON
MY SHIRT!!!
MY MOM
WILL KILL ME!

DON’T WORRY,
STICK, WE’LL
JUST PUT IT IN
THE WASHING
MACHINE.

ARE YOU SURE
YOU KNOW HOW
TO RUN IT?

SURE. I’VE WATCHED
MOM DO LAUNDRY
LOTS OF TIMES.

HOW MUCH
SOAP SHOULD
WE PUT IN?

WE BETTER USE A LOT!
YOUR SHIRT IS A MESS.

HELLLPPPP!!!!!

THAT
SHOULD
DO IT.

Fables in Software Acquisition 17

When we have no specifi c knowledge about
the needed quantity of some resource, wheth-
er dollars, labor days, or laundry detergent,
the only thing we can do is make an estimate.
What with all of the pressure we are typically
under, it’s not uncommon to take an approach
based on faith in our own ability to guess well
and fueled by optimism; this is the “seems ok
to me” syndrome. Sometimes we get lucky
and everything comes out fi ne: a program
manager, looking at some unfamiliar metric,
with no context and no explanation, might
make an excellent decision. And on a differ-
ent day, Ricky might guess the right amount
of detergent to use.

But, sadly, guesses like these often turn out to
be wildly inaccurate. All too often, the fl oor
gets sopping wet and Mom has to call the
repairman.

It’s really okay to opt for prudence, especially
if there’s no other guide. Ricky (and, it seems,
a large number of teenagers) could take the
time to read the label on the detergent box.
Program managers, faced with a diffi cult
decision and nothing on which to base it,
could seek out assistance. Perhaps there’s
some website, some guidebook, some other
source of information available somewhere,
with advice, based on experience, to which
you can turn.

In brief, wisdom is better than guesses, and
there’s a lot of wisdom out there that’s often
ignored. The wisdom that exists may only be
partially applicable, and there may still be a
lot of guesstimation to do. Or maybe there’s
no such wisdom to be found at all. But in
that case, you’re no worse off than when you
started. And no one can later call you on the
carpet and say: “Why didn’t you ask Bob?”

18 The Adventures of RICKY & STICK

HEY STICK, YOU
KNOW WHAT? WE
NEED TO MAKE A
LADDER TO GET
UP INTO THE
TREE HOUSE.

WE
DO?

‘CAUSE I HAVE TO
DO THE SCIENTIFIC
ENGINEERING.
ONCE YOU GET UP
THERE, REACH DOWN
AND GRAB MY HAND

I CAN ALMOST
TOUCH YOUR HAND,
STICK, SO OUR TWO
ARMS’ LENGTH IS
EXACTLY HOW
LONG THE LADDER
SHOULD BE.

I’M REACHING
AS FAR AS I
CAN, RICKY!

SURE WE DO.
BUT WE BETTER
MAKE SURE
THAT IT’S THE
RIGHT HEIGHT.
GO AHEAD AND
CLIMB UP, STICK.

WHY DO I
ALWAYS HAVE
THE HARD JOB?

#?!#%! . . .
DARN, STICK,
YOU CUT THE
ROPE TOO
SHORT!

OKAY, STICK,
CUT THE PIECES
TO BE EXACTLY
DOUBLE THIS
DISTANCE.

Fables in Software Acquisition 19

How many of us haven’t done something
like this? And always, deep down, we know
we’re being as dumb as Ricky was. Usually,
it doesn’t do all that much harm. But, every
now and then, people who are otherwise ratio-
nal really do hold their arms out to measure a
picture, walk across the room trying to hold
their arms steady, and then bang a nail into
a wall to hang the picture on. The results are
usually embarrassing, and sometimes really
annoying.

Yet it’s not unheard of, in a big, expensive, se-
rious DoD program, for someone to do pretty
much the same thing, and use a thoroughly
ad hoc method for determining a metric that
needs to be more precise. We‘ve all prob-
ably witnessed a scene where someone with
precious little coding experience says “No

problem—we can get that new module written
and debugged in a couple of days, for sure!”
And then, it’s not only foolish, it can do lots
of harm.

A way to avoid the trap is to realize that
metrics are not second-class citizens. Doing
the sexy engineering tasks is important, but
getting valid metrics on those tasks shouldn’t
be an afterthought. Another pitfall is haste:
we’re often in a hurry and don’t want the
delay that careful measurement demands.
For big projects (which tend to be late
almost by defi nition), enforcing a rigorous
metrics program can slow things up to an
alarming degree.

But that’s the way it is, and it can’t be
changed. If we skimp on getting sound

numbers on which to make sound decisions,
if we accept rough fi gures as though they
were accurate, and let guesses count as
gospel, then we’ll fall even further behind,
because our arms-length guess was screwy,
the ladder won’t reach, and we’ll have to start
all over again.

Bottom line: With your program’s future on
the line, it is prudent to ask your contrac-
tor some hard questions about the relevance
and accuracy of whatever fi gures are quoted
to you. Said differently, do you really think
he can keep his arms that steady as he walks
across the room?

20 The Adventures of RICKY & STICK

 C’MON, STICK, WE’VE GOT TO CLOBBER
WALLY WITH SNOWBALLS WHEN HE SHOWS UP.
WE NEED TO HAVE ENOUGH ON HAND TO MAKE

HIM BEG FOR MERCY

HOW
MANY
IS THAT?

THAT’S IT, STICK. A NUCLEAR
STOCKPILE OF MEGATON
SNOW MISSILES.

I THINK
THAT’S
WALLY
COMING!

. . . 18, 19, 20. TWENTY SHOTS, TWENTY
MISSES. NOW, YOU’RE BOTH OUT OF AMMO!

BETTER MAKE
A FEW EXTRA
NEXT TIME,
RICKY!

AND LEARN
TO AIM BETTER!

 WELL, WE DON’T ALWAYS
HIT EVERY ONE OF OUR
SHOTS, SO LET’S MAKE
TEN SNOWBALLS EACH.
THAT’LL MAKE HIM CRY.

THAT’S A LOT OF SNOWBALLS,
RICKY. WE BETTER WORK
FAST BEFORE HE SHOWS UP.YOU’VE HAD IT WALLY! WE’VE GOT

TWENTY KILLER SNOWBALLS AND
WE’RE GOING TO BLAST YOU!

9-10-11-12…

Fables in Software Acquisition 21

A software project plan is little more than
a codifi ed set of assumptions, expectations,
and hopes. It typically contains some number
of estimates based, more often than not, on
optimism. Yet the sheer statistics of software
failures, especially IT failures, would suggest
that a healthy dose of caution, and probably
of pessimism, would be more appropriate.1

Ricky thought he was being appropriately
cautious when he estimated that, because he
and Stick didn’t always hit every one of their
shots, they’d need ten snowballs each. But his
reasoning was upside-down. He never once
considered how many of their shots actu-
ally did hit the target; as it turned out, this
was certainly fewer than one in ten. In other
words, the number of snowballs wasn’t signif-

icant, but only the number of hits. (The reader
will already have noted that, given Ricky and
Stick’s throwing skill, they probably shouldn’t
have been planning to barrage Wally with
snowballs in the fi rst place. But that’s a
different fable.)

The moral is that we need to stop counting
the wrong things, and start counting the right
things. Easier said than done, perhaps. But
it shouldn’t be all that diffi cult to take a long
hard look at whatever initial estimates you
currently have, and wonder “What are these
numbers based on? What aren’t these num-
ber based on?” There’s a good chance that,
somewhere in the answers to those questions,
you’ll be saving yourself from getting
walloped by a whole lot of snowballs.

1 There are many sources for such statistics. One source often referenced is Lyytinen, K. and Hirschheim, R.,
(1987), “Information Systems Failures: A Survey and Classifi cation of the Empirical Literature,” Oxford Surveys
in Information Technology, Vol 4. However, there are many others, whose numbers vary somewhat, but whose
essential conclusions do not.

22 The Adventures of RICKY & STICK

Fables in Software Acquisition 23

THAT MAY BE WHAT YOU
WANT, BUT IT AIN’T WHAT
YOU’RE GONNA GET . . .

Requirements

24 The Adventures of RICKY & STICK

 OH BOY,
THIS’LL BE
GREAT!

 WHAT ARE
 YOU DOING,
 RICKY?

I’M BUILDING
A DOGHOUSE!
C’MON, STICK,
GIVE ME A HAND.

TWO
STEPS???

DARN! THESE
STEPS DON’T
FIT! NOW WHAT?

WHY DOES
IT NEED
TWO STEPS,
ANYWAY?

 UH, RICKY...

ALMOST THERE, STICK.
NOW ALL WE NEED TO
DO IS MAKE THE TWO
STEPS.

BECAUSE IT SAYS SO HERE IN THE
DIRECTIONS. THIS DOGHOUSE HAS
GOT TO FOLLOW THE PLAN EXACTLY! STILL NOT

THERE YET, STICK.
WE’VE GOTTA
KEEP TRYING!

Fables in Software Acquisition 25

Sometimes requirements that don’t make
any sense creep into a program. Usually, no
one knows where they came from, nor why
they’re there. They may be based on mis-
understandings, or on conditions that have
become obsolete. Or maybe they were just a
nasty gift from the Bad Requirements Demon.
In any case, these are often the very require-
ments that twist a program into a pretzel.

So it’s perfectly reasonable to periodically
reconsider the validity of requirements, either
to be sure that they’re still operative, or to
verify that their respective interpretations
by the builder and end user is consistent:
it’s amazing how often such a reinspection
will turn up a surprise or two.

It may seem obvious, for instance, that Ricky’s
notion of front steps for a doghouse was based
on a misreading of the plans. But Ricky wasn’t
being any sillier than many real-world counter-
parts: some software requirements specs have
sternly dictated versions of COTS products that
are several releases out of date, and more than
a few requirements have been diametrically
opposite to what the end user has requested.

Bottom line: A periodic review of the require-
ments asking: “Do each of these still apply?
Has anything changed?” is a valuable exercise
that can help discover obsolete requirements
as early as possible. By doing so, you’ll avoid
expending (and wasting) a huge amount of
effort in needlessly trying to meet them.

26 The Adventures of RICKY & STICK

 HEY, STICK, I’M GETTING
 HUNGRY AND MOM’S NOT
 AROUND. I’M GOING TO MAKE
 US SOME SANDWICHES.

MOM!

WHAT KIND
OF SANDWICHES,
 RICKY?

 ARE YOU SURE
 THAT’LL ALL GO
 TOGETHER? SURE, STICK, WHY

NOT? EVERYTHING
TASTES GREAT, SO
THEY’LL ALL TASTE
GREAT TOGETHER!

RICKY, THIS
DOESN’T TASTE
SO GOOD...

MAYBE
A LITTLE
TOO MUCH
MUSTARD.

MOM!
HERE WE ARE, STICK. POP OPEN A COUPLE
OF CANS OF SODA AND WE’LL HAVE A FEAST.

LET’S SEE. WHAT DO I FEEL LIKE EATING?
HOW ABOUT SOME HAM, CHEESE, TUNA FISH,
MUSTARD, PASTRAMI, SALAMI, HORSERADISH,
MAYONNAISE, TURKEY, AND KETCHUP?

Fables in Software Acquisition 27

The process of software system development
often involves an ongoing process of refi ning
requirements. And that refi nement process
is very susceptible to requirements creep,
growth, and explosion. It’s the same danger
that Mom is always warning Ricky about:
“Your eyes are too big for your stomach,” she
says, which he usually ignores.

Yet the rest of us are often deaf to that same
warning. It all starts when a bunch of people
start out with a good idea: “Let’s get rid
of these overlapping, obsolete, redundant
systems!” So a project begins, and the early
requirements are defi ned. Then everyone
goes over to the Dark Side: “Now that we see
what we’ve started, why don’t we reengineer

ALL of our seventy-three thousand processes
into one central, unifi ed, joint, all-purpose,
galactic, do-it-all, never-have-to-worry-again
INTEGRATED SYSTEM!”

What’s happened is that the understandable
desire to eliminate redundancy and incompat-
ibility has transformed itself into a greedy
desire for something that ignores practicality
and precedent. We get giddy with possibili-
ties, and imagine a cosmically large system
whose humongous list of functional require-
ments makes any development effort prone
to failure. And in those giddy moments, it’s
easy to forget that the pages of acquisition
history are littered with tales of failed
programs slain by impossible requirements.

(And this same scenario also shows there are
lots of things that are excellent when taken
individually, but awful when put together
willy-nilly. A different moral, perhaps, but
one worth noting.)

The lesson is that, even taking into account
the incredible fl exibility of software, a coher-
ent system needs some internal integrity and
boundedness to it. More important (from the
viewpoint of the poor soul who has to man-
age its development), a system’s requirements
should ideally refl ect some comprehension of
whether those requirements can be satisfi ed.

28 The Adventures of RICKY & STICK

CLASS, TODAY
WE’RE GOING
TO DO AN ART
PROJECT.

BUT DON’T START
COLORING UNTIL
I TELL YOU. I’LL LET
WALLY CHOOSE
THE COLOR.

RED,
MRS. PERILLO.

I’M DONE!

HEY, STICK,
I’M GOING TO
START COLORING
MY PLANE.

DO YOU THINK
YOU SHOULD,
RICKY?

MRS. PERILLO,
I’VE CHANGED
MY MIND.

I REALLY LIKE
BLUE THE BEST.

WHY, THAT’S FINE,
WALLY. KEEP DRAWING,
BUT DON’T START
COLORING YET!

FIRST, I WANT YOU TO
DRAW AN AIRPLANE.
AFTER YOU’RE ALL
FINISHED, I’LL WANT
YOU TO COLOR IT IN.

YEAH, STICK,
I’LL BE THE FIRST
ONE FINISHED . . .

WHAT’S
YOUR
FAVORITE
COLOR;
WALLY?

EXCELLENT,
NOW START
DRAWING, BUT
DON’T START
COLORING YET!

Fables in Software Acquisition 29

WALLY, I THINK SOME
STUDENTS MIGHT BE
MISSING THEIR BLUE
CRAYONS.

People have the annoying habit of changing
their minds. When these people are end users
of software systems, then requirements have
the annoying habit of mutating.

Given this reality, some of the best advice
about dealing with requirements for today’s
information systems is to maintain fl exibil-
ity as long as feasible. Sometimes the ideal
strategy is lots of prototyping, to gain buy-in
from end-users. Sometimes it’s possible, using
iterative cycles, to delay freezing the require-
ments until some fairly late point. But it’s
almost always a poor idea to make a ton of
early commitments if there’s no compelling

reason to do so.

Because if we do make some early commit-
ment, we often don’t (or can’t) be sure what
that commitment implies. And then when
things change, which they always do, recov-
ery is sometimes possible, but sometimes it’s
not. For Ricky, the fi rst time things changed,
he got away with it, by switching from red to
dark blue. But when things changed again,
and he had to convert that dark blue to pale
yellow, he was lost. All he had was a useless
picture of a blue airplane—there was no way
to erase the blue crayon, and no recovery was
possible.

The lesson is that while it’s attractive to make
early choices and “nail down the require-
ments,” it’s not always the wisest course.
That approach can sometimes save a lot of
time and money, true. But as you’re thinking
of taking that step, you might also take the
trouble to determine from your stakeholder
community whether all the assumptions that
underpin the requirements are still applicable.
Because it may be that there’s a Gloria in your
future, unseen right now, but just waiting for a
chance to say: “Yellow, Mrs. Perillo.”

YELLOW,
MRS. PERILLO.

WALLY THE PAIN
DOES IT AGAIN. BUT
NO PROBLEM, STICK,
MY BLUE CRAYON
IS REAL DARK.

I’LL COVER
OVER THE RED
AND SHE’LL
NEVER KNOW. GLORIA, YOU CAN

CHOOSE. WHAT’S
YOUR FAVORITE
COLOR?

#?!#%! . . .

30 The Adventures of RICKY & STICK

Fables in Software Acquisition 31

SOME ASSEMBLY
REQUIRED

Integration and Interoperability

32 The Adventures of RICKY & STICK

HEY, STICK, I’M
BORED. LET’S GO
AND CAPTURE A
WILD ANIMAL.

HUH? WHAT
WILD ANIMAL?

WE’LL CAPTURE WALLY’S DOG BUDDY!
LET’S SPLIT UP THE WORK. I’LL TAKE
CARE OF THE CAGE, AND YOU TAKE
CARE OF THE ROPE.

HE’S ALMOST
UNDERNEATH,
STICK!
LET’ER GO!”

STICK, THE
ROPE BROKE!

I SAID ‘ROPE’,
NOT TWINE!

YOU DIDN’T TELL
ME IT WOULD
WEIGH A TON!

RICKY, THE
CAGE LOOKS
AWFULLY
HEAVY . . .

SNAP!

THIS OLD BIRD
CAGE SHOULD
WORK FINE!

RICKY, I’M
FALLING!

THIS
THICK
TWINE

SHOULD
BE FINE!

Fables in Software Acquisition 33

When multiple parts have to work together—
anything from twine and birdcages to
collections of complex information systems—
and those parts are constructed independently,
then there isn’t a prayer of succeeding with-
out rigorous and careful planning about how
everything is supposed to fi t together.

Just about everybody has a favorite story
about the pitfalls of poor integration plan-
ning. And yet, over and over, during decades
of software acquisition, project after project
has made the same mistake. It is still being
repeated today. With awful regularity, we see
some group of people get together and some-
one says: “Hey! Let’s build a Big Integrated
System! I’ll build the frammis and you build
the jimjam. We’ll get Bob to build a few clap-
traps!” But no one worries too much about
the integration part of it. And, sooner or later,

the integration turns out to be far more diffi cult
than anyone had realized, and the twine breaks,
the birdcage falls, the whole project smashes
to the ground, and everyone else points fi ngers.
Then, a few months later, a different group of
enthusiastic, hopeful people gets together and
someone says, “Hey! Let’s go build a Really
Big Integrated System...” and so forth.

And that’s the moment of truth, when some-
body (perhaps you, Gentle Reader) has to pipe
up and say “Hey, let’s stop for a minute! Let’s
see if the plans for the frammis and the plans
for the jimjam are consistent with each other.
And let’s be sure that Bob’s claptraps will fi t”
or some comparable bit of caution. Because if
somebody doesn’t say something to that effect,
and if that caution isn’t shared by everyone
in the room throughout the whole life of the
project, then it’s a virtual certainty that lots of

people will work very hard for a while, but
the frammis and the jimjam won’t be compat-
ible, and the claptraps won’t fi t at all. And,
sooner or later, everyone will fall out of the
tree yet one more time.

Bottom line: Interoperability doesn’t happen
just because you want it to. It takes effort and
resources to make systems successfully inter-
operate in a useful way. So whenever some-
one asserts that “our systems will talk to each
other...” or something like that, you might ask:
“How much are we each budgeting for the
interoperability aspect? Let’s see that plan for
how each of us will ensure we’re keeping our
side of the agreement. Hey, now that I think
of it, let’s see the agreement!” You might just
fi nd that the “agreement” is nothing more
than a vague hope for a miracle.

34 The Adventures of RICKY & STICK

CLASS, TODAY
WE’RE GOING TO
BUILD A MODEL
OF A MOLECULE.

EACH OF YOU WILL BLOW UP BALLOONS
TO REPRESENT DIFFERENT ATOMS.

THEN WE’LL TAPE THEM
TO THIS WOODEN FRAME.

GEE, RICKY,
WE GOT THE
SMALLEST
BALLOONS.
WE’LL LOOK
LIKE DORKS.

DON’T WORRY,
STICK, I HAVE
AN IDEA.

SEE? WATER ALWAYS
MAKES BALLOONS
MUCH BIGGER. NOW
OUR ATOMS WILL BE
THE BIGGEST IN THE
MOLECULE.

RICKY, IS THAT A
WATER BALOON?

STOP! IT WILL
BE TOO HEAVY...

Fables in Software Acquisition 35

Looking at a single system gives a very
different perspective from looking at several
interconnected systems. What’s optimal for
the single system may not be so for the group,
and vice-versa. The success of any collection
of interoperating systems depends on just how
these different perspectives are negotiated
and resolved.

Ricky and Stick, for instance, saw no reason
why they shouldn’t make their dorky little bal-
loons bigger. They looked better, and probably
felt better. (And who doesn’t like the feel of a
good water balloon?) But neither of them con-
sidered that their balloons weren’t indepen-
dent, but were going to be in a collaborative
relationship with a lot of other balloons.

It’s not that different for software managers.
Software is so easy to tweak and change, and

the owner of one system sometimes sees no
reason why he shouldn’t make just one little
fi x here or there, to make his own system a
bit better. But when this happens, the change,
however small, might disturb something about
the agreements with other systems, and can
potentially have a serious impact on the whole
system of systems, perhaps even destroying it.

When systems are in relationships with other
systems, the success of the whole depends on
assumptions and agreements that each system
adheres to; this is especially true for software
systems. The agreements are sometimes spec-
ifi ed, but not always. In fact, many of today’s
interoperating systems don’t really have a
clear agency that is responsible for the whole;
instead they depend entirely on unwritten as-
sumptions that everyone adheres to voluntari-
ly. In Mrs. Perillo’s case, there was certainly

at least one unwritten assumption: she never
expected that anyone would add balloons that
were much too heavy, and thus saw no need to
say “Don’t use water balloons!”

The lesson is that if you’re the manager of
a system that’s an element in a system of
systems, you need to be proactive in preserv-
ing agreements, written and implicit. Before
making any change, even a seemingly trival
one, you might consider asking everyone (and
that means everyone, those nearby and those
light-years away) whether the change will af-
fect their systems’ operation. Otherwise, you
might unintentionally change something that
breaks the whole shebang. Then the system
stops running, molecules fall down and every-
body gets soaked.

36 The Adventures of RICKY & STICK

HEY, STICK, LET’S GET
THIS RACER INTO TIPTOP
CONDITION, AND WE’LL
WIN THE NEXT SOAPBOX
DERBY HANDS DOWN. WE’LL REBUILD IT

FROM THE BOTTOM
UP. AND THIS TIME,
THE BRAKES WILL BE
FAIL-SAFE!

THEY BETTER BE.
I CAN’T TAKE ANOTHER
CRASH LIKE THAT ONE!

IT LOOKS A LOT
BETTER. BUT WHAT
ABOUT THESE OLD
WHEELS, RICKY?
THEY’RE ALL BENT
OUT OF SHAPE.

WE NEED NEW
WHEELS, STICK.
I’LL GET TWO FOR
THE REAR AND YOU
WORK ON THE TWO
FOR THE FRONT.

 WITH THESE BABIES,
WE’LL BE LOW TO THE
GROUND AND GO
A LOT FASTER.

THESE BIG WHEELS WILL
BE GREAT. WE’LL BE HIGHER
OFF THE GROUND, SO WE’LL
SEE MUCH BETTER. #?!#%! . . .

Fables in Software Acquisition 37

When a system is upgraded with new parts,
it generally needs to be done with an overall
understanding of the goal of the upgrade.
But when upgrades to different pieces are
done independently (as often happens with
systems of systems, each of which may follow
a separate evolutionary path), the upgrades
can sometimes be at odds with each other.

For instance, separate upgrades can follow
very different evolutionary goals. The up-
grade to System A may aim toward greater
internal effeciency while that of System B
may aim at a better user interface. (Or, as in
the case of our hapless heroes, Stick wanted
to see better, Ricky wanted to make the racer
faster.) Each upgrade might separately

represent an improvement. But considered
from the perspective of the whole, the
aggregate system may not be improved at
all; it might not even be operable. (Truth to
tell, Ricky’s racer, even with mismatched
wheels, could still roll. But it would probably
be slower, not faster, and the driver wouldn’t
see where he was going. While that wouldn’t
bother Ricky all that much, it’s more serious
when it describes how some actual systems
evolve.)

And confl icting evolutionary goals are not
confi ned to huge systems; they can pop up
in small, isolated systems just as easily, and
they can occur whether you’re dealing with
COTS products or custom-written code.

Bottom line: The evolution of any separate
part has to be done with an awareness of
how that evolution affects the integration of
the whole. So if you (or your contractor) are
contemplating an upgrade to a system, you
might aim to explicitly answer such questions
as: What is the goal of this upgrade? How
does it match with upgrades to other systems
with which our system interoperates? Because
if multiple evolutionary goals are at odds, the
integrated working of the whole might well be
destroyed.

38 The Adventures of RICKY & STICK

Fables in Software Acquisition 39

WE’LL WORRY ABOUT THAT
WHEN THE TIME COMES.

Deployment

40 The Adventures of RICKY & STICK

HURRY, STICK,
WE HAVEN’T
GOT ALL DAY!!

 ME TOO, RICKY.
 I WISH WE WERE
 AT THE BEACH! GOSH, STICK,

 I’M DYING IN
 THIS HEAT!

 STICK, LET’S GET GOING. WE’LL
 BLOW UP THE FLOATS WE GOT
 AT THE BEACH LAST SUMMER!

HEY, YOU TWO -- WHY DON’T
YOU COME OVER AND PLAY
IN MY NEW POOL!

GEE, RICK, THIS
IS HARDER THAN
I THOUGHT. (PANT, PANT. . . !)

RICKY, I THINK
I’M GOING TO DIE
DOING THIS...

(PANT, PANT. . . !)
ALMOST THERE,STICK.
JUST THINK OF THAT
FIRST COOL PLUNGE!

C’MON, SILLY,
IT’S NOT TOO COLD.
GET IN AND WE’LL
PRETEND WE’RE
AT THE BEACH.

 I CAN’T WAIT
TO DO MY FIRST
CANNONBALL

MUCH LATER . . .

THANKS,
GLORIA!
THAT WILL
BE GREAT!

Fables in Software Acquisition 41

Chronologically speaking, deployment
of a system comes late in the life cycle.
But knowledge about where the system will
actually be installed and run is needed way
upfront, when the requirements are
being decided.

And it’s painful to observe how often this
kind of experience really occurs—how often
everyone concentrates only on the system
and forgets to think ahead about deployment.
And when that happens, it’s not all that differ-
ent from poor Ricky and Stick, who worked
so hard blowing up their huge fl oats, not real-

izing that the vast Olympic pool they expected
to fi nd was nothing like the dinky wading
pool they eventually found.

Bottom line: Find out early as many grisly
deployment details as you can. Get explicit
answers to such questions as: “Where is the
system going to be deployed? What is the
physical location? What hardware will it run
on? What else will share the operating envi-
ronment?” Such knowledge is no less critical
than any of the other requirements, and
getting this knowledge early can only help.

42 The Adventures of RICKY & STICK

HEY, STICK
WE NEED
A TABLE
UP HERE.

 WE DO?

SEE HOW
NEAT IT IS?

I’LL GET MY
DAD’S LADDER
AND WE’LL HAUL
IT UP TO THE
TREE HOUSE.

ALMOST THERE, STICK.

WHEN WE GET IT TO
THE TOP STEP, WE CAN
JUST LET IT DROP INTO
THE TREE HOUSE!

SURE WE DO.
LOOK, STICK,
THAT OLD
STUMP WILL
BE GREAT!

OKAY, STICK,
LET ‘ER DROP
AND WE’LL
BE ALL SET!

Fables in Software Acquisition 43

It’s all too easy to focus only on the benefi ts
you’ll get from a new system: its hoped-for
functionality, the ROI it will bring, or what-
ever other great things were the selling
points that got the program approved in the
fi rst place.

And this can mean that you ignore thinking
about context, and about whether the deploy-
ment environment is capable of supporting
the new system (in much the same way as
whether a fl imsy tree house can support the

weight of a very heavy stump). If it can’t,
then you may fi nd yourself expending a huge
effort getting the system into place, as did
our heroes, only to come to grief.

Nor is this necessarily a hardware issue; the
moral is no less applicable (in fact is very
applicable!) to a large, complex software
system. Lots of questions are apt: What addi-
tional software resources are needed for sys-
tem deployment? Who has the responsibility
to supply them? How much will deployment

cost? Where are those dollars in the budget?
Will it deploy in stages? and so forth.

The moral is that you and your contrator need
to know explicit details about the deployment
environment—load factors for instance—and
then be sure that the system will operate
properly in that environment. And you need to
know it way upfront: though the deployment
process may be far in the future, deployment
planning should be done at the earlist part of
the project.

44 The Adventures of RICKY & STICK

 FORGET IT
 STICK, WE’RE
 READY TO GO.

HEY STICK, I HAVE A GREAT
IDEA. LET’S OPEN A LEMONADE
STAND AND MAKE SOME BUCKS!

SOUNDS LIKE A
WINNER, RICKY!

OK, STICK, LET’S GET BACK TO THE
KITCHEN AND BRING EVERYTHING OUT.
WE’LL BE RICH IN A COUPLE OF HOURS!

RICKY, WHY DID WE
BUILD THE STAND
SO FAR AWAY FROM
THE KITCHEN?

RICKY, WE
FORGOT
THE ICE!

DARN, STICK.
OK, LET’S GO
GET IT.

(PANT, PANT) OK, STICK, WE’RE FINALLY
SET TO MAKE THE BIG BUCKS.

JUST IN TIME–
HERE COMES
OUR FIRST
CUSTOMER.

HI, GUYS,
I’LL TAKE
A GLASS!

GLASS? OK, BOB,
HERE IT….
 RICKY!
 WHERE ARE
THE GLASSES?”

Fables in Software Acquisition 45

There are dozens of stories about glitches in
deploying software systems: everything from
insuffi cient memory or too-slow hardware to
incompatible disk drives and the glare from
fl uorescent light bulbs. And there really have
been such errors.

Some of these glitches are truly diffi cult to
see in advance, at least until you’ve been
burned once or twice. There are, for instance,
some thorny logistical issues, things like the
length of supply chains, or the time needed
to replenish needed items. You may think, for
instance, that selling lemonade is your real
job; but you can’t sell it without glasses and

ice. And for Ricky and Stick, their task was
made signifi cantly more diffi cult because
of how far they had to run back to get those
glasses and ice, while the lemonade sat in the
sun and poor Bob stayed thirsty.

As with almost any story about deployment,
the culprit is focus, since we all tend to focus
on the system being built, and on its require-
ments, its features, its design. In so doing, it’s
all too easy to neglect many things that are
inherently boring to most software engineers
—a lot of things that software depends on are
not really software things. But someone has
to worry whether the extension cord is long

enough, and someone needs to think about
whether the chairs are too small.

Bottom line: No matter how spiffy the
software is, if the people in the fi eld aren’t
able to use it, it does them no good. What
else is necessary? Have the users been given
all the additional tools they need? Have they
been trained properly? and other similar ques-
tions. As with poor Bob, there may be some
great-looking lemonade right in front of them,
but they’ll be thirsty until the glasses arrive.

46 The Adventures of RICKY & STICK

Fables in Software Acquisition 47

YOU DO IT YOUR WAY,
 AND I’LL DO IT MINE . . .

Business Processes

48 The Adventures of RICKY & STICK

IT’LL BE A LOT NEATER THAN USING THOSE DORKY
OLD BLACK AND WHITE CHECKERS. I’LL TAKE THE
ROOT BEERS AND YOU TAKE THE GRAPES.

HEY STICK, I’VE GOT A
GREAT IDEA! LET’S USE
BOTTLECAPS TO PLAY
CHECKERS WITH.

RICK, THERE
AREN’T ENOUGH
ROOT BEERS
AND GRAPES .
NOW WHAT?

O.K., I’LL TAKE THE ROOT
BEER, ORANGE, AND
CREAM, AND YOU TAKE
THE GRAPE, GINGER
ALE, AND BLACK CHERRY.

NO IT ISN’T!
YOU SAID I
HAVE BLACK
CHERRY!

HEY STICK,
THAT’S MY
MAN!

THIS ISN’T BLACK
CHERRY — IT’S COLA.
THIS ONE SHOULD
BE MY MAN.

YOU NEVER
SAID ANYTHING
ABOUT COLA!
WHY SHOULDN’T
HE BE MY MAN?

 I HATE THIS

GAME!

I HOPE I CAN
 REMEMBER
 ALL THESE.

WHY,
RICKY?

Fables in Software Acquisition 49

It’s usual that the introduction of a new
software system means that the users will be
doing something different from their familiar
tasks. As often as not, the business processes
have been reengineered and improved, and the
end result is that things will change for the
better (or, at least, so everyone hopes). But
every now and then, someone decides to in-
troduce a software system that doesn’t really
change any business processes. All it does is
force the users to learn some very annoying
software steps that don’t improve anything:
the users are doing exactly what they used to
do…but now it’s harder.

When Ricky decided to improvise a new set
of checkers, he paid no heed to what that

implied. He and Stick had played checkers
a million times, and were still playing the
same game this time around; same rules,
same strategy, same everything. But now they
were fi ghting their own tools; they couldn’t
even tell which were their own men, and they
ended up fi ghting with each other. The same
thing can happen with software: a simple task
executed with pencil and paper can become
agony when it needs three screens, forty-three
keystrokes, and a trip to the printer.

There are, on occasion, good reasons to
introduce new software while keeping some
process unchanged. It might be a huge
increase in transaction turnaround time, or
a vital need for consistency with other

operations, or something of that kind. But
whatever the reason, it has to be enough to
offset the inevitable unhappiness of the end
users. More to the point, any conceptual
separation between a process and the software
that implements it is suspect.

So the moral is: If new software comes into
play, it’s probably bogus to think that all it’s
doing is supporting the same old process.

Said in reverse, if you truly must introduce
some new piece of software, ask yourself:
Have I considered what process reengineer-
ing is needed? Have I brought it about? If you
haven’t, it’s worth taking a hard look to fi nd
out why.

50 The Adventures of RICKY & STICK

STICK, I’VE DEVELOPED A SURE-FIRE
IMPROVEMENT IN SNOWBALL WARFARE!
WALLY WILL BE DEAD MEAT!

OK, RICKY,
I HOPE IT
WORKS!

GO AHEAD,
DUMBBELL.

I CAN HARDLY
WAIT!

HERE
RICKY!

STICK,
TOSS ‘EM
HIGHER!

FASTER,
STICK!

HELP, RICKY,
I SLIPPED!

BOY, ARE YOU
TWO DUMB!

I’LL BE THE GUNNER,
AND YOU’LL BE THE
LOADER. YOU TOSS ME
A SNOWBALL, AND AS
I’M FIRING, YOU’RE
GETTING THE NEXT ONE
READY TO TOSS TO ME.

OK, WALLY, PREPARE TO MEET THY
DOOM! THIS IS NEXT GENERATION
SNOWBALL TECHNOLOGY!

Fables in Software Acquisition 51

When a new software system is introduced,
often with a loud public fl ourish, it sometimes
happens that it falls fl at on its face. Usually
it’s just embarrassing, but sometimes it’s quite
dangerous, with the potential for grave effect.
This has led to a widespread belief that a
large percentage of all software is seriously
fl awed, and that the craft of creating computer
programs is unacceptably primitive.

Some of the belief is justifi ed; there’s a lot of
bad software out there. But an equally guilty
partner, one that usually hides far from public
scrutiny, may be that the folks responsible
for introducing the new system didn’t pay
any real attention to the training of the new

system’s users. Those users likely needed
signifi cant practice with the changed and
reengineered business processes the new
system demands, and with that training,
the system might otherwise have been a
triumphant success.

Now, Ricky may have been on to something
with his new mode of snowball warfare. But
he and Stick didn’t bother to practice it, so
they were total doofuses to try out such a
radically different system when they were in
mortal combat with Wally. (Who knows - the
whole future of the Ricky-Wally War might
have been different.) For any manager whose
responsibility involves bringing a system to

IOC, the task of bringing its users to IOC is
of equal importance.

Moral: it’s worth looking carefully at how
training appears in the project plans. If the
training appears to be an afterthought, it’s
probably not enough. If the training is being
squeezed by the schedule, the schedule needs
to be changed. And if the training isn’t even
on the radar screen, then you’d be wise to buy
a bus ticket and get out of town. Wally’s got
some nasty-looking snowballs, and he’s right
behind you.

52 The Adventures of RICKY & STICK

HEY GUYS, WANT TO
GO FISHING WITH ME? OK, GUYS, EACH OF YOU

PICK OUT A ROD, AND HEAD
OVER TO THE POND. I’LL BE
THERE IN A FEW MINUTES.

DO YOU THINK
YOU CAN HANDLE
THAT ONE, RICKY?
IT’S PRETTY BIG.

NOT TO
WORRY STICK.
I’M A PRO!

C’MON STICK,
LET’S GET STARTED.
WATCH THIS!

SHOULDN’T WE
WAIT FOR BOB? STICK,

I SLIPPED!!

RICKY, WE’RE
FALLING INTO
THE WATER!!!

LISTEN, RICKY:
DON’T PICK OUT
A ROD JUST
BECAUSE IT’S
THE BIGGEST
ONE. YOU WANT
A ROD THAT
SUITS YOU!

SURE, BOB!

Fables in Software Acquisition 53

Tools, whether fi shing rods or software sys-
tems, should be appropriate to both their in-
tended use and their intended users. But often,
there’s a mismatch somewhere along the line.
Sometimes, what the users want isn’t what
they really need. And sometimes, regardless
of what they want, what they need is far from
what they get.

Ricky’s tumble into the drink came from this
kind of mismatch. He was dazzled by big-
ger!, and paid no attention to the fact that the
huge rod was far beyond his size and strength.
Sometimes, organizations are equally dazzled
by other things—newer! fancier! better!
cheaper! faster!—all of which are equally
seductive and equally dangerous.

No one can doubt the DoD’s need for the
fi nest software systems possible, a need

that will continue for the foreseeable future.
But resources are fi nite, and they have been
squandered too often, usually because realism
somehow gets misplaced, just as happened
to Ricky. So questions like the following are
apt, and should be asked as early as possible:
Are these the capabilities that we really need?
Or is our true need somewhere else? What
precisely will happen if we don’t get this
new system? If the acquisition is complex, or
expensive, or controversial, does the system’s
potential benefi t outweigh the risks should the
acquisition fail? Is it imperative to take a large
leap forward, or can there be several small
steps? And are we trying to use a fi shing rod
that we have no business using?

When posing these questions, you will run
the danger of “acting negative,” or “being ob-
structionist,” or “not thinking out of the box,”

or some equally vacuous accusation. Keep the
faith, friend. In response, you can point to a
depressingly large number of failed software
programs over the past two decades. Surely,
totaling the cost of those wasted programs
should be answer enough.

54 The Adventures of RICKY & STICK

ONE DAY, AS SUMMER WAS COMING TO AN END,
RICKY TOLD HIS MOM HOW MUCH HE WAS DREAD-
ING THE START OF SCHOOL. “I HATE THOSE DUMB
TESTS, AND THOSE DUMB ASSIGNMENTS. WHEN
THE SUMMER STARTED, I THOUGHT I WAS FINALLY
FREE, AND NOW IT’S ALL STARTING AGAIN!” HE WAS
NEAR TEARS.

HIS MOM WAS UNDERSTANDING, BUT REMINDED
RICKY, “SURE, HONEY. SUMMER WAS A FUN TIME.
BUT DON’T FORGET, SUMMERS ARE ALWAYS TOO
SHORT, AND AUTUMN ALWAYS COMES, AND THEN
YOU ALWAYS GO BACK TO SCHOOL. AND SCHOOL
ALWAYS MEANS YOU’LL HAVE NEW TEACHERS, WITH
NEW THINGS TO LEARN, AND TESTS AND ASSIGN-
MENTS FOR YOU TO DO.”

THIS WAS THE FIRST TIME THAT RICKY HAD EVER
CONSCIOUSLY PAID ATTENTION TO THE IDEA OF PER-
PETUALLY GOING INTO NEW GRADES. HE KNEW, OF
COURSE, THAT THERE WERE OLDER KIDS IN HIGHER
GRADES. BUT HE HAD NEVER QUITE THOUGHT
ABOUT SCHOOL IN THIS NEVER-ENDING WAY.

SUDDENLY, HE GOT A HORRIBLE VISION OF
THE REST OF HIS LIFE FILLED WITH NEW SCHOOL
YEARS, HATEFUL ASSIGNMENTS AND TESTS, AND
TEACHERS NAGGING HIM TO LEARN EVER-HARD-
ER SUBJECTS. HE WAS BEGINNING TO UNDER-
STAND THAT A NEW TERM WOULD NEVER BE
A ONCE-ONLY EVENT TO BE GOTTEN THROUGH,
BUT PART OF A LARGER, ONGOING PROCESS.
THE PROSPECT FILLED HIM WITH A GREAT DREAD.

AFTER RICKY HAD GONE TO BED (UNUSUALLY,
BEFORE BEING TOLD TO), HIS DAD ASKED HIS
MOM, “WHAT’S WRONG WITH HIM?” SHE SMILED.
“DON’T WORRY,” HIS MOM SAID, “HE’S JUST
BEGUN TO PUT IT ALL TOGETHER — REALIZING
THAT HE’LL ALWAYS BE MOVING INTO ANOTHER
GRADE, WITH UNFAMILIAR TEACHERS, AND NEW
SUBJECTS. HE DOESN’T WANT IT TO BE TRUE,
POOR KID; HE WANTS TIME TO STOP AND FOR
THINGS TO STAY JUST THE WAY THEY ARE NOW.
BUT HE’S STARTING TO UNDERSTAND THAT
HE DOESN’T HAVE MUCH CHOICE IN THE
MATTER…”

ONE FINAL THOUGHT . . .

Fables in Software Acquisition 55

Owners of modern software systems,
particularly information systems, are
increasingly aware that the stability of their
systems is constantly being undermined.
Familiar tools disappear, new ones appear,
Web services evolve, commercial products
are updated, users demand new capabilities,
and so forth. And the pace of this instabil-
ity is only increasing. It’s normal to fi nd this
unsettling, and to try to nail down islands of
stability that last while the rest of the world
changes around you. But that strategy will
only work for a little while—about as long
as the endless summer that Ricky thought he
had fi nally found.

The real solution, diffi cult as it may be, is
to embrace the march of technology and to
make it work for you; to accept that change
really will be never-ending. This means devel-
oping a strategy that somehow encompasses
and expects the inevitable earthquakes to your
system, and makes them opportunities for
improvement and growth.

56 The Adventures of RICKY & STICK

Epilogue

And so we come to the end of the adventures
of Ricky and Stick. We began by calling these
stories “fables,” and the term is apt, since
each story is intended to demonstrate some
moral or useful principle. Thus, in each epi-
sode, we’ve suggested a few ways that
the story might be applicable to problems in
the real (and, sadly, no less hazardous!) world
of software acquisition. We truly hope that, in
addition to provoking a smile or two,
some of these tales will resonate with readers
who are really grappling with the situations
that are only fi ctional here.

In the great fables of antiquity, their morals
were generally stated as clear, easily-remem-
bered mottoes, such as “One man’s pain is
another man’s pleasure,” or “Necessity is the
mother of invention.” Unfortunately—from
this author’s viewpoint at least—these well-
turned phrases are remarkably diffi cult to
come up with. (I suspect that old Aesop may
have had a couple of Madison Ave. types
helping him out.) But since I wish to place the
overall set of “morals” in some sort of relief,
I herewith append a thumbnail list of them.

That the morals are largely self-evident is
obvious. That they often require restating is
painfully true.

So to recap, the Morals Of Our Stories are:

It’s really good to test before fi elding. (p.9)

It’s usually wiser to let a model model
something real (p.11)

IV&V is, by and large, a good thing. (p.13)

Using the “seems OK to me” rule is often
a recipe for disaster. (p.17)

Metrics aren’t second-class citizens. (p.19)

Counting the right things is better than
counting the wrong things. (p.21)

It can’t hurt to rethink the requirements
every now and then. (p.25)

A grab bag of “want-to-have’s” doesn’t make
a requirements set. (p.27)

“Nailing down the requirements early” isn’t
necessarily a good idea. (p.29)

Interoperation doesn’t happen just because
everyone wants it to. (p.33)

Interoperation fails if someone ignores the
assumptions held by everyone else. (p.35)

If separate systems evolve, somebody needs
to keep an eye on preserving their inter-
operation. (p.37)

Knowing where a system will be deployed
is as important as knowing what the system
does. (p.41)

Planning for deployment generally needs to
come as early in the life cycle as other system
requirements. (p.43)

Deploying the software usually means deploy-
ing a lot more than the software. (p.45)

Big software change almost always means
big change to the business process. (p.49)

Any new business process means some—and
often a lot—of new training. (p.51)

The biggest (or most expensive, or most
feature-laden) system is not necessarily
what is needed. (p.53)

Continunual change is inevitable. This is
true whether we wish it or not. (p.55)

Fables in Software Acquisition 57

Afterword

Writing this little book has been a genuinely
pleasurable experience. David and I found
the collaboration enlightening on several
levels, not least of which was how well the
little comic stories we devised had genuine
bearing on topics that are really quite serious
and important. And we feel that there’s a lot
more that could be said. We’re therefore very
interested in hearing from any readers who
can suggest comparable situations, topics,
stories, scenarios, whatever. If you can help
us concoct a few more of these little fables,
we’ll defi nitely fi nd a way to make them see
the light of day. (djc@sei.cmu.edu)

Acknowledgements

A great many friends made signifi cant contri-
butions to this endeavor. Lisa Masciantonio
and Al Evans found ways to bridge the gap
between having a lot of fun and working on a
real project. Tricia O., Fast Eddie, Denny D.,
and Big Bad John were particularly helpful
and gave welcome encouragement. Claire D.
corrected sloppy grammar and removed illogi-
cal and inconsistent wording. Slim Hissam
kept me on the straight and narrow all through
the early days, when I nearly fell into several
traps; it’s really due to him that Ricky and
Stick came alive. And more than any words
of thanks can convey, Bob Fantazier came
up with unbelievable solutions to convert a
large number of text fi les, drawings, designs,
random ideas, and last-minute demands into a
hugely attractive book. To all of these friends,
David and I would like to say “Hey Stick, you
know what? We should write a book…”

58 The Adventures of RICKY & STICK

For More Information, contact—

David J. Carney

Phone

412.268.6525

Email

djc@sei.cmu.edu

