

REV-03.18.2016.0

Guide to Implementing DevSecOps for a
System of Systems in Highly Regulated
Environments

Jose Morales
Richard Turner
Suzanne Miller
Peter Capell
Patrick Place
David James Shepard

April 2020

TECHNICAL REPORT
CMU/SEI-2020-TR-002

Software Solutions Division

[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

http://www.sei.cmu.edu

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not
be construed as an official Government position, policy, or decision, unless designated by other docu-
mentation.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom
AFB, MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-
uted in written or electronic form without requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission should be directed to the Software En-
gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

DM20-0258

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table of Contents

Executive Summary vi

Abstract viii

1 Introduction 1
1.1 Using the Guide 2
1.2 Scope 3

2 The DSO Concept 4
2.1 DSO Principles 4

2.1.1 Collaboration 4
2.1.2 Infrastructure as Code (IaC) 4
2.1.3 Continuous Integration 5
2.1.4 Continuous Delivery 6
2.1.5 Continuous Deployment 7
2.1.6 Environment Parity 7
2.1.7 Automation 7
2.1.8 Monitoring 8

2.2 DevOps Pipelines 8
2.3 HREs and DSO Security 10

2.3.1 HRE Challenges 11
2.3.2 HRE Considerations 11

2.4 SoS and DSO 13
2.4.1 Types of SoS 13
2.4.2 SoS Considerations 14
2.4.3 SoS Integrated Testing 14

3 Adoption Overview 18

4 Prepare for Adoption 20
4.1 Objective: Establish Your Vision 20

4.1.1 Activity: Identify/Build Your Vision 21
4.2 Objective: Determine Readiness to Adopt DSO 22

4.2.1 Activity: Understand Your Context 23
4.2.2 Activity: Implement the Readiness and Fit Analysis Process 29

4.3 Objective: Develop an Adoption/Transition Strategy 30
4.3.1 Activity: Identify Your DSO Adoption Goal(s) 30
4.3.2 Activity: Establish the Initial Adoption Scope 33
4.3.3 Activity: Propose Change (Transition) Mechanisms 34
4.3.4 Example: JIDO DSO Strategy Summary 35

4.4 Objective: Plan Your Next Adoption Activities 36
4.4.1 Activity: Identify Resources 36
4.4.2 Activity: Develop a Backlog and Initial Increment Map 37
4.4.3 Activity: Develop a Communications Plan 37

5 Establishing the DSO Ecosystem 39
5.1 Objective: Change the Culture 39

5.1.1 Activity: Monitor Cultural Change Progress 40
5.1.2 Activity: Influence Change 41

5.2 Objective: Build a DSO Pipeline 41

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.2.1 Activity: Consolidate Pipeline Requirements 44
5.2.2 Activity: Identify and Acquire Needed Components 46
5.2.3 Activity: Install and Launch the Pipeline 49
5.2.4 Activity: Test the Pipeline 50
5.2.5 Activity: Reassess Your DSO Posture 52

5.3 Objective: Conduct Trial Use 53
5.3.1 Activity: Select Pilot Tasks/Projects/Work 53
5.3.2 Activity: Conduct Pilot Tasks/Projects/Work 55
5.3.3 Activity: Reassess Your DevOps Posture 56

6 Manage and Evolve the Ecosystem 57
6.1 Objective: Monitor the Ecosystem 57

6.1.1 Activity: Establish a Measurement Program 58
6.1.2 Activity: Regularly Reassess Your DSO Technical and Cultural Posture 60

6.2 Objective: Extend DSO (Institutionalize) 61
6.2.1 Activity: Establish Formalization Goals 61
6.2.2 Activity: Document and Train Personnel 62

7 Concepts, Principles, and Tools 64
7.1 Technology Adoption and Culture Change 64

7.1.1 Difficulty of Change 64
7.1.2 A Change Model (Satir) 65
7.1.3 Adoption Commitment Curve (Patterson-Conner) 67
7.1.4 Finding/Selecting Pilot Projects 68
7.1.5 Adopter Analysis 68

7.2 Lean and Agile 70
7.2.1 Principles 71

7.3 Systems Engineering 74
7.3.1 Architecture 75

7.4 Value Stream and Network Visualizations 77
7.5 Policy 78

Appendix A: Collected Activity Summaries 80

Appendix B: Additional SEI DSO Resources 92

References 98

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

List of Figures

Figure 1: Structure of the Implementation Objectives and Activities vi

Figure 2: DSO Dimensions 1

Figure 3: Full Stakeholder Engagement in SDLC 5

Figure 4: Scripting Environment + Application for IaC 5

Figure 5: Automation in DevOps 7

Figure 6: Communication Between the Development Pipeline and the SDLC 9

Figure 7: DevSecOps Overview (The Software Factory) 12

Figure 8: A Vehicle as an Embedded SoS (https://schoolworkhelper.net/vehicle-systems-overview/)
 15

Figure 9: A Corporate IT Infrastructure as a System of Systems 16

Figure 10: DSO Adoption Overview 18

Figure 11: Overview of Preparing for Adoption 20

Figure 12: Difficulty of Change (Adapted from Adler and Shenhar [Adler 1990]) 23

Figure 13: Overview of Establishing the Ecosystem 39

Figure 14: Connectivity Layout of DSO Pipeline Components 46

Figure 15: Overview of Manage and Evolve the Ecosystem 57

Figure 16: Monitoring System Architecture 58

Figure 17: Difficulty of Change (Adapted from Adler [Adler 1990]) 64

Figure 18: Graphical Summary of the Satir Change Model (Adapted from Weinberg) 66

Figure 19: Patterson-Conner Adoption Commitment Curve (Adapted from Patterson and Conner) 67

Figure 20: Satir Model Integrated Into the Adoption Commitment Curve [Miller 2006] 68

Figure 21: Scrum—Most Commonly Used Agile 70

Figure 22: Deployability Architecture Tactics Tree 76

Figure 23: Example of a Value Network 77

Figure 24: Adaptive Acquisition Framework (https://aaf.dau.edu/aaf/) 78

file://ad/dfs/users/gwmiller/Documents/TR-0020-2020%20EDITING/TR-0020-2020%20FINAL%20PROCESS/FINAL%20VERSION/DevSecOps%20Guide-FINAL%20FINAL%20FINAL%20to%20release.docx#_Toc37224662

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

List of Tables

Table 1: Key for the Activity Summaries 19

Table 2: Roles, Responsibilities, and Pipeline Interactions 27

Table 3: Readiness and Fit Analysis Assumptions for DevSecOps 30

Table 4: Typical Transmission Mechanisms by Adoption Commitment Curve Stages [Adler 1990] 34

Table 5: Communication Plan in Tabular Form [Miller 2006] 38

Table 6: Common Components of a DSO Pipeline 42

Table 7: Characteristics of a Well-Designed Pipeline 43

Table 8: Rogers and Moore Adopter Categories [Rogers 2003, Moore 2002] 69

Table 9: Fundamental Differences Between Traditional and LADSO SE Environments (Adapted
from Wrubel 2014) 74

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Executive Summary

This document provides guidance for implementing DevSecOps (DSO) in defense or other highly
regulated environments, including systems of systems. It provides information about DSO, its
principles, operations, and expected benefits. It describes objectives and activities that are needed
to implement the DSO ecosystem, including adopting the culture, deploying technology, and
adapting processes.

Section 1 introduces the rationale for adopting DevSecOps, the dimensions of change required for
that adoption, and the scope of this document.

Section 2 defines the DSO concept, key principles, and its operation. Special DSO concerns raised
in high-risk environments (HREs) and SoS environments are also addressed.

Section 3 is an overview of the adoption guidance.

Sections 4-6 describe the activities for adopting DSO. The core of the guide, they address three
major efforts: Preparation, Establishment, and Management.
• Preparation is necessary to create achievable goals and expectations and to establish feasible

increments for building the ecosystem. This includes considering the distance between where
you are and where you want to be, and understanding the effort necessary to travel that path.

• Establishing the ecosystem includes evolving the culture, automation, processes, and system
architecture from their initial state toward an initial capability.

• Managing the ecosystem includes measuring and monitoring both the health of the ecosystem
and the performance of the organization. The intent is to evolve the ecosystem toward a de-
sired state in a manner that balances speed with depth, minimizes unnecessary rework, and
constantly revalidates and adapts the desired state.

 Figure 1: Structure of the Implementation Objectives and Activities

• Appendix A is a collection of the activity summaries.
• Appendix B contains references on technical subjects, change management approaches, and

more advanced DSO information and guidance.

Prepare for Adoption

Determine
readiness to adopt

Develop adoption
strategy

Plan initial
adoption activities

Establish the Ecosystem

Build a DSO Pipeline

Trial use

Change the culture

Manage and Evolve the Ecosystem

Extend DSO

Monitor the ecosystem

Plan ongoing adoption activities

Establish your
vision

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vii
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

As illustrated, activities are not necessarily sequential—some are dependent on other activities,
and some may be done simultaneously. The descriptions are general enough to support adaptation
to varied environments.

Section 7 is a compendium of information on the concepts and principles that provide the founda-
tion for DSO adoption—Technology Adoption, Culture Change, Lean and Agile, Systems Engi-
neering, and others—to introduce the concepts and show how they relate to DSO success.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY viii
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Abstract

DevSecOps (DSO) is an approach that integrates development (Dev), security (Sec), and deliv-
ery/operations (Ops) of software systems to reduce the time from need to capability and provide
continuous integration and continuous delivery (CI/CD) with high software quality. The rapid ac-
ceptance and demonstrated effectiveness of DSO in software system development have led to pro-
posals for its adoption in more complex projects. This document provides guidance to projects in-
terested in implementing DSO in defense or other highly regulated environments, including those
involving systems of systems.

The report provides rationale for adopting DSO and the dimensions of change required for that
adoption. It introduces DSO, its principles, operations, and expected benefits. It describes objec-
tives and activities needed to implement the DSO ecosystem, including preparation, establish-
ment, and management. Preparation is necessary to create achievable goals and expectations and
to establish feasible increments for building the ecosystem. Establishing the ecosystem includes
evolving the culture, automation, processes, and system architecture from their initial state toward
an initial capability. Managing the ecosystem includes measuring and monitoring both the health
of the ecosystem and the performance of the organization. Additional information on the concep-
tual foundations of the DSO approach is also provided.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1 Introduction

Your team of developers will soon start a new software project. The project goal is the creation of
a new capability that involves developing several systems dependent on each other to function ap-
propriately, in other words, a system of systems (SoS). Some software or hardware used by the
SoS is of a sensitive nature requiring development and testing in closed areas with high security—
a high-risk environment (HRE). Your organization has decided to adopt DevSecOps (DSO) and
requires your team of developers to use it for this project. In this document, we will help you im-
plement DSO in an HRE for the development of an SoS.

DSO is a socio-technical system that integrates development, security, and operations in support
of a continuous integration, continuous delivery (CI/CD) environment. DSO promises a high re-
turn on investment but requires a significant shift in existing culture, process, and technology. The
DSO environment is specifically designed to increase system quality, reduce capability time-to-
value, and minimize cognitive differences among the developers, securers, operators, and users of
mission-critical defense and intelligence community systems.

Substantively changing even one of those things in an established organization is difficult. The
impact of changing them all may seem impossible, but it has been done with significant success
[CircleCI 2019]. Clearly, moving your organization down a path to DSO without compromising
your existing mission goals and strategic trajectories is a daunting task—one that is different for
every organization.

As shown in Figure 2, tools and practices are not the only consideration in DSO; successful adop-
tion must navigate four interrelated dimensions of change.

Culture—DSO integrates activities of people
with different mental models and responsibili-
ties; this impacts the way the organization com-
municates and works together. DSO is a no-
blame culture. “Blame-processing” wastes time
and energy; the focus of DSO is on identifying,
fixing, and preventing the problem from recur-
ring. DSO culture is transparent; Lean and Ag-
ile practices require sharing information to make
decisions at the lowest level and orchestrate the
overall flow. DSO culture is efficient, constantly
eliminating limited-value work. DSO is inte-
grated, reducing silos and incorporating all of
the disciplines (e.g., development, verification
and validation/Quality Assurance, operations,
users, managers, finance, procurement) in the team.

Processes and Practices—DSO requires processes that support the culture and integrate the de-
velopment and operations work. Organizational changes will likely be needed. Organizational

Figure 2: DSO Dimensions

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

structures, work descriptions, responsibilities, reward systems/incentives, VV&A processes, pro-
curement/licensing practices, decision making, and feedback mechanisms are examples of the
DSO scope.

System and Architecture—DSO works most efficiently if the target system is architected to sup-
port the DSO practices. The architecture should support test automation and continuous integra-
tion goals; applications should support changes without release (e.g., late binding) and ensure the
required -ilities (e.g., scalability, security, reliability).

Automation & Measures—While DSO is primarily about culture, people, and processes, automa-
tion is a primary enabler for achieving its benefits. DSO seeks to automate repetitive and error-
prone tasks (e.g., build, testing, deployment, maintaining consistent environments), provide static
analysis automation (for architecture health), and enhance communications and transparency
through performance dashboards and other radiators.

1.1 Using the Guide

This guide was written to lead you through the activities to implement DSO practices and evolve
your organization to provide the desired benefits.

Adopting a technology like DSO is like any other project—it needs a set of goals and measures, a
management process, an adoption team to lead the transition, participation from the technical
stakeholders that will use and benefit from the project, and the support and funding of the organi-
zation. The guide provides the information necessary to capture/create all of these and manage a
successful adoption.

The guide is organized as follows:

• This Introduction describes the scope of the provided adoption guidance.
• Section 2 introduces the DevSecOps concept and describes how information flows though the

DSO-enabled organization.
• Section 3 provides an overview of the adoption process.
• Sections 4-6 describe the activities for adopting DSO. This is the “meat” of the guide and

comprises three major efforts: Preparation, Establishment, and Management.
• Section 7 is a compendium of information about the concepts and principles associated with ap-

proaches that provide the foundation for DSO adoption—change management, Lean and Agile,
DevOps, systems engineering, architecture, and policy. This section is provided to introduce the con-
cepts and show how they relate to DSO success.

• Appendix A is a collection of the activity summaries.
• Appendix B contains references on technical subjects, change management approaches, and

more advanced DSO information and guidance.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1.2 Scope

This guide is intended specifically for adopting DSO infrastructure to support systems develop-
ment in HREs and is based on Implementing DevOps Practices in Highly Regulated Environments
[Morales 2018]. An HRE is enforced when some system software or hardware is of a sensitive na-
ture, requiring development and testing in closed areas with high security. It addresses the crea-
tion and operation of a single, dedicated pipeline architecture that can be adopted and scaled to
support multiple products.

The guide also suggests ways for the development team to address SoS issues. These issues arise
in DSO operations when the software developed supports external functionality and needs to inte-
grate, test, and receive feedback from systems outside software development boundaries.

Both of these topics are addressed more fully in Section 2.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2 The DSO Concept

DSO integrates software development and operational process security activities into the DevOps
approach. It focuses on assuring security best practice is enforced at each step. For cyber-physical
systems, DSO is a set of principles and practices emphasizing collaboration and communication
among staff from engineering, hardware/software (HW/SW) design, development, integration and
test, acquisition, security, services, end users, and any other stakeholders key to delivery of a se-
cure software-intensive HW/SW system.

2.1 DSO Principles

DSO principles are based on the Lean and Agile principles, whose foundational concepts are ad-
dressed in Section 7, and DevOps principles [Kim 2016]. These principles are broadened to inte-
grate development, security, and operations activities into a continuous integration/continuous de-
ployment (CI/CD) pipeline. While several versions of these principles exist, the Software
Engineering Institute (SEI) articulates them in Sections 2.1.1-2.1.8.

2.1.1 Collaboration

Full stakeholder engagement in every aspect of the software development lifecycle (SDLC), illus-
trated in Figure 3, facilitates full awareness and input on all decisions and outcomes. Developers,
operators, engineers, end users, customers, and other relevant stakeholders are allowed to be part
of decision making and work progress. This allows transition from development to operations to
occur with fewer or no blockers.

2.1.2 Infrastructure as Code (IaC)

IaC is code written to build infrastructure. IaC is a core principle of DSO. The code specifies
needed components and the details of how each should be installed. The medium where this infra-
structure will be installed and executed can be specified in the code or at build time. The medium
can be actual or virtualized hardware or a mix of both. Infrastructure is not limited—it can be the
software of a single, end-user machine or an entire organization’s enterprise. Software compo-
nents such as operating systems, servers, and applications are typically specified in IaC. Hardware
components such as storage, CPU, memory, and network topology are also specified. For more
information, see Infrastructure as Code: Final Report [Klein and Reynolds 2019].

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 3: Full Stakeholder Engagement in SDLC

Figure 4: Scripting Environment + Application for IaC

From a DevOps perspective, the IaC code is usually a companion to software requiring this infra-
structure to execute They are stored together in a version-controlled repository and used by some
mechanisms, typically a build server, to produce the needed infrastructure with the software capa-
ble of running on it. Using version control guarantees standardization and reproducibility from
source code; these further allow environment parity (identical or highly similar environments) of
infrastructure and automated building. The ability to dynamically build a fully functioning infra-
structure, as shown in Figure 4, sustains the velocity of integration while assuring environment
parity in development, staging, and production. More information on IaC can be found in Infra-
structure as Code: Final Report [Klein and Reynolds 2019].

2.1.3 Continuous Integration

CI is the unification of individual components into one entity. Unification occurs on a regular ba-
sis. The components, once unified, are meant to function together as a whole. The components
may have dependencies on one another to function properly. CI is a core principle of DSO and is
often referenced together with CI/CD, which we discuss in the next sections.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

In DevOps, CI occurs at three specific phases in the pipeline.

1. The first phase is source code CI. This occurs in the version-controlled repository. Individual
developers push their code to their personal branch in a repository. The repository pulls all
the code from all personal branches into one unified master branch. The master branch is the
culmination of the first phase. With this master branch, all forms of static analysis and test-
ing should be performed. Tests should include a focus on security, needed dependencies, and
program logic. Once all tests pass, the master branch can be cloned into a release branch. A
new release branch should be created each time the master branch is updated and passes all
tests.

2. The second phase is deployable component CI. This is typically carried out by the build
server. The server pulls code from all master branches along with IaC and dependencies.
These are all combined, creating a unified component placed on a deployable medium. The
component represents the executable form of all the pulled source code installed within the
infrastructure needed to successfully run. With this component, all forms of dynamic analy-
sis and testing should be performed. The tests should include a focus on proper execution,
security, expected input, output, and results.

3. The third phase is capability CI. This occurs in the staging environment. All deployable arti-
facts from multiple development teams are unified within one staging environment. The en-
vironment represents the current state of the capability being developed for a given project.
The current state is measured by the portions of the capability, housed in deployable compo-
nents, currently present in the staging environment. With this staging environment, dynamic
analysis and testing should be performed. The tests should include a focus on integration and
security. Integration testing should ensure that newly added components function as ex-
pected without disrupting the execution of other components.

At the beginning of the pipeline, a developer must manually push their completed source code to
their personal branch in the version-controlled repository. This is usually referred to as a commit
operation. The CI steps taken from personal branches to the staging environment can be fully au-
tomated. The automation includes all testing. The whole automation process is dependent on the
initial, manual step of developers pushing their source code into respective branches. This leads to
the often-stated phrase among developers “commit often.”

2.1.4 Continuous Delivery

CD is the automated transfer of software to an environment that has parity with the production en-
vironment, followed by a manual decision to transfer the software into production. The environ-
ment-sharing parity with production is often referred to as the staging environment. CD is the cul-
mination of CI. CD encompasses the last steps of CI and represents the actual act of placing
software into staging and production. This critical step is a needed manual decision to transfer
code into production. This occurs due to additional tasks the software must complete along with
manual validation of their outcomes before allowing transfer into production. A CI/CD pipeline
can be fully automated up to staging but must pause for the manual decision, allowing a push into
production. This is part of the DevOps pipeline, but it slows down at this point due to the need for
manual decision making to proceed. This is the dominant form of CI/CD in HREs. In this docu-
ment, we only refer to this form of CI/CD.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2.1.5 Continuous Deployment

CD is the automated transfer of software directly into a production environment. The production
environment is typically live and in full operation. In contrast to continuous delivery, there is no
manual decision needed. There is also no staging environment. This form of CD relies on rigorous
static testing of source code and dynamic testing of deployable artifacts. Very small pieces of
code are purposely pushed through this pipeline to facilitate rigorous testing. The lack of testing
in a staging environment introduces a high risk of defects entering the production environment.
This form of CI/CD is rarely used in HREs.

2.1.6 Environment Parity

Environment parity occurs when two or more environments are as identical as possible. In
DevOps, parity is pursued between staging and production and between development environ-
ments. The use of IaC and deployable artifacts is critical to achieving parity. With parity, develop-
ers work in identical environments. Parity between staging and production reduces or eliminates
potential problems in the production environment, although integration testing should always be
performed in production.

2.1.7 Automation

Key to a successful DSO process is the scripted configuration and automation of Build, Auto-
mated Testing, and Automated Delivery/Deployment in continuous iterative cycles. Automation
is a core principle of DSO. An example of implementing automation with continuous deployment
in DSO is shown in Figure 5.

Figure 5: Automation in DevOps

Removing tasks from developers allows for focused code writing and testing. A single command
issued by a developer pushes code to a version-controlled repository. Another command builds an
entire project and the needed platform for execution onto a selected medium. A separate

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

command commences complete testing with integrated deliveries and deliveries into staging and
production environments.

2.1.8 Monitoring

Continuous monitoring using a collection of performance metrics simultaneously improves the
DSO pipeline and software under development. Monitoring is a core principle of DSO. Improve-
ment occurs by alerting stakeholders when the pipeline falters or the software under development
fails tests or execution.

Examples of where processes falter in the pipeline include incomplete code deliveries, failed test
starts, unresponsive staging environments, unsuccessful builds, and denied pushes to the reposi-
tory. Examples of failures in software under development are failed unit tests, failed functional
tests, system crashes in staging or production, and unexpected functionality after integration with
other software.

Automation and continuous cycles of development and test require non-stop monitoring to ensure
an optimally functioning pipeline. At the same time, work progress, satisfaction of requirements,
and, most importantly, quality are quantified with code execution and testing results. Automated
resolution can occur for some sub-optimal metrics while the balance may require manual inter-
vention.

2.2 DevOps Pipelines

A pipeline assists all stakeholders in every aspect of software development including building,
testing, delivery, and monitoring. For engineers, the main use of a pipeline is to build, test, and
deliver code through automation and continuous iterative processes. A pipeline is the technical
implementation of DevOps principles. In the general sense, DevOps encapsulates culture, process,
and technical components. The pipeline is the realization of the technical and, to some extent, pro-
cess components of DevOps.

For the purposes of software development and following an SDLC, a pipeline has the following
general uses:

1. Code development: This includes the writing, testing, and delivery of code. A pipeline facil-
itates the complete environment needed for multiple developers to write, integrate, and test
multiple code segments in a continuous iterative process. The majority of this process is au-
tomated, especially in testing and delivery.

2. Project management: Resources such as ticketing systems, centralized document reposito-
ries, shared schedules, work progress monitors, and other performance metrics facilitate
overall progress on any software project to all stakeholders.

Figure 6 illustrates the interaction between a development pipeline and the software development
process, including the critical role played by iteration.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 6: Communication Between the Development Pipeline and the SDLC

Here are the core activities that occur in a pipeline:

1. Feature request: This is the initial idea for the software project as discussed by the cus-
tomer, developers, operators, and other stakeholders. This is a manual step that produces the
set of requirements and schedule.

2. Project configuration: This is a combination of requirements, architecture, and design. Pro-
ject configuration is a pre-step to development. This step provides input to the pipeline in the
form of project requirements and schedule. A new instance of the pipeline is created for use
with this project. The ticketing system is populated with project tasks that encompass code
writing, testing, and delivery. The document repository stores the schedule and requirements
for all stakeholders to view and edit (if needed).

3. Code/test: This activity captures code and commit. The interactive development environ-
ment (IDE) is used by development engineers to write source code as defined in a code-writ-
ing task on the ticketing system. As work advances, the engineer logs hours in the ticketing
system spent on development. If issues arise, a ticket is created and assigned to personnel to
resolve. A commit of source code occurs by pushing code to the version-controlled system
repository in what is called a branch. This can be viewed as a folder with all the pushed code
from a specific developer. A push of existing source code occurs each time a developer re-
commences work. Each developer has an individual branch in the repository, and only their
code is pushed there. Testing at this phase is done by the engineer, normally on their IDE, to
assure the code functions properly. Since the source code is present, white-box testing (test-
ing with knowledge of the source code) can be implemented. Source code reviews with peers
and other stakeholders also occur at this stage.

4. Commit/code review: This occurs in the version-controlled system repository after code re-
views have validated an engineer’s source code. Validation results from shoulder-to-shoulder
source code reviews with peers and the analysis of testing results from code/test described
above. The act of committing is pushing code from an engineer’s individual branch into the

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

project’s master branch. This is typically a one-button automated action. The master branch
stores all written code that has been validated and approved for committal. A master branch
itself is versioned and scripts should be auto-generated to recreate any version.

5. Continuous integration/testing: This is the first half of CI/CD; it involves the version-con-
trolled system repository, build, provision, and dependencies servers, and the staging envi-
ronment. For this step to occur, a user must first provide the build server with instructions on
how to assemble the code and environment into a working system. With these instructions,
the build server will pull code from the master branch of the repository and needed artifacts
from the dependencies server to build a project image. The project image is pushed to the
user-defined environment, which is pulled from the provisioning server by the build server.
As building occurs, all needed configurations for applications and the system are done ac-
cording to the user’s instructions. The result is a fully functioning system that can be deliv-
ered into a staging environment for testing. Automated software-driven system building is a
form of implementing infrastructure as code (IaC). The user needs to create test procedures
with data sets for each requirement of the system. The test results validate that the require-
ment is either met or not met. Some test procedures can be auto-generated. Test results are
sent to the developers for review and potential modifications. In the latter case, the modified
code repeats activities 3 and 4.

6. QA/integration testing: This is an extension to CI/CD with further tests being executed to
cover areas such as security and usability. This can be implemented as additional tests that
are added for execution in staging and delivery.

7. Continuous delivery: This is the culmination half of CI/CD—transferring software to the
staging environment followed by a manual decision to push to the production environment.
The main purpose of continuous delivery is to allow a pause once staging tests complete to
manually decide if the software is ready for the push into production. Recall that parity be-
tween staging and production is as similar as possible and thus the same tests should be run
in both environments.

8. Feature delivery: This is the handover of the completed project to the customer—the final
step of the development pipeline. The whole system should be delivered into production and
all tests rerun to assure successful completion. At this point, the customer takes control of the
system and receives documentation.

9. At every step: Any and all documents produced are stored in the document repository and
linked via a user interface for stakeholders to access.

2.3 HREs and DSO Security

For a large portion of industry, academia, and government, applying DSO to the SDLC is straight-
forward. While some regulatory issues are part of any development, particularly in the govern-
ment, HREs provide high levels of security regarding classified, proprietary, or otherwise con-
trolled information. This environment is typically characterized by the following: air-gapped0F

1
physical spaces and computer systems with heightened security and access controls, segregation

1 In this guide, air-gapped denotes a physical space, personnel, computer system, or other technology physically

and digitally isolated from the rest of the HRE and all HRE external entities.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

of duties, inability of personnel to discuss certain topics outside of closed areas, and the inability
to take certain artifacts off premises. An HRE can be referred to as a closed area, classified space,
controlled access area, or a Sensitive Compartmented Information Facility (SCIF).

2.3.1 HRE Challenges

As mentioned above, HREs are typically encumbered with regulatory constraints on everything
from sharing process-related information to technical details only being available onsite to per-
sons holding a particular clearance level. The closed nature of HREs leads to the following (at
minimum) impediments to the implementation of Agile, Lean, and DSO practices:
• Collaboration is impaired because individuals have different security clearances; therefore,

they can only “see” certain things.
• Some tools may be authorized for one part of the setting but are not authorized in other parts

of the setting due to certification or authorization issues.
• IaC may be impaired because assets that would normally be included have restricted access.

2.3.2 HRE Considerations

Considerations for HREs include any or all of the following:
• How will collaboration be achieved if the individuals involved have different access levels to

the data being produced?
• How will authority to operate be accomplished in all the different enclaves that the tools and

data will reside in as development progresses?
• Which assets can be incorporated into the IAC baseline? Which cannot and how will they be

made available to all relevant parties?
• How will tool authorizations across different enclaves be kept up to date as the development

progresses?

Figure 7 shows a typical DSO ecosystem specifically calling out the security-related additions. In
this figure, we suggest critical security topics that can be addressed in multiple ways. Implementa-
tion details for these topics are left to the user.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

0B

Figure 7: DevSecOps Overview (The Software Factory)

In general, pipeline security should assure that all activities on the pipeline occur in the expected
manner. This includes the overall operation through the technical configurations. Critical to
achieving this security is full awareness by multiple persons of the modifications made. Tight ac-
cess control is also required to limit the personnel interacting with the pipeline’s configuration
and operation. Extensive security testing of the pipeline should occur to ensure a user cannot

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

invoke unintended outcomes, facilitating malicious goals. The second security focus is on the
code under development. Security for code under development should achieve the following:
1. disallow insecure memory usage, such as pointers
2. is free of vulnerabilities
3. has exceptional input validation
4. interacts with only authorized persons and systems

The best practices of securing code under development in DSO are the same as those in the com-
munity. The difference is that, in DSO, the practices are automated via testing and validation. The
extent to which the code is tested can determine its security. The diversity of testing also plays a
role in determining how secure code is. Creating security requirements and misuse cases will fa-
cilitate capturing concerns in this area, especially for the customer. For additional information,
view Hasan Yasar’s webinar Security Practitioner Perspective on DevOps for Building Secure
Solutions (https://youtu.be/U8972_RR9p0) [Yasar 2018].

2.4 SoS and DSO

Defense systems are increasingly developed as or evolve into systems of systems (SoSs) compris-
ing a number of constituent systems that operate together to provide syncretic, synergistic capabil-
ities. The various governance methods involved with SoS may raise significant issues when de-
ploying a DSO environment.

The U.S. DoD Systems Engineering Guide for Systems of Systems [DoD 2008] offers the follow-
ing definitions:1F

2

System: A functionally, physically, and/or behaviorally related group of regularly interacting or
interdependent elements; that group of elements forming a unified whole [DoD 2001, DoD 2006]

Capability: The ability to achieve a desired effect under specified standards and conditions
through combinations of ways and means to perform a set of tasks

2.4.1 Types of SoS

There are four types of SoS found in the DoD today [Bass 2015, Dahmann and Baldwin 2008,
Maier 1998]:
• Virtual. Virtual SoS lack a central management authority and a centrally agreed-upon pur-

pose for the SoS. Large-scale behavior emerges—and may be desirable—but this type of SoS
must rely upon relatively invisible mechanisms to maintain it.

• Collaborative. In collaborative SoS, the component systems interact more or less voluntarily
to fulfill agreed-upon central purposes. The Internet is a collaborative system. The Internet
Engineering Task Force works out standards but has no power to enforce them. The central
players collectively decide how to provide or deny service, thereby providing some means of
enforcing and maintaining standards.

2 Source references have been changed to conform with this document.

https://youtu.be/U8972_RR9p0

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• Acknowledged. Acknowledged SoS have recognized objectives, a designated manager, and
resources for the SoS; however, the constituent systems retain their independent ownership,
objectives, funding, and development and sustainment approaches. Changes in the systems
are based on collaboration between the SoS and the system.

• Directed. Directed SoS are those in which the integrated SoS is built and managed to fulfill
specific purposes. It is centrally managed during long-term operation to continue to fulfill
those purposes as well as any new ones the system owners might wish to address. The com-
ponent systems maintain an ability to operate independently, but their normal operational
mode is subordinated to the centrally managed purpose.

The Future Combat Systems program was an example of a rare DoD-directed system, with its ve-
hicles, weapons systems, and command and control systems coordinated and designed with a
common objective and central authority. Acknowledged systems, however, are becoming more
common in the defense sector; unfortunately, they lack central control of the constituent systems;
each maintains its own objectives, management, funding, and development process.

2.4.2 SoS Considerations

The networked-based, multi-supplier, rapidly evolving software development environment, along
with the complexity of inter-constituent operation and communication, can lead to poorly defined
and/or highly variable information and control requirements throughout the lifecycle. The layers
of governance in such situations are often an amalgam of all four types. This complicates and ele-
vates risks in CI/CD if testing and integration are not continuous across all areas where the devel-
opment product interacts with other components of the system or the SoS.

If the constituent systems are independently evolving, the concepts of continuous testing and con-
tinuous integration become much more difficult to manage and synchronize. This gets particularly
challenging if there are intellectual property conflicts or multi-supplier competitions. Issues can
also arise with multiple independent DSO pipelines. Continuous integration and testing must be
managed so that developers can be sure their code is compatible with, and sufficient for, the over-
all system behavior. While a similar situation can arise where multiple independent development
pipelines support a single system, there is usually an overall system authority who can mitigate
most issues.

Several industries beyond defense have identified DSO in SoS issues, including telecommunica-
tions network providers, financial service providers, and large commercial research organizations
[Martinez 2018, Fazal-Baqaie 2017, McCarthy 2015]. More information on managing SoS is
available in System-of-Systems Navigator: An Approach for Managing System-of-Systems Interop-
erability [Brownsword 2006].

2.4.3 SoS Integrated Testing

In every SoS there is an interdependence among systems forming the foundation of successful op-
erations. The existent interdependence among systems in an SoS requires extensive testing of data
flows across various systems and data processing, input, and output within those systems. These
data flows are the essential components assuring successful operation.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 8: A Vehicle as an Embedded SoS (https://schoolworkhelper.net/vehicle-systems-overview/)

In Figure 8, we present a simplified general diagram of the various sub-systems and correspond-
ing components found in a modern-day automobile. This is an example of an embedded system,
which is the first form of SoS as previously discussed. The corporate IT network infrastructure in
Figure 9 is an example of another form of SoS, as previously discussed. This figure illustrates the
complex data flows that occur between sensors and various systems for the purposes of security,
driver awareness, and third-party assistance. One can appreciate how data flows from original
sources (such as a disc brake sensor) through the brake system and onward to other areas of the
vehicle. As the sensor data flows, it can be algorithmically or logically transformed into new data,
such as a dashboard alert. The sensor data can simultaneously be read and stored in various other
subsystems. Testing for correct usage of data in a complex flow like this is a critical challenge of
SoS integration.

In performing integration tests for these data flows, we define two test types: source value and de-
rived value. A source value is created within a single constituent system and does not involve val-
ues passed in from other systems. A derived value is created within a single system, using both
source and other derived values in a logical expression or algorithmic output. Both values are cre-
ated within one system called the originating system.

A source value integration test achieves the following goals:
1. It validates that any source value exiting a system in which it was created and routed to an-

other system is both sent and received correctly.
2. It validates that any source value received from another system is preserved and read cor-

rectly by all requesting functionalities of the receiver system.

https://schoolworkhelper.net/vehicle-systems-overview/

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3. The two goals of source value integration testing rest on the assumption that the value being
tested was created in one system and then passed to and manipulated by several other sys-
tems. In cases where a source value gets passed through multiple systems, the value should
be tracked, and the test goals should be applied to each system.

Figure 9: A Corporate IT Infrastructure as a System of Systems

A derived value integration test achieves the following goals:

1. It validates that input values are correctly used to create the current outputted derived value.
2. It validates that any derived value exiting a system in which it was created and routed to an-

other system is both sent and received correctly.
3. It validates that any derived value received from another system is preserved and read cor-

rectly by all requesting functionalities of the receiver system.

Derived value integration testing is similar to source value integration testing. They both track the
movement of a value across several systems and test for its correct usage by any functionality re-
questing it. Recall that both values are created within the originating system. The critical differ-
ence is that a source value is created exclusively from inputs of the operating system, runtime en-
vironment, or hardware; a derived value is a mix of system, environment, hardware, source, and
other derived values. The actual mechanics of a source and derived value integration test is as fol-
lows:
1. From the moment a source value passes from its originating system through multiple other

systems via parallel and sequential data flows, a test procedure should be written for each
code segment in those systems using the source value as input. This can result in a set of test

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

procedures for each code segment use of the source value. There can be long sequential and
parallel data flows through various systems by a source value. At some point, the source
value is no longer needed. When this occurs, the source value is either stored, its variable
overwritten, or is placed in a restful state and no longer accessed by a system. These and
other similar actions mark the end of source value integration testing.

2. A derived value may flow across multiple systems beyond its originating system. A test pro-
cedure should be written for each code segment in those non-originating systems that inputs
the derived value. Once the derived value is no longer needed, termination of testing is ap-
propriate.

The mechanics of source and derived value integration testing are essentially the same. The main
difference is the creation of the value. When you test source values, your tests will cover that
value’s lifespan from creation in the originating system through all its traversals across multiple
systems, up to and including its use in creating derived values—as well as the point when it is no
longer used. Note that the use of a source value in creating a derived value is a termination point
in testing that path of the source value. Derived value integration testing is performed the same as
source value testing.

SoS integration testing starts with either a source or derived value. The testing focuses on the
value’s traversal and usage across multiple non-originating systems. Along this path, in the case
of a source value, it may be used to create a derived value. When this occurs, source value testing
ends. Testing derived values can end when used to create other derived values. Each source and
derived value are tested separately with their own set of test procedures and data. Note that source
values can be part of creating derived values but the opposite should not occur.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

3 Adoption Overview

As illustrated in Figure 10, there are three focus areas of DSO adoption, each with associated ob-
jectives: preparation, establishing the ecosystem, and managing and evolving the ecosystem. As
discussed earlier, the adoption process should be treated like any other software development or
technology adoption project. To that end, there is intentional overlap in both areas and their objec-
tives to support an incremental, iterative, and concurrent approach to the adoption process.

Figure 10: DSO Adoption Overview

Preparation is necessary to create achievable goals and expectations and to establish feasible in-
crements for building the ecosystem. This includes considering the distance between where you
are and where you want to be, and understanding the effort necessary to travel that path.

Establishing the ecosystem includes evolving the technology, processes, and culture from their
initial state toward an initial capability.

Managing the ecosystem includes measuring and monitoring both the health of the ecosystem and
the performance of the organization, evolving the system toward a desired state in a manner that
• balances speed with depth
• minimizes unnecessary rework
• adapts to changes in needs, priorities, technology, and innovation
• constantly revalidates and adapts the desired state

The next three sections describe activities for each of these stages. The activities are not neces-
sarily sequential—some are dependent on other activities, and some may be done simultaneously.
The descriptions are general enough to support adaptation to your environment.

To support quick reference to key points, each activity is first summarized in a table with content
as shown in Table 1. Detailed process descriptions and additional information about the activity
follow the summary. The summaries appear in Appendix A.

Prepare for Adoption

Determine
readiness to adopt

Develop adoption
strategy

Plan initial
adoption activities

Establish the Ecosystem

Build a DSO Pipeline

Trial use

Change the culture

Manage and Evolve the Ecosystem

Extend DSO

Monitor the ecosystem

Plan ongoing adoption activities

Establish your
vision

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 1: Key for the Activity Summaries
1BContext 2BHow this activity relates to the overall adoption

3BPurpose 4BWhat the activity accomplishes

5BOverview 6BOverview of the activity

7BPrimary Actors 8BThe roles that are the most likely to be involved with this activity

9BInputs 10BNecessary information to successfully accomplish the activity

11BOutputs 12BInformation or actions that the activity produces

13BResources 14BWork products, guides, and other information that could support the activity

15BTips, Tricks, and
Wisdom

16BHeuristics, lessons learned, and commentary from those who came before

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4 Prepare for Adoption

DSO’s breadth of scope makes preparation for adoption critical, and there are three objectives that
must be met. The first objective is to establish your organization’s understanding of the desired
outcomes (vision). Then evaluate readiness for the adoption project by understanding how your
current work compares to DSO and identifying barriers and risks that will need to be addressed.
Goal and strategy development can then more easily and realistically be undertaken. With goals
and strategies agreed to, adoption project planning can begin in earnest, with the development of
backlogs, iterations/increments, and the underlying management practices established. Figure 11
provides an overview of preparation activities.

Figure 11: Overview of Preparing for Adoption

4.1 Objective: Establish Your Vision

The very first activity is to establish a common understanding of what the organization expects
from the adoption of a fully implemented DSO environment. This vision is the compass that
keeps the adoption on track when planning meets reality. The most effective vision is one that is
shared by the enterprise. While that is rarely accomplished before adoption, the more stakeholders
who feel ownership early, the more likely the vision will be shared later.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.1.1 Activity: Identify/Build Your Vision

Context This activity is the first step in adoption. Without a shared vision the odds of
successful adoption are significantly reduced.

Purpose The purpose of this activity is to achieve a vision that supports readiness and
fit analysis and adoption planning activities, maintains the long view, and is
validated and agreed to by stakeholders and practitioners.

Overview Develop a common understanding of a desirable outcome of the adoption
activities. What will success look like?

Primary Actors This activity involves leadership, management, and representative practitioners
(organic or contracted).

Inputs Inputs to this activity include decision information, survey questions, access to
personnel, and means of capturing the information gathered.

Outputs Outputs from this activity include documentation of the information gathered
and the vision identified.

Resources

Tips, Tricks, and Wis-
dom

Use visualizations (e.g., value networks, organizational structures, process
diagrams) to promote participation and reduce unnecessary “wordsmithing.”

Visions are usually derived from needs, direction from higher authority, concerns of practitioners,
unexpected or unplanned changes in the environment. There are many tools available for estab-
lishing and capturing a vision, but each situation will determine where the vision work is initiated.
It could be a meeting to specifically address the driving issue, a consensus from the practitioners
that significant change must occur, or an evolution from strategic or other broader goals.

In the introduction, we assumed a decision has been made in your organization to implement
DSO. If a vision is provided with the direction, be sure that it is clear; challenge any ambiguous or
unrelated elements. If there is no vision provided, then creating one is critical. Your vision should
address the rationale for that decision (if available) and must create a concrete description of how
that implementation is expected to be superior to the current environment.

One way to develop the vision is through a survey of key stakeholders and representative organi-
zational personnel about their thoughts on the following generally desirable properties of their
current software development environment:
1. Length of project life. This is the amount of time from start to finish of a project. Is it

within the budgeted time or is additional time regularly required?
2. Frequency of source code commits. This reflects code development tasks. If a task is too

large, it may not be completed and committed in one day. Multiple smaller tasks may be eas-
ier to complete and commit in a single day. Is the group satisfied with the commits per day?
Does it support scheduled project completion?

3. Quality and degree of stakeholder communication. How well and often does this occur?
Is the group able to speak with a stakeholder as often as needed or desired? What are typical
response times, and are they sufficient to reduce rework?

4. New employee onboarding time. How much time is needed for a new employee to be pro-
ductive in the group’s development process?

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5. Stability of the development environment. This relates to environment parity. Are the vari-
ous environments used by developers and other HRE personnel kept consistent and up to
date with tools, updates, features, and the like?

6. Tool availability and usage. This refers to development team tools such as chat services,
versioning systems, testing and development infrastructures, automated IT request fulfill-
ments, and other similar tools. Are these tools available to developers, and do they function
effectively? Are they’re multiple tool sets for the same purpose? Can the current tool set be
reduced to exclude those not favored by developers?

7. Consistent appropriate staff. Does the HRE provide long-term, well-qualified personnel
that are assigned to specific job functions such as IT infrastructure, software delivery, pro-
grammers for specific languages, unit testers, and system integration?

8. Delivery cycles. How often is code pushed to production for end-user feedback? Is it hourly,
daily, weekly, or longer? Is delivery performed by one person or a group? Is delivery a con-
sistent, repeatable process, or is it a unique effort each time? Is approval required? How long
is the wait for approval? Does it negatively affect the delivery process?

This information can be obtained in interviews, group discussions, or any other appropriate method. Once
collected, a small group should evaluate the information and build a vision that includes the emerging
ideas and desires, and is structured in a useful way. The vision should then be circulated to the infor-
mation providers for feedback and any significant concerns addressed.

4.2 Objective: Determine Readiness to Adopt DSO

An organization (or enterprise) is a complex, interacting socio-technical system. It has a unique
set of context, culture, operating norms, communications channels, roles, and personnel. Under-
standing the as-is environment, how it needs to change, and the barriers and risks associated with
the changes is critical to success. We recommend a readiness and fit analysis as a structured way
to accomplish this objective. There is a significant amount of information to be collected to sup-
port this process, and it is called out in the first activity.

As you can see in Figure 12, all change is not equal. So, in preparing for DSO adoption, you need
to have an understanding of the difficulty of the areas you need to change. More information on
managing change can be found in Section 7.1.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 12: Difficulty of Change (Adapted from Adler and Shenhar [Adler 1990])

4.2.1 Activity: Understand Your Context

Context This is the first step in adoption. Understanding the current environment is
critical to how this activity relates to overall adoption.

Purpose This activity supports readiness, fit analysis, and adoption planning activities.

Overview Collect and validate information about context.

Primary Actors This activity involves everyone.

Inputs Inputs to this activity include access to personnel and means of capturing
information gathered.

Outputs Outputs from this activity include documentation of the information gathered.

Resources Section 7.4

Tips, Tricks, and
Wisdom

Using visualizations (e.g., value networks, organizational structures, process
diagrams), promote participation and reduce unnecessary “wordsmithing.”

Knowing where your team or organization fits within the enterprise often varies by individual; it
is colored by the practitioner’s role, background, and often their longevity in the organization.

4.2.1.1 Organizational Context

Organizational context determines the various stakeholders, communications networks, programs,
and chains of command that influence the work your organization does. There are several ways to
create a common understanding, but one of the most effective is creating a value stream or value
network. This is a visual representation of how value flows through the development, delivery,
and operational groups of your organization and the first- and second-order stakeholders for the

Years SmallWeeks Large

Time to
Adjust

Level of Learning Required

Magnitude of Technological
Change Sought

Culture

Strategy

Structure

Procedures

Skills

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

products it produces. More details about value stream and value network development can be
found in Section 7.

4.2.1.2 Cultural Context

Culture is another aspect of context. It a significant factor in gaining DSO benefits. Understanding
the current culture allows the organization to map out the changes that are needed and have a
baseline against which to gauge progress.

Culture change is hard, and success depends on aligning all DSO-related activities with under-
stood cultural norms. Tools and practices are necessary but insufficient if the cultural norms are
not in place and not constantly reinforced. There are many ways to measure culture, but every or-
ganization is unique in some way that may make any given approach difficult. In general, the con-
text drives the measurement approach. Do you have time for a canvas or survey of all the people
involved? If not, are you comfortable that you can cover the differences with a sampling of input?
Do you need to have the input non-attributable, or can you use staff meetings or other gatherings
to collect data?

Culture change requires champions; so identify people who will create a sense of urgency, form a
powerful coalition, and create a vision.

The following sections present statements about the aspects of your culture that are directly re-
lated to the DSO ecosystem. As you read through these statements, consider each for either inap-
plicability or a sense that they may be of special concern.

4.2.1.3 Communications Maturity
• Mechanisms are in place in the contract and acquisition strategy to allow close collaboration

between developers and end users.
• Sponsor support for Lean and Agile/DevOps methods use is explicit and cascading. (It isn’t

just the program manager; sponsorship cascades throughout the acquisition chain.)
• The operational need for close collaboration among developers and users is explicit and clear.
• Senior stakeholders openly and explicitly support the use of Lean/Agile/DevOps methods in

the program.
• The environment supports increasing automation.

4.2.1.3.1 Personal Relationship Maturity
1. A “fail early, fail fast, and learn” philosophy is supported by the organization in which de-

velopment occurs.
2. The organization supports a climate of trust.
3. Management is a coaching function (as opposed to traditional command-and-control) that

helps to eliminate barriers to progress.
4. The team is made up of task-mature individuals operating in high-trust groups.

4.2.1.3.2 Integration and Collaboration Levels

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

1. A “many-hats” culture exists among development and operations roles.
2. The organization supports direct collaboration among development, test, and operations

teams.
3. The organization provides the physical and social environments needed for team success.
4. The organization supports the early and frequent delivery of potentially shippable software

to customers and end users.
5. Sponsors understand and support the difference in roles and business rhythm when using

DSO.
6. The organization's change history for introducing new engineering and management ap-

proaches is recently positive.
7. The testing and evaluation of the product occurs frequently (every code commit) and regu-

larly, and is expected.
8. Management understands and advocates for the extra time/effort to ramp up DSO techniques

within the organization.

4.2.1.4 Understand System and Architecture Characteristics

Understanding the current state of your technical environment and the technical challenges the fu-
ture might hold informs how you define and implement your DSO adoption approach. DSO is sig-
nificantly influenced by the infrastructure of the development system as well as the architecture of
the product (applications, systems, SoSs) under development and in operation. More information
on the effects of architecture on DSO (including Lean and Agile approaches) is available in Sec-
tion 7.3.1.

4.2.1.5 Identify Security Considerations

This security perspective is primarily derived from the data and code being accessed in the pipe-
line’s various components. Consideration must be given to projects with artifacts associated with
an elevated impact level or a security classification. Available secure networking and communica-
tions associated with the development should also be described, including how they are currently
accessed and gaps between the current and the required infrastructure.

Considering the applicability of the statements below helps you determine your security needs:

1. Some components of the project are classified.
2. The project will be developed or delivered in a classified space.
3. Some parts of the project have specific access restrictions.
4. Some parts of the project are considered controlled information other than being classified

(such as ITAR).
5. There are specific access requirements (such as citizenship) for project developers.
6. Part of the pipeline will exist in open space while the rest is in a controlled or classified envi-

ronment.
7. Mechanisms for connectivity between open and controlled portions of the pipeline or project

must be established.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

8. Mechanisms to handle code contributed by "less trusted" partners must be established.

4.2.1.6 Inventory Technical Platforms and Software Assets

Performing an inventory of your platforms and environments helps to identify and leverage exist-
ing assets for DevOps adoption and provides a basis for planning budget and schedule require-
ments for DevOps adoption.

Consider the applicability of these statements in creating your inventory:

1. A development platform and/or environment exists and has been used on multiple projects
already.

2. Mechanisms are in place for using multiple different operating systems in development
and/or testing.

3. Workflow management, document repositories, messaging services, or other DevOps pro-
ject-management related tools are in place.

4. The project is developing platforms and environments or using unmodified COTS.
5. Some software development assets are hosted in the cloud or some other location not in-

house or under our administration.
6. Testing or enforcing environment parity is performed in current development environments.
7. Open source and/or licensed tools are effectively managed.
8. There is a need for managing assets unique to us or used by others in our organization.
9. There are unique assets used across the entire organization.

4.2.1.7 Identify Success-Critical Stakeholders and Adopters

The stakeholders in a DSO environment stretch across both technical and organizational roles,
and each environment has its own set. In DSO adoption, these groups might include security; IT;
systems engineering; verification, validation, and transition; acquisition; legal; contracting; pol-
icy; external certifications; and, of course, users.

4.2.1.8 Identify Software Development Roles

An important part of adoption preparation is identifying the roles of the people who will work on
the DSO-adoption project and the roles of the performers of the DSO processes and pipeline. The
people with one or more roles need to be trained on how to use the pipeline to fulfill their respon-
sibilities. Table 2 provides a sample of common roles, typical responsibilities, and the pipeline
components they will likely interact with.

Table 2 includes a mix of technical and non-technical roles. The listed pipeline components are
described in Table 6. Table 2 illustrates that, in DevSecOps, all stakeholders may access the pipe-
line, and access is not limited to only technical roles. For each of the roles defined, instructions
must be provided to the user. These instructions are part of the ‘Process and Practices’ dimension
of DevSecOps. In Section 5.2.3, we describe the mechanics of documenting the process for vari-
ous role types.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 2: Roles, Responsibilities, and Pipeline Interactions

Role Responsibilities Pipeline Components

Program Manager Continuously manages throughout the program lifecycle

Plans the overall program and monitors progress

Manages budget, risks, and issues, and takes corrective
actions

Workflow management
system

Document repository

Monitoring service

Performance metrics

Pipeline Architect Leads the technical design, development, and evolution of
the pipeline

All

Culture Change
Coach

Plans, organizes, coordinates, facilitates, and reports on
culture change activities and progress

Access to measures,
processes, and
retrospectives

Workflow management
system

Customer Interacts with the software in the operational environment Workflow management
system

Document repository

production environment

End User Benefits from interacting with the delivered system in
production

Production

Document repository

Workflow management
system

Software
Engineer

Writes code based on requirements

Tests and delivers programs and systems

Fixes and improves existing software

Integrated development
environment (IDE)

Version control repository

Workflow management
system

Requirements
Engineer

Works with stakeholders to elicit, understand, analyze, and
document requirements for a project

Document repository

Workflow management
system

Staging and production

Test
Engineer

Creates and documents test cases

Performs and documents risk analysis

Codes and runs automated tests

Determines product quality and release readiness

Build server

Staging and production

Operations
Engineer

Operates by accessing software on computers

Monitors and manipulates daily system jobs

Starts operations by entering commands

Performs defined tasks per documented
instructions/processes

Build server
Staging and production
Dependencies server
Provisioning server

Security Engineer Performs security testing and code review to improve
software security

Build server
Staging and production

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.2.1.9 Understand Current Process and Practice Characteristics

Most organizations operate within a reasonably consistent environment. Consider which of the
following descriptions most closely match your existing environment. The lower the number, the
more change will be required for full adoption; you will need to manage multiple change initia-
tives during adoption, and make sure that the enabling managers and executives fully understand
the scope of the change required.
1. Traditional Waterfall Environment: One-time through the process; late integration and

testing; Systems Engineering V-model with traditional milestones
2. Early Lean-Agile Environment: Mostly waterfall with Lean-Agile pilots in place; some

Agile champions/sponsors
3. Mature Lean-Agile Environment: Mostly Lean-Agile with a few remnants of waterfall;

leadership and management fully supportive of Lean-Agile
4. Existing DevOps Environment: One or more projects using collaborative development and

operations decision making and CI/CD pipelines

4.2.1.10 Assess Initial DSO Posture

This is an initial assessment that provides a baseline for measuring technical progress throughout
the DSO-adoption process. Information is gathered through discussions with a broader set of team
members and captures a technical picture of the organization at the beginning of DSO adoption.

A critical component of the adoption process is the ability to measure, or at a minimum demon-
strate, progress of SDLC DevSecOps implementation of a group in an HRE via comparison with a
fully implemented ideal DevOps SDLC process before and after an assessment. The HRE person-
nel should describe their ideal DevSecOps SDLC. The associated measurement will likely be sub-
jective; each group may have their own view on the ideal DevOps SDLC process. Topics consid-
ered in a DSO posture assessment include
1. The means and frequency of stakeholder communication
2. How requirements for software are received and when
3. How artifacts are delivered
4. How access to artifacts, documents, and project status is provided to HRE external

stakeholders
5. How feedback moves from stakeholders and end users in the production environment to

developers
6. Developers’ access to staging environments
7. Authority required to make artifact modification during and after initial delivery
8. How projects receive authorization to commence work
9. Bottlenecks causing delays to project commencement and completion
10. The hardware acquisition process
11. Management of non-HRE development activities contributing to the project

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.2.2 Activity: Implement the Readiness and Fit Analysis Process

Context This activity establishes the enablers and barriers in your organization
associated with adopting DSO. Having the value map and profiles make this an
easier task. While this can produce significant concern, particularly if the
barriers outweigh the enablers, it is critical to manage expectations and
conduct rational planning.

Purpose This activity captures the current organization’s readiness to adopt DSO in
terms of risks, opportunities, barriers, and enablers. It is a significant planning
asset.

Primary Actors This activity involves the manager, teams, S-CSs, and the culture change
coach.

Relevant/Key Events Events include the decision to adopt DSO and a DSO Posture Assessment.

Activity Input(s) Inputs to this activity include the results of 4.1.1 and 4.2.1.

Activity Outputs(s) Outputs from this activity include an adoption risk assessment with identified
mitigation approaches and proposed adoption progress measures.

Other Resources Other resources include the RFA White Paper [Miller 2014], RFA Presentation
slides, and RFA Forms [Miller 2014].

Tips, Tricks, and
Wisdom

A workshop approach to this analysis is faster but requires more coordination.
It is just as important to identify enablers as risks.

Gather key participants in the current process plus Agile/DevSecOps champions. The leader takes
the group through each of the dimensions, asking the provided questions and discussing them.

During the group discussions, the following activities take place:
• Each participant records their perception of the DevSecOps “fit” for their environment to sup-

port a culture profile.
• Each participant listens and considers if there are particular risks or opportunities (things that

might happen), or issues (things that are happening now) in this topic area.
• If present, the participant records the risks, opportunities, or issues, one per sticky note, in the

form of “Given that (condition), there is a possibility (risk or opportunity) that (consequences
or benefits)” or describes the issue(s) in a brief statement.

• All of the sticky notes are posted, arranged in affinity groups, and then summarized to de-
velop a set of risk/opportunity/issue statements.

More information is available in Suzanne Miller’s 2014 white paper, The Readiness & Fit Analy-
sis: Is Your Organization Ready for Agile? [Miller 2014].

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 3: Readiness and Fit Analysis Assumptions for DevSecOps

Fit Dimension Agile and DevOps Assumptions

Business and Acquisition The program acquisition strategy and practices enable, or at least don’t disable,
differences in developing and deploying Agile and DevOps approaches.

Organizational Climate Reward systems, values, skills, and sponsorship explicitly support Agile and
DevOps values and principles.

Project, Team, and
Customer Environment

Frequent collaboration between the development team and test, operations,
customers, and end users is actively supported. Program management practices
don’t force teams to work across different projects.

System Attributes System architecture is loosely coupled. (Interfaces are external vs. internal among
system components.) System solutions benefit from fast user/operational feedback.

Technology Environment Technology support for virtualization, automated testing, and continuous
integration are in place. An integrated collaboration platform is in place, including
monitoring and feedback.

Team Technical Practices
(subset of Practices)

Technical practices that support high-quality code production in small batches from
a prioritized product backlog are in place. Technical practices integrate automated
testing and integration.

Team Management/
Coordination Practices
(subset of Practices)

Decentralized decision making that allows team members to self-organize their
work are in place and supported. Team management practices that support short
(2-4 week or less) time boxes are in place. Coordination practices among
development, test, and operations stakeholders are routinely used.

Program Practices (subset
of Practices)

Synchronization of multiple teams is occurring. Practices that reinforce respecting
team management and measurement boundaries are in place. Automated
governance mechanisms are used where appropriate.

4.3 Objective: Develop an Adoption/Transition Strategy

An overall strategy is needed to be able to begin more specific planning. Having captured the ex-
isting context and a steering vision, you can begin to identify specific goals and build a multi-in-
crement strategy for achieving them. This strategy is an opportunity to engage with the success-
critical stakeholders to
• show how their needs are addressed in DSO adoption
• clarify expectations
• create a management infrastructure
• address required resources in terms of funding, personnel, and process adaptation

4.3.1 Activity: Identify Your DSO Adoption Goal(s)

The goals and measures you create in this activity will drive the initial stages of adoption. Parsi-
mony is important; don’t create so many goals that the impact of the most valuable goals is di-
luted. Understanding the needs and concerns of the S-CSs can help couch the goals in language
that can be easily understood and agreed to. Goal creation is often an iterative process, with the
need for rapid feedback.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.3.1.1 Defining Goals
Context The DSO adoption goals are the core guidance for all of your strategic and

tactical planning. They continue to be evaluated and evolved throughout the
adoption and management process.

Purpose This activity produces a set of goals aligned with the DSO principles that identify
the specific outcomes desired from the adoption of DSO along with broad
indicators of accomplishment.

Primary Actors This activity involves team lead(s), customers/users, developers, Operations-
Deployment, IT, Security, and the pipeline (PL) architect.

Activity Inputs Inputs to this activity include a list of success-critical stakeholders (S-CSs).

Activity Outputs Outputs from this activity include the initial goals statement.

Other Resources Other resources include the blog post DevOps and Your Organization: Where to
Begin (https://insights.sei.cmu.edu/devops/2014/12/devops-and-your-organization-
where-to-begin.html) and the webinar Three Secrets to Successful Agile Metrics
(https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=507850).

Tips, Tricks, and
Wisdom

The goals can (and most likely will) evolve as the adoption progresses. Give
priority to cultural outcomes and stakeholder pain points. Review the goals and
their measures regularly.

The goals that you set have a significant effect on what activities you undertake, how you decide
to measure them, and what kinds of attitudes and behaviors you incentivize and discourage. So,
setting and evolving useful goals is a priority in implementing DSO.

The SMART goals model is a well-defined approach for developing useful goals:
1. Specific. It’s something where successful completion can clearly be determined.
2. Measurable. The measure could be a specific value (average 500 widgets/day over three

months), binary (yes/no), or scaled (10 percent versus 50 percent), but the measure must be
appropriate for the goal.

3. Achievable/Attainable. It’s something you can actually do something about.
4. Realistic/Relevant. Even though it may be a stretch, it’s something you truly believe is

within the capabilities of your staff and the constraints of your environment, and is some-
thing whose achievement will be beneficial to you.

5. Time-Based/Tangible. For some goals, a time factor is necessary; otherwise, the goal is over-
come by events. Goals that are not time based should be tangible and observable, so that an
objective evaluation of its satisfaction is feasible.

The Balanced Scorecard concept is used in many industries to provide a way of segmenting your
goals so that no single aspect of your adoption gets exclusive focus. The scorecard is usually pre-
sented as a four-quadrant matrix. DSO headings could include
1. People goals relate to establishing a DSO culture.
2. Process goals relate to establishing governance and technical processes that support DSO.
3. Technology goals relate to automation to support development, operations, deployment, and

security.
4. Learning and Innovation goals relate to improving the distinctive competencies of the organ-

ization and making it more responsive to the relevant changes in its technical and mission
environment.

https://insights.sei.cmu.edu/devops/2014/12/devops-and-your-organization-where-to-begin.html
https://insights.sei.cmu.edu/devops/2014/12/devops-and-your-organization-where-to-begin.html
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=507850

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.3.1.2 Defining Measures

There are many resources on measuring technical- and project-related progress. The following
discuss those measures that may be useful in your measurement strategy.

Cultural Goals/Progress Measures. For culture change, the measures are usually specific to re-
moving identified risks or are measures of the degree of adoption. The measures to understand
progress in this important factor are usually measures for diffusion (i.e., how broadly a new tech-
nology has reached within the organization) and infusion (i.e., how deeply a new technology has
penetrated into the intended organizational culture) [Adler 1990, Leonard-Barton 1988, Miller
2014, Miller 2006]. Additional measures can be derived from surveys of primary users and other
stakeholders about their experiences with DSO implementation and outcomes.

Operational Goals/Progress Measures. These measures are well represented in the Lean and Ag-
ile literature. They tend to be created out of the automation in many DSO implementations and
cover flow, quality, defect escape, and other specific technical aspects.

Organizational Goals/Progress Measures. Organizational change is similar to cultural change; it
addresses larger impacts. Examples are measures of worker and customer satisfaction; overall
throughput and cycle time; and efficiency, effectiveness, and resilience.

4.3.1.3 Example DSO Goals

The following are adapted from the Joint Improvised-Threat Defeat Organization (JIDO)
SecDevOps Concept of Operations [DTRA 2007]:

Collaboration: People + Process
− Every process participant understands the entire process and their contribution to it.

Automation: Process + Technology
− Technology supports the process.
− Technology eliminates repetitive or tedious tasks
− Quality assurance (QA) is automatically tool enforced at various steps to provide an en-

terprise Secure Development Operations (SecDevOps) approach.

Analysis: Technology + People
− Technology improves workflow and the analysis of bottlenecks to improve results with

cross-functional skills.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.3.2 Activity: Establish the Initial Adoption Scope

Context The DSO adoption goals are most likely visions for the future. There needs to
be an identified scope for initial adoption. Is it one team, one organization, or an
enterprise? The answer to this question will determine how you will size the
increments and will be highly dependent on the resources available over time.

Purpose This activity identifies the specific goals to be addressed in the current
adoption effort.

Primary Actors This activity involves team lead(s), customers/users, developers, Operations-
Deployment, IT, Security, and the pipeline (PL) architect.

Activity Inputs Inputs to this activity include the overall adoption goals.

Activity Outputs Outputs from this activity include specific goals to be addressed in the initial
effort.

Other Resources Other resources include Section 7.1.4 and the CMMI Survival Guide [Miller
2006].

Tips, Tricks, and Wis-
dom

This is where understanding technical feasibility pilots and adoption feasibility
pilots can be useful.

Once you have a sense of context and you have characterized your goals and measures, you can
begin to consider the scope of your adoption. As stated in this report’s introduction, an adoption
effort is very similar to a development effort, and using some form of iterative or incremental ap-
proach is recommended. That said, one way of scoping your effort is to consider the amount of
change you believe your organizational culture can survive and the size of the effort in terms of
the organization. These may not be under your control, but they will definitely need to be under-
stood before you can begin the adoption effort.

4.3.2.1 Identify Culture Changes Required

The distance between your current organizational culture and a DSO culture can seem immense—
particularly if you are still following traditional waterfall practices. Luckily, the establishment of a
pipeline reinforces the changes in culture that are most important. Compare your current culture
with a DSO culture. Identify the critical things that need to change. Determine if there are already
activities in any area and, if so, leverage them to the fullest. Are there simple things that can be
started to support more complex things? Techniques like maintaining backlogs, limiting work in
progress, and holding daily standup meetings are reasonably easy to implement, and if imple-
mented correctly, can act as a springboard for other changes.

Another option is using the pipeline to approach culture change in an iterative manner. You may
decide on all the components for your pipeline at the beginning but choose to implement them in
an order that makes sense to your processes and culture. Start with activities that provide the most
interaction among the developers, operators, and security to establish the collaboration patterns
that are central to DSO.

4.3.2.2 Identify Organizational Scope

In most cases, adoption happens on an initial project or within a particular product team. This is
the path we suggest, but there still needs to be a decision up front about the organizational scope
for the current adoption effort. As indicated, the initial scope is nearly always one team/product.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Once that has been accomplished and lessons learned and reflections have been addressed in the
processes, it is time to extend the scope. It may be that the next step is to consider projects related
to the initial project as the next target. On the other hand, it may be that there is another type of
project, significantly different from the first, that makes more sense as you begin to tune DSO to
your enterprise. In your planning, you can walk through these options early on, make some pre-
liminary decisions, and then revisit the issue over time based on the initial experience.

4.3.3 Activity: Propose Change (Transition) Mechanisms

Context Change is not a passive activity. There must be specific actions taken to reach
out to stakeholders and practitioners to enable and reinforce change.

Purpose This activity produces a set of transition mechanisms that are tailored to the
scope and target of the adoption effort.

Primary Actors This activity involves team lead(s), customers/users, developers, Operations-
Deployment, IT, Security, and the pipeline (PL) architect.

Activity Inputs Inputs to this activity include specific (scoped) goals.

Activity Outputs Outputs from this activity include a set of communication and implementation
mechanisms and actions that propel changes in technology and culture.

Other Resources Other resources include the CMMI Survival Guide [Miller 2006] and Section
7.1.3.

Tips, Tricks, and
Wisdom

Two types of failure modes are frequently seen: (1) focusing only on
communication mechanisms (the “train people to death” failure mode) and (2)
the opposite—providing new procedures, measures, and other implementation
mechanisms before enough communication has occurred for staff to
understand what the goal of the adoption is.

Transition mechanisms are events or job aids that support communication and implementation ac-
tivities. Table 4 illustrates a small subset of mechanisms available, and can help you with timing
your development of guidance and other work products that need to be developed or acquired.

Table 4: Typical Transmission Mechanisms by Adoption Commitment Curve Stages [Adler 1990]

Commitment Stage Typical Mechanisms

Contact and awareness “Elevator speech”

Standard 45-minute pitch; road show

FAQ

Blog posts

Short “testimonial” briefings or whiteboard talks

Conference briefings

Online training assets

Understanding One-day seminars, symposia for various vendors

Identified stakeholder roles, responsibilities, and interrelationships

Trial Use Pilot programs

Carefully identified focused pilots (or experiments)

Defined incentives for pilot participation

Small working group to support pilots

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Commitment Stage Typical Mechanisms
Defined measures of success

Two- to three-day course for pilots and interested others

Adoption Strong set of incentives; rewards, and consequences

Education: mature courses, modularized for just-in-time (JIT) delivery

Policies or standards

Institutionalization Fully realized curriculum of training for different types of users

New-employee training/orientation

4.3.4 Example: JIDO DSO Strategy Summary

The following is taken directly from the JIDO SecDevOps Concept of Operations:

This section, framed with People, Process, and Technology as its core components, de-
scribes in strategic terms what a transition to SecDevOps entails.

Engaged stakeholders, daily engagements, and constant communications facilitate rapid ap-
plication development that incorporates compliance with DoD STIGs and security policy re-
quirements through the development process. Teams and team members must work collabo-
ratively instead of procedurally to remove organizational siloes. To achieve this shift in team
interaction, SecDevOps proposes a new centralized workflow management platform to or-
ganize team roles and responsibilities. An accelerated development and release cycle en-
sures that stakeholders are continually engaged and do not lose track of ongoing efforts.
Teams that adopt SecDevOps will experience a major shift in culture that mimics the rapid
tempo of ever-shifting customer needs.

Successful implementation of SecDevOps enables true ongoing risk management through CI,
CD, continuous deployment, and continuous monitoring. A process built around quick and
incremental releases ensures that projects remain manageable and closely tied to schedule.
Furthermore, as customer needs shift in real time, incremental development pivots to meet
new demands with low latency. The SecDevOps process is well documented, fast, and re-
peatable, meaning that it scales to the enterprise level with less of the traditional growing
pains of new methodology adoption. The adaptive process mirrors an adaptive workforce
and team structure; the two complement and enhance one another.

A detailed and technologically sophisticated CONOPS empowers the workforce by minimiz-
ing the manual labor required to shepherd a change to the production environment.
SecDevOps begins and is constantly driven by a focus on automation. From the deployment
of critical development infrastructure to code quality checks and continuous monitoring, the
need for human interaction is refocused to core development practices. This not only in-
creases efficiency in expensive labor hour allocation, but ensures that large parts of the pro-
cess are consistent across teams, locations, and projects. Advanced open source tools pre-
vent vendor lock, intrinsically promote collaboration, and allow for faster and cheaper
technological adaptation to changing demand signals.

DevOps places speed and flexibility at its core and is continuously mindful of customer de-
mands and project resources. The addition of cybersecurity as a new but equally important

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

and constant element demonstrates considerable value and applicability to all DoD organi-
zations regardless of size or mission. Thus, the DevSecOps methodology allows IT organiza-
tions to build and shift on the fly, without the need to decide on a cumbersome grand strat-
egy that cannot rapidly meet changing demands and environments. The end result is an
evolution of core mission and Mission IT practices that more rapidly and more precisely
meet the unprecedented needs of today’s warfighter [DTRA 2007].

4.4 Objective: Plan Your Next Adoption Activities

DSO adoption is not a sequential process. Like software development, it is iterative and evolu-
tionary. Don’t attempt a “one-step to glory” waterfall of typical milestones and baselines. Rather,
tailor the strategy and plan artifacts for your specific situation. The overall complexity of your en-
vironment, the flexibility and commitment of the success-critical stakeholders, and the scope of
your strategy all contribute to the detail required in this planning effort and how it will be cap-
tured and evolved. It may consist of a short backlog to accomplish or several epic-level activities.
Following Lean and Agile planning methods is generally effective, even if it is a new experience
for your organization. Conversion to Lean and Agile approaches is a critical success factor to im-
plementing and maintaining DSO benefits.

4.4.1 Activity: Identify Resources

Context Plans without appropriate resources are worthless. Iterative planning based on
realistic availabilities is necessary for success.

Purpose This activity identifies the resources (e.g., skilled staff, facilities, materials) that
are needed to accomplish the agreed-upon goals.

Primary Actors This activity involves team lead(s), customers/users, developers, Operations-
Deployment, IT, Security, the pipeline (PL) architect, and the financier.

Activity Inputs Inputs to this activity include the identified scope and DSO adoption goals.

Activity Outputs Outputs of this activity include a list of resources and when and for how long
they are needed.

Other Resources

Tips, Tricks, and Wis-
dom

The amount of “free stuff” on the Internet in topic areas related to DSO is
staggering. Don’t ignore free training and communication resources that are
relevant to your setting.

The resources needed go beyond technical work by people, activities, and time. You need to fac-
tor in additional interactions with the other organizations and influencers that were represented in
the value network. It is likely that software, hardware, and services will need to be acquired, and
critical stakeholders need to be associated with the infrastructure and overall lifecycle planning.
Are there appropriate communications media and infrastructure to handle the needs of the DSO
environment’s extensive and continuous collaboration between the development, security, and op-
erational personnel and their tools? Do current team members have the skills needed? Is intensive
training or personnel action required? While most of the work can be done by team members, you
may need a coach or specialist for some special analyses. Use the strategy document and other ar-
tifacts that have been created to provide ranges for the various costs envisioned, and keep in mind
the time required for staffing actions or training.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

4.4.2 Activity: Develop a Backlog and Initial Increment Map

Context There is nothing like using the techniques you are espousing to help your team
and organization understand that this effort is serious.

Purpose This activity produces an initial backlog of items that need to be accomplished
within (1) the next increment and (2) a breakdown of those items into those that
can be accomplished in the next iteration.

Primary Actors This activity involves team lead(s), customers/users, developers, Operations-
Deployment, IT, Security, and the pipeline (PL) architect.

Activity Inputs Inputs to this activity include the adoption strategy, adoption goals, and
adoption resources.

Activity Outputs Outputs from this activity include a roadmap for the next increment and the
backlog of both high-level and more granular product backlog items.

Other Resources Other resources include Section 7.1, Appendix B, and any number of books or
websites describing fundamental Lean and Agile software development
practices.

Tips, Tricks, and Wis-
dom

User stories are used in some settings; they may work if the environment is
already accustomed to them, but may be awkward for some service-oriented
tasks.

Using Lean and Agile techniques support an ongoing process that can more easily adapt to
changes in the environment. The initial plan, however, should provide a sense of the time required
for the scope desired. Estimates of completion by the month or quarter could be sufficient for this
initial phase. Planning at the team level should be done incrementally and at a short cadence or
continuously at the practitioner level. Remember to include time for the creation and use of the
culture-change mechanisms that were identified in the strategy. Assume there will be an initial
drop in productivity until the changes can be assimilated by the staff and the stakeholders. Prac-
tice expectations management in your higher level planning, so there are no significant discon-
nects.

4.4.3 Activity: Develop a Communications Plan

Context Communication is the lifeblood of change management. Without a well-thought-
out plan for how information is distributed, how questions are answered, and how
progress and stories are captured, inertia will take over and the adoption will fail.

Purpose This activity produces a communication plan tailored to the adoption activities
and the environment and culture of the change target.

Primary Actors This activity involves team lead(s), customers/users, developers, Operations-
Deployment, IT, Security, and the pipeline (PL) architect.

Activity Inputs Inputs to this activity include vision goals, scoped goals, and RFA results.

Activity Outputs Outputs from this activity include the communications plan.

Other Resources Other resources include the blog post DevOps and Your Organization: Where to
Begin (https://insights.sei.cmu.edu/devops/2014/12/devops-and-your-organization-
where-to-begin.html)

Tips, Tricks, and Wis-
dom

As with any human endeavor, good communication is required for anything to be achieved. Com-
munication among humans is tricky. Thinking about and capturing what you need to

https://insights.sei.cmu.edu/devops/2014/12/devops-and-your-organization-where-to-begin.html
https://insights.sei.cmu.edu/devops/2014/12/devops-and-your-organization-where-to-begin.html

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

communicate and how to get it across to various audiences is important; communication supports
consistency and helps maintain a sense of common vision as you discuss changes and their value
across the organization.

The first chapters of Alistair Cockburn’s Agile Software Development focus entirely on how hu-
mans communicate [Cockburn 2002]. His insights are based on keen observation of technical ac-
tivities in several countries. These are some high points:
• People parse complex experiences in very different ways. In general, we all perceive infor-

mation in somewhat different orders. We “parse” it (break it into little pieces) and then recon-
struct it according to the patterns we recognize.

• Understanding includes internal information restructuring and shared experience. We under-
stand by developing models of what we’re hearing and constantly updating them as more
facts or descriptions are gathered. A corollary to this is that group communication is based
heavily on shared experiences and or terms (think acronym hell).

• The three stages of learning behavior—following, detaching, and fluent—are critical in com-
municating. People in the first stage, following, are ready to hear about one thing that works.
In the second phase, detaching, people parse an idea and look for places where it doesn’t hold
true or can’t work. When fluent, people generally are unaware they are following any pattern;
they understand the desired end effect and move toward it based on their integration of expe-
rience.

Developing a simple but effective communication plan is not hard. It is significantly more diffi-
cult to manage and execute. One widely used and generally successful way to define a communi-
cation strategy is to fill in a table that maps objectives to activities. Table 5 provides the headings
and a description of the information needed.

Table 5: Communication Plan in Tabular Form [Miller 2006]

Objective Responsibility
to Report
Information

Member(s)
Receiving
Information

Receiving
Information
Mechanism

Medium
Used

Frequency

Purpose the
communication is
meant to achieve

Who needs to
make sure it
gets
communicated

Who needs to
get it

What the
communication
event/artifact is
called

How the
material
should be
transmitted

How often this
kind of
communication
should occur

Example: Ensure
staff can interpret
pipeline
performance
information

Adoption team Developers Initial training
class
(Performance
monitoring and
analysis)

Face-to-face
class with an
on-demand
video
refresher

Quarterly Class
offering with
monthly
reminders

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5 Establishing the DSO Ecosystem

This section describes creating the environment, tools, and activities of DSO as an ecosystem. The
four dimensions introduced earlier must be addressed in the adoption activities. Culture, automa-
tion and measures, processes and practices, and system and architecture are all addressed in this
section. Figure 13 provides an overview of ecosystem establishment.

Figure 13: Overview of Establishing the Ecosystem

5.1 Objective: Change the Culture

For many DSO adopters, their first instinct (and probably highest interest) is establishing the
tools, servers, and policies for the pipeline. While this is certainly an essential part of the effort, if
the pipeline was ready on day 1, you probably couldn’t effectively use it. A primary reason for
identifying context and goals in the preparation phase is to understand the amount of cultural and
process change that is required, and identify resources and a strategy that includes adapting the
current culture into one that supports DSO principles and behaviors. That evolution must begin at
the initiation of the adoption activities and continue as the pipeline comes online. Practitioners
must use it properly, and customers’ and other stakeholders’ interactions with the new concepts
must be routine.

Key cultural aspects of DSO adoption include, but are not limited to
• ensuring that adopters have the skills needed to succeed
• preparing upstream and downstream stakeholders for the DSO workflow (and the associated

changes in process), and setting expectations on performing their responsibilities
• ensuring the developers, testers, security, and operations members of the pipeline team under-

stand their roles and expectations

Change the culture

Install and
Launch

Test the
Pipeline

Build a DSO Pipeline

Consolidate
Pipeline

Requirements

Identify and
Acquire Needed

Components

Trial use

Reassess your
DSO Posture

Select pilot
tasks-projects-

work

Conduct pilot

Monitor Cultural
Change progress

Influence
Change

Plan next adoption
activities

(see Objective 3.3)

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• ensuring the no-blame culture, fail early, honesty and transparency, and integration norms are
understood and followed

• ensuring that Lean and Agile principles are exhibited by all

5.1.1 Activity: Monitor Cultural Change Progress

Context This activity is a continuous monitoring of the organizational culture to
understand progress with respect to the measures adopted in response to the
Adoption Culture Risk Assessment.

Purpose This activity captures the current state of the supporting DSO culture in terms
of risks, opportunities, barriers, and enablers.

Overview The cultural profile is established and monitored at an appropriate cadence.
Information comes from the culture- and risk-related measures collected
periodically. This activity is often associated with technical milestones.

Primary Actors This activity involves the manager, teams, S-CSs, and the culture change
coach.

Activity Input(s) Inputs to this activity include the current Adoption Culture Risk Assessment,
adoption measures, and the current Culture Action Plan.

Activity Outputs(s) Outputs of this activity include culture change information, the revised
Adoption Culture Risk Assessment, the revised Culture Action Plan, and new
culture awards.

Other Resources Other resources include the RFA White Paper [Miller 2014], change
management literature, and case studies of similar organizations.

Tips, Tricks, and
Wisdom

Having leadership exhibit the appropriate behaviors (or not) is a significant
measure of progress.

Monitoring cultural change is particularly important during the initial establishment of the ecosys-
tem. You have a good idea of the cultural issues from the readiness and fit analysis. The measures
you identify can provide an initial measurement approach, but you will need to focus on more in-
formal feedback early on. Retrospectives, interviews, monitoring status reports, and looking for
friction points in meetings or informal gatherings can provide valuable information.

Maintaining a log of risks or opportunities identified as well as specific barriers and enablers dis-
covered, perhaps as a blog or newsletter, helps the team understand the different ways their cul-
ture is changing and where change is still needed.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.1.2 Activity: Influence Change

Context As cultural goals and risks are addressed and evaluated, actions are
continuously taken to improve and maintain a DSO-supportive culture.

Purpose This activity supports DSO culture acceptance and maintenance.

Overview Change mechanisms are used to improve specific concerns or problems
identified in monitoring. The measurement strategy and metrics may be
adjusted to more accurately capture progress around the specific issues.

Primary Actors This activity involves the manager, teams, and S-CSs.

Activity Input(s) Inputs to this activity include current cultural needs, barriers, or enablers.

Activity Outputs(s) Outputs from this activity include specific culture-related actions added to the
increment plans and feedback from actions.

Other Resources Other resources include the mechanisms identified in the adoption strategy
and Table 4. Typical transmission mechanisms by Adoption Commitment
Curve Stages.

Tips, Tricks, and
Wisdom

Be innovative in responding to issues; don’t overuse one or two mechanisms.
Enlist leadership to exhibit and reinforce needed behaviors.

Supporting the change must be an intentional, planned, and resourced activity. It is led by the
coach or architect, but it must be supported by leadership, management, and representatives of the
practitioners. Mechanisms exist to support change and maintain the change over time, but they are
not sufficient in themselves. The mechanisms have to be used consistently, and this has to happen
in a way that makes sense to the stakeholders. The old joke of “the floggings will continue until
morale improves” is particularly applicable. The change needs to be seen as worth the effort ex-
pended. Using success stories, rewarding members of the team who “get it,” and having them sup-
port change in other parts of the team are examples of maintaining excitement—or at least toler-
ance.

This activity will continue until the cultural norms of the team have become ingrained in the team
behaviors to the extent that they are no longer noticed as different or new.

5.2 Objective: Build a DSO Pipeline

A pipeline is the most important technical implementation of DSO principles. Through automa-
tion and iterative processes, it enables the engineers to rapidly build, test, and deliver code. It re-
quires careful design, attention to the requirements as captured in Epic 1, and a clear understand-
ing of the development and delivery environment. A pipeline is composed of a collection of
software applications connected via various communication scripts. Each software element serves
to realize one component of the pipeline. Each component implements one or more requirements
of the pipeline. Each requirement fulfills one or more DSO principle.

Table 6 describes common elements of a DSO pipeline. There are many commercial and open
source software package options for each pipeline component. Implementation requires under-
standing the purpose and critical functions of each component regardless of the software used to
realize it.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Table 6: Common Components of a DSO Pipeline

Interactive
development
environment (IDE)

The IDE is the environment that developers use to write source code. The code is
also checked for syntax errors and built into an interpretable or executable file
format. This is usually the first stop on a pipeline. Developers are tasked to write
code and create a new code project on their IDE of choice to commence source
code creation. In some cases, building the code may require including
dependencies, such as libraries. This would be provided by the dependencies server
which is discussed below.

Version control
system repository

This repository stores versioned code for each developer. This component is
essential to supporting continuous CI/CD. It facilitates developers as they create
code in small segments that are easy to test, integrate, and troubleshoot. This
component also provides a historical record of developed code and makes it
possible to refer to older versions if the need arises.

Build server The build server pulls together source code, dependencies, and environments to
create a fully functioning environment. It plays a critical role in the automation of
CI/CD and testing. With instructions from the user, the server pulls code repositories
from the version-controlled server and builds them. The dependencies and
provisioning servers are leveraged in the build process. The final output of this
server is an image of an environment with executable code in the form of a
deployable artifact. The artifact can be used for testing and delivery.

Provisioning server This server implements the IaC and is used to create software-based platforms for
various environments. A request is made for a particular infrastructure (e.g., network
layout, desktops, servers), operating systems, and software. The server creates all
this in one image. Typically, this server receives requests from the build server.

Dependencies server Often when building an image, artifacts such as libraries, services, runtime
environments, and other functionality are required for proper building and
functionality. The dependencies server provides these artifacts—typically in
response to a request from the build server. If the needed artifacts are external to
the pipeline, this server retrieves them from external hosts.

Staging environment This environment is internally hosted and is identical (or as similar as possible) to the
intended production environment. The staging environment is part of testing and is
meant to (1) emulate the intended environment where the code will be transferred to
or (2) to discover and fix errors before transfer to production occurs. Often, this
environment is a deployable artifact.

Production
environment

The production environment is the intended environment for a software project. It's
essential to include this environment as part of testing to ensure that code will run on
the intended environment as expected. Performing testing in a CI/CD manner in
production incrementally builds a successfully running code base.

Document repository A document repository is a central place to store all project-related documents and
updates. This repository usually includes a GUI providing last-minute updates and
news for a given software project. Searchable folders for document artifacts are also
provided. All stakeholders should be given access to this repository. When controlled
information is considered, access controls must be in place to assure security
protocols.

Workflow
management system

This system is used to forecast and track the progress of each project-related coding
task. A ticket is created for each task in code writing, testing, approval, faults, fixes,
delivery preparation, and final delivery. This serves a source of metrics for project
progress. As an individual task is advanced, the associated ticket should be
updated. Each task is initially given a set of estimated hours and completion date. As
work progresses, the actual hours spent are logged and compared to the estimate.
Probability of completing by the estimated calendar date is partially determined with
the comparison of estimated vs. actuals.

Monitoring service The monitoring service collects data points from several parts of the pipeline, such
as ticket progress, scheduled tests and deliveries, failures in testing and delivery,
errors in the pipeline itself (e.g., component not functioning properly or at all), and
scripts that are not responding or reporting errors. This service is a health monitor of

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

the pipeline and the software project. It can also be applied to the performance of
post-delivered systems.

Performance metrics Performance metrics work with the monitoring service and provides the user with
various analytics on collected data. These metrics help identify needed fixes,
optimizations, and enhancements to the pipeline or the active software project.

As described in Table 7, a well-designed and well-implemented pipeline has several desirable
characteristics. All of the characteristics are not always applicable; your particular environment
determines those that are and their priority.

Table 7: Characteristics of a Well-Designed Pipeline

Loose coupling Each pipeline component should have little to no dependency on other components to
properly function. Using scripts for communication between components will achieve
this.

High cohesion Every component should serve only one purpose; ideally, each implements one
required DSO principle.

Portability Ability to run on diverse platforms using either virtualization or containerization.

Load scalability The pipeline should seamlessly handle multiple developers working on a single or
multiple project simultaneously.

Functional scalability The pipeline should function while being enhanced in some way.

Heterogeneous
scalability

Execution should occur regardless of which software is used for any component of the
pipeline.

Recoverability A “save state” should occur iteratively and restore if a pipeline stops functioning.

Usability A clearly defined process should ease usage of a pipeline and its various components.

Maintainability Functionality should be exposed to facilitate the updates and patching of various
components.0

System security Assure the pipeline’s infrastructure is controlled and monitor to avoid unauthorized
data exposure or outside access.

Software security Code should be developed with secure coding techniques and checked for
vulnerabilities and unintended misuse.

Environment parity Development, staging, and production environments should be the same.
Infrastructure as Code (IaC), virtualization, and containerization assist in achieving
this.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.2.1 Activity: Consolidate Pipeline Requirements

Context This activity uses the information gathered in adoption preparation to capture
the software and hardware requirements for the pipeline. Pipeline construction
can be iterative or incremental. The requirements may evolve, but there are
specific questions that need to be answered before construction begins.

Purpose This activity captures the initial requirements for the pipeline based on
information gathered in Epic 1 and a set of questions provided.

Overview This activity draws on the information developed in preparation activities and
establishes the requirements for a DSO pipeline that meets the context,
readiness profile, and strategy of the organization.

Primary Actors This activity involves the manager, team leads, and the pipeline (PL) architect.

Activity Input(s) Inputs to this activity include the goals statement, DSO Adoption Strategy and
Plan, DSO Posture Assessment Report, Technical Inventory, and Security
Profile.

Activity Outputs(s) Outputs from this activity include the pipeline requirements.

Other Resources Other resources include the Pipeline Requirements Questionnaire.

Tips, Tricks, and Wis-
dom

If selecting open source components, verify they provided in-help guides
connectivity scripts to other components. Many components are commonly
used together in pipelines; leverage this to reduce scripting and configuration
needs.

Establishing requirements for the pipeline is essential to building a pipeline that is suited to your
environment. The questions provided in the next section help you complete this task. Much of the
information used to answer the questions will have been captured in the preparation activities.
Some questions may require additional consideration or collaboration with stakeholders.

5.2.1.1 Pipeline Requirements Questionnaire

The answers to these questions help you create the requirements that the pipeline must satisfy.
1. What is the pipeline’s purpose? A pipeline can be used for development of software, ma-

chine learning algorithms, and AI models along with data collection and curation, and pro-
gram and project management. A pipeline can also be used to produce other pipelines. These
are called provisioning pipelines. The answer to this question will help determine if the in-
clusion of specialized components is required. The Goals Statement should drive this infor-
mation.

2. Are there security requirements for the pipeline? This question focuses on the security of the
actual pipeline. This security perspective is primarily derived from the data and code being
accessed in the pipeline’s various components. Consideration must be given to projects with
artifacts associated with an impact level or a security classification. The Security Profile
should drive this information.

3. Where will the pipeline live? A pipeline needs to run from some place. Determining that lo-
cation may not be trivial—and once decided will likely add needed compliance require-
ments. Primarily, a pipeline lives on actual hardware or in a virtual environment. The latter
provides more accessibility, portability, and environment parity; the former can facilitate
customized physical access controls. Security concerns will also define the pipeline’s loca-
tion. In answering this question, consider the security requirements (mentioned in the

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

previous paragraph) and as access controls. The required access can lead to the pipeline liv-
ing in a publicly accessible system; in the other extreme, it can live in a highly classified sys-
tem or physical location, or both. The Technical and Security Profiles support this infor-
mation.

4. Will the pipeline carry out automated SoS integration tests? Recall that SoS relies on data
flows between systems; testing for correct sending and receiving is critical. To ensure broad
coverage in testing, you should understand all ingress and egress data flows for a given sys-
tem being built by a pipeline.

5. What is the expected input to the pipeline? Since a pipeline can serve many purposes, its in-
put can vary. In cases dealing with software development, the focus of this guide, the input is
a newly defined project. The requirements and schedule are taken into the pipeline and con-
verted, mostly manually, into development tasks, each of which is assigned one or more en-
gineers to complete in an IDE.

6. Is there required access to specific services or resources? This requirement could impact the
pipeline’s location and, more than likely, its communication requirements. If a resource or
service is internal, communicating with it may be relatively simple. If it is external, protocol
requirements and authentication details will likely be needed. Secure connection require-
ments affect location.

7. What is the minimal viable product (MVP) that the pipeline must produce? The pipeline’s
minimum capability must be considered; it must have the capacity to produce at least one
well-defined artifact. This artifact serves as a baseline, or starting point, from which the pipe-
line builds on in an iterative manner, primarily using CI/CD.

8. Are there budget considerations? Licensing and usage costs can partially determine the loca-
tion and components of a pipeline. There are many open source (free) solutions often favored
in pipeline construction. Open source software often includes various defined security
measures, often referred to as being “hardened,” that are usable in highly regulated environ-
ments. A bigger financial concern is paying for the use of resources, such as platforms and
bandwidth. When first building a pipeline, the owners must do a long-term cost analysis to
compare internal hosting or hosting using a third party. Usage must be determined to forecast
associated costs. Third-party hosting, such as cloud environments, is often chosen for many
reasons, including perceived cost savings. Carefully forecasting costs for expected usage
may prove to be much higher than perceived savings.

5.2.1.2 Documenting the Requirements

The answers to the above questions provide a loosely coupled set of concerns, needs, and con-
straints. Capturing them in a more integrated form anchors the design and acts as the reference for
validation and verification of the pipeline. The form the requirements take is less important; what
is critical is ensuring that stakeholders and the pipeline architect understand the requirements.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.2.2 Activity: Identify and Acquire Needed Components

Context Identifying and acquiring the infrastructure and components are a critical part
of achieving DSO benefits. It should be approached collaboratively and
consider the stakeholders’ expectations and the available technical and
security environment. The components may be selected and acquired in a
single activity, or they can be incrementally acquired as resources become
available. The DSO Adoption Strategy and Plan should reflect the approach.

Purpose This activity provides the building blocks for the DSO pipeline.

Overview This task translates the requirements into a set of ordered software and
hardware components that will make up the pipeline infrastructure.

Primary Actors This activity involves the manager, team leads, the pipeline architect,
Procurement, and IT.

Activity Input(s) Inputs to this activity include the Technical Profile, Goals Statement, and
Pipeline Requirements.

Activity Outputs(s) Outputs from this activity include pipeline components.

Provided Work Aids Work aids provided include Pipeline Component Considerations and the
Pipeline Design Template.

Other Resources

Tips, Tricks, and Wis-
dom

Making pipeline decisions should be aligned with the culture assessment and
strategy and never be the first activity undertaken. Without culture change, the
pipeline will have only a minimal effect on overall SDLC performance.

Figure 14 illustrates how the pipeline components listed in Table 6 interact. The two critical ele-
ments that must be decided are (1) the type of software components, and (2) the hosting of those
software components.

Figure 14: Connectivity Layout of DSO Pipeline Components

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Each of the components can be implemented in one or more ways: purchased software, open
source software, and software as a service (SaaS). Consider the following factors in determining
your implementation:
1. Security. In a highly regulated environment, security is often top priority. An often-discov-

ered source of security violations is software containing exploitable vulnerabilities. These
vulnerabilities are often kept private and can be exploited for malicious purposes. Both pur-
chased and open source software can contain vulnerabilities; if you are compromised via one
of them, there could potentially be a “no fault” agreement on the part of the software pro-
vider based on the terms of usage. Ideally, vendors should promptly release a security patch
once a vulnerability is disclosed. It is here where your decision matters.
− Purchased software may be constantly tested for vulnerabilities, and the vendor should

alert you of a patch that must be applied manually. In most cases, you can configure the
software to have patches applied automatically.

− Open source software may have varying degrees of ongoing vulnerability discovery with
patch deployment. Some entities provide third-party support for open source software,
but this increases cost.

− SaaS for either open source or purchased software does not eliminate the vulnerability
discovery and patching issues, but it may automate patch application due its own inter-
nal exposure to compromise. Furthermore, some SaaS providers are accountable when a
client is compromised since they provided the vulnerable software.

Software security requirements are plentiful in an HRE. Leveraging SaaS implies that the service
provider has already covered all security requirements for the offered software. This will save you
time and money, and it shifts accountability to the provider for any security violation (assuming
you validated their compliance before using their services).
1. Cost. Most open source software is free. Some have restrictions, so reading the license de-

tails is important. The license will state what a consumer can and cannot do with the soft-
ware. A potential downside to open source is a lack of support from the software provider.
Some community-driven support exists for popular open source software but the community
often lacks sufficient understanding of the software’s inner workings. This knowledge gap
can result in sub-optimal response time and quality. The option to contract for third-party
support for open source tools is usually available, but may be expensive. Buying commercial
software or SaaS is often the best choice from an overall cost perspective. However, this ap-
proach should include long term support from the vendors gratis or at a reasonable cost.

2. Support. For many reasons, some discussed here, having support for your software is highly
desirable. The support should include updates; security patches; online, phone, and around-
the-clock (or a schedule suitable to your needs), in-person response personnel and support
services. This is the basic support; there may be more options (such as training) that may in-
cur additional expense. Closely study the support of ongoing products predict how many
years of service you can expect. In some cases, your use of the software may outlive the pro-
vider’s support. In these cases, upgrading to newer versions should be in your support agree-
ment.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Hosting can be accomplished in-house or remotely (e.g., in a cloud environment). The following
points overlap the software considerations, but they represent some of the issues to consider when
deciding where to host a pipeline’s component software:
1. Security. As previously stated, in a highly regulated environment, security—specifically, the

proper handling and storage of controlled information—is often a top priority. To host this
type of environment in-house requires meeting all the needed certifications required by law
to be granted permission to access controlled information. If the in-house location only re-
quires adding hardware and software to an existing infrastructure with the needed permis-
sions, the time and cost to add a new host or system is greatly reduced. On the other hand, if
no infrastructure with permissions currently exists, hosting remotely is a better option. There
are several well-established remote hosting services that offer all the needed security certifi-
cations.

2. Cost. The main hosting-related investments fall into short- and long-term costs. If you are
hosting on an existing in-house environment, the initial costs of setup are minimal. The sus-
tainment costs may rise depending on usage and the need to hire new maintenance personnel.
If the in-house environment is sub-optimal (i.e., it does not exist or it lacks certain require-
ments), the initial costs may be higher, but the sustainment could cost the same as an existing
in-house environment. When considering remote hosting, some of the biggest costs can be
related to bandwidth, storage, and usage (BSU). Forecasting different scenarios that combine
these three factors is a good approach to assessing potential long-term costs. Of course, with
remote hosting, there should be little or no up-front expense; the monthly costs are almost
always based on BSU.

3. Access. A cornerstone of DevOps is full stakeholder access. When choosing a hosting solu-
tion, be sure to identify the stakeholders and determine if they require access to the data in a
particular component. Ensure that a remote solution can provide for their data-access needs.
If not, in-house may be the right solution.

4. Support. When hosting in-house, you may need staff to provide support that sustains the sys-
tem in working order. An option is to use third-party contractors. On the other hand, remote
hosting enterprises oversee and sustain all the infrastructure in use by their client portfolio.
This lessens your burden and may result in needing only minimal staff to work with the re-
mote hosting service to collectively resolve some of the issues.

The question of having all components of a pipeline live in the same system or not can be indi-
rectly answered with the above considerations. In general, all pipeline components should live to-
gether in the same system. If a remote connection is needed, there should be strong justification
for it. Furthermore, the security needs of one component should be extended to all components.
This could help avoid running some components in less-secure systems and inadvertently passing
controlled information to those areas.

To further aid in the component-selection process, consider the following:
1. Prior team experience. When choosing specific software for a pipeline component, it is im-

portant to determine if your personnel has experience using it. If not, then training may be
required (and counted as an associated cost). There will be a learning curve for personnel
who have no experience with the software. The effect of this curve on project scheduling

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

must be considered. As experience grows with usage, learning curves will diminish along
with training needs. The critical risk is the added cost and potential delays upfront.

2. Component interoperability. When considering your component software options, realize the
need to assure communication requirements with other pipeline components as seen, for ex-
ample, in Figure 14. Remember that a pipeline is a sequence of components that interact in
some way, and this interaction may be standardized or custom. The ability for a software
component to communicate with other components may be by default or require third-party
software to facilitate. The latter will introduce other technologies and require time to develop
and test. This, of course, consumes time and funds. When possible, choose software compo-
nents that include scripts or other methods to communicate with the other components.

5.2.3 Activity: Install and Launch the Pipeline

Context Technical implementation of the pipeline involves integrating the pipeline
software and hardware, understanding the connectivity and creating links, and
capturing the process as defined by the selected components.

Purpose This activity creates the pipeline infrastructure and process.

Overview This activity integrates the pipeline component in an iterative manner,
identifying and documenting the roles and responsibilities of the pipeline
components.

Primary Actors This activity involves the pipeline (PL) architect.

Activity Input(s) Inputs to this activity include pipeline requirements and pipeline components.

Activity Outputs(s) Outputs from this activity include an operational pipeline with a validated use
process.

Other Resources Other resources include online resources associated with the components to
support development of component communication scripts as needed.

Tips, Tricks, and
Wisdom

In most installations, the default setup for any component will suffice minus
scripts to connect with other components.

The various components of a pipeline can be installed using simple scripts that pull software from
a repository and launch its installation onto an existing environment. This is a straightforward pro-
cess; installation scripts exist for several purchased and open source solutions. In the case of SaaS
for multiple components, the vendor should provide the scripts and may only require configura-
tion. Once the individual components are installed, communication scripts need to be written that
allow multiple components to interact as needed.

Earlier in this report, we noted the need to identify the various roles required for a project. Each
role has to be given instructions about how to use the pipeline to fulfill the role’s responsibilities.
Documenting the instructions is based on role-based pipeline interactions. Given a pipeline and
set of roles, instructions can be developed about how each role will interact with the pipeline. A
well-constructed pipeline will minimize manual tasks for the user.

5.2.3.1 Installation Process
1. Install a selected component in the pipeline. Remember that the technical implementation of

a pipeline is a connected sequence of components that interact with each other. In most
cases, the IDE or version-control repository are logical entry points for developers. Either of
these components can be installed first.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

2. Review the roles; identify the roles that interact with the installed component and their re-
sponsibilities.

3. Capture the necessary activities for accomplishing each responsibility for each role.
For each role:
− Do the following for each responsibility of that role:

− Identify and carry out the activities required using the pipeline component.
− Assure the desired results are achieved.
− Document the steps taken, creating the instructions for executing the responsibility of

this role using the current pipeline.

This will be a real-time discovery of the steps needed to complete the actions for each re-
sponsibility for each role. Documenting the product could be captured on paper, main-
tained in a wiki, or implemented in a software-guided script.

4. Repeat role activity discovery and documentation (3) for each component.

The final product is a complete, step-by-step description of the activities required to satisfy the
responsibilities of each role for each component.

The outcome of this activity is an operating pipeline and a complete process for using the pipeline
by all identified roles, described as individual instruction sets. These instructions are the basis for
testing the whole pipeline (covered in Section 5.2.4)

5.2.4 Activity: Test the Pipeline

Context Before trial use, the pipeline should be tested end to end.

Purpose This activity validates the overall functionality of the installed pipeline.

Overview This activity tests the overall functions of the pipeline as an integrated tool.
Concurrently, it captures the user role responsibilities to create a documented
process.

Primary Actors This activity involves software engineers, operations engineers, pipeline (PL)
architect

Activity Input(s) Inputs to this activity include the Installed pipeline and the test project.

Activity Outputs(s) Outputs from this activity include test results.

Other Resources Other resources include information you can obtain by following each
component’s official online documentation for recommended testing.

Tips, Tricks, and Wis-
dom

Use a simple project that includes aspects that use every component of the
pipeline, including testing (manual and automatic).
Your very first run will likely have connectivity problems. This is normal.
Resolve and continue testing. Repeat testing until you complete one successful
run of the entire pipeline.

Once a pipeline has been constructed, testing is the next critical step. One new project should be
chosen to test the pipeline. The processes for using the pipeline defined in Section 5.2.3 should be
distributed to all the test project stakeholders. As the project starts, execute the component and as-
sociated processes individually. After completion of each, determine if the component responded
as expected; if it didn’t respond as expected, determine why, and fix the issue before continuing

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

pipeline usage. Once a few cycles of the pipeline have occurred, reflect and ask all the stakehold-
ers the following basic questions:
1. Did anything unexpected happen?
2. Was the pipeline able to handle unexpected occurrences?
3. Was a modification to a process needed to pass through a component?
4. Did the pipeline function expeditiously or slowly?
5. Were additional optional software packages needed for a component to perform a seemingly

routine task?
6. Did the entire pipeline or any component stop working or become unresponsive during use?

Answer and address these questions on the first project used with the pipeline. Do not let sub-opti-
mal answers go unresolved as other projects commence with the pipeline.

The pipeline should be validated to ensure that it responds and performs in normal and unusual
conditions. Craft and execute tests for the following conditions:
1. higher than expected loads across the whole pipeline
2. higher than expected loads on an individual component
3. ability for a component to exit gracefully under unexpected conditions
4. effective handling of user saturation
5. functional operation under high-stress by combining points 1-4

Once testing results are satisfactory, the pipeline can be scaled for use by other new projects. A
good rule is to not require ongoing projects to switch to the pipeline. The time and resources
needed to accomplish this action are likely overwhelming and unacceptable under that project’s
forecasted schedule completion.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.2.5 Activity: Reassess Your DSO Posture

Context This activity happens at each step of the adoption process.

Purpose This activity quantifies the impact of the pipeline on providing your desired
SDLC.

Overview This activity determines if the pipeline addresses its associated DSO technical
goals and provides insight into progress.

Primary Actors This activity involves software engineers, QA, requirements engineers, and the
program manager.

Activity Input(s) Inputs to this activity include a detailed pipeline architecture with performance
metrics and testing results, the questionnaire below, and results from the initial
DSO Posture Assessment.

Activity Outputs(s) Outputs from this activity include answers to the questionnaire, a determination
of progress, and potential remediation action tasks.

Other Resources

Tips, Tricks, and Wis-
dom

Repeat pipeline testing if remediation action items are put forth. Continue with
this testing until no action items are given. Be aware that the pipeline may
introduce new issues not previously present; remediate and repeat test in this
case.

An initial DSO posture assessment should be carried out before actually considering implement-
ing DSO to your environment. At this point, you have (1) installed and tested the DSO pipeline
and (2) collected data via logs and reporting; you can now measure progress and impact by revis-
iting the following posture assessment survey questions relevant to the pipeline:
1. Source code commits per day. Is the group satisfied with the commits the pipeline can per-

form per day?
2. Consistent development environment. Are the various environments being used by develop-

ers and other HRE personnel able to be kept consistent and up to date with methods such as
tools, updates, and features with this pipeline?

3. Tooling usage. Does the pipeline make a diverse set of tools available to developers? Are
there multiple tool sets for the same purpose? Can the current tool set be reduced to exclude
those not favored by developers?

4. Production delivery. How often can code be pushed to production for end-user feedback?
Can delivery be performed by one person and a group? Is delivery a consistent, repeatable
process, or is it a unique effort each time?

These questions and the DSO reassessment quantify the impact of the pipeline on providing your
desired SDLC. A full project has not been carried out at this point, so a full DSO reassessment is
premature. The pipeline will provide technical advances and some technical process changes; it is
not sufficient to establish the culture and organizational process changes critical to DSO. Com-
pare your current answers to the original answers, and assess if improvements have occurred. If
the pipeline has not advanced your SDLC in a technically specific way, you can modify the pipe-
line components and configurations and then retest and reassess.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.3 Objective: Conduct Trial Use

The trial use is the turning point in determining the true impact that DevSecOps will have on your
SDLC. The trial use will provide a first-hand look at DSO in action and its effects on your culture,
personnel, project performance, and finances. You should not expect a smooth experience since
this is a first-time use. Rather, this trial use is a good opportunity to discover “rough spots” in the
DevOps practice that need to be resolved. A rough spot is anything that causes a pause or regres-
sion in advancing to your desired SDLC. Be aware of new negative issues that may arise as a re-
sult of implementing DevOps; capture and resolve these. At the end of this trial, you should have
a clear understanding of how DevOps will impact your technical, business, and financial strate-
gies. You should also be satisfied with DSO to the point where you are ready to implement, or
recommend its implementation, across your organization.

5.3.1 Activity: Select Pilot Tasks/Projects/Work

Context Selecting pilots is the first step in trial use. It attempts to maximize the
information gained from Trial Use.

Purpose This activity creates a list of tasks or projects to act as pilots.

Overview Trial use pilot(s) selections are made collaboratively, using established criteria
for considering the projects available.

Primary Actors This activity involves the program manager and the pipeline (PL) architect.

Activity Input(s) Inputs to this activity include DSO Goals, the latest version of the DSO Posture
Assessment, the installed and tested pipeline, and validated process guidance.

Activity Outputs(s) Outputs from this activity include a selected pilot project.

Other Resources Other resources include Sections 7.1.4 and 7.1.5.

Tips, Tricks, and Wis-
dom

Senior leadership should buy in on selected project.
Don’t choose a multi-year project for the trial run. It may be too long before
remediation can occur.

The first step in carrying out the trial use is identifying a project to execute using DSO. The pro-
ject should be a new one that is set to launch. Requirements should have been gathered, and a
statement of work (SOW) should be in place. The SOW should clearly state the project, its goals,
and deliverables. The project should not require the use of technology that is new to your organi-
zation.

The following should help guide you in selecting the ideal project for trial use:
1. Choose a completely new effort that has not yet commenced.
2. Check that requirements have been obtained from the client.
3. Be sure your organization has a clear understanding of the project and its deliverables.
4. Select a project that uses technology with which your organization has experience.
5. Choose a project that requires personnel covering a diverse set of roles.
6. Find a project that will need a baseline of sufficient personnel to produce a minimally viable

product.
7. Choose an effort that will have people touch every component of the DSO pipeline.
8. Engage a project that has the flexibility to schedule extra time to resolve DSO-related issues.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

9. Pick a project where the customer is in favor of using DSO.

The goal of the above guidance is to select a project that the team feels comfortable with, where
the customer is agreeable to DSO, and which has a delivery date that allows time to fix potential
DSO issues. Having diverse role types allows testing the various sets of created instructions that
belong to the DSO process. It’s critical that the organization is able to visualize the project, how it
can be executed, the phase of work and their outcomes, and the final delivery. This visualization
is important because it should facilitate the use of a new SDLC approach. If the team found a pro-
ject difficult or challenging, using a new approach would be a sub-optimal choice.

The trial project chosen should be for an SoS. Recall the two types of SoS defined in this docu-
ment. The additional tasks in testing SoS are based on the data flows of source and derived values
between systems. These tests will be automated just like all the other integration tests in the pipe-
line. In designing the required tests consider the following:
1. Do you understand all the ingress and egress data flows? It is best to have an architectural

diagram of the various systems with their relevant usage and data flows for source and de-
rived values.

2. Is the value created in the current system? It is important to confirm if the value, either
source or derived, is truly created in the current system and not passed in from another sys-
tem. If the value is passed from another system, then the system that created this value is re-
sponsible for its testing.

3. Do the components of other systems exist for testing? Inherent to source and derived value
integration testing is the existence of other systems providing a pathway for value traversal.
Following the DSO iterative approach of building, testing, and delivering small code seg-
ments, it is inevitable that SoS integration testing will start early in the SDLC. Systems will
need to provide function and procedure calls (possibly empty), to allow a value to traverse
onto the required functionality. The functionality that uses a value as input must exist to
test—even if the rest of the system is nothing more than function calls creating the value’s
traversal pathway.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

5.3.2 Activity: Conduct Pilot Tasks/Projects/Work

Context The pilots will identify technical, process and culture conflicts, mismatches,
errors, and improvements.

Purpose This activity supports and monitors the pilots.

Overview The pilots are conducted on the operational pipeline using the validated use
process.

Primary Actors This activity involves the program manager, the pipeline (PL) architect,
customers, end users, software engineers, requirements engineers, the quality
assurance engineer, the operations engineer, and the security engineer.

Relevant/Key Events Events include the commencement of project, schedules milestones, final
delivery into production, and handover to the customer.

Activity Input(s) Inputs of this activity include selected pilots, requirements, personnel, the
process of using the pipeline, the schedule, milestones.

Activity Outputs(s) Outputs of this activity include the delivered product to the customer.

Other Resources

Tips, Tricks, and
Wisdom

Before the project starts, hold meetings and talks to get personnel thinking in
the DSO style, so they mentally plan and make decisions conducive to DSO.

Once a project has been chosen as a pilot, it should commence using the DSO approach combined
with the organization’s traditional approaches. Traditional approaches include creating an overall
schedule, finalizing personnel selections for the project, and allocating time and budgets. Once
these traditional approaches are completed, some of them should be transitioned and maintained
on various components of the DSO pipeline. Schedules are broken down into milestones, then
work tasks, then work subtasks. Each subtask can be a ticket pending assignment to personnel and
estimate of hours to complete. Using the ticketing system to show progress that builds toward ma-
jor milestone deadlines is a key part of DSO since it allows full stakeholder viewing, transparent
tracking, and dependencies of other tickets needed for completing some bigger task or milestone.

Subtasks can be broken down into smaller tasks. In DSO, any individual task should be small
enough that it can be done in a short period of time—maybe no more than two weeks—by one
group involving no more than two or three people for the core work. Of course, people in other
support groups (such as environments or configuration) may need to assist. This is true for many
tasks.

The project should progress to completion if you follow the process and use tracking tools (e.g.,
the ticketing system) effectively. As work is completed, notes should be kept describing any nega-
tive issues or confusion that arose, and how previous bottlenecks and inefficiencies were elimi-
nated. Performance metrics gathered and analyzed in the monitoring server will also quantify rele-
vant metrics, including time to complete a task, number of deliveries per day/week,
attempted/successful/failed builds, and delays in task completion. Publish (at least internally) a
trial-use report summarizing the pros, cons, and impact of DSO on the pilot project.

As part of the process, you may want to use previously employed update events, such as daily and
weekly meetings. This is perfectly fine and is a key component of DSO. During these meetings,
use performance metrics and tickets to track and inquire about various work tasks.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

You may not be willing to perform a trial use with a customer-funded project. If so, use an inter-
nally funded project; that way, any delays or negative results will not impact your customers. If an
internally funded project is not an option, you may have to fabricate a test project.

Regardless of the project type, once chosen, follow the guidance in this section for the trial use.
When running the trial use, be patient, expect problems, and be prepared to resolve them. When
the first issue arises, do not abandon the adoption. Once the project completes and is delivered,
conduct a full reassessment of your DevOps posture.

5.3.3 Activity: Reassess Your DevOps Posture

Context This happens at every step of the adoption process.

Purpose This activity is a full assessment of post-trial use.

Overview This is a final check on the initial pipeline deployment.

Primary Actors This activity involves all stakeholders.

Activity Input(s) Inputs to this activity include the DevOps posture questionnaire, trial-use
issues, met and failed schedule dates, and milestones.

Activity Outputs(s) Outputs from this activity include questionnaire answers and remediation
action items.

Other Resources Other resources include questionnaire answers for all previous posture
assessments related to this project.

Tips, Tricks, and Wis-
dom

This was the first run; it won’t be perfect. Learn from it, make changes to
improve posture, and move on to the next project.

Completion of the trial use implies having applied DSO to your SDLC’s culture, process, and
pipeline. Project experiences and results are documented and quantified. With this analysis, a full
post-DSO implementation Posture Assessment is appropriate. Repeat the full survey, and compare
your current answers to the previous answers from the pre-DSO implementation assessment. The
current answers should be at (or advanced toward) your ideal SDLC. Noticeable improvements
should be evident in every step of the SDLC. You should also list new issues that arose as a result
of implementing DSO. These issues should be analyzed in detail. Hopefully, they were resolved
during the trial use; if not, a proposal should be made on how to resolve them in future projects.
The potential solution could be a change in process with the current pipeline, a modification to the
pipeline, or both.

A good exercise is to conduct several meetings and surveys with all personnel involved in the trial
use. Meetings should be conducted in large and small groups, and with each individuals (one-on-
one). In each meeting, ask participants how they felt about using DSO; record all input. Repeat
the meetings as needed, and ask as many questions as desired to conduct a project-wide census on
DSO. This is an important step since you are moving toward a new organization-wide approach
that will affect all future projects. Therefore, you must feel confident that the feedback reflects ac-
ceptance toward positive change. Once you’re satisfied with the current DSO posture and the
overall trial use, you should formalize DSO into your organization. In preparation for this step,
ensure that your organization’s senior leadership fully supports adding DSO as a standard practice
to be adopted by all sectors and personnel.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6 Manage and Evolve the Ecosystem

Just as DSO is a continuous process, the refinement and improvement of the ecosystem is a con-
tinuous process. Lean and Agile practices include retrospective as an integrated means for feed-
back and improvement opportunities. The pipeline provides data that can be used to identify prob-
lems and illustrate the impact of process or tool changes. The DSO posture evaluations provide
another means of tracking, maintaining, and improving the pipeline and cultural aspects.

Extending the DSO ecosystem can be done within a single enterprise or can extend to other devel-
opers in the system of systems who either see the results of the initial adoption or are directed by
their own leadership. The data that is gathered and analyzed can be a powerful tool to aid DSO
implementation and adoption.

It is important to understand that feedback must be honest, the measurements must be accurate,
and the information must be provided in a manner that is transparent across the team. Maintaining
those cultural norms are key to extending the DSO ecosystem and improving the pipeline and cul-
tural aspects. Figure 13 illustrates the associated activities.

Figure 15: Overview of Manage and Evolve the Ecosystem

6.1 Objective: Monitor the Ecosystem

Once DSO has been institutionalized across the organization and is standard practice for all new
projects, you must continue to monitor its use. It is important to realize that DSO-related issues
will still arise and will need resolution.

Figure 16 illustrates the scope of this monitoring. Note that trial use and institutionalization will
not capture all potential issues.

Monitor the ecosystem

Regularly reassess
your DSO technical

and cultural posture

Extend DSO

Establish
Formalization

Goals

Document and
Train

Plan next adoption
activities

(see Objective 3.3)

To Prepare for adoption

Establish
measurement

program

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.1.1 Activity: Establish a Measurement Program

Context This activity is a long-term performance metric tracking pipeline, process, and
culture.

Purpose This activity determines and creates long-term metrics for DSO effectiveness.

Overview Senior leadership and program managers determine the best metrics for long-
term monitoring of DSO effectiveness across the organization.

Primary Actors This activity involves senior leadership, program management, and software
engineers.

Activity Input(s) Inputs to this process include formalization goals.

Activity Outputs(s) Outputs of this activity include a list of desired data for long-term analysis of
DSO.

Other Resources Other resources include the webinar Three Secrets to Successful Agile Metrics.

Tips, Tricks, and
Wisdom

Remember your analysis should focus on DSO culture and process. Don’t get
stuck only on the pipeline performance.

Figure 16: Monitoring System Architecture

An important aspect of confirming DSO institutionalization progress is tracking various metrics
deemed representative of the status of effort status and its impact. Some of these metrics can be

Configuration
Management

System

OperatorUser tracking

Operation logs

Monitoring System

Monitoring data
storage

Visualization Alarm evaluation

Big Data
Analytics Traditional BI Intrusion

Detection
Other

applications

Other
systems

Al
er

ts

System 1

Application
Middleware

OS

Agent

System 2

Application
Middleware

OS
...

agent-based agentless Health
checks

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=507850

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

derived from the performance metrics of the DSO pipeline. Other metrics can be sourced from (1)
personnel using surveys and interviews and (2) the organization’s personnel department and fi-
nance reports for a given project.

DSO pipeline performance metrics. As previously discussed, these metrics provide technical anal-
ysis on attempts, successes, failures, time to complete on various tasks (e.g., commits, unit tests,
functional tests, builds, delivery into staging and production). As personnel become more com-
fortable and accustomed to DSO, these metrics should steadily improve. It is acceptable if some
metrics plunge and spike because incidents will happen. If, over time, a metric stays the same or
underperforms, it is likely a sign of a fundamental problem that should be investigated. It is up to
you to set the threshold values that trigger an inquiry into a perceived problem.

Another metric to track is the number of tickets opened to report a problem. Tracking such num-
bers and the time to resolve is important since the data may indicate a deficiency in the pipeline or
process. Alternatively, it may indicate a skill set is lacking; such an issue should be addressed but
falls outside of DSO.

Interacting with personnel. Technical metrics may not capture the full status of DSO institutional-
ization. Those metrics lack in directly capturing the state of the culture shift. This aspect, on the
other hand, can be implied with technical metrics that display slowdowns, delays, and failures.
These metrics can signify frustration, lack of understanding, and—worst of all—lack of motiva-
tion. Regular discussions with small groups to discuss their experiences, highlights, and issues
with DSO are critical to ensuring positive cultural shifts. These discussions can be prearranged or
ad hoc; however, ad-hoc meetings are better since they can reduce potential influence of peers and
management on answering questions. In the meeting, if you sense negativity, start interacting. In
general, let everyone in the organization know that they can speak frankly without fear of reper-
cussions. When needed, take all necessary steps to provide privacy and anonymity.

More information about change measurement is available in publications by Dorothy Leonard-
Barton [Leonard-Barton 1988], Gerald Weinberg [Weinberg 1997], and R. Zmud [Zmud 1992].

Personnel and financial reports. When an organization’s culture is happy and positive, employees
stay with the organization. When it is not, tensions rise along with complaints to the human re-
sources department. Another potential indicator of a sub-optimal culture is an increase in vacation
and sick days. If any of these are occurring beyond normal thresholds, you should meet with the
teams to which the unhappy individuals belong. Avoid meeting directly with the individuals at
first, as this may cause them to think they are being singled out, which will not help the situation.

Overall, when addressing concerns, always meet with the group first. This facilitates addressing
the issue without singling out an individual. Remember, the goal is to ensure that the cultural shift
caused by implementing DSO is trending in a positive direction. The goal is not to single out
struggling individuals or those who are not in concert with the shift. They can be helped through
group training, presentations, practicums, and meetings.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

6.1.2 Activity: Regularly Reassess Your DSO Technical and Cultural Posture

Context This activity is a routine assessment to gauge long-term impact and
effectiveness of DSO.

Purpose This activity assures DSO impact and effectiveness trends have not fallen to
near unacceptable levels and fixes those that may be declining.

Overview This activity is a progress assessment that looks at all aspects of the DSO
adoption effort.

Primary Actors This activity involves all stakeholders.

Activity Input(s) Inputs to this activity include results of all previous DSO assessments and the
assessment questionnaire in 2.1.5.

Activity Outputs(s) Outputs to this activity include answers to the questionnaire, the current DSO
posture, and remediation action items provided to incremental planning
activities.

Other Resources

Tips, Tricks, and
Wisdom

Watching assessment trends over time will clearly indicate cultural acceptance
and/or defiance.

The key to continuous monitoring is threefold: reassessing your DSO posture, monitoring pipeline
performance metrics, and regularly meeting with personnel. This approach provides a view of the
DSO’s culture, process, and pipeline. If you follow the potential causes of sub-optimal results and
trends previously discussed, you will be able to continuously determine if problems are arising—
or, in some cases, persisting—as a result of DSO.

The current DSO implementation is not meant to be static forever. Inevitably, the DSO will need
modification in some fashion, probably to the pipeline or the process. Pipeline changes arise from
technical shifts in client needs, standards, and community practice. Each of these may include the
adoption of new technical approaches and retirements of older ones. Options for the various pipe-
line components will evolve over time, and better options will arise and be adopted.

A pipeline designed with heterogeneous scalability facilitates the swapping of individual compo-
nents with minimal disruption. Changes in process can occur resulting from pipeline changes or
new requirements from the organization, an oversight committee, or a regulatory policy. In these
cases, processes must adhere to the prescribed requirements. Be aware that this may produce a
sub-optimal DSO implementation. Consideration can be given to changes in other DSO aspects to
balance out the sub-optimization but may require a new assessment and modification.

As discussed throughout this report, the hardest changes to assimilate are cultural. This type of
change can come about from a number of events:
• sweeping and highly impactful shifts from senior leadership or policy
• attrition of trained, expert personnel
• significant influx of new personnel
• contract or contractor changes

These events must be analyzed closely as they may require changes in all aspects of your current
DSO implementation. Determining and implementing those changes may require a new assess-
ment and modifications according to the results. Remember that performance metrics are not

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

meant to always trend positive or in favor of your point of view. Metrics will rise, fall, and remain
steady in predictable ways (or for no reason at all). Inquiries should be made when a change per-
sists or impacts the organization beyond your comfort zone. As time passes, continuous monitor-
ing will facilitate your organization’s adherence to the “new normal” as reported by metrics, feed-
back, and assessment. With this exposure, you will be able to detect the truly unexpected and sub-
optimal, and quickly respond with inquiries and resolutions.

6.2 Objective: Extend DSO (Institutionalize)

Once your initial DSO implementation is operational, you may decide to embed DSO across your
entire organization and make it part of core operating practices for software development. This is
a serious but probably rewarding step to take; it will affect several sectors in your organization.
Ideally, you observed these organization-wide impacts in trial use and have a good idea of the is-
sues that may have arisen and some resolution strategies.

6.2.1 Activity: Establish Formalization Goals

Context These goals will institutionalize DSO as regular practice within your
organization.

Purpose This activity establishes the use of DSO on all projects, organization-wide.

Primary Actors This activity involves senior leadership and program managers.

Overview Senior leaders and program managers collaboratively identify goals that set the
standard of practice in using DSO for all future projects.

Activity Input(s) Inputs to this activity include trial usage final reports, DSO post-implementation
assessment findings, and the DSO process and pipeline.

Activity Outputs(s) Outputs from this activity include an organization-wide mandate detailing the
mechanics of DSO usage on all projects.

Other Resources

Tips, Tricks, and Wis-
dom

Several pilots will be needed for the whole organization to accept DSO as “the
way we do things.”

Meet with every department in your organization to explain impacts to and expectations from
them. Present DSO and its benefits to their group and the organization, providing details about the
pros and cons specific to them. In the software development group, meet with individual teams to
introduce and discuss the technical changes and how they are supported through the pipeline and
other tools. At each meeting, detail the procedural changes that are being modified or replaced
and the procedures that they must follow. Be sure to provide points of contact for questions and
assistance.

Most importantly, develop and provide training about the organization’s DSO ecosystem, and tai-
lored it to the various sectors.

Update training as technology and processes change (such as adding a new pipeline component or
a security requirement that affects the DSO process).

The main goal is for all sectors of the organization to be aware of how DSO affects their way of
doing business. In some cases, there may be no or minimal impact; in other cases, a major shift

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

may occur. The trial use gave insight into this, so it is critical to meet with groups and explain
what permanent changes they should expect.

The following guidance helps institutionalize DSO:
1. Meet multiple times with the groups to answer questions and receive feedback.
2. Allow people to ask questions and make comments at any time and any day, likely via the

corporate website and by telephone.
3. With the help of senior leadership, ensure that DSO is included in all relevant organization-

wide documents, procedures, yearly reports, marketing materials, and similar items.

It’s critical to remember that institutionalization will not occur overnight. A cultural shift needs to
occur within the organization. Only by repeatedly reminding, retraining, inquiring, and following
up will a cultural shift have a strong chance of succeeding.

6.2.2 Activity: Document and Train Personnel

Context This activity includes continuous teaching of personnel in all areas of DSO.

Purpose This activity keeps personnel up to date on all DSO-related issues.

Overview Training, based on the latest process, is created, offered, and delivered to all
team members as needed.

Primary Actors This activity involves program managers and senior leadership.

Activity Input(s) Inputs to this activity include new training materials and documented updates
on DSO.

Activity Outputs(s) Outputs from this activity include training videos, slides, books, meetings, and
Q&A sessions.

Other Resources Other resources include third-party trainers, various media with new training,
and/or DSO changes.

Tips, Tricks, and Wis-
dom

Use training to keep personnel current on DSO technology and process
refinements.
Over training or too-early training can be detrimental.

Key to DSO is the creation, usage, and—most importantly—updating of a readily accessible com-
munication hub and repository. This hub/repository serves as the central location for the project’s
papers, notes, advisories, and announcements. At a higher level, the repository can also house the
guidance, practice, and methods of SDLC along with video and other presentations regarding
DSO, the pipeline, and related issues. Continuous documentation of all aspects of a project, in-
cluding performance metrics and assessments, is critical. This body of knowledge will serve as a
time capsule archive once the project is completed. The data collected can be used for studies per-
formed across long periods of time or across multiple projects.

Regular, continuous, and ongoing DSO training is critical to adoption success and long-term sus-
tainment. All training should be recorded and made available to all personnel for viewing at any
time with no required approval or authorization, except for security reasons. Below is a list of top-
ics for which training should be created:
• how the DSO pipeline works
• the steps in using the pipeline

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• starting, continuing, and finishing projects
• how DevOps functions in the background

Training should be crafted for specific audiences by scoping the breadth and depth of knowledge.
Business and finance operations will not require the same technical detail as software and quality
analysis engineers, but both will likely benefit from some detail not required by mid-level man-
agement. Training should not be a “one-way street.” Personnel should be given DSO-relevant ex-
ercises to carry out as homework that is graded. This is very important since it validates whether
the trainees understand the DSO. Personnel should be taught the material from a theoretical and
usability standpoint. It is sub-optimal to teach only how to use a pipeline without explaining
DevSecOps from a theoretical, classroom-style perspective. Keep training fresh and up to date. As
changes in any aspect of DSO occur, consider developing a new training module or updating ex-
isting modules to reflect those changes. During every training session, and especially at the con-
clusion, encourage feedback. If possible, hold a meeting with trainees after the training is com-
pleted to reflect and comment on its usability and potential additions and enhancements.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7 Concepts, Principles, and Tools

This section provides more information about concepts and tools supporting DSO adoption, de-
velopment, and management. Because of the scope of DSO, adopters need to understand the ba-
sics of several key concepts and principles, especially those directly within the DSO domain. This
section provides brief introductions to those basics for those unacquainted with them. More infor-
mation can be found in Appendix B.

7.1 Technology Adoption and Culture Change

Adopting DSO means adopting a new technology and, as already discussed, changing your organ-
ization’s culture. There is an extensive body of knowledge on culture change and technology
adoption that can help you plan for and successfully accomplish DSO adoption. This section
draws heavily from Miller and Turner [Miller 2006].

7.1.1 Difficulty of Change

Figure 17 illustrates the difference in difficulty associated with a set of factors that help to deter-
mine the scale and scope of an organizational change. It is adapted from Paul Adler’s work [Adler
1990]. Note that culture requires a significantly higher level of learning.

Figure 17: Difficulty of Change (Adapted from Adler [Adler 1990])

The following are definitions for various factors:
• Skills: The change with the least impact involves something where all that needs to change

are the skills of the people adopting the new practices. The caveat here is an assumption that
the new skill has some grounding in other skills the adopters are likely to have.

Years SmallWeeks Large

Time to
Adjust

Level of Learning Required

Magnitude of Technological
Change Sought

Culture

Strategy

Structure

Procedures

Skills

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 65
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• Procedures: Procedures are next higher on Adler’s scale. When procedures need to change,
there is usually a chain of command that must be brought into the decision. Sometimes the
organization’s management is unaware of the procedural changes that adopting a new tech-
nology (e.g., an electronic health record system) will have. Changing procedures sometimes
also involves changing where power resides within an organization and can lead to conflict.

• Structure: Beyond procedures, structure is the next higher item on Adler’s scale. Structural
changes almost always involve changes in power structures, which gets the attention of peo-
ple who are not necessarily actual adopters of the new practices but are affected by the
adopters (or are affected by the outcomes of new procedures). Any time power and its exer-
cise are involved, passions will run high and resistance to changing the status quo is likely.

• Strategy: Strategy goes beyond structure to affecting the senior decision-makers in an organi-
zation. When business strategy changes, it often means that attention is paid to shifts in the
markets, and there are implications for all the factors below it on Adler’s scale.

• Culture: Culture is at the top of the change-difficulty scale from Adler. When culture is ex-
pected to change, it impacts people’s values and their assumptions about what behavior is ac-
ceptable and not acceptable within the organization. Often these assumptions and values are
not explicit; they are discovered primarily by violating one or more of the organization’s
norms.

7.1.2 A Change Model (Satir)

There are several ways of representing the cycle of responses human beings make to change. The
SEI has found the Satir Change Model best fits both process improvement and technology adop-
tion. It is useful for both because it is descriptive (i.e., it explains the symptoms often seen in or-
ganizations going through change) and it is somewhat prescriptive (i.e., it provides ideas for help-
ing people navigate the cycle of change). The SEI bases its understanding of the Satir model as
presented and explained in Weinberg’s Quality Software Management Volume 4: Anticipating
Change [Weinberg 1997].

Figure 18 presents a summary of the Satir Change Model. The individual or group starts at some
level of performance, represented as the “old status quo.” The introduction of a change intended
to improve the individual or group’s performance is treated by the group as a “foreign element.”
The group will have different reactions to the foreign element. Some of the possibilities include
trying to
• ignore the foreign element
• find a way to accommodate the foreign element within their own current way of doing things
• explicitly reject the foreign element

The energy that goes into these reactions causes swings in the performance of the group that can
be dramatic, depending on the character and size of the change being introduced. At some point, if
the foreign element doesn’t go away, most groups will find what Satir calls the “transforming
idea” that will allow the group to integrate the change into their way of doing things and will al-
low them to move on.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 18: Graphical Summary of the Satir Change Model (Adapted from Weinberg)

When the group has found and accepted a transforming idea, it integrates the new behavior into its
routines by practicing the new behavior. During this time, the group’s performance starts to im-
prove; however, this increased performance can occur only if there is opportunity to practice the
new behavior.

After the new behavior is integrated into the group’s behavior, it becomes the “new status quo,”
and whatever performance increases have been achieved are likely to continue.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.1.3 Adoption Commitment Curve (Patterson-Conner)

Figure 19: Patterson-Conner Adoption Commitment Curve (Adapted from Patterson and Conner)

The type of support people in different groups need to accelerate their adoption of the new prac-
tices depends on how committed they are to the change. The SEI uses a slightly modified version
of the Patterson-Conner Adoption Commitment Curve (shown in Figure 19) to identify the stages
that most individuals and groups go through when approaching adoption of a new set of practices
or a new technology [Patterson 1982].

Figure 20 overlays Satir over this model; they work well with each other and provide two view-
points from which to understand the process of change.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 68
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Figure 20: Satir Model Integrated Into the Adoption Commitment Curve [Miller 2006]

7.1.4 Finding/Selecting Pilot Projects

In general, there are two categories of pilots: technical feasibility pilots and adoptability pilots.

Technical feasibility pilots are useful if you are uncertain about the soundness of a new process.
This type of pilot is suited to projects that are not on your organization’s critical path with a team
considered to be innovators or early adopters. Essentially, technical feasibility pilots determine if
the technical components of the new process are performable and correct.

Adoptability pilots are performed when technical feasibility of the new process has been demon-
strated. They evaluate whether what you’ve developed to support it—checklists, training, proce-
dures—will work well with your mainstream organizational population. In this case, you are gen-
erally looking for a project that contains people who represent the general population to which
you intend to deploy the new process. For an adoptability pilot, you do not want innovators; you
want pragmatists, who need a reason to try something new. If the adoptability pilot works with
them, chances are that the support products will work with the rest of the organization.

7.1.5 Adopter Analysis

Adopter analysis is a technique that comes from technology adoption. The idea is that individuals
have some predisposition toward adopting a new technology or set of practices based on many
different factors. The factors themselves aren’t that important because most of the time, if you de-
scribe the “thing” to be adopted and the characteristics of several general adoption categories,
most people can tell you where they would fit in relation to whatever technology/practice you

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 69
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

want them to adopt. The categories come from Everett Rogers’ work on technology adoption
[Rogers 2003] but are actually easier to understand based on their popularization in Geoffrey
Moore’s book Crossing the Chasm [Moore 2002]. Table 8 contains brief descriptions of the
adopter categories used by Rogers and Moore.

Table 8: Rogers and Moore Adopter Categories [Rogers 2003, Moore 2002]

Adopter Category Distinguishing Characteristics

Innovator Gatekeepers for any new technology

Appreciate technology for its own sake

Appreciate architecture of technology

Will spend hours trying to get technology to work

Very forgiving of poor documentation, slow performance, incomplete functionality, etc.

Helpful critics

Early Adopter Dominated by a dream or vision

Focus on business goals

Usually have close ties with techie innovators

Match emerging technologies to strategic opportunities

Look for breakthrough

Thrive on high-visibility, high-risk projects

Have charisma to generate buy-in for projects

Do not have credibility with early majority

Early Majority Do not want to be pioneers (prudent souls)

Control majority of budget

Want percentage improvement (incremental, measurable, predictable progress)

Not risk averse, but want to manage it carefully

Hard to win over but are loyal once won

Late Majority Avoid discontinuous improvement (revolution)

Adopt only to stay on par with the rest of the world

Somewhat fearful of new technologies

Prefer preassembled packages with everything bundled

Laggard Naysayers

Adopt only after technology is not recognizable as separate entity

Constantly point at discrepancies between what was promised and what is delivered

Adopter analysis helps identify individuals or groups that will be useful to you in different aspects
of an adoption task. Innovators and Early Adopters are likely to volunteer for tasks in areas that
affect them. However, they will probably be satisfied with a partial solution that might not satisfy
other adopter types. For an adoption feasibility pilot, you should engage Early Majority partici-
pants. If you want to know what kind of transition mechanisms (i.e., things that help with the

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 70
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

communication or implementation of the new practices) need to be built over the longer term, you
should engage Late Majority or Laggard participants.

Different adopter types typically move through change cycles (for example, the Satir cycle) at dif-
ferent speeds, so it is probable that you will find situations where some of the people in a group
enthusiastically embrace a new set of practices and others drag their feet.

Finally, adopter type is not the only characteristic that is useful in choosing people to participate
in different aspects of the adoption effort. You can also look at where they fit in your value net-
work (see Section 7.4).

7.2 Lean and Agile

Figure 21: Scrum—Most Commonly Used Agile

Agile development approaches have been around for decades and were originally focused on
team-management concepts for a single (small) software development team. Key Agile principles
include ongoing involvement of the users, considering change as expected and positive, iterative
development with short learning cycles that lead to evidence-based reviews, face-to-face commu-
nication, self-organizing teams, and continuous improvement through retrospective analysis. Ad-
ditional methods and techniques that grew out of the original Agile Manifesto2F

3 include test-driven
development, relative-effort estimation, and service-based architecture.

Scrum is the most commonly used Agile technology (Figure 21). When issues arose scaling these
concepts for applications at systems level, the Agile concepts from software development were
combined with the Lean concepts of flow, including value stream analysis, limiting work in pro-
gress, small batch sizes, and queue management to construct frameworks for working at scale.

3 See www.agilemanifesto.com.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 71
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.1 Principles

Merged Lean and Agile principles, as articulated in the SAFe Agile Framework,3F

4 provide a foun-
dation for the implementation of DevSecOps that includes an Lean and Agile mindset. These prin-
ciples are described in the following sections.

7.2.1.1 Take an Economic View

Most decisions are made by comparing values in some form, whether clearly stated or uncon-
sciously considered. While the business world usually applies profit margin or return to the inves-
tor as primary measures of economic value, there are other types of value in systems development
that allow decisions to be made in an economic framework. Delivering value early and often has a
significant effect on the value to many types of users, which can be measured by considering the
“cost of delay” in terms of missed productivity, lower quality of service, or higher mission suc-
cess probability over time. Value can be a factor in prioritization and sequencing of work. Service
orientation is based on delivering specific value under an agreed to level of service.

In highly regulated environments, economic value often includes an element related to the value
of explicit compliance to the regulations that constrain the environment.

7.2.1.2 Apply Systems Thinking

It is important to consider the product to be developed as a system. Systems thinking also helps
you understand the full value stream in acquisition and development organization. It considers a
much broader set of factors than those related to requirements or how the product system interacts
in operational context; it enables understanding the socio-technical system that encompasses the
product and its context.

For HREs, a particular aspect of systems thinking is consideration of the regulatory system in
which the products and operational context reside. The regulatory system for financial systems is
governed by a different set of factors than the regulatory system for nuclear power plants, for ex-
ample. Using the system factors of a nuclear power plant for a financial system is not likely to
yield useful constraints.

7.2.1.3 Assume Variability; Preserve Options

In general, humans are not skilled at predicting the future. Threats, political landscapes, econom-
ics, and technology are changing too fast. Locking in a single detailed description of a system that
will take a decade to build (even two or three years is difficult) can become a barrier as soon as
anything changes. Acquirers and developers must acknowledge that variability and uncertainty
are facts of life. It makes sense to invest in options where possible and make decisions at the last
responsible moment (but no later).

4 For richer definitions and a wealth of associated information see the Scaled Agile Framework website:

https://www.scaledagileframework.com/

https://www.scaledagileframework.com/

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 72
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

It is critical to ban the false-positive feasibility associated with deadline-driven, single-path ap-
proaches. False-positive feasibility occurs when we invest significant time and emotion into a de-
scription of a projected future state (THE requirements document, THE architecture diagram) and
then resist any challenges to the “rightness” of the projection, even if that challenge comes from
attempted implementation of the description that highlights areas where it fails to account for im-
plementation realities. We falsely retain the view that the original description is feasible, despite
implementation evidence to the contrary. Enlightenment usually comes too late in the traditional
development process to allow for much change.

HREs are known for not having options along dimensions where the regulations are applied. Un-
derstanding where there are options versus where there are no options is a critical aspect of analy-
sis in highly regulated environments.

7.2.1.4 Build Incrementally With Fast, Integrated Learning Cycles

Building incrementally with fast, integrated learning cycles helps to continuously focus on the
most valuable work and receive feedback on your predictions (assumptions) quickly enough to
eliminate much of the high cost of rework. It also supports the economic view associated with
value delivery.

In HREs, this is a particularly important principle because learning what will and will not satisfy
regulatory authorities needs to happen as the system evolves, not only at the end when a huge
amount of rework could result from misunderstanding any number of constraints imposed by the
regulatory environment.

7.2.1.5 Base Milestone Completion on the Objective Evaluation of Working Systems

Traditionally, milestones are treated as gates through which the development must pass to be al-
lowed to continue forward. In traditional developments, they tend to be far apart in time and can
involve a large group meeting with a large number of presentations, each with a large number of
slides based on the results of the analysis of a large volume of documents by even more people.
These reviews are often the only opportunity stakeholders have for providing input. Given the
economic viewpoint and the principles of increments with fast learning cycles, this type of review
is antithetical to those principles, not to mention expensive, cumbersome, and resulting in little
learning about the system itself. Lean and Agile are based on the concept of objective, evidence-
based reviews performed often, usually with some form of a working system. In the case of early
learning, more and more dependence on evolving models of the system play a role in providing
early system learning.

For HREs, mission threads are a common means of objective evaluations. Each milestone
achieved extends the mission thread. Achieving capability-related requirements objectively
measures mission-thread work progress.

7.2.1.6 Visualize and Limit WIP, Reduce Batch Sizes, and Manage Queue Lengths

Lean is based on the foundation of how work flows through the development process. This brings
in a number of measures based on queueing and information theory as well as cognitive and

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 73
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

behavioral science. Visualizing and limiting work in progress regulates the number of tasks that
are being worked on at any one time. It also keeps the human resources from an overwhelming
number of context switches between tasks. Managing queue lengths supports the focus on WIP
with the principle of “stop starting and start finishing,” since the user gets value only with com-
pleted work, and work waiting in a queue is a waste. Don’t start what you don’t have the re-
sources to finish. Small batch sizes mean that the work should be in small enough chunks that
scheduling issues can be quickly resolved, and value is delivered in a timely fashion. Overall,
while the flow is maximized, the organization is working at its full capacity and delivering the
most value possible.

In an HRE—due to its typical siloed and isolated nature—full work-in-progress visualization can
be a challenge. Security concerns determine access to all data. This can strongly limit full stake-
holder visualization of any work in progress and in the queue.

7.2.1.7 Apply Cadence and Synchronize with Cross-Domain Planning

Uncertainty is a fact in system development, and predictive or “push” scheduling usually ignores
this fact. Of course, management and users would like reasonable estimates for a variety of rea-
sons. Setting cadences and synchronizing across the various teams and activities is the Lean an-
swer to bounding the uncertainty. Cadences provide a predictable cycle of results and feedback
opportunities as well as a foundation for useful, comparable metrics. Setting a synchronized ca-
dence for the organization’s work helps convert unpredictable events into predictable ones. It also
forces developers to think in smaller batch sizes and allows for the orderly addition of new work.
Finally, it improves the ability to understand, resolve, and integrate multiple teams’ work as well
as multiple stakeholder perspectives at the same time.

Due to the constant changes in mission-related scenarios, uncertainty is a large factor in HREs.
Changes in priorities rapidly impact schedules, needs, and requirements. Agile’s short develop-
ment cycles coupled with DSO’s continuous integration and operational insight provide rapid re-
sponse to priority changes on a steady cadence.

7.2.1.8 Unlock the Intrinsic Motivation of Knowledge Workers

Unlike many workers, knowledge workers are usually much more capable and have a better un-
derstanding of the work they do than those who would try to “manage” them. The necessity is to
help them achieve by creating an environment where they are most likely to thrive. Motivation
comes not necessarily through command, control, or salary (although that is a factor), but through
less-tangible things like autonomy, mission, and minimum constraints. Respect and a willingness
to collaborate are also motivation strategies.

In an HRE, these principles hold true. The mission is undoubtedly the main motivator for
knowledge workers. Also note that the structured top-down design of management can hinder
progress of these workers. They may sense a “caged in” environment disallowing the open explo-
ration of ideas.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 74
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.2.1.9 Decentralize Decision Making

Decentralized decision making is a key component for achieving the shortest sustainable value de-
livery time. Decisions that require a chain of command elevator can destroy cadence, delay pro-
gress, and often are lower quality, particularly if the information needed to make the decision
must be loaded in the elevator. Strategic decisions are more effective if centralized, but all others
should be delegated to the level closest to the information involved. That may mean that some in-
formation previously seen as “privileged” should be pushed out to the edge, so that those closest
to the issue can make more informed decisions—thus freeing up the managers/executives to focus
on the strategy.

HREs are well known for having the “chain-of-command elevator” and can cause most, if not all,
of the issues mentioned above. In small groups of developers, management can be flattened to an
immediate supervisor and thus allow rapid progress and help team members flourish. It is best for
these supervisors to work the elevator while the developers progress with “approval pending” sta-
tus.

7.3 Systems Engineering

More and more acquisitions of all sizes and domains are seeking the benefits of Lean, Agile, and
DevSecOps (LADSO) principles. While these principles are usually associated with software en-
gineering [McQuade 2019], implementing them requires some significant changes in the way sys-
tems engineering is performed [Wrubel 2014]. Systems engineering as generally practiced in
large, complex cyber-physical systems development and is rooted in waterfall-based, plan-driven,
low-uncertainty, highly predictable programs. LADSO is built around iterative, high-uncertainty,
rapidly changing threat and STEEP (social, technological, economic, environmental, and politi-
cal) factors. These different assumptions force changing the fundamental nature of systems engi-
neering when supporting LADSO projects. Table 9 illustrates some of these differences.

Table 9: Fundamental Differences Between Traditional and LADSO SE Environments (Adapted from
Wrubel 2014)

Systems Engineering as Generally Practiced LADSO-Based Systems Engineering

Large-batch processing (products, documents,
events)

Small batch processing (products, documents, events)

Single-pass lifecycle (all requirements done
before the design is initiated; all design done
before implemented)

Incremental, iterative multi-pass lifecycle (small batches of
products and their artifacts built/tested iteratively, delivered
incrementally)

Single-point design Set-based design

Solution intent fixed early (all requirements
defined in detail early)

Most of solution intent variable early (only near-term
requirements in detail; others are higher level with details based
on learning)

Fixed point, large-batch integration (components
all “done” before integration occurs)

Cadence-based, small-batch integration used as frequently as
feasible; integrate as available to prevent rework (for software,
may be daily)

Centralized, command-and-control leadership Mix of centralized and decentralized leadership; “servant
leadership”

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 75
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Systems Engineering as Generally Practiced LADSO-Based Systems Engineering

Detailed, allocated baseline early; high overhead
change management practices in play for the rest
of development

Allocated baseline level of abstraction allows learning-based
change throughout development; no high-overhead change
processes

Hardware and software treated separately,
integrated late

Hardware and software treated together, integrated early and
frequently

Large-batch model-based engineering used to
improve the detail of requirements and design
prior to implementation; often abandoned after
design

Model-based engineering moves between large- and small-
batch modeling activities; models and simulations flow with
implementation and support the full lifecycle, development
through sustainment

Projective (to be) requirements and design
documentation dominates early discussion and
activities

Projective documentation takes second place to working
prototypes and demos; used to guide, not specify;
documentation is as-built, not to-be.

Systems engineering function separate from
hardware and software development functions

Systems engineering function integrated into capability-focused
teams that include all disciplines needed (HW, SW, UX,
reliability, etc.)

Component-based work breakdown structure Capability-based work breakdown structure

Systems engineering primarily as artifact
transformation (e.g., Requirements-
>Architecture->Design)

Systems engineering as a service (facilitation of artifact
transformation; focus on communication, coordination, conflict
resolution, collaboration)

System architecture decisions neutral to
development approach

System architecture decisions strongly support loosely coupled
components/subsystems, especially for software capabilities

Assumption that early work is correct and that
late failure is a surprise

Assumption that early work is inherently flawed, and learning
from early failure feeds the evolution of knowledge about the
system

System and software architecture frozen early Intentionally extendable and iteratively evolving architecture
throughout development and sustainment

User participation only early and late User participation continuous throughout lifecycle

As is evident from the table, systems engineering in LADSO environments is significantly differ-
ent in a number of ways. There is a definite tension between the flexibility and adaptability of
software and the built-in consideration of milestones, baselines, and controls in systems engineer-
ing. While software-only systems may face less resistance than the DSO and similar approaches,
embedded systems and safety-critical systems have been mostly skeptical of CI/CD in general.
The one place where systems folks may be able to support DevOps is in the field of architecture.

7.3.1 Architecture

The architecture of the system under development can enable or impede deployability goals. Stef-
fany Bellomo and other SEI researchers are convinced that architecture design decisions and
tradeoffs can impact the feasibility of DevOps practices; poor decisions can lead to the infeasibil-
ity of critical activities such as continuous build integration, automated test execution, and opera-
tional support [Bellomo 2014, Bass 2015]. For example, they observed cases where a tightly cou-
pled component architecture became a barrier to continuous integration because small changes
required an increasingly time-consuming rebuild of the entire system. Similar issues are
• A system doesn’t have architectural interfaces for test automation and manual tests are slow;

tests are skipped.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 76
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

• The architecture creates deployment complexity, and error-prone manual steps prevent re-
lease; weeks/months pass without release.

Figure 22: Deployability Architecture Tactics Tree

Re-architecting the system to fix problems such as these can require significant work and, in some
cases, become a form of technical debt, resulting in high expenditures of time, money, and effort
release after release [Kruchten 2012]. Architecting for deployability can lead to greater benefits
from adopting DevOps practices. Criteria and best architectural practice for deployability are still
being researched; the Deployability Tactics Summary seen in Figure 22 was one of the products
of the research.4F

5

5 For more information see a video of Stephany Bellomo presenting Architectural Implications of DSO at

https://youtu.be/AWA-oN8rOgo.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 77
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.4 Value Stream and Network Visualizations

Figure 23: Example of a Value Network

Value networks capture the value flow through the organization. A value network starts with your
team in the middle of a network diagram. Additional nodes in the network represent different
groups or individuals that interact with the team. The arcs capture values exchanged among the
different nodes and the team. The kinds of value exchanged may remind you about different kinds
of data, resources, decisions, special skills, measurements, or other services or demands. Figure
23 is an example of a value network for DSO adoption.

A value stream gives an ordering to many of the arcs in the value network that shows the general
addition of values as the product evolves. Keeping the value stream in concert with changes in the
process would provide evidence for how the DSO pipeline is improving outcomes (particularly if
you can simultaneously show measurable improvements in product quality).

Creating the value network is an iterative process usually accomplished by a number of people en-
gaging in a series of group work sessions. Information gathered in the previous sections is cap-
tured using nodes and arcs as illustrated in Figure 23. Using sticky notes of two colors (one for
nodes and one for arcs) arranged and connected on a whiteboard provides an easy way to collabo-
ratively evolve the network. Photos can easily capture ongoing development as more nodes and
arcs are identified or repositioned at each subsequent meeting; once there is an agreement, any
graphics software tool can be used to “formalize” the resulting network.

Security
Assessors

System
Architect

End Users

KTR DSO
Support Team

Tool Vendors

KTR Developers

ContractsGov PM/PMO

IT Support

System/SOS
V&V

Program
Customer

KTR PM/PMO

Gov DSO Support
Team

External System
1

Organic
Developers

External System
2

Provides interface
information for

continuous
integration

Provides interface
information for

continuous
integration

Provides
requirements

for CI/CD
enabling
contracts

Negotiates CI/CD
enabling contract

Provides
services,
updates,
support

Requests for
service/
software

Provides Feedback

Provides DSO data access requests
Provide lab/DSO configuration information

Provides guidance and
collaboration

Provides cultural
coaching

Enforces DSO culture

Provides
measurement

data

Provides
measurement data

Provides
measurement

data

Provides requirements
Provides funding

Provides top cover

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 78
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

7.5 Policy

The Defense Innovation Board’s Software Acquisition and Practices (SWAP) study identifies a
long trail of recommendations and reports from studies financed by the DoD to address software
development and acquisition [McQuade 2019]. More importantly, they provided a comprehensive
way forward that includes many enablers for DevOps, SecDevOps, and other CI/CD-related tech-
nology. The following appears in the Defense Innovation Board Ten Commandments of Soft-
ware:5F

6

Commandment #4. Adopt a DevOps culture for software systems. “DevOps” represents the
integration of software development and software operations, along with the tools and cul-
ture that support rapid prototyping and deployment, early engagement with the end user,
and automation and monitoring of software. These techniques should be adopted by the
DoD, with appropriate tuning of approaches used by the Agile/DevOps community for mis-
sion-critical, national security applications. Open source software should be used when pos-
sible to speed development and deployment, and leverage the work of others. Waterfall de-
velopment approaches (e.g., DOD-STD-2167A) should be banned and replaced with true,
commercial Agile processes. Thinking of software “procurement” and “sustainment” sepa-
rately is also a problem: software is never “finished” but must be constantly updated to
maintain capability, address ongoing security issues, and potentially add or increase perfor-
mance [McQuade 2019].

Figure 24: Adaptive Acquisition Framework (https://aaf.dau.edu/aaf/)

While not guaranteed to be acted upon, the current OSD and Service acquisition goal is to make
significant changes in acquisition and development policies. OSD is recrafting DoD 5000 to

6 All of the DIB work on software in the DoD can be found at https://innovation.defense.gov/software/ .

https://aaf.dau.edu/aaf/
https://innovation.defense.gov/software/

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 79
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

address multiple acquisition paths as shown in Figure 24. The work is continuing as this guide is
written, and information can be found at the website in the caption.

Some issues are outside of the DoD span of control and include legal concerns such as those re-
lated to USC Title 10 and the Clinger-Cohen Act. However, the moving of most acquisition deci-
sion authority from OSD to the individual Services provides additional changes that can be made
in the policies within the services.

Finally, the amount of work on software acquisition and development and the desire to support
proven best practices with policy rather than preventing them, seem to be a positive indicator for
greater application of Lean, Agile, DevOps, DevSecOps and other adaptive techniques.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 80
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Appendix A: Collected Activity Summaries

Objective: Establish your vision.

Activity: Identify/build your vision.

Context This activity is the first step in adoption. Without a shared vision the odds of
successful adoption are significantly reduced.

Purpose The purpose of this activity is to achieve a vision that supports readiness and
fit analysis and adoption planning activities, maintains the long view, and is
validated and agreed to by stakeholders and practitioners.

Overview Develop a common understanding of a desirable outcome of the adoption
activities. What will success look like?

Primary Actors This activity involves leadership, management, and representative practitioners
(organic or contracted).

Inputs Inputs to this activity include decision information, survey questions, access to
personnel, and means of capturing the information gathered.

Outputs Outputs from this activity include documentation of the information gathered
and the vision identified.

Resources

Tips, Tricks, and Wis-
dom

Use visualizations (e.g., value networks, organizational structures, process
diagrams) to promote participation and reduce unnecessary “wordsmithing.”

Objective: Determine the readiness to adopt.

Activity: Understand your context.

Context This is the first step in adoption. Understanding the current environment is
critical to how this activity relates to overall adoption.

Purpose This activity supports readiness, fit analysis, and adoption planning activities.

Overview Collect and validate information about context.

Primary Actors This activity involves everyone.

Inputs Inputs to this activity include access to personnel and means of capturing
information gathered.

Outputs Outputs from this activity include documentation of the information gathered.

Resources Section 7.4

Tips, Tricks, and
Wisdom

Using visualizations (e.g., value networks, organizational structures, process
diagrams), promote participation and reduce unnecessary “wordsmithing.”

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 81
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Activity: Implement the readiness and fit analysis process.

Context This activity establishes the enablers and barriers in your organization
associated with adopting DSO. Having the value map and profiles make this an
easier task. While this can produce significant concern, particularly if the
barriers outweigh the enablers, it is critical to manage expectations and
conduct rational planning.

Purpose This activity captures the current organization’s readiness to adopt DSO in
terms of risks, opportunities, barriers, and enablers. It is a significant planning
asset.

Primary Actors This activity involves the manager, teams, S-CSs, and the culture change
coach.

Relevant/Key Events Events include the decision to adopt DSO and a DSO Posture Assessment.

Activity Input(s) Inputs to this activity include the results of 4.1.1 and 4.2.1.

Activity Outputs(s) Outputs from this activity include an adoption risk assessment with identified
mitigation approaches and proposed adoption progress measures.

Other Resources Other resources include the RFA White Paper [Miller 2014], RFA Presentation
slides, and RFA Forms [Miller 2014].

Tips, Tricks, and
Wisdom

A workshop approach to this analysis is faster but requires more coordination.
It is just as important to identify enablers as risks.

Objective: Develop an adoption/transition strategy.

Activity: Identify your DSO adoption goal(s).

Context The DSO adoption goals are the core guidance for all of your strategic and
tactical planning. They continue to be evaluated and evolved throughout the
adoption and management process.

Purpose This activity produces a set of goals aligned with the DSO principles that identify
the specific outcomes desired from the adoption of DSO along with broad
indicators of accomplishment.

Primary Actors This activity involves team lead(s), customers/users, developers, Operations-
Deployment, IT, Security, and the pipeline (PL) architect.

Activity Inputs Inputs to this activity include a list of success-critical stakeholders (S-CSs).

Activity Outputs Outputs from this activity include the initial goals statement.

Other Resources Other resources include the blog post DevOps and Your Organization: Where to
Begin (https://insights.sei.cmu.edu/devops/2014/12/devops-and-your-organization-
where-to-begin.html) and the webinar Three Secrets to Successful Agile Metrics
(https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=507850).

Tips, Tricks, and
Wisdom

The goals can (and most likely will) evolve as the adoption progresses. Give
priority to cultural outcomes and stakeholder pain points. Review the goals and
their measures regularly.

https://insights.sei.cmu.edu/devops/2014/12/devops-and-your-organization-where-to-begin.html
https://insights.sei.cmu.edu/devops/2014/12/devops-and-your-organization-where-to-begin.html
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=507850

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 82
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Activity: Establish the initial adoption scope.

Context The DSO adoption goals are most likely visions for the future. There needs to
be an identified scope for initial adoption. Is it one team, one organization, or an
enterprise? The answer to this question will determine how you will size the
increments and will be highly dependent on the resources available over time.

Purpose This activity identifies the specific goals to be addressed in the current
adoption effort.

Primary Actors This activity involves team lead(s), customers/users, developers, Operations-
Deployment, IT, Security, and the pipeline (PL) architect.

Activity Inputs Inputs to this activity include the overall adoption goals.

Activity Outputs Outputs from this activity include specific goals to be addressed in the initial
effort.

Other Resources Other resources include Section 7.1.4 and the CMMI Survival Guide [Miller
2006].

Tips, Tricks, and Wis-
dom

This is where understanding technical feasibility pilots and adoption feasibility
pilots can be useful.

Activity: Propose change (transition) mechanisms.

Context Change is not a passive activity. There must be specific actions taken to reach
out to stakeholders and practitioners to enable and reinforce change.

Purpose This activity produces a set of transition mechanisms that are tailored to the
scope and target of the adoption effort.

Primary Actors This activity involves team lead(s), customers/users, developers, Operations-
Deployment, IT, Security, and the pipeline (PL) architect.

Activity Inputs Inputs to this activity include specific (scoped) goals.

Activity Outputs Outputs from this activity include a set of communication and implementation
mechanisms and actions that propel changes in technology and culture.

Other Resources Other resources include the CMMI Survival Guide [Miller 2006] and Section
7.1.3.

Tips, Tricks, and
Wisdom

Two types of failure modes are frequently seen: (1) focusing only on
communication mechanisms (the “train people to death” failure mode) and (2)
the opposite—providing new procedures, measures, and other implementation
mechanisms before enough communication has occurred for staff to
understand what the goal of the adoption is.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 83
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Objective: Plan your next adoption activities.

Activity: Identify resources.

Context Plans without appropriate resources are worthless. Iterative planning based on
realistic availabilities is necessary for success.

Purpose This activity identifies the resources (e.g., skilled staff, facilities, materials) that
are needed to accomplish the agreed-upon goals.

Primary Actors This activity involves team lead(s), customers/users, developers, Operations-
Deployment, IT, Security, the pipeline (PL) architect, and the financier.

Activity Inputs Inputs to this activity include the identified scope and DSO adoption goals.

Activity Outputs Outputs of this activity include a list of resources and when and for how long
they are needed.

Other Resources

Tips, Tricks, and Wis-
dom

The amount of “free stuff” on the Internet in topic areas related to DSO is
staggering. Don’t ignore free training and communication resources that are
relevant to your setting.

Activity: Develop a backlog and initial increment map.

Context There is nothing like using the techniques you are espousing to help your team
and organization understand that this effort is serious.

Purpose This activity produces an initial backlog of items that need to be accomplished
within (1) the next increment and (2) a breakdown of those items into those that
can be accomplished in the next iteration.

Primary Actors This activity involves team lead(s), customers/users, developers, Operations-
Deployment, IT, Security, and the pipeline (PL) architect.

Activity Inputs Inputs to this activity include the adoption strategy, adoption goals, and
adoption resources.

Activity Outputs Outputs from this activity include a roadmap for the next increment and the
backlog of both high-level and more granular product backlog items.

Other Resources Other resources include Section 7, Appendix B, and any number of books or
websites describing fundamental Lean and Agile software development
practices.

Tips, Tricks, and Wis-
dom

User stories are used in some settings; they may work if the environment is
already accustomed to them, but may be awkward for some service-oriented
tasks.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 84
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Activity: Develop a communications plan.

Context Communication is the lifeblood of change management. Without a well-thought-
out plan for how information is distributed, how questions are answered, and how
progress and stories are captured, inertia will take over and the adoption will fail.

Purpose This activity produces a communication plan tailored to the adoption activities
and the environment and culture of the change target.

Primary Actors This activity involves team lead(s), customers/users, developers, Operations-
Deployment, IT, Security, and the pipeline (PL) architect.

Activity Inputs Inputs to this activity include vision goals, scoped goals, and RFA results.

Activity Outputs Outputs from this activity include the communications plan.

Other Resources Other resources include the blog post DevOps and Your Organization: Where to
Begin (https://insights.sei.cmu.edu/devops/2014/12/devops-and-your-organization-
where-to-begin.html)

Tips, Tricks, and Wis-
dom

Objective: Change the culture.

Activity: Monitor cultural change progress.

Context This activity is a continuous monitoring of the organizational culture to
understand progress with respect to the measures adopted in response to the
Adoption Culture Risk Assessment.

Purpose This activity captures the current state of the supporting DSO culture in terms
of risks, opportunities, barriers, and enablers.

Overview The cultural profile is established and monitored at an appropriate cadence.
Information comes from the culture- and risk-related measures collected
periodically. This activity is often associated with technical milestones.

Primary Actors This activity involves the manager, teams, S-CSs, and the culture change
coach.

Activity Input(s) Inputs to this activity include the current Adoption Culture Risk Assessment,
adoption measures, and the current Culture Action Plan.

Activity Outputs(s) Outputs of this activity include culture change information, the revised
Adoption Culture Risk Assessment, the revised Culture Action Plan, and new
culture awards.

Other Resources Other resources include the RFA White Paper [Miller 2014], change
management literature, and case studies of similar organizations.

Tips, Tricks, and
Wisdom

Having leadership exhibit the appropriate behaviors (or not) is a significant
measure of progress.

https://insights.sei.cmu.edu/devops/2014/12/devops-and-your-organization-where-to-begin.html
https://insights.sei.cmu.edu/devops/2014/12/devops-and-your-organization-where-to-begin.html

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 85
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Activity: Influence change.

Context As cultural goals and risks are addressed and evaluated, actions are
continuously taken to improve and maintain a DSO-supportive culture.

Purpose This activity supports DSO culture acceptance and maintenance.

Overview Change mechanisms are used to improve specific concerns or problems
identified in monitoring. The measurement strategy and metrics may be
adjusted to more accurately capture progress around the specific issues.

Primary Actors This activity involves the manager, teams, and S-CSs.

Activity Input(s) Inputs to this activity include current cultural needs, barriers, or enablers.

Activity Outputs(s) Outputs from this activity include specific culture-related actions added to the
increment plans and feedback from actions.

Other Resources Other resources include the mechanisms identified in the adoption strategy
and Table 4. Typical transmission mechanisms by Adoption Commitment
Curve Stages.

Tips, Tricks, and
Wisdom

Be innovative in responding to issues; don’t overuse one or two mechanisms.
Enlist leadership to exhibit and reinforce needed behaviors.

Objective: Build a DSO pipeline.

Activity: Consolidate pipeline requirements.

Context This activity uses the information gathered in adoption preparation to capture
the software and hardware requirements for the pipeline. Pipeline construction
can be iterative or incremental. The requirements may evolve, but there are
specific questions that need to be answered before construction begins.

Purpose This activity captures the initial requirements for the pipeline based on
information gathered in Epic 1 and a set of questions provided.

Overview This activity draws on the information developed in preparation activities and
establishes the requirements for a DSO pipeline that meets the context,
readiness profile, and strategy of the organization.

Primary Actors This activity involves the manager, team leads, and the pipeline (PL) architect.

Activity Input(s) Inputs to this activity include the goals statement, DSO Adoption Strategy and
Plan, DSO Posture Assessment Report, Technical Inventory, and Security
Profile.

Activity Outputs(s) Outputs from this activity include the pipeline requirements.

Other Resources Other resources include the Pipeline Requirements Questionnaire.

Tips, Tricks, and Wis-
dom

If selecting open source components, verify they provided in-help guides
connectivity scripts to other components. Many components are commonly
used together in pipelines; leverage this to reduce scripting and configuration
needs.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 86
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Activity: Identify and acquire needed components.

Context Identifying and acquiring the infrastructure and components are a critical part
of achieving DSO benefits. It should be approached collaboratively and
consider the stakeholders’ expectations and the available technical and
security environment. The components may be selected and acquired in a
single activity, or they can be incrementally acquired as resources become
available. The DSO Adoption Strategy and Plan should reflect the approach.

Purpose This activity provides the building blocks for the DSO pipeline.

Overview This task translates the requirements into a set of ordered software and
hardware components that will make up the pipeline infrastructure.

Primary Actors This activity involves the manager, team leads, the pipeline architect,
Procurement, and IT.

Activity Input(s) Inputs to this activity include the Technical Profile, Goals Statement, and
Pipeline Requirements.

Activity Outputs(s) Outputs from this activity include pipeline components.

Provided Work Aids Work aids provided include Pipeline Component Considerations and the
Pipeline Design Template.

Other Resources

Tips, Tricks, and Wis-
dom

Making pipeline decisions should be aligned with the culture assessment and
strategy and never be the first activity undertaken. Without culture change, the
pipeline will have only a minimal effect on overall SDLC performance.

Activity: Install and launch the pipeline.

Context Technical implementation of the pipeline involves integrating the pipeline
software and hardware, understanding the connectivity and creating links, and
capturing the process as defined by the selected components.

Purpose This activity creates the pipeline infrastructure and process.

Overview This activity integrates the pipeline component in an iterative manner,
identifying and documenting the roles and responsibilities of the pipeline
components.

Primary Actors This activity involves the pipeline (PL) architect.

Activity Input(s) Inputs to this activity include pipeline requirements and pipeline components.

Activity Outputs(s) Outputs from this activity include an operational pipeline with a validated use
process.

Other Resources Other resources include online resources associated with the components to
support development of component communication scripts as needed.

Tips, Tricks, and
Wisdom

In most installations, the default setup for any component will suffice minus
scripts to connect with other components.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 87
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Activity: Test the pipeline.

Context Before trial use, the pipeline should be tested end to end.

Purpose This activity validates the overall functionality of the installed pipeline.

Overview This activity tests the overall functions of the pipeline as an integrated tool.
Concurrently, it captures the user role responsibilities to create a documented
process.

Primary Actors This activity involves software engineers, operations engineers, pipeline (PL)
architect

Activity Input(s) Inputs to this activity include the Installed pipeline and the test project.

Activity Outputs(s) Outputs from this activity include test results.

Other Resources Other resources include information you can obtain by following each
component’s official online documentation for recommended testing.

Tips, Tricks, and Wis-
dom

Use a simple project that includes aspects that use every component of the
pipeline, including testing (manual and automatic).
Your very first run will likely have connectivity problems. This is normal.
Resolve and continue testing. Repeat testing until you complete one successful
run of the entire pipeline.

Activity: Reassess your DSO posture.

Context This activity happens at each step of the adoption process.

Purpose This activity quantifies the impact of the pipeline on providing your desired
SDLC.

Overview This activity determines if the pipeline addresses its associated DSO technical
goals and provides insight into progress.

Primary Actors This activity involves software engineers, QA, requirements engineers, and the
program manager.

Activity Input(s) Inputs to this activity include a detailed pipeline architecture with performance
metrics and testing results, the questionnaire below, and results from the initial
DSO Posture Assessment.

Activity Outputs(s) Outputs from this activity include answers to the questionnaire, a determination
of progress, and potential remediation action tasks.

Other Resources

Tips, Tricks, and Wis-
dom

Repeat pipeline testing if remediation action items are put forth. Continue with
this testing until no action items are given. Be aware that the pipeline may
introduce new issues not previously present; remediate and repeat test in this
case.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 88
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Objective: Conduct trial use.

Activity: Select pilot tasks/projects/work.

Context Selecting pilots is the first step in trial use. It attempts to maximize the
information gained from Trial Use.

Purpose This activity creates a list of tasks or projects to act as pilots.

Overview Trial use pilot(s) selections are made collaboratively, using established criteria
for considering the projects available.

Primary Actors This activity involves the program manager and the pipeline (PL) architect.

Activity Input(s) Inputs to this activity include DSO Goals, the latest version of the DSO Posture
Assessment, the installed and tested pipeline, and validated process guidance.

Activity Outputs(s) Outputs from this activity include a selected pilot project.

Other Resources Other resources include Sections 7.1.4 and 7.1.5.

Tips, Tricks, and Wis-
dom

Senior leadership should buy in on selected project.
Don’t choose a multi-year project for the trial run. It may be too long before
remediation can occur.

Activity: Conduct pilot tasks/projects/work.

Context The pilots will identify technical, process and culture conflicts, mismatches,
errors, and improvements.

Purpose This activity supports and monitors the pilots.

Overview The pilots are conducted on the operational pipeline using the validated use
process.

Primary Actors This activity involves the program manager, the pipeline (PL) architect,
customers, end users, software engineers, requirements engineers, the quality
assurance engineer, the operations engineer, and the security engineer.

Relevant/Key Events Events include the commencement of project, schedules milestones, final
delivery into production, and handover to the customer.

Activity Input(s) Inputs of this activity include selected pilots, requirements, personnel, the
process of using the pipeline, the schedule, milestones.

Activity Outputs(s) Outputs of this activity include the delivered product to the customer.

Other Resources

Tips, Tricks, and
Wisdom

Before the project starts, hold meetings and talks to get personnel thinking in
the DSO style, so they mentally plan and make decisions conducive to DSO.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 89
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Activity: Reassess your DevOps posture.

Context This happens at every step of the adoption process.

Purpose This activity is a full assessment of post-trial use.

Overview This is a final check on the initial pipeline deployment.

Primary Actors This activity involves all stakeholders.

Activity Input(s) Inputs to this activity include the DevOps posture questionnaire, trial-use
issues, met and failed schedule dates, and milestones.

Activity Outputs(s) Outputs from this activity include questionnaire answers and remediation
action items.

Other Resources Other resources include questionnaire answers for all previous posture
assessments related to this project.

Tips, Tricks, and Wis-
dom

This was the first run; it won’t be perfect. Learn from it, make changes to
improve posture, and move on to the next project.

Objective: Monitor the ecosystem.

Activity: Establish a measurement program.

Context This activity is a long-term performance metric tracking pipeline, process, and
culture.

Purpose This activity determines and creates long-term metrics for DSO effectiveness.

Overview Senior leadership and program managers determine the best metrics for long-
term monitoring of DSO effectiveness across the organization.

Primary Actors This activity involves senior leadership, program management, and software
engineers.

Activity Input(s) Inputs to this process include formalization goals.

Activity Outputs(s) Outputs of this activity include a list of desired data for long-term analysis of
DSO.

Other Resources Other resources include the webinar Three Secrets to Successful Agile Metrics.

Tips, Tricks, and
Wisdom

Remember your analysis should focus on DSO culture and process. Don’t get
stuck only on the pipeline performance.

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=507850

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 90
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Activity. Regularly reassess your DSO technical and cultural posture.

Context This activity is a routine assessment to gauge long-term impact and
effectiveness of DSO.

Purpose This activity assures DSO impact and effectiveness trends have not fallen to
near unacceptable levels and fixes those that may be declining.

Overview This activity is a progress assessment that looks at all aspects of the DSO
adoption effort.

Primary Actors This activity involves all stakeholders.

Activity Input(s) Inputs to this activity include results of all previous DSO assessments and the
assessment questionnaire in 2.1.5.

Activity Outputs(s) Outputs to this activity include answers to the questionnaire, the current DSO
posture, and remediation action items provided to incremental planning
activities.

Other Resources

Tips, Tricks, and
Wisdom

Watching assessment trends over time will clearly indicate cultural acceptance
and/or defiance.

Objective: Extend DSO (Institutionalize).

Activity: Establish formalization goals.

Context These goals will institutionalize DSO as regular practice within your
organization.

Purpose This activity establishes the use of DSO on all projects, organization-wide.

Primary Actors This activity involves senior leadership and program managers.

Overview Senior leaders and program managers collaboratively identify goals that set the
standard of practice in using DSO for all future projects.

Activity Input(s) Inputs to this activity include trial usage final reports, DSO post-implementation
assessment findings, and the DSO process and pipeline.

Activity Outputs(s) Outputs from this activity include an organization-wide mandate detailing the
mechanics of DSO usage on all projects.

Other Resources

Tips, Tricks, and Wis-
dom

Several pilots will be needed for the whole organization to accept DSO as “the
way we do things.”

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 91
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Activity: Document and train personnel.

Context This activity includes continuous teaching of personnel in all areas of DSO.

Purpose This activity keeps personnel up to date on all DSO-related issues.

Overview Training, based on the latest process, is created, offered, and delivered to all
team members as needed.

Primary Actors This activity involves program managers and senior leadership.

Activity Input(s) Inputs to this activity include new training materials and documented updates
on DSO.

Activity Outputs(s) Outputs from this activity include training videos, slides, books, meetings, and
Q&A sessions.

Other Resources Other resources include third-party trainers, various media with new training,
and/or DSO changes.

Tips, Tricks, and Wis-
dom

Use training to keep personnel current on DSO technology and process
refinements.
Over training or too-early training can be detrimental.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 92
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Appendix B: Additional SEI DSO Resources

DevOps and DevSecOps [Waits 2015]

Blog Post: Introduction to DevOps

This blog post is a short overview of the DevOps concept in industry and the evolution of
DevSecOps.
https://insights.sei.cmu.edu/devops/2014/03/an-introduction-to-devops.html

Webinar: DevSecOps Implementation in the DoD: Barriers and Enablers

Today's DoD software development and deployment is not responsive to warfighter needs. As a
result, the DoD's ability to keep pace with potential adversaries is falling behind. In this webcast,
panelists Hasan Yasar, Eileen Wrubel, and Jeff Boleng discuss potential enablers of and barriers
to using modern software development techniques and processes in the DoD or similar segregated
environments. These software development techniques and processes are commonly known as
DevSecOps.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=544953

Video/Podcast: Agile DevOps

In this video, the SEI's Eileen Wrubel and Hasan Yasar discuss how Agile and DevOps can be de-
ployed together to meet organizational needs. “Continuous delivery is already part of Agile prin-
ciples. In a DevOps world, we are seeing continuous delivery. We are seeing continuous integra-
tion. We are talking about continuous deployments. These are the key principles of DevOps. As
techniques, these make all of these Agile principles achievable.”
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=517941

Technical Report: Infrastructure as Code

This report concludes work on a research project that explores the feasibility of infrastructure as
code, summarizing the problem addressed by the research, the research solution approach, and re-
sults. Infrastructure as code (IaC) is a set of practices that use code to set up virtual machines
and networks, install packages, and configure environments. Successful IaC adoption by software
sustainers requires a broad set of skills and knowledge. This project addresses the problem of ac-
celerating IaC adoption among software sustainment organizations.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=539327

Blog Post: Information Visualization as a DevOps Monitoring Tool

In this blog post, the first in a series on Information Visualization in DevOps, researcher Luiz An-
tunes explores how visual graphics can assist in the DevOps process.
https://insights.sei.cmu.edu/devops/2017/05/information-visualization-as-a-devops-monitoring-
tool.html

https://insights.sei.cmu.edu/devops/2014/03/an-introduction-to-devops.html
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=544953
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=517941
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=539327
https://insights.sei.cmu.edu/devops/2017/05/information-visualization-as-a-devops-monitoring-tool.html
https://insights.sei.cmu.edu/devops/2017/05/information-visualization-as-a-devops-monitoring-tool.html

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 93
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Blog Series: Implementing DevOps Within Highly Regulated Environments

This blog post series is based on Implementing DevOps Practices in Highly Regulated Environ-
ments, a paper by José Morales, Hasan Yasar, and Aaron Volkmann.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=531308

The series expands on the paper and discusses the process, challenges, approaches, and lessons
learned in implementing DevOps in the software development lifecycle (SDLC) within highly
regulated environments (HREs).

First Post: Challenges to Implementing DevOps in Highly Regulated Environments
https://insights.sei.cmu.edu/devops/2019/01/challenges-to-implementing-devops-in-highly-regu-
lated-environments-first-in-a-series.html

Second Post: Expectations for Implementing DevOps in a Highly Regulated Environment
https://insights.sei.cmu.edu/devops/2019/02/expectations-for-implementing-devops-in-a-highly-
regulated-environment.html

Third Post: Establishing the Pre-Assessment DevOps Posture of an SDLC in a Highly Regu-
lated Environment
https://insights.sei.cmu.edu/devops/2019/04/establishing-the-preassessment-devops-posture-of-
an-sdlc-in-a-highly-regulated-environment.html

Fourth Post: Performing the DevOps Assessment
https://insights.sei.cmu.edu/devops/2020/01/performing-the-devops-assessment-fourth-in-a-se-
ries.html

Fifth Post: Formalizing DevOps Assessment Findings and Crafting Recommendations
https://insights.sei.cmu.edu/devops/2020/02/formalizing-devops-assessment-findings-and-craft-
ing-recommendations-fifth-in-a-series.html

Technology Adoption

White Paper: Is your organization ready for Agile?

This white paper addresses the factors that should be considered when adopting Agile practices
and processes in regulated environments (e.g., DoD, IRS, FDA, other government agencies). The
paper is based on the SEI's Readiness and Fit Analysis process. All software engineering and
management practices are based on cultural and social assumptions. When adopting new prac-
tices, leaders often find mismatches between those assumptions and the realities within their or-
ganizations.
https://resources.sei.cmu.edu/asset_files/WhitePaper/2014_019_001_90981.pdf

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=531308
https://insights.sei.cmu.edu/devops/2019/01/challenges-to-implementing-devops-in-highly-regulated-environments-first-in-a-series.html
https://insights.sei.cmu.edu/devops/2019/01/challenges-to-implementing-devops-in-highly-regulated-environments-first-in-a-series.html
https://insights.sei.cmu.edu/devops/2019/02/expectations-for-implementing-devops-in-a-highly-regulated-environment.html
https://insights.sei.cmu.edu/devops/2019/02/expectations-for-implementing-devops-in-a-highly-regulated-environment.html
https://insights.sei.cmu.edu/devops/2019/04/establishing-the-preassessment-devops-posture-of-an-sdlc-in-a-highly-regulated-environment.html
https://insights.sei.cmu.edu/devops/2019/04/establishing-the-preassessment-devops-posture-of-an-sdlc-in-a-highly-regulated-environment.html
https://insights.sei.cmu.edu/devops/2020/01/performing-the-devops-assessment-fourth-in-a-series.html
https://insights.sei.cmu.edu/devops/2020/01/performing-the-devops-assessment-fourth-in-a-series.html
https://insights.sei.cmu.edu/devops/2020/02/formalizing-devops-assessment-findings-and-crafting-recommendations-fifth-in-a-series.html
https://insights.sei.cmu.edu/devops/2020/02/formalizing-devops-assessment-findings-and-crafting-recommendations-fifth-in-a-series.html
https://resources.sei.cmu.edu/asset_files/WhitePaper/2014_019_001_90981.pdf

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 94
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Security

Webinar: Security Practitioner Perspective on DevOps for Building Secure Solutions

Software security often evokes negative feelings in developers because it is linked with challenges
and uncertainty on rapid releases—especially for the Agile development process. The growing
concept of DevOps can be applied to improve the security of applications. Applying DevOps prin-
ciples can have a big impact on software resiliency and secure solutions. This webinar covers the
perspectives of security practitioners on building secure software using the DevOps development
process and modern security approach.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=474101

Video/Podcast: How Risk Management Fits into Agile and DevOps in Government

In this podcast, Eileen Wrubel, technical lead for the SEI’s Agile-in-Government program, leads a
roundtable discussion into how Agile, DevOps, and the Risk Management Framework can work
together. The panelists include Tim Chick, Will Hayes, and Hasan Yasar.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=514190

Blog Post: Improving Security and Stability by Using DevOps Strategies

This blog post explores some basic DevOps practices that will improve application security while
helping to maintain a stable operating environment.
https://insights.sei.cmu.edu/devops/2018/03/improving-security-and-stability-by-using-devops-
strategies.html

Video/Podcast: 10 Types of Application Security Testing Tools and How to Use Them

In this podcast, Thomas Scanlon, a researcher in the SEI's CERT Division, discusses the different
types of application security testing tools and provides guidance on how and when to use each
tool.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=539820

Lean and Agile [Palmquist 2013]

Webinar: Practical Considerations in Adopting Lean and Agile in Government Settings

This webinar summarizes much of what the SEI has learned in its eight years of researching and
facilitating the adoption of Lean and Agile methods in software-reliant systems in government.
Suzanne Miller and Eileen Wrubel focus on how Lean and Agile principles can be interpreted for
government settings and provide an overview of resources published by the SEI to support gov-
ernment organizations who are now, or are contemplating, adopting Agile or Lean methods for
the software-reliant systems acquisitions and sustainment.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=502861

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=474101
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=514190
https://insights.sei.cmu.edu/devops/2018/03/improving-security-and-stability-by-using-devops-strategies.html
https://insights.sei.cmu.edu/devops/2018/03/improving-security-and-stability-by-using-devops-strategies.html
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=539820

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 95
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Podcast: Agile Software Teams and How They Engage with Systems Engineering on DoD
Acquisition Programs

In this podcast, Acquisition researchers Eileen Wrubel and Suzanne Miller offer insights into how
systems engineers and Agile software engineers can better collaborate when taking advantage of
Agile as they deliver incremental mission capability.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=427580

Podcast Series: Agile Adoption in the DoD

This is a series of podcasts by Suzanne Miller and Mary Ann Lapham that explores the applica-
tion of the 12 Agile principles in the Department of Defense. Each podcast focuses on one of the
Agile principles and includes google/apple podcasts, audio only, and transcript versions.

First Principle: "Our highest priority is to satisfy the customer through early and continuous deliv-
ery of valuable software."
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=294551

Second Principle: "Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage."
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=57578

Third Principle: "Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale."
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=58970

Fourth Principle: "Business people and developers must work together daily."
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=294306

Fifth Principle: “Build projects around motivated individuals.”
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=294212

Sixth Principle: “The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation.”
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=91708

Seventh Principle: “Working software is the primary measure of progress.”
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=300353

Eighth Principle: “Agile processes promote sustainable development.”
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=424806

Ninth Principle: "Continuous attention to technical excellence and good design enhances Agile."
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=435068

Tenth Principle: “Simplicity—the art of maximizing the amount of work done—is essential.”
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=435352

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=427580
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=294551
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=57578
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=294306
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=294212
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=91708
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=424806
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=435352

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 96
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

Eleventh Principle: “The best architectures, requirements, and designs emerge from self-organiz-
ing teams.”
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=435441

Twelfth Principle: “At regular intervals, the team reflects on how to become more effective, then
tunes and adjusts its behavior accordingly.”
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=438821

Architecture

Webinar: Architectural Implications of DevOps

The Agile movement began as a reaction to frustration over the slow delivery of software, which
often didn't sufficiently meet user needs. DevOps picks up what Agile started. Software develop-
ment velocity has improved in many cases, yet we see deployment-related delays due to issues
such as the inability to integrate continuously (or even frequently), resulting in late discovery of
costly integration issues, challenges completing automated testing within an increment/build cy-
cle, and uncertainty about whether a build is stable and secure enough for external release. To
avoid problems such as these, SEI researcher Stephany Bellomo suggests it is critical for teams to
make design decisions that align with their deployment goals such as reduced deployment cycle
time and continuous delivery.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=298324

Webinar: What Makes a Good Software Architect (2019 Edition)?

The architect's role continues to evolve; in this webcast, we revisit the question in the context of
today's roles and responsibilities. Researchers John Klein, Ipek Ozkaya, Felix Bachmann, and Su-
zanne Miller explore the challenges of working in an environment with rapidly evolving technol-
ogy options, such as the serverless architecture style, and the role of the architect in Agile organi-
zations using DevSecOps and Agile architecture practices to shorten iterations and deliver
software faster.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=543614

Video: How do you integrate software architecture into Agile/DevOps environments?

SEI Researchers Andrew Kotov and John Klein respond to "How do you integrate software archi-
tecture into Agile/DevOps environments?"
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=553008

Systems of Systems

Blog Post: Mission Thread Analysis Using End-to-End Data Flows - Part 1

The first post in a series by researcher Donald Firesmith on mission thread analysis using end-to-
end data flows. This post identifies engineering challenges caused by the lack of an E2E mission
thread analysis and provides an overview of an effective way of addressing these challenges: the
E2E Mission thread Data flow Analysis (EMDA) method.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=435441
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=438821
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=543614
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=553008

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 97
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

https://insights.sei.cmu.edu/sei_blog/2019/08/mission-thread-analysis-using-end-to-end-data-
flows---part-1.html

Blog Post: Mission Thread Analysis Using End-to-End Data Flows - Part 2

This second blog post discusses the process used to create and verify the method's work products,
the benefits of the method, the challenges that must be addressed while implementing the method,
and lessons learned during the use of this method on a U.S. military program.
https://insights.sei.cmu.edu/sei_blog/2019/08/mission-thread-analysis-using-end-to-end-data-
flows---part-2.html

https://insights.sei.cmu.edu/sei_blog/2019/08/mission-thread-analysis-using-end-to-end-data-flows---part-1.html
https://insights.sei.cmu.edu/sei_blog/2019/08/mission-thread-analysis-using-end-to-end-data-flows---part-1.html
https://insights.sei.cmu.edu/sei_blog/2019/08/mission-thread-analysis-using-end-to-end-data-flows---part-2.html
https://insights.sei.cmu.edu/sei_blog/2019/08/mission-thread-analysis-using-end-to-end-data-flows---part-2.html

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 98
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

References

URLs are valid as of the publication date of this document.

[Adler 1990]
Adler, P. & Shenhar, A. Adapting Your Technological Base. Sloan Management Review. Volume
32. Issue 1. October 1990. Pages 27-36. https://sloanreview.mit.edu/issue/fall-1990/#issue-loop

[Bass 2015]
Bass, Len; Weber, Ingo M.; & Zhu, Liming. DevOps: A Software Architect's Perspective. Addi-
son-Wesley Professional. 2015.

[Bellomo 2014]
Bellomo, Stephany; Ernst, Neil; Nord, Robert; & Kazman, Rick. Toward Design Decisions to En-
able Deployability: Empirical Study of Three Projects Reaching for the Continuous Delivery Holy
Grail. Software Engineering Institute, Carnegie Mellon University. 2014.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=298735

[Brownsword 2006]
Brownsword, Lisa; Fisher, David; Morris, Edwin; Smith, James; & Kirwan, Patrick. System-of-
Systems Navigator: An Approach for Managing System-of-Systems Interoperability. CMU/SEI-
2006-TN-019. Software Engineering Institute, Carnegie Mellon University. 2006.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7921

[CircleCI 2019]
Puppet, CircleCI, and Splunk. 2019 State of DevOps Report: Presented by Puppet, CircleCI, and
Splunk. 2019. https://www2.circleci.com/2019-state-of-devops-report.html

[Cockburn 2002]
Cockburn, Alistair. Agile Software Development. Addison-Wesley. 2002.

[Dahmann and Baldwin 2008]
Dahmann, J. S. & Baldwin, K. Understanding the Current State of U.S. Defense Systems of Sys-
tems and the Implications for Systems Engineering. Proceedings of the2nd Annual IEEE Systems
Conference. 2008.

[DoD 2001]
Joint Publication 1-02 (JP 1-0). Department of Defense Dictionary of Military and Associated
Terms. 2001 (updated in 2020). https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/diction-
ary.pdf

[DoD 2004]
U.S. Department of Defense. System of Systems Engineering. In Defense Acquisition Guidebook.
Chapter 4. 2004.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 99
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[DoD 2006]
Department of Defense. Joint Publication 3-0 (JP 3-0). Joint Operation. 2006 (updated in 2018).
https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_0ch1.pdf?ver=2018-11-27-160457-
910

[DoD 2008]
Office of the Under Secretary of Defense (Acquisition, Technology and Logistics). Systems Engi-
neering Guide for Systems of Systems. 2008.

[DTRA 2007]
Defense Threat Reduction Agency. Joint Improvised-Threat Defeat Organization (JIDO).
SecDevOps Concept of Operations. Version 1.0. 2017.

[Fazal-Baqaie 2017]
Fazal-Baqaie, M.; Güldali, B.; & Oberthür, S. Towards DevOps in Multi-Provider Projects. 2nd
Workshop on Continuous Software Engineering. February 2017. Hannover, Germany, 2017.

[Kim 2016]
Kim, Gene; Humble, Jez; Debois, Patrick; & Willis, John. The DevOps Handbook. IT Revolution
Press. 2016.

[Klein and Reynolds 2019]
Klein, John & Reynolds, Doug. Infrastructure as Code: Final Report. Software Engineering Insti-
tute, Carnegie Mellon University. 2019. https://resources.sei.cmu.edu/library/asset-view.cfm?as-
setid=539327

[Kruchten [2012]
Kruchten, Philippe; Nord. Robert L.; & Ozkaya, Ipek. Technical Debt: from Metaphor to Theory
and Practice. IEEE Software. Volume 29. Number 6. Pages 8-21. 2012.

[Leonard-Barton 1988]
Leonard-Barton, Dorothy. Implementation as Mutual Adaptation of Technology and Organiza-
tion. Research Policy. Volume 17. Number 5. Pages 251-267. 1988.

[Maier 1998]
Maier, Mark. Architecting Principles for Systems-of-Systems. Systems Engineering. Vol. 1. Num-
ber 4. Pages 267-284. 1998.

[Martinez 2018]
Martinez, Manuel Perez; Laszlo, Timea; Pataki, Norbert; Rotter, Csaba; & Szalai, Csaba. Multi-
vendor Deployment Integration for Future Mobile Networks. SOFSEM 2018. January 2018.
https://link.springer.com/content/pdf/10.1007%2F978-3-319-73117-9_25.pdf

[McCarthy 2015]
McCarthy, Matthew A.; Herger, Lorraine M.; Khan, Shakil M.; & Belgodere, Brian M. Composa-
ble Devops. Presented at IEEE International Conference on Services Computing. 2015.

https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_0ch1.pdf?ver=2018-11-27-160457-910
https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_0ch1.pdf?ver=2018-11-27-160457-910
https://link.springer.com/content/pdf/10.1007%2F978-3-319-73117-9_25.pdf

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 100
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[McQuade 2019]
McQuade, J. Michael; Murray, Richard M.; Louie, Gilman; Medin, Milo; Pahlka, Jennifer; & Ste-
phens, Trae. Software Is Never Done: Refactoring the Acquisition Code for Competitive Ad-
vantage. Defense Innovation Board. 2019.

[Miller 2006]
Garcia-Miller, Suzanne & Turner, Richard. CMMI® Survival Guide: Just Enough Process Im-
provement. Addison-Wesley Professional. 2006.

[Miller 2014]
Miller, Suzanne. The Readiness & Fit Analysis: Is Your Organization Ready for Agile? Software
Engineering Institute, Carnegie Mellon University. 2014. https://resources.sei.cmu.edu/library/as-
set-view.cfm?assetid=90977

[Moore 2002]
Moore, G. Crossing the Chasm: Marketing and Selling Disruptive Products to Mainstream
Customers. Harper Business Essentials. 2002.

[Morales 2018]
Morales, Jose A.; Yasar, Hasan; & Volkmann, Aaron. Implementing DevOps Practices in Highly
Regulated Environments. In Proceedings of International Workshop on Secure Software Engi-
neering in DevOps and Agile Development. SecSE 2018. https://resources.sei.cmu.edu/library/as-
set-view.cfm?assetid=517148

[Palmquist 2013]
Palmquist, Steven; Lapham, Mary Ann; Garcia-Miller, Suzanne; Chick, Timothy; & Ozkaya,
Ipek. Parallel Worlds: Agile and Waterfall Differences and Similarities. CMU/SEI-2013-TN-021.
Software Engineering Institute, Carnegie Mellon University. 2013. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=62901

[Patterson 1982]
Patterson, Robert W. & Conner, Daryl. Building Commitment to Organizational Change. Train-
ing & Development Journal. Volume 36. Number 4. Pages 18-30. 1982.

[Rogers 2003]
Rogers, E. Diffusion of Innovation. 5th ed. Simon & Schuster. 2003.

[Waits 2015]
Waits, Todd & Volkmann, Aaron. Webinar: Culture Shock: Unlocking DevOps with Collabora-
tion and Communication. Software Engineering Institute, Carnegie Mellon University. 2015.
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=442589.

[Weinberg 1997]
Weinberg, Gerald. Quality Software Management Volume 4: Anticipating Change. Dorset House
Publishing. 1997.

CMU/SEI-2020-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 101
[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.

[Wrubel 2014]
Wrubel, Eileen; Miller, Suzanne; Lapham, Mary Ann; & Chick, Timothy. Agile Software Teams:
How They Engage with Systems Engineering on DoD Acquisition Programs. CMU/SEI-2014-TN-
013. Software Engineering Institute, Carnegie Mellon University. 2014. http://re-
sources.sei.cmu.edu/library/asset-view.cfm?AssetID=295943

[Yasar 2018]
Yasar, Hasan & Lackey, Zane. Security Practitioner Perspective on DevOps for Building Secure
Solutions. Webinar. https://youtu.be/U8972_RR9p0.

[Zmud 1992]
Zmud, R. & Apple, L. E. Measuring Technology Incorporation/Infusion. Journal of Product Inno-
vation Management. Volume 9. Number 2. Pages 148-155. 1992.

https://youtu.be/U8972_RR9p0

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

April 2020
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
Guide to Implementing DevSecOps for a System of Systems in Highly Regulated
Environments

5. FUNDING NUMBERS
FA8702-15-D-0002

6. AUTHOR(S)
Jose Morales, Richard Turner, Suzanne Miller, Peter Capell, Patrick Place, David James Shepard

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2020-TR-002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
SEI Administrative Agent
AFLCMC/AZS
5 Eglin Street
Hanscom AFB, MA 01731-2100

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
DevSecOps (DSO) is an approach that integrates development (Dev), security (Sec), and delivery/operations (Ops) of software systems
to reduce the time from need to capability and provide continuous integration and continuous delivery (CI/CD) with high software quality.
The rapid acceptance and demonstrated effectiveness of DSO in software system development have led to proposals for its adoption in
more complex projects. This document provides guidance to projects interested in implementing DSO in defense or other highly regu-
lated environments, including those involving systems of systems.
The report provides rationale for adopting DSO and the dimensions of change required for that adoption. It introduces DSO, its princi-
ples, operations, and expected benefits. It describes objectives and activities needed to implement the DSO ecosystem, including prepa-
ration, establishment, and management. Preparation is necessary to create achievable goals and expectations and to establish feasible
increments for building the ecosystem. Establishing the ecosystem includes evolving the culture, automation, processes, and system
architecture from their initial state toward an initial capability. Managing the ecosystem includes measuring and monitoring both the
health of the ecosystem and the performance of the organization. Additional information on the conceptual foundations of the DSO ap-
proach is also provided.

14. SUBJECT TERMS
DevOps, DevSec,Ops, continuous delivery, system of systems, ecosystem

15. NUMBER OF PAGES
111

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Outputs
	Primary Actors
	Heuristics, lessons learned, and commentary from those who came before
	Work products, guides, and other information that could support the activity
	Resources
	How this activity relates to the overall adoption
	What the activity accomplishes
	Tips, Tricks, and Wisdom
	Information or actions that the activity produces
	Necessary information to successfully accomplish the activity
	Inputs
	The roles that are the most likely to be involved with this activity
	Overview of the activity
	Overview
	Purpose
	Context
	/
	Executive Summary
	Abstract
	1 Introduction
	1.1 Using the Guide
	1.2 Scope

	2 The DSO Concept
	2.1 DSO Principles
	2.1.1 Collaboration
	2.1.2 Infrastructure as Code (IaC)
	2.1.3 Continuous Integration
	2.1.4 Continuous Delivery
	2.1.5 Continuous Deployment
	2.1.6 Environment Parity
	2.1.7 Automation
	2.1.8 Monitoring

	2.2 DevOps Pipelines
	2.3 HREs and DSO Security
	2.3.1 HRE Challenges
	2.3.2 HRE Considerations

	2.4 SoS and DSO
	2.4.1 Types of SoS
	2.4.2 SoS Considerations
	2.4.3 SoS Integrated Testing
	A derived value integration test achieves the following goals:

	3 Adoption Overview
	4 Prepare for Adoption
	4.1 Objective: Establish Your Vision
	4.1.1 Activity: Identify/Build Your Vision

	4.2 Objective: Determine Readiness to Adopt DSO
	4.2.1 Activity: Understand Your Context
	4.2.1.1 Organizational Context
	4.2.1.2 Cultural Context
	4.2.1.3 Communications Maturity
	4.2.1.3.1 Personal Relationship Maturity
	4.2.1.3.2 Integration and Collaboration Levels

	4.2.1.4 Understand System and Architecture Characteristics
	4.2.1.5 Identify Security Considerations
	4.2.1.6 Inventory Technical Platforms and Software Assets
	4.2.1.7 Identify Success-Critical Stakeholders and Adopters
	4.2.1.8 Identify Software Development Roles
	4.2.1.9 Understand Current Process and Practice Characteristics
	4.2.1.10 Assess Initial DSO Posture

	4.2.2 Activity: Implement the Readiness and Fit Analysis Process

	4.3 Objective: Develop an Adoption/Transition Strategy
	4.3.1 Activity: Identify Your DSO Adoption Goal(s)
	4.3.1.1 Defining Goals
	4.3.1.2 Defining Measures
	4.3.1.3 Example DSO Goals

	4.3.2 Activity: Establish the Initial Adoption Scope
	4.3.2.1 Identify Culture Changes Required
	4.3.2.2 Identify Organizational Scope

	4.3.3 Activity: Propose Change (Transition) Mechanisms
	4.3.4 Example: JIDO DSO Strategy Summary

	4.4 Objective: Plan Your Next Adoption Activities
	4.4.1 Activity: Identify Resources
	4.4.2 Activity: Develop a Backlog and Initial Increment Map
	4.4.3 Activity: Develop a Communications Plan

	5 Establishing the DSO Ecosystem
	5.1 Objective: Change the Culture
	5.1.1 Activity: Monitor Cultural Change Progress
	5.1.2 Activity: Influence Change

	5.2 Objective: Build a DSO Pipeline
	5.2.1 Activity: Consolidate Pipeline Requirements
	5.2.1.1 Pipeline Requirements Questionnaire
	5.2.1.2 Documenting the Requirements

	5.2.2 Activity: Identify and Acquire Needed Components
	5.2.3 Activity: Install and Launch the Pipeline
	5.2.3.1 Installation Process

	5.2.4 Activity: Test the Pipeline
	5.2.5 Activity: Reassess Your DSO Posture

	5.3 Objective: Conduct Trial Use
	5.3.1 Activity: Select Pilot Tasks/Projects/Work
	5.3.2 Activity: Conduct Pilot Tasks/Projects/Work
	5.3.3 Activity: Reassess Your DevOps Posture

	6 Manage and Evolve the Ecosystem
	6.1 Objective: Monitor the Ecosystem
	6.1.1 Activity: Establish a Measurement Program
	6.1.2 Activity: Regularly Reassess Your DSO Technical and Cultural Posture

	6.2 Objective: Extend DSO (Institutionalize)
	6.2.1 Activity: Establish Formalization Goals
	6.2.2 Activity: Document and Train Personnel

	7 Concepts, Principles, and Tools
	7.1 Technology Adoption and Culture Change
	7.1.1 Difficulty of Change
	7.1.2 A Change Model (Satir)
	7.1.3 Adoption Commitment Curve (Patterson-Conner)
	7.1.4 Finding/Selecting Pilot Projects
	7.1.5 Adopter Analysis

	7.2 Lean and Agile
	7.2.1 Principles
	7.2.1.1 Take an Economic View
	7.2.1.2 Apply Systems Thinking
	7.2.1.3 Assume Variability; Preserve Options
	7.2.1.4 Build Incrementally With Fast, Integrated Learning Cycles
	7.2.1.5 Base Milestone Completion on the Objective Evaluation of Working Systems
	7.2.1.6 Visualize and Limit WIP, Reduce Batch Sizes, and Manage Queue Lengths
	7.2.1.7 Apply Cadence and Synchronize with Cross-Domain Planning
	7.2.1.8 Unlock the Intrinsic Motivation of Knowledge Workers
	7.2.1.9 Decentralize Decision Making

	7.3 Systems Engineering
	7.3.1 Architecture

	7.4 Value Stream and Network Visualizations
	7.5 Policy

	Appendix A: Collected Activity Summaries
	Objective: Plan your next adoption activities.
	Activity: Identify resources.
	Activity: Develop a backlog and initial increment map.
	Activity: Develop a communications plan.
	Objective: Change the culture.
	Activity: Monitor cultural change progress.
	Activity: Influence change.
	Objective: Build a DSO pipeline.
	Activity: Consolidate pipeline requirements.
	Activity: Identify and acquire needed components.
	Activity: Install and launch the pipeline.
	Activity: Test the pipeline.
	Activity: Reassess your DSO posture.
	Objective: Conduct trial use.
	Activity: Select pilot tasks/projects/work.
	Activity: Conduct pilot tasks/projects/work.
	Activity: Reassess your DevOps posture.
	Objective: Monitor the ecosystem.
	Activity: Establish a measurement program.
	Activity. Regularly reassess your DSO technical and cultural posture.
	Objective: Extend DSO (Institutionalize).
	Activity: Establish formalization goals.
	Activity: Document and train personnel.

	Appendix B: Additional SEI DSO Resources
	DevOps and DevSecOps [Waits 2015]
	Technology Adoption
	Security
	Lean and Agile [Palmquist 2013]
	Architecture
	Systems of Systems

	References

