

REV-03.18.2016.0

Challenge Development Guidelines for
Cybersecurity Competitions

Jarrett Booz
Leena Arora
Joseph Vessella
Matt Kaar
Dennis Allen
Josh Hammerstein

October 2022

TECHNICAL REPORT
CMU/SEI-2022-TR-005
DOI: 10.1184/R1/19597357

CERT Division

[Distribution Statement A] Approved for public release and unlimited distribution.

http://www.sei.cmu.edu

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution.

Copyright 2022 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be con-
strued as an official Government position, policy, or decision, unless designated by other documentation.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom AFB, MA
01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribu-
tion. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for in-
ternal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon Uni-
versity.

DM22-0928

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i
[Distribution Statement A] Approved for public release and unlimited distribution.

Table of Contents

Abstract iv

1 Introduction 1

2 Background 2
2.1 Cybersecurity Competitions and Challenges 2
2.2 Targeting Applicable Skills 2

3 Challenge Planning 3
3.1 Challenge Difficulty 3
3.2 Challenge Points 3
3.3 Challenge Tooling 4

4 Challenge Development 5
4.1 Pre-Development 5
4.2 Challenge Development 5
4.3 Best Practices for Developing Challenges 6
4.4 Challenge Grading 6

4.4.1 Token Discovery 7
4.4.2 Question-and-Answer Problems 8
4.4.3 Environment Verification 9

4.5 Challenge Variation 12
4.5.1 Token-Based Variation 12
4.5.2 Question-and-Answer Variation 13

4.6 Challenge Documentation 15
4.6.1 Challenge Guide 15
4.6.2 Best Practices for Writing Challenge Guides 16
4.6.3 Solution Guide 16

4.7 Challenge Testing and Review 16
4.7.1 Quality Assurance Testing 16
4.7.2 Challenge Review 17

5 Open Source Applications 19
5.1 TopoMojo 19
5.2 Gameboard 19

6 Conclusion 21

Appendix A Example Challenge Guide 22

Appendix B Example Solution Guide 24

References 27

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii
[Distribution Statement A] Approved for public release and unlimited distribution.

List of Figures

Figure 1: Token-Discovery Grading 7

Figure 2: Question-and-Answer Grading 9

Figure 3: Environment-Verification Grading 10

Figure 4: Example Grading Script Workflow 10

Figure 5: Example Grading Checks 11

Figure 6: Randomly Generated Token Workflow 12

Figure 7: Randomly Generated Question-and-Answer Workflow 13

Figure 8: Random Variant Deployment Workflow 14

Figure 9: Wireshark Statistics Showing Randomly Generated PCAP 14

Figure 10: TopoMojo, Gameboard, and User Interaction 20

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii
[Distribution Statement A] Approved for public release and unlimited distribution.

List of Tables

Table 1: Solution Time Estimate, Difficulty, and Point Allotment for Three Example Challenges 18

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv
[Distribution Statement A] Approved for public release and unlimited distribution.

Abstract

Cybersecurity competitions provide a way for participants to learn and develop hands-on tech-
nical skills, and they serve to identify and reward talented cybersecurity practitioners. They also
form part of a larger, multifaceted effort for ensuring the nation has a highly skilled cybersecurity
workforce to secure its critical infrastructure systems and to defend against cyber attacks. To help
support these efforts of cultivating the skills of cybersecurity practitioners and of building a work-
force to safeguard the nation, this paper draws on the Software Engineering Institute’s (SEI) expe-
rience developing cybersecurity challenges for the President’s Cup Cybersecurity Competition
and provides general-purpose guidelines and best practices for developing effective cybersecurity
challenges.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
[Distribution Statement A] Approved for public release and unlimited distribution.

1 Introduction

Cybersecurity competitions provide a way for participants to learn and develop hands-on tech-
nical skills, and they serve to identify and reward talented cybersecurity practitioners. In addition,
cybersecurity competitions form part of a larger, multifaceted effort for ensuring the nation has a
highly skilled cybersecurity workforce to secure its critical infrastructure systems and to defend
against cyber attacks.

Recently, the United States government highlighted a need for the development of cybersecurity
practitioners—a need that cybersecurity competitions can help meet. For example, the Department
of Homeland Security (DHS) identified the need to encourage hands-on learning through cyberse-
curity competitions to address a shortage of skilled cyber defenders [DHS 2021]. Furthermore, in
2019’s Executive Order 13870, the president of the United States addressed the need to identify,
challenge, and reward the United States government’s best cybersecurity practitioners and teams
across offensive and defensive cybersecurity disciplines [POTUS 2019]. Well-developed cyberse-
curity competitions offer a way for government organizations to fulfill that order.

In response to the United States government’s call for a federal cybersecurity competition, the
Software Engineering Institute (SEI) has been working with the DHS Cybersecurity & Infrastruc-
ture Security Agency (CISA) to bring unique cybersecurity challenges to the federal cyber work-
force. The SEI has delivered those challenges through an innovative platform as part of the Presi-
dent’s Cup Cybersecurity Competition.

This paper draws on the SEI’s experience developing cybersecurity challenges for the President’s
Cup Cybersecurity Competition and builds on lessons learned from years of delivering cybersecu-
rity exercises for the Department of Defense. It provides general-purpose guidelines and best
practices for developing effective challenges and addresses the process for planning, developing,
and grading cybersecurity challenges; injecting variability into challenges; minimizing cheating
and maximizing reusability; testing and reviewing challenges; and, finally, utilizing open source
tools to develop challenges and to run cybersecurity competitions.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[Distribution Statement A] Approved for public release and unlimited distribution.

2 Background

2.1 Cybersecurity Competitions and Challenges

Cybersecurity competitions are exercises geared toward students and professionals in the cyberse-
curity field. These exercises aim to assess cybersecurity skills, reward experts in the field, and en-
courage all who participate to learn through hands-on experiences [DHS 2021].

Cybersecurity challenges are the heart of cybersecurity competitions. The challenges provide the
hands-on tasks competitors perform as part of the competition. Cybersecurity challenges can take
several forms and can involve different activities or responses, such as performing actions on one
or many virtual machines (VM), analyzing various types of files or data, writing code, or any
other task that cybersecurity professionals may do as part of their job. A single cybersecurity
competition might be comprised of several different challenges.

2.2 Targeting Applicable Skills

The goal of cybersecurity challenges is to teach or assess cybersecurity skills through hands-on
exercises. With this goal in mind, it is important to design challenges that target skills that are ap-
plicable to the cybersecurity workforce.

When building challenges, developers select mission-critical work roles and tasks from the Na-
tional Initiative for Cybersecurity Education Workforce Framework for Cybersecurity (NICE
Framework) [NICCS 2021, Peterson 2020]— a document published by the National Institute of
Standards in Technology (NIST) and the National Initiative for Cybersecurity Careers and Studies
(NICCS). The NICE Framework serves as the standard for categorizing federal cybersecurity
work roles and skills. It defines 52 work roles with detailed information about the specific
knowledge, skills, and abilities (KSAs) required to perform tasks in each one. For example, the
Cyber Defense Analyst work role contains tasks such as “Perform cyber defense trend analysis
and reporting,” and other associated KSAs [NICCS 2022].

Using the NICE Framework helps developers focus challenges on critical, in-use skills that best
represent the cybersecurity workforce. Each challenge clearly states which NICE work role and
tasks it targets. By identifying the knowledge and skills each challenge targets, competitors can
easily focus on challenges that address their strengths during the competition and can isolate
learning opportunities when using challenges for training.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[Distribution Statement A] Approved for public release and unlimited distribution.

3 Challenge Planning

Creating successful cybersecurity challenges begins with a comprehensive planning process that
involves determining the level of difficulty for each challenge, assessing how many points to
award for each challenge, and identifying the tools that are required to solve the challenges.

3.1 Challenge Difficulty

Challenge difficulty is determined by the competition’s target audience and the participants’ an-
ticipated skill level. Competition organizers want participants to feel engaged and challenged dur-
ing the competition, which means that challenges cannot be too easy or too hard. Challenges that
are too easy will make more advanced participants lose interest, and challenges that are too hard
will frustrate competitors. Competitions with participants that have a wide range of skills and ex-
perience should include challenges that are suitable for all levels—beginner, intermediate, and ad-
vanced.

A single challenge can include a range of difficulties associated with different tasks. Developing
challenges with multiple parts is a good strategy to incorporate multiple skill levels in a single
challenge. A challenge with multiple parts allows competitors to earn credit for each part as they
complete the challenge—rewarding them for progress that has been made.

In contrast, difficult challenges without multiple parts can lead to competitor frustration. Specifi-
cally, competitors have a hard time gauging their progress and seeing value for the time they in-
vested on the challenge if there is only a single reward for their effort when the challenge is com-
plete.

3.2 Challenge Points

Points, or the reward granted for successfully solving a challenge, are an important aspect of cy-
bersecurity competitions. Points reward competitors for the time and effort they spend solving
each challenge. Moreover, competition organizers can use points to determine competitor place-
ment—competitors with higher scores can advance to future rounds, and organizers can recognize
those with the highest points as winners.

The points awarded for solving a challenge, or a part of a challenge, should be commensurate
with the difficulty of the challenge and the amount of effort it takes to solve. Beginner-level chal-
lenges, or tasks that assess entry-level skills or take a short amount of time to solve, should be
worth fewer points than advanced-level challenges, or tasks that assess expert-level skills and take
a significant amount of time to solve.

Furthermore, determining the number of points that a challenge, or a challenge part, is worth, and
how those points should be distributed between the challenge parts, can be a subjective process.
More detail about determining how many points to assign a challenge appears in the Challenge
Testing and Review section below.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[Distribution Statement A] Approved for public release and unlimited distribution.

3.3 Challenge Tooling

Identifying the tools that are required to solve a challenge is an important step of the development
process for two reasons. First, it ensures that challenge developers install all required or helpful
tools for solving a challenge inside the challenge environment. Second, it is good practice to pro-
vide competitors with a list of the tools available in the challenge environment. Making such a list
available is important for competitions where organizers provide competitors with the analysis en-
vironment so that the competitors are fully aware of all the tools available to them.

Additionally, developers should build challenges that do not require the use of paid or licensed
software to be solved. Leveraging open source or free tools, applications, and operating systems is
vital because some competitors might not have access to certain software licenses, which would
put them at a disadvantage in the competition or even prevent them from completing the challenge
altogether.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[Distribution Statement A] Approved for public release and unlimited distribution.

4 Challenge Development

Creating cybersecurity challenges is both a technical and a creative undertaking. Developers need
to be well-versed in cybersecurity subject matter and devise innovative ways to test the skills of
the competitors. Challenge development involves identifying the skills a challenge will target and
the scenario it will simulate; developing the technical aspects of the challenge; implementing a
grading mechanism that is automated and auditable; incorporating variability into challenge de-
ployments; and writing supporting documentation for both internal challenge testers and competi-
tors.

4.1 Pre-Development

Before creating the technical portions of a challenge, developers should begin by identifying the
work roles and skills their challenge aims to assess, as described in the Targeting Applicable
Skills section above. By identifying the targeted work roles early in the development process, de-
velopers can build more precise challenges and avoid including tasks that do not assess applicable
skills or that test too wide an array of skills. Challenges that assess a targeted range of skills are
better than challenges that assess too many unrelated skills. Once developers define the work role
for a challenge, they can move forward with forming a challenge idea.

The challenge idea includes the technical tasks that competitors will complete and the location
where the events of the challenge scenario take place. The technical tasks that comprise the chal-
lenge can be unique to it, can be modifications of a previous challenge, or can be replications or
simulations of a real-world cybersecurity event. All challenge tasks should resemble the kind that
professionals complete as part of their job. If developers borrow or reuse the technical compo-
nents of a previous challenge, they must make modifications that uniquely distinguish the new
challenge from the original. Such modifications are critical to ensure that competitors who com-
pleted the original challenge do not recognize the new one in a way that might give them an unfair
advantage for completing it.

At a minimum, challenges should include a scenario that describes the VMs included in the chal-
lenge and the tasks the competitor must complete. It is important for competitors to clearly under-
stand the operating environment and the tasks at hand so they can focus their time and energy on
solving the technical problem in the challenge. Some challenges include a detailed creative sce-
nario that places competitors in real-world roles, such as an IT specialist, incident responder, pen-
etration tester, or others. Developers are free to be as creative as they wish when building the sce-
nario. Topical challenges based on real-world cybersecurity events offer another way to add
unique and creative scenarios to challenges.

4.2 Challenge Development

Developers begin creating the technical aspects of the challenge only after they have identified the
skill it will target and the scenario it will simulate.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[Distribution Statement A] Approved for public release and unlimited distribution.

The technical components of challenge development generally involve VM, network, and service
configuration. The configuration developers implement as part of challenge development ensures
that the challenge environment deploys correctly when competitors attempt the challenge.

Challenge development might include configuring VMs or services to incorporate known vulnera-
bilities; configuring routers, firewalls, services, etc., to the state developers want; staging attack
artifacts or evidence throughout networks or logs; and other actions that prepare the environment
for the challenge. Additionally, challenge developers can purposefully misconfigure aspects of the
environment if the challenge targets skills in finding and fixing misconfigurations.

4.3 Best Practices for Developing Challenges

Because each challenge targets different skills, there is no standard process for developing a cy-
bersecurity challenge. However, developers should follow these best practices:

• Ensure that the technical skills assessed by the challenge are applicable in the real world.
• Ensure that the tools required to solve the challenge are free to use and available to the com-

petitors.
• Make a list of the tools that are available in the hosted environment available to competitors.
• Ensure that challenges do not force competitors down a single solution path. Competitors

should be able to solve challenges in any realistic manner.
• Remove unnecessary hints or shortcuts from the challenge, including removing command

history, clearing browsing data, and removing other data that could give hints or give com-
petitors a shortcut to solving the challenge.

4.4 Challenge Grading

Grading, or how developers determine competitors’ success in a challenge, is vital to providing a
fair, consistent, and enjoyable experience for challenge competitors. In general, developers should
automate grading through an authoritative server that is responsible for receiving answer submis-
sions from the competitors and determining how many points to award for each submission.

Submissions for all challenges should be automatically reviewed to ensure competitors have sub-
mitted the correct answer. The submission system should generally ignore differences in capitali-
zation, white space, special characters, and other variations that are ultimately irrelevant with re-
spect to whether the submission is right or wrong. For example, if a challenge requires the
submission of a file path, the system should allow competitors to enter either “/” or “\” as path
separators without impacting answer correctness. Ignoring such formatting inconsistencies en-
sures that developers build a system that does not penalize competitors for submitting items with
variations that do not fundamentally change the correctness of their answer.

Ignoring variations when grading submissions might seem contradictory to assessments or opera-
tional readiness evaluations where exact precision is required. However, cybersecurity competi-
tions have goals and considerations beyond evaluating operational proficiency, such as ensuring a
fair competition and encouraging broad participation. As a result, it is better to provide some flex-
ibility with the grading—so long as the answer is fundamentally correct—rather than penalizing
competitors based on a technicality with the formatting.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[Distribution Statement A] Approved for public release and unlimited distribution.

The system can grade challenges using several different methods, such as token discovery, ques-
tion-and-answer problems, or environment verification. The sections that follow discuss these
methods.

4.4.1 Token Discovery

In token-discovery grading, competitors must find a string or token that follows a defined format
(these tokens can also be called “flags”). Developers can place the token in any part of the chal-
lenge where the competitor will find it by completing the challenge tasks.

Example of Token Discovery

A challenge requires competitors to access a website on a non-standard port or protocol. Once
competitors navigate to the website, they can download a file that contains the 32-character sub-
mission token, as shown in Figure 1 below.

Figure 1: Token-Discovery Grading

Here are some best practices for using token-discovery grading:

• The format of the token should be well defined and easy to type or copy and paste (e.g.,
known-length hexadecimal strings). Clear formatting ensures that it will be obvious to com-
petitors when they have found the correct token, and it will be easy for competitors to submit
it.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
[Distribution Statement A] Approved for public release and unlimited distribution.

• Challenges should not contain incorrect strings that match the submission format (i.e., false
flags). False flags can lead to frustration because competitors do not know whether they have
found the correct token, or whether they have found an incorrect token that meets the ex-
pected criteria.

The following challenges are good use cases for token discovery grading:

• challenges where finding a file proves that the competitor completed the required tasks
• challenges where finding a string in network traffic, files, or other data sources proves that

the competitor completed the required tasks

4.4.2 Question-and-Answer Problems

With question-and-answer problems, the competitor must find the correct answer to one or more
questions by performing challenge tasks. The answers to the challenge questions can take several
forms, such as entering file paths, IP addresses, hostnames, usernames, or other fields and formats
that are clearly defined.

Example of a Question-and-Answer Problem

A challenge requires competitors to respond to an attack on a domain controller. The attackers
have used the popular Golden Ticket attack to forge a Kerberos ticket that gives arbitrary users
access to domain resources. The challenge asks the competitor to provide the username that the
attacker is using with the Golden Ticket.

The question states, “Provide the username of the user utilizing the golden ticket (i.e., Firstname.Last-
name).”

The competitor searches the system event log for evidence of Golden Ticket use and discovers the
username “Alexander.Hamilton” as the answer to the challenge question, as shown in Figure 2.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 2: Question-and-Answer Grading

Here are some best practices for question-and-answer grading:

• The questions the challenge asks should be specific, such that there is only one correct an-
swer.

• The format of the expected submission should be clearly defined and accompanied by an ex-
ample so competitors know how to submit their answer.

A good use case for question-and-answer problems are challenges where providing a hostname,
username, IP address, file path, or other unique, identifying piece of information proves that the
competitor completed the required tasks.

4.4.3 Environment Verification

In environment verification grading, the system grades competitors based on changes they make
to the challenge environment. Challenges can task competitors with fixing a misconfiguration,
mitigating a vulnerability, attacking a service, or any other activity where success can be meas-
ured dynamically. Developers can use an authoritative grading system or service colocated within
the competitor’s challenge environment to assess the state of the environment and verify that
competitors have made all required changes. The grading system will run a program or script that
uses remote access tools (e.g., SSH, PsExec, etc.) or performs an action over the network to verify
that the competitor has completed the required tasks. When the grading system verifies changes to
the environment state, it provides competitors with a success token.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[Distribution Statement A] Approved for public release and unlimited distribution.

Example of Environment Verification

A challenge requires competitors to mitigate a malware infection. The competitors must stop the
malicious process from running (Grading Check 1) and remove the malicious file from the file
system (Grading Check 2).

To check their progress and receive success tokens for each grading check, competitors visit the
in-game grading website. Figure 3 below shows the landing page for the grading site.

Figure 3: Environment-Verification Grading

When they navigate to the in-game grading website, competitors can click the “Grade Challenge”
button to initiate the grading script. The grading script accesses the infected system remotely and
follows the workflow shown in Figure 4.

Figure 4: Example Grading Script Workflow

After the script executes, the grading server displays the results and success tokens to the compet-
itor, as shown in Figure 5.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 5: Example Grading Checks

Competitors can continue altering the challenge VMs until they perform the actions required to
pass Grading Check 2.

Competitors can submit the success token manually or the grading system can submit the token on
the competitor’s behalf for automatic scoring updates. Success tokens in environment-verification
grading are similar to those in token-discovery grading. However, with environment verification,
competitors do not have to discover the token. Instead, the system provides them with the token
when their environment meets the success conditions.

Here are some best practices for environment-verification grading:

• The challenge should tell competitors which parts of the environment the system is as-
sessing. The challenge should clearly define all grading requirements and success conditions.

• The grading system should provide feedback to competitors. Doing so informs them that
grading has occurred so that they are aware that the grading system is functioning correctly.
In addition, providing feedback about failed verification checks gives competitors guidance
to understand their mistakes and where to look when adjusting their environment for subse-
quent grading tasks.

• Developers should engineer grading scripts to withstand failure and to implement detailed
logging. Grading scripts should handle programming exceptions in a way that prevents unex-
pected failure, and they should also log all actions and their results so that challenge organiz-
ers can quickly address issues and competitor questions by viewing log output.

Good use cases for environment-verification grading include the following:

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[Distribution Statement A] Approved for public release and unlimited distribution.

• challenges where competitors must configure network devices, hosts, services, etc., in a way
that the system can verify dynamically to determine whether the competitor completed the
required tasks

• challenges where competitors must create a condition (e.g., establish a network connection,
create a file, create a user, etc.) that the system can dynamically verify to determine whether
the competitor completed the required tasks

4.5 Challenge Variation

Including some level of variation between different deployments of a challenge allows there to be
different correct answers for the same challenge, which is important for two reasons. First, it helps
promote a fair competition by discouraging competitors from sharing answers. Having different
answers for each user in the same challenge mitigates the risk of competitors sharing challenge
answers and earning points for a challenge that they did not solve themselves. Second, it allows
competition organizers to reuse challenges without losing educational value. Challenges that can
be completed numerous times without resulting in the same answer enable competitors to learn
and hone their skills through repeated practice of the same challenge.

There are several ways developers can introduce variation into challenges depending on the type
of grading that they use. The sections below explain different approaches for introducing varia-
tion.

4.5.1 Token-Based Variation

Challenges using token-discovery or environment-verification grading can randomly generate
unique tokens for each competitor when the challenge is deployed. Developers can insert dynami-
cally generated submission tokens into the challenge environment (e.g., inserting guestinfo varia-
bles into VMs), and they can copy them to the locations where they expect competitors to receive
the challenge answers.

Example of Token-Based Variation

A challenge requires competitors to exploit a service. Once they acquire access to the remote ser-
vice, competitors will find a file called token.txt.

When competitors launch the challenge, the system generates random tokens and passes them into
the target VM. The target VM has a script that writes the generated token into the token.txt file.
Figure 6 below outlines this process.

Figure 6: Randomly Generated Token Workflow

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
[Distribution Statement A] Approved for public release and unlimited distribution.

4.5.2 Question-and-Answer Variation

In question-and-answer challenges, developers can introduce variation by configuring different
answers to the same questions or by asking different questions. The sections below address differ-
ent ways to do so.

Question-and-Answer Variation Using Initialization Scripts

To create different answers to the same questions, the challenge can use an initialization script to
configure the VMs differently based on the challenge parameters.

Example of Question-and-Answer Variation Using Initialization Scripts

A challenge requires competitors to examine a VM that has been infected with malware. Develop-
ers can build the challenge using an initialization script that changes the name of the malicious
file. The challenge asks all competitors the same question about the malicious file name, but the
answers will be different due to the fact that the initialization script will change the file name. Fig-
ure 7 below outlines this process.

Figure 7: Randomly Generated Question-and-Answer Workflow

Question-and-Answer Variation Using Challenge Variants

When dynamic configuration of a challenge via an initialization script is not possible, developers
can create several versions of a challenge, which get randomly deployed to competitors. Develop-
ers preconfigure VMs for different challenge variants to have different correct answers to the
challenge questions.

Example of Question-and-Answer Variation Using Challenge Variants

A challenge requires competitors to respond to an attack. The challenge question asks competitors
to identify the subnet that the attacker is sending malware from. This challenge has four vari-
ants—developers configure the variants such that the attacker is using a different subnet in each
one.

When competitors launch the challenge, a random variant is deployed. The answers that competi-
tors find correspond to the variant deployed for their challenge. Figure 8 below outlines this pro-
cess.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 8: Random Variant Deployment Workflow

Question-and-Answer Variation Using Different Questions

Alternatively, asking different questions about the same environment is a way to introduce varia-
tion into a challenge without any additional development (e.g., initialization scripts or variant-spe-
cific VMs). To ensure fairness, it is vital that the different question sets are equally difficult and
time consuming to solve.

Example of Question-and-Answer Variation Using Different Questions

A challenge requires competitors to examine a packet capture file (PCAP). All competitors are
given the same PCAP file. To introduce variation, competitors are asked different questions about
the PCAP.

The system randomly chooses the question each competitor answers from the following set of
four questions:

1. Which IP address sent the most packets?
2. Which IP address received the most packets?
3. Which IP address sent the most bytes?
4. Which IP address received the most bytes?

Each of these questions are equal in their difficulty and in the amount of time they take to solve
because competitors can answer all of them by looking at the endpoint statistics menu in
Wireshark, shown in Figure 9 below.

Figure 9: Wireshark Statistics Showing Randomly Generated PCAP

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[Distribution Statement A] Approved for public release and unlimited distribution.

4.6 Challenge Documentation

As part of developing a challenge, developers must write supporting documentation. The chal-
lenge guide and the solution guide are two pieces of critical documentation that allow developers
to test the challenge and competitors to solve it.

4.6.1 Challenge Guide

The challenge guide is the document that accompanies the challenge in the gameboard environ-
ment. It is visible to the competitors at the time they begin the challenge. The challenge guide pro-
vides a short description of the challenge, the skills and tasks the challenge assesses, the scenario
and any background information that is required to understand the environment, machine creden-
tials, and the submission area or areas.

Example of Challenge Guide Documentation

This section provides only a high-level outline of the sections contained in a sample challenge
guide and the information developers should include in each section. A discussion of each section
of the challenge guide follows the short outline.

Introduction

• brief challenge description
• list of assessed skills and tasks

Background

• short, one-to-three sentence introduction to the scenario and context of the challenge

Getting Started

• description of how the competitors should get started
• explanation of what competitors need to accomplish within the challenge
• explanations of any other critical information and instructions

Credentials

• a table with a row dedicated to each VM or service and the corresponding username and
password to access them

Submission

• descriptions of the type of grading that the challenge uses
• list of submission area or areas with example submissions to clarify the information competi-

tors must submit

The short description and the list of skills assessed by the challenge give competitors context
about the challenge before they attempt to solve it.

The challenge scenario and background information give competitors a clear call to action for the
challenge. Understanding the scenario, the required tasks, and where to begin is vital for success.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[Distribution Statement A] Approved for public release and unlimited distribution.

If competitors do not know what they must do or do not have a valid starting point, the challenge
may be unsolvable. Including all credentials as part of the challenge documentation is required to
ensure competitors can access all VMs, tools, etc., that are part of the challenge.

Finally, the guide includes the submission area to reinforce the challenge tasks and to provide a
location for competitors to submit their answers.

4.6.2 Best Practices for Writing Challenge Guides

The following are best practices for writing a challenge guide:

• The challenge document should describe the scenario in a way that competitors can easily
follow and understand. Competitors may not know how to begin solving a challenge if the
document is unclear.

• The challenge scenario and background information should avoid logical leaps. Leaps in
logic make the scenario hard to understand for competitors who do not immediately connect
the dots the way the author intended.

• The challenge difficulty should not hinge on logical leaps or on information intentionally left
out of the guide.

Appendix A provides an example challenge guide from a 2021 President’s Cup challenge.

4.6.3 Solution Guide

The solution guide is another vital piece of documentation that developers create as part of chal-
lenge development. The solution guide provides a walk-through of one way to complete the chal-
lenge (there are usually other ways to complete the challenge that the solution guide does not
cover). During testing, developers use the solution guide to ensure that the challenge is possible to
solve. Developers can also release the solution guide to the public after the conclusion of the com-
petition to serve as a community learning resource.

The intended audience for this guide is the general cybersecurity community. As such, developers
should write the solution guide with the assumption that the reader is familiar with basic IT and
cybersecurity skills but is not an expert in the field. The guide clearly and thoroughly leads the
reader through a full solution of the challenge. Screenshots and other images can often be helpful
additions to these guides.

Appendix B provides an example solution guide from a 2021 President’s Cup challenge.

4.7 Challenge Testing and Review

After developers build a challenge, it should go through several rounds of testing and review. De-
velopers test challenges to ensure quality, and they review them to estimate the challenge’s diffi-
culty.

4.7.1 Quality Assurance Testing

After developers build a challenge, they should test it thoroughly. Developers perform an initial
round of testing to catch any errors that arise during the challenge deployment and initialization
process. Developers also ensure that competitors can fully solve the challenge in at least one way.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
[Distribution Statement A] Approved for public release and unlimited distribution.

After developers complete the first round of testing and mark their challenge as ready for further
testing, the challenge should be tested several times by qualified technical staff who are unfamil-
iar with the challenge. Using testers who are unfamiliar with the challenge is the most accurate
way to realistically simulate how the challenge—which competitors will try to solve without also
ever having seen it before—will play out. Testers should be encouraged to attempt solving the
challenge on their own but may be provided the developer’s solution guide for help.

The testers should ensure each challenge passes the following quality assurance tests:

1. The challenge deploys as expected and without errors.
2. The challenge VMs are accessible (hidden VMs should be hidden from the user interface but

deployed).
3. The challenge is solvable (this item should include making sure VMs have the required tools,

and that the system awards points for correct submissions).
4. There are no unintentional shortcuts to solving the challenge (e.g., command history left be-

hind, default credentials, etc.).
5. Challenge instructions and questions are properly formatted and give a clear indication of

what competitors need to do.

4.7.2 Challenge Review

Challenge testers should also take notes about the content of the challenge as part of the review
process. The notes should include estimates of how difficult the challenge is and how long the
tester believes it would take competitors to solve.

Testers can measure challenge difficulty in two ways: by indicating the experience level required
(beginner, intermediate, advanced) to solve the challenge, and by estimating the percentage of
competitors they expect will be able to solve it. Challenges with a high experience level and the
lowest expected solution rate are the most difficult.

Estimating the time it will take to solve the challenge can also help determine its difficulty. Chal-
lenges that are expected to take competitors much longer to solve can be considered more difficult
due to the amount of effort required. Solution time estimates from testers are not always accurate
when compared to true solution times, which vary depending on the competitor’s level of exper-
tise in a given subject. When testers estimate the solution times, they assume the competitor has
an average proficiency in the knowledge and skills required to solve the challenge. However,
competitors will solve challenges in their area of expertise more quickly than competitors with
less experience. Although they are not always accurate, solution time estimates are useful as part
of the challenge review process.

After testers complete their review of the challenges, competition organizers can examine the dif-
ficulty statistics and compare each challenge with others. Comparing the difficulty statistics with
all challenges will ensure that easier challenges remain in earlier rounds and are worth less points
than challenges that appear to be more difficult. When deciding challenge point allocations, or-
ganizers can use a base or standard score allotment as a starting point (e.g., all challenges are
worth 1000 points at the beginning of the process). Organizers can then increase or decrease point
allocations based on the available difficulty data, keeping in mind that the main goal is for the
amount of points they allocate to a challenge to directly correspond with the effort required for

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
[Distribution Statement A] Approved for public release and unlimited distribution.

solving it. Point allocations should consider both the difficulty and the time it takes to solve the
challenge.

Challenge Review Example

This example provides the difficulty and solution time statistics for three challenges along with
their allotted point values. The review process in this example begins with a base or standard
point allotment of 1500 points.

As part of challenge review, developers asked five testers to estimate the number of minutes re-
quired to solve a challenge and to assign a difficulty rating to the challenge. Difficulty ratings in-
cluded Beginner (value of 1), Intermediate (value of 2) and Advanced (value of 3). Challenges be-
tween two difficulty ratings were assigned half values (e.g., testers assigned a challenge between
the Beginner and Intermediate level a value of 1.5).

The Solution Time Estimate and Difficulty Rating rows in Table 1 below show the average of five
testers’ reports.

Table 1: Solution Time Estimate, Difficulty, and Point Allotment for Three Example Challenges

 Challenge 1 Challenge 2 Challenge 3

Solution Time Estimate 90 min 75 min 120 min

Difficulty Rating 2.3 1.8 2.5

Allotted Points 1500 1200 1800

Challenge 2 has the lowest solution time estimate and difficulty rating. Challenge 3 has the high-
est solution time estimate and difficulty rating. Challenge 1 falls between Challenges 2 and 3.

Because Challenge 2 has a lower solution time estimate and a significantly lower difficulty rating
than the other challenges, developers decreased the point allotment below the standard allocation.
This lower point value reflects the lesser difficulty and the smaller solution time.

Challenge 3 has a difficulty rating that is marginally higher than that of Challenge 1. However,
the solution time estimate for this challenge is significantly higher than that of Challenge 1. Be-
cause of the marginally higher difficulty and significantly higher solution time, developers in-
creased the point allotment above the standard allocation. The higher point value reflects a larger
reward for the higher difficulty and estimated solution time.

The statistics for Challenge 1 fall between those of Challenges 2 and 3. Therefore, the allotted
points remain equal to the standard allotment in this case.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[Distribution Statement A] Approved for public release and unlimited distribution.

5 Open Source Applications

There are several open source applications that developers can use to develop challenges and to
orchestrate cybersecurity competitions. This section discusses the following two SEI-developed
applications for running cybersecurity competitions: (1) the TopoMojo lab builder and player,
which developers can use to create and run challenges, and (2) the Gameboard platform, which
developers can use to run a competition.

5.1 TopoMojo

TopoMojo is an open source lab builder and player application that developers can use to develop
cybersecurity challenges [SEI 2022c, 2022b]. TopoMojo provides virtual workspaces where chal-
lenge development can take place. The workspaces allow developers to add VMs, virtual net-
works, and any other resources that are required for developing or solving a single challenge.
Each workspace contains the challenge documentation and instructions, challenge questions, and
other files that support the challenge.

Each challenge has its own workspace where it is developed. Developers make changes to the
VMs and other materials in the challenge workspace and then save the changes when the chal-
lenge is in its final state. When a competitor starts a challenge, a read-only copy of the workspace,
called a game space, is deployed for the competitor to interact with. The game space allows the
competitor to interact with all workspace materials in a volatile environment, which the system
destroys upon completion of the challenge (i.e., when time expires or the challenge is fully
solved).

5.2 Gameboard

Gameboard is an open source application that organizers can use for orchestrating cybersecurity
competitions [SEI 2022a]. It enables organizers to create competitions that can either be team or
individual based and that consist of either single or multiple rounds. Challenges are organized into
rounds and competitors attempt to solve as many challenges as they can to maximize their score.
Gameboard uses the TopoMojo API to deploy the competitors’ game space for each challenge.
Gameboard also serves as the authoritative location for competitors to submit answers or tokens.
Furthermore, as part of handling answer and token submissions, Gameboard has logging, brute
force protections, and other features to ensure the integrity of the competition.

Figure 10 below illustrates how the TopoMojo and Gameboard applications interact. Developers
use TopoMojo workspaces to develop challenges. Competitors use Gameboard to deploy and in-
teract with challenges. When a player deploys a challenge, Gameboard will interact with the To-
poMojo API to request a new game space for the competitor. TopoMojo creates and returns the
player’s challenge game space.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[Distribution Statement A] Approved for public release and unlimited distribution.

Figure 10: TopoMojo, Gameboard, and User Interaction

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
[Distribution Statement A] Approved for public release and unlimited distribution.

6 Conclusion

Cybersecurity competitions provide a fun and interesting way to exercise technical skills, identify
and recognize cybersecurity talent, and engage students and professionals in the field. Further-
more, cybersecurity competitions can serve as education and training opportunities. With the
United States government and the nation as a whole facing a significant shortage in the cybersecu-
rity workforce, cybersecurity competitions play an important role in expanding the workforce
pipeline and developing talent.

There is no single way to run a competition, and there is no one way to develop cybersecurity
challenges. However, there are some general best practices for developing cybersecurity chal-
lenges that this paper covers to help developers ensure the challenges they create are effective and
engaging. These include ensuring that the challenges exercise the targeted knowledge and skill,
and that developers have tailored them to the appropriate difficulty level. In addition, the best
practices covered in this paper ensure that challenges do not contain shortcuts or dead ends; pro-
tect against answer sharing and cheating; award the appropriate number of points; and can be re-
used for future competitions or as learning resources.

This paper also covers best practices for developing the technical and supporting aspects of the
challenge, including how to implement a grading mechanism that is automated and auditable; how
to incorporate variability into challenge deployments; suggestions for writing supporting docu-
mentation for both challenge testers and competitors; and testing challenges thoroughly to make
sure they will play out as expected. Finally, the paper covers some open source tools that develop-
ers and challenge organizers can use to develop and orchestrate cybersecurity competitions.

The challenge development practices outlined in this paper are the result of the SEI’s experience
developing cybersecurity challenges for the President’s Cup Cybersecurity Competition. These
practices provide a general-purpose guideline for developing effective cybersecurity challenges.

Challenge development is the single most important and time-consuming aspect of running a cy-
bersecurity competition. Creating successful cybersecurity challenges begins with meticulous
planning, continues with the technical development itself, and ends with a rigorous quality-assur-
ance process. The results of this process are cybersecurity challenges that ensure successful com-
petition execution and enduring, hands-on cybersecurity assets that competition organizers and
others can reuse many times over.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[Distribution Statement A] Approved for public release and unlimited distribution.

Appendix A Example Challenge Guide

The challenge guide example provided in this section is from a challenge that was part of the 2021
President’s Cup Cybersecurity Competition.

Old is Gold

Analyze a forensic image to investigate an incident.

NICE Work Role:

• Cyber Defense Forensics Analyst

NICE Tasks:

• T0027—Conduct analysis of log files, evidence, and other information to determine best
methods for identifying the perpetrator(s) of a network intrusion.

• T0396—Process image with appropriate tools depending on analyst’s goals.
• T0532—Review forensic images and other data sources (e.g., volatile data) for recovery of

potentially relevant information.

Background

Network operators at your organization have seen some ICMP data exfiltration from a particular
system in the network. This system has also made a connection to a suspicious IP (1.66.20.98).
Based on the intelligence data, a well-known text editor has been compromised and is responsible
for connection to that suspicious IP.

An incident responder has imaged the system and the forensic image is available for analysis. Ac-
cording to the incident responder, the text editor in question was running on the system when the
responder imaged it.

Getting Started

You are provided with two analyst workstations—Win10 and SIFT. The evidence ISO containing
the hard drive image (image.dd) is attached to both the VMs. The incident responder forgot to ac-
quire memory of the system.

Your end goal is to analyze the forensic image and answer the questions.

System and Tool Credentials

System Username Password

analyst-sift user tartans

analyst-win10 user tartans

Submission

Submit answers to the questions below:

https://niccs.cisa.gov/workforce-development/cyber-security-workforce-framework/workroles?name=Cyber+Defense+Forensics+Analyst&id=All
https://niccs.cisa.gov/workforce-development/cyber-security-workforce-framework/tasks?id=T0027&description=All
https://niccs.cisa.gov/workforce-development/cyber-security-workforce-framework/tasks?id=T0396&description=All
https://niccs.cisa.gov/workforce-development/cyber-security-workforce-framework/tasks?id=T0532&description=All

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
[Distribution Statement A] Approved for public release and unlimited distribution.

1. Provide the process ID of the process responsible for connection to the suspicious IP
(1.66.20.98).

2. Provide the IP address that received the exfiltrated data.
3. Provide the MD5 of the file that was exfiltrated.
4. Name the executable that the attacker used to cover his tracks (delete other files).
5. What time did the attacker upload the file referenced in the previous question on this system?
6. What was the previous name of this file (the file referenced in the previous two questions)?

You want the filename when it was uploaded to the system by the attacker.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
[Distribution Statement A] Approved for public release and unlimited distribution.

Appendix B Example Solution Guide

The following solution guide formed part of a challenge in the 2021 President’s Cup Cybersecu-
rity Competition. The contents from the example solution guide included in this section are abbre-
viated to show only a walkthrough for answering the first of six questions.

Old is Gold

We are provided with a hard drive image of the system. Let’s first mount it in Autopsy.

1. On the Windows analyst VM, open Autopsy.
2. Click New Case.
3. Give it a Case Name.
4. Change Base Directory to Documents folder.
5. Click Next.
6. Give it a Case Number.
7. Click Finish.
8. Select the type of data source to add as Disk Image or VM File, and then click Next.
9. Either browse to the evidence image or enter the path as D:\image.dd, and then click Next.
10. Click Deselect all to avoid running any ingest modules, and then click Next.
11. When the image is added to Autopsy (this process could take a few minutes), click Finish.

Q1 Provide the process ID of the process that was used to connect to the suspicious IP
(1.66.20.98)

This kind of question is usually answered by analyzing a memory image, but as mentioned in the
challenge description, the incident responder forgot to image memory of the system. Let’s see if
there is a C:\hiberfil.sys file present in the hard drive image since it is the compressed version of
RAM.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
[Distribution Statement A] Approved for public release and unlimited distribution.

1. Expand Data Sources -> image.dd -> vol3. You’ll notice that the hiberfil.sys file is present
on the disk, as shown in the image below.

2. Export this file. To do so, right-click on the file, click Extract File(s), select Desktop as the

folder to export it to, and then click Save.

The next step is to convert the hiberfil.sys file to raw memory. There are two tools present on the
windows analyst system that can help with this conversion—Hibernation Recon and Volatility.
Volatility takes a long time for this conversion. Therefore, let’s use Hibernation Recon.

1. Open the Hibernation Recon folder on the desktop, and open HibernationRecon.exe.
2. Click OK to free mode enabled.
3. Click Process hiberfil.sys.
4. Select the previously exported hiberfil.sys from the desktop, and then click Open.
5. Select Desktop as the output folder, and then click OK.

Hibernation Recon is now decompressing hiberfil.sys. It will take a few minutes (~4 min) for the
process to complete.

6. Once the conversion is complete, you can take note of OS, version, and architecture type in-
formation as this will be needed when processing raw image using Volatility.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
[Distribution Statement A] Approved for public release and unlimited distribution.

The raw image is saved to a folder on the desktop named HibRec-<date and time>.

The next step is to analyze this image using Volatility.

1. Open the command prompt.
2. Change directory to Volatility location.

cd
C:\ProgramData\chocolatey\lib\volatility\tools\volatility_2.6_win64_standalo
ne\

3. Run Volatility and list the processes running in memory using the pslist plugin.

volatility_2.6_win64_standalone.exe -f C:\Users\User\Desktop\HibRec_2021-08-
23-09-48-56-21849\ActiveMemory.bin --profile=Win7SP0x86 pslist

You’ll notice that only one text editor process (sublime_text.exe) is running. The process ID of
this process is the answer to this question.

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
[Distribution Statement A] Approved for public release and unlimited distribution.

References

URLs are valid as of the publication date of this document.

[DHS 2021]
Cybersecurity Competitions. Department of Homeland Security. June 2, 2021.
https://www.dhs.gov/science-and-technology/cybersecurity-competitions

[NICCS 2021]
Workforce Framework for Cybersecurity (NICE Framework). National Initiative for Cybersecu-
rity Careers and Studies. July 29, 2021. https://niccs.cisa.gov/workforce-development/cyber-secu-
rity-workforce-framework

[NICCS 2022]
NICE Cybersecurity Workforce Framework Work Roles: Cyber Defense Analyst. National Initia-
tive for Cybersecurity Careers and Studies. January 6, 2022 [accessed].
https://niccs.cisa.gov/workforce-development/nice-framework/work-roles/cyber-defense-analyst

[Petersen 2020]
Peterson, Rodney; Santos, Danielle; Smith, Matthew C.; Wetzel, Karen A.; & Witte, Greg. Work-
force Framework for Cybersecurity (NICE Framework). NIST Special Publication 800-181, Revi-
sion 1. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-
181r1

[POTUS 2019]
Executive Order 13870: America’s Cybersecurity Workforce. Executive Office of the President of
the United States. May 2, 2019. https://www.federalregister.gov/documents/2019/05/09/2019-
09750/americas-cybersecurity-workforce

[SEI 2022a]
Gameboard. SEI GitHub. January 20, 2022 [accessed]. https://github.com/cmu-sei/Gameboard

[SEI 2022b]
TopoMojo Software and Supporting Materials. Software Engineering Institute, Carnegie Mellon
University. January 6, 2022 [accessed]. https://resources.sei.cmu.edu/library/asset-view.cfm?as-
setID=641154

[SEI 2022c]
TopoMojo. SEI GitHub. August 24, 2022 [accessed]. https://github.com/cmu-sei/TopoMojo

https://www.dhs.gov/science-and-technology/cybersecurity-competitions
https://niccs.cisa.gov/workforce-development/cyber-security-workforce-framework
https://niccs.cisa.gov/workforce-development/cyber-security-workforce-framework
https://niccs.cisa.gov/workforce-development/nice-framework/work-roles/cyber-defense-analyst
https://doi.org/10.6028/NIST.SP.800-181r1
https://doi.org/10.6028/NIST.SP.800-181r1
https://www.federalregister.gov/documents/2019/05/09/2019-09750/americas-cybersecurity-workforce
https://www.federalregister.gov/documents/2019/05/09/2019-09750/americas-cybersecurity-workforce
https://github.com/cmu-sei/Gameboard
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=641154
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=641154
https://github.com/cmu-sei/TopoMojo

CMU/SEI-2022-TR-005 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

October 2022
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
Challenge Development Guidelines for Cybersecurity Competitions

5. FUNDING NUMBERS
FA8702-15-D-0002

6. AUTHOR(S)
Jarrett Booz, Leena Arora, Joseph Vessella, Matt Kaar, Dennis Allen, & Josh Hammerstein

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2022-TR-005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
SEI Administrative Agent
AFLCMC/AZS
5 Eglin Street
Hanscom AFB, MA 01731-2100

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Cybersecurity competitions provide a way for participants to learn and develop hands-on technical skills, and they serve to identify and

reward talented cybersecurity practitioners. They also form part of a larger, multifaceted effort for ensuring the nation has a highly skilled

cybersecurity workforce to secure its critical infrastructure systems and to defend against cyber attacks. To help support these efforts of

cultivating the skills of cybersecurity practitioners and of building a workforce to safeguard the nation, this paper draws on the Software

Engineering Institute’s (SEI) experience developing cybersecurity challenges for the President’s Cup Cybersecurity Competition and

provides general-purpose guidelines and best practices for developing effective cybersecurity challenges.

14. SUBJECT TERMS
cybersecurity competitions, workforce development

15. NUMBER OF PAGES
34

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Abstract
	1 Introduction
	2 Background
	2.1 Cybersecurity Competitions and Challenges
	2.2 Targeting Applicable Skills

	3 Challenge Planning
	3.1 Challenge Difficulty
	3.2 Challenge Points
	3.3 Challenge Tooling

	4 Challenge Development
	4.1 Pre-Development
	4.2 Challenge Development
	4.3 Best Practices for Developing Challenges
	4.4 Challenge Grading
	4.4.1 Token Discovery
	Example of Token Discovery

	4.4.2 Question-and-Answer Problems
	Example of a Question-and-Answer Problem

	4.4.3 Environment Verification
	Example of Environment Verification

	4.5 Challenge Variation
	4.5.1 Token-Based Variation
	Example of Token-Based Variation

	4.5.2 Question-and-Answer Variation
	Question-and-Answer Variation Using Initialization Scripts
	Example of Question-and-Answer Variation Using Initialization Scripts

	Question-and-Answer Variation Using Challenge Variants
	Example of Question-and-Answer Variation Using Challenge Variants
	Question-and-Answer Variation Using Different Questions
	Example of Question-and-Answer Variation Using Different Questions

	4.6 Challenge Documentation
	4.6.1 Challenge Guide
	Example of Challenge Guide Documentation

	4.6.2 Best Practices for Writing Challenge Guides
	4.6.3 Solution Guide

	4.7 Challenge Testing and Review
	4.7.1 Quality Assurance Testing
	4.7.2 Challenge Review
	Challenge Review Example

	5 Open Source Applications
	5.1 TopoMojo
	5.2 Gameboard

	6 Conclusion
	Appendix A Example Challenge Guide
	Old is Gold
	NICE Work Role:
	NICE Tasks:
	Background
	Getting Started
	System and Tool Credentials
	Submission

	Appendix B Example Solution Guide
	Old is Gold

	References

