

REV-03.18.2016.0

Composing Effective Software Security
Assurance Workflows

William R. Nichols
James D. McHale
David Sweeney
William Snavely
Aaron Volkman

October 2018

TECHNICAL REPORT
CMU/SEI-2018-TR-004

Software Solutions Division

[Distribution Statement A] Approved for public release and unlimited distribution.

http://www.sei.cmu.edu

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
[Distribution Statement A] Approved for public release and unlimited distribution

Copyright 2018 Carnegie Mellon University. All Rights Reserved.

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not
be construed as an official Government position, policy, or decision, unless designated by other docu-
mentation.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin Street Hanscom
AFB, MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-
uted in written or electronic form without requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission should be directed to the Software En-
gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Team Software ProcessSM and TSPSM are service marks of Carnegie Mellon University.

DM18-0667

mailto:permission@sei.cmu.edu

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3
[Distribution Statement A] Approved for public release and unlimited distribution

Table of Contents

Acknowledgments 9

Abstract 10

1 Introduction 11
1.1 An Economic Challenge for Cybersecurity 11
1.2 Modeling and Predicting Software Vulnerabilities 11
1.3 Software Development Approaches 12
1.4 Static Analysis Tools 12
1.5 Development Lifecycle 13

2 Research Approach 15
2.1 Approach Background 15

2.1.1 Software Process Improvement 15
2.1.2 Case Studies, Quasi-experiments, and Action Research 17
2.1.3 Effectiveness vs. Efficacy 17

2.2 Study Design 18
2.2.1 Participant Selection 18
2.2.2 Data Collection 19
2.2.3 Data Storage 19
2.2.4 Data Analysis 19

3 Data Collection and Processing 21
3.1 Process Activity Mapping 22
3.2 Data Collection 25
3.3 Data Definitions 26

4 Results 30
4.1 Organization A 30
4.2 Organization B 42
4.3 Organization C 73
4.4 Overall Find and Fix Times 87

5 Discussion 88
5.1 Effectiveness of Defect Removal 88
5.2 Cost of Defect Removal 89
5.3 Are False Positives a Problem? 89
5.4 Threats to Validity 89

5.4.1 External Validity 89
5.4.2 Construct Validity 90
5.4.3 Internal Validity 90

5.5 Limitations and Future Work 91
5.6 Implications for Cost-Effective Process Composition 92

6 Conclusions 94

Appendix: Additional Data 96

References/Bibliography 119

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4
[Distribution Statement A] Approved for public release and unlimited distribution

List of Figures

Figure 1: Defect Origin Phase (Organization A) 31

Figure 2: Defect Removal Phase (Organization A) 31

Figure 3: Defect Counts and Fix Time by Type (Organization A) 36

Figure 4: Phase Defect Fix Effort Box Plot (Organization A) 36

Figure 5: Defect Density with and without Static Analysis Tool A (Organization A) 39

Figure 6: Cumulative Development Effort with and without Static Analysis Tool A (Organization A) 40

Figure 7: Cumulative Defect Flow with Static Analysis Tool A (Organization A) 40

Figure 8: Cumulative Defect Flow without Static Analysis Tool A (Organization A) 41

Figure 9: Defect Removal by Phase with and without Static Analysis (Organization A) 41

Figure 10: Coding Process Rates (Organization A) 42

Figure 11: Code Review Yield vs. Review Rate (Organization A) 42

Figure 12: Defect Types (Organization B) 43

Figure 13: Number of Defects Removed During Development Phases (Organization B) 43

Figure 14: All Other Defects, Code Review 53

Figure 15: Tool_B_1 Defect Find and Fix Time, Code Review 54

Figure 16: Other Defects, Average Find and Fix Time, Compile 55

Figure 17: Tool_B_1 Defects, Average Fix Time, Compile 56

Figure 18: Tool_B_2 Defects, Average Find and Fix Time, Compile 57

Figure 19: Other Defects, Fix Time Distribution, Code Inspect 58

Figure 20: Tool_B_1, Defect Fix Time Distribution, Code Inspect 59

Figure 21: Tool_B_2 Defect Find and Fix Distribution, Code Inspect 60

Figure 22: Tool_B_1 Defect Find and Fix Distribution 61

Figure 23: Inspection Phase Yield vs. Personal Review Phase Yield (Organization B) 62

Figure 24: Personal Review Rate vs. Code Review Yield (Organization B) 64

Figure 25: Defect Density per Phase with and without Static Analysis (Organization B) 70

Figure 26: Cumulative Amount of Effort with and without Static Analysis (Organization B) 71

Figure 27: Team Effort by Phase with and without Static Analysis (Organization B) 71

Figure 28: Cumulative Defect Flow with Static Analysis (Organization B) 72

Figure 29: Cumulative Defect Flow without Static Analysis (Organization B) 72

Figure 30: Defects Removed per Phase with and without Static Analysis during Personal Review
Phase (Organization B) 73

Figure 31: Project Development Process Effort (Organization C) 74

Figure 32: Project Defect Removal Yields (Organization C) 74

Figure 33: Defect Find and Fix Time in Acceptance Test, for Code and Design Defects 76

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 34: Static Analysis (Code and Binary) Defect Find/Fix Time 77

Figure 35: Project Distribution of Code Defect Find and Fix Time by Removal Phase
(Organization C) 78

Figure 36: Defect Fix Time, Design Review (Organization C) 79

Figure 37: Defect Fix Time, Design Inspect (Organization C) 79

Figure 38: Defect Fix Time, Code Inspect (Organization C) 80

Figure 39: Defect Fix Time, Code Review (Organization C) 80

Figure 40: Defect Fix Time, Compile (Organization C) 81

Figure 41: Defect Fix Time, Test (Organization C) 81

Figure 42: Defect Fix Time, Integration Test (Organization C) 82

Figure 43: Defect Fix Time, Acceptance Test (Organization C) 82

Figure 44: Defect Fix Time, System Test (Organization C) 83

Figure 45: Defect Fix Time, After Development (Organization C) 83

Figure 46: Defect Density with and without Static Analysis Phase (Organization C) 85

Figure 47: Defect Removals by Phase (Organization C) 85

Figure 48: Cumulative Effort with and without Static Analysis 86

Figure 49: Cumulative Flow of Defects with Static Analysis 86

Figure 50: Defect Cumulative Flow, without Static Analysis 87

Figure 51: Organization Find and Fix Time Distributions 87

Figure 52: Defect Distribution, HLD (Organization A) 96

Figure 53: Defect Distribution, HLD Review (Organization A) 96

Figure 54: Defect Distribution, HLD Inspect (Organization A) 97

Figure 55: Defect Distribution, Design (Organization A) 97

Figure 56: Defect Distribution, Design Review (Organization A) 98

Figure 57: Defect Distribution, Design Inspect (Organization A) 98

Figure 58: Defect Distribution, Test Development (Organization A) 99

Figure 59: Defect Distribution, Code (Organization A) 99

Figure 60: Defect Distribution, Code Review (Organization A) 100

Figure 61: Defect Distribution, Compile (Organization A) 100

Figure 62: Defect Distribution, Code Inspect (Organization A) 101

Figure 63: Unit Test Defect Distribution, Test (Organization A) 101

Figure 64: Defect Distribution, Integration Test (Organization A) 102

Figure 65: Defect Distribution, After Development (Organization A) 102

Figure 66: Defect Fix Time Distribution, Project 612 (Organization A) 103

Figure 67: Defect Fix Time Distribution, Project 613 (Organization A) 103

Figure 68: Defect Fix Time Distribution, Project 614 (Organization A) 104

Figure 69: Defect Fix Effort, Project 615 (Organization A) 104

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 70: Defect Fix Effort, Project 617 (Organization A) 105

Figure 71: Time Log Entries (Organization A) 105

Figure 72: Defect Fix Time Distributions for Four Organizations 106

Figure 73: Defect Fix Time Distributions, Project 47 106

Figure 74: Defect Fix Time Distributions, Project 48 107

Figure 75: Defect Fix Time Distributions, Project 49 107

Figure 76: Defect Fix Time Distributions, Project 50 108

Figure 77: Defect Fix Time Distributions, Project 56 108

Figure 78: Defect Fix Time Distributions, Project 83 109

Figure 79: Defect Fix Time Distributions, Project 84 109

Figure 80: Defect Fix Time Distributions, Project 95 110

Figure 81: Defect Fix Time Distributions, Project 101 110

Figure 82: Defect Fix Time Distributions, Project 171 111

Figure 83: Defect Fix Time Distributions, Project 180 111

Figure 84: Defect Fix Time Distributions, Project 181 112

Figure 85: Defect Fix Time Distributions, Project 182 112

Figure 86: Defect Fix Time Distributions, Project 183 113

Figure 87: Defect Fix Time Distributions, Project 184 113

Figure 88: Defect Fix Time Distributions, Project 415 114

Figure 89: Defect Fix Time Distributions, Project 416 114

Figure 90: Defect Fix Time Distributions, Project 419 115

Figure 91: Defect Fix Time Distributions, Project 449 115

Figure 92: Defect Fix Time Distributions, Project 455 116

Figure 93: Defect Fix Time Distributions, Project 459 116

Figure 94: Defect Fix Time Distributions, Project 460 117

Figure 95: Defect Fix Time Distributions, Project 461 117

Figure 96: Defect Fix Time Distributions, Project 606 118

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7
[Distribution Statement A] Approved for public release and unlimited distribution

List of Tables

Table 1: Static Analysis Tools and the Process Phases Where They Were Used 12

Table 2: Typical Phases of a TSP Project 13

Table 3: Product Size Measures Collected Using the TSP Approach 14

Table 4: Participating Organizations and Projects 21

Table 5: Project Summary Data 21

Table 6: Standard Process Phases Mapped to Process Type and Phase Type 22

Table 7: Project Phases Mapped to Standard Lifecycle Phases 24

Table 8: Variables Identifying the Source Data 26

Table 9: Variables Used For Recording Product Size Information 26

Table 10: Variables Associated with Software Product Quality 27

Table 11: Variables Associated with Development Effort 28

Table 12: Defect Count by Origin and Removal (Organization A) 32

Table 13: Sum of Defect Fix Time by Origin and Removal (Organization A) 33

Table 14: Average Defect Fix Effort by Origin and Removal (Organization A) 34

Table 15: Phase Defect Fix Effort Statistics (Organization A) 35

Table 16: Cost and Quality Performance in the Absence of Tool_A 37

Table 17: Cost and Quality Performance in the Absence of Tool_A (Organization A) 38

Table 18: Tool_B_1 Origin and Removal Phase of Defect Found 45

Table 19: Tool_B_1 Total Defect Fix Effort by Phase of Origin and Removal 45

Table 20: Tool_B_1 Fix Effort per Defect by Phase of Origin and Removal 46

Table 21: Defects Coded for Tool_B_2 by Phase of Origin and Removal 47

Table 22: Tool_B_2 Defect Removal Effort by Phase of Origin and Removal 47

Table 23: Tool_B_2 Removal Effort per Defect by Phase of Origin and Removal 48

Table 24: All Defects, Phase of Origin (Injection) and Removal 49

Table 25: Total Defect Find and Fix Time (After High-Level Design) 50

Table 26: Average Defect Fix Effort by Removal and Origin 51

Table 27: Descriptive Statistics for All Defects by Removal Phase 52

Table 28: Defect Type Frequencies Found During Development Phase (Organization B) 63

Table 29: Performance with Tool_B_2 and Tool_B_1 Static Analysis (Organization B) 64

Table 30: Performance without Tool_B_2 or Tool_B_1 Static Analysis (Organization B) 65

Table 31: Number of Defects Removed per Phase with Static Analysis (Organization B) 67

Table 32: Effort Spent on Defect Removal with Static Analysis (Organization B) 68

Table 33: Average Amount of Effort to Find and Fix Defects without Static Analysis
(Organization B) 69

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8
[Distribution Statement A] Approved for public release and unlimited distribution

Table 34: Descriptive Statistics, Phase Yields (Organization C) 75

Table 35: Distribution of Static Analysis (Code and Binary) Defect Fix Times 77

Table 36: Average Parameters, using Static Analysis (Organization C) 84

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9
[Distribution Statement A] Approved for public release and unlimited distribution

Acknowledgments

The authors thank David Tuma and Tuma Solutions for donating the Team Process Data Ware-
house and data import software for use our research involving TSP data. The Data Warehouse
provides the technical infrastructure for the Software Engineering Measured Performance Reposi-
tory (SEMPR). We also gratefully acknowledge the contributions of project data from the TSP
user community and the developer of our data report queries.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10
[Distribution Statement A] Approved for public release and unlimited distribution

Abstract

In an effort to determine how to make secure software development more cost effective, the SEI
conducted a research study to empirically measure the effects that security tools—primarily auto-
mated static analysis tools—had on costs (measured by developer effort and schedule) and bene-
fits (measured by defect and vulnerability reduction). The data used for this research came from
35 projects in three organizations that used both the Team Software Process and at least one auto-
mated static analysis (ASA) tool on source code or source code and binary. In every case quality
levels improved when the tools were used, though modestly. In two organizations, use of the tools
reduced total development effort. Effort increased in the third organization, but defect removal
costs were reduced compared to the costs of fixes in system test. This study indicates that organi-
zations should employ ASA tools to improve quality and reduce effort. There is some evidence,
however, that using the tools could “crowd out” other defect removal activities, reducing the po-
tential benefit. To avoid overreliance, the tools should be employed after other activities where
practicable. When system test cycles require expensive equipment, ASA tools should precede test;
otherwise, there are advantages to applying them after system test.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11
[Distribution Statement A] Approved for public release and unlimited distribution

1 Introduction

This report describes the results of a research project called Composing Effective Secure Software
Assurance Workflows (CESAW). The primary aim of the research was to investigate the impact
of cybersecurity techniques and tools on software cost, schedule, and quality performance when
they are applied throughout the software development lifecycle. The SEI collaborated with gov-
ernment and industry organizations that provided detailed performance data about their software
projects for analysis and interpretation.

Section 1 provides the motivation and context for the CESAW research. Section 2 describes the
research methodology. Section 3 presents the results of the research, and Section 4 explores these
results and provides interpretation. Section 5 describes how the results can be used by software
organizations and proposes additional research to further an understanding of this important topic.

1.1 An Economic Challenge for Cybersecurity

The economic challenges associated with fielding highly secure and cyber-resilient systems are
well known [Baldwin 2011, Snyder 2015, DoD 2017]. Developing secure and cyber-resilient soft-
ware requires multiple software security assurance (SSA) interventions throughout the develop-
ment lifecycle. These interventions include manual methods (e.g., reviews and inspections) as
well as automated methods (e.g., static analysis and dynamic analysis). There are now numerous
SSA techniques and tools to choose from [Wheeler 2016]. Organizations must determine which
specific SSA techniques and tools apply and decide when in the software development lifecycle to
use them. However, despite a variety of models that are intended to address cybersecurity plan-
ning and implementation [Mead 2010, Howard 2007, Caralli 2010, Forrester 2006, Bartol 2008],
the fundamental questions regarding the costs and benefits of SSA techniques are little under-
stood. Larsen summarizes the problem by stating, “There is a general lack of relevant quantitative
data about the true costs, schedule impact, and effectiveness (in various situations) of specific
tools, specific techniques, and types of tools/techniques…This lack of quantitative data makes se-
lecting tool/technique types, and selecting specific tools, much more difficult” [Wheeler 2016]. In
the absence of guidance in the form of data or models, the selection and application of SSA tech-
niques and tools is guesswork at best.

1.2 Modeling and Predicting Software Vulnerabilities

A number of researchers have reported results that are consistent with the thesis that a large por-
tion of software security vulnerabilities result from common development errors. Heffley and
Meunier reported that 64% of the vulnerabilities in the National Vulnerability Database (NVD)
result from programming errors [Heffley 2004]. Martin summarized empirical findings from the
Common Weakness Enumeration (CWE) that link vulnerabilities to common development issues
[Martin 2014]. Shin and Williams reported empirical findings that 21.1% of the files in a web-
based browser contained faults, and 13% of the faults were classified as vulnerability faults [Shin
2011]. Hence, the number of software-based vulnerabilities in an application can be correlated
with the number of software defects in that application. That is, we make the assumption that if

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12
[Distribution Statement A] Approved for public release and unlimited distribution

software defects are removed based on the application of an SSA intervention, then we can as-
sume that cybersecurity-based defects are also being removed from the software application.

As part of this study, modeling techniques were used to evaluate the impact of defect-removal ac-
tivities on the reduction of software defects. Nichols developed a cost of quality model that is
used to inform software development planning decisions [Nichols 2012]. Specifically, the model
predicts the amount of effort that must be applied on defect removal activities to achieve a spe-
cific level of quality. The model is parameterized using software size estimates and historical per-
formance data. The model calculates expectation values for effort and defect densities. During the
planning phase, a software team can examine quality, cost, and schedule goals by adjusting their
plan and evaluating the consequences using the model.

Building on the existing cost of quality model, the SEI team engaged and collaborated with organ-
izations that have integrated SSA tools into their software development lifecycle. The objective
was to adapt the model by including actual parametric data resulting from the inclusion of SSA
techniques and tools in the projects’ development lifecycles and then assess the impact of the in-
terventions on cost, schedule, and quality.

1.3 Software Development Approaches

For this study, the SEI used data from 35 projects from three organizations that develop software
in avionics, design automation, and business intelligence. All of the projects developed software
using the Team Software Process (TSP) approach. The TSP approach to software development
was developed at the Software Engineering Institute (SEI), a federally funded research and devel-
opment center at Carnegie Mellon University [Humphrey 1999].

1.4 Static Analysis Tools

As noted in Table 1, the participating organizations used different static analysis tools, and they
also chose to use them during different phases of the lifecycle.

Table 1: Static Analysis Tools and the Process Phases Where They Were Used

Organization # Projects Domain Static Analysis Tool Phase Where Tool Used

A 5 Avionics Tool A Static Code Personal Review

B 16 Business Intelligence Tool B_1 Static Code
Tool B_2 Static Code and Binary

Compile, Code Inspection,
Personal Review

C 14 Design Automation Tool_C Static Code and Binary Acceptance Test

Following is a brief description of the static analysis tools that were used on the projects in this
study.

Static Analysis Tool A

Static Analysis Tool A is a static branded code analysis tool used to identify security, safety, and
reliability issues in C, C++, Java, and C# code.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13
[Distribution Statement A] Approved for public release and unlimited distribution

Tool_B_1

Tool_B_1 enforces a common set of style rules for C# code using a single, consistent set of rules,
with minimal rule configuration allowed. Developers can implement their own rules if they so
choose.

Tool_B_2

Tool_B_2 is an application that analyzes managed code assemblies (code that targets the .NET
Framework common language runtime) and reports information about the assemblies, such as
possible design, localization, performance, and security improvements.

Tool_C

Tool_C is a branded software development product, consisting primarily of static code analysis
and static binary analysis. It enables engineers to find defects and security vulnerabilities in
source code written in C, C++, Java, C#, and JavaScript.

1.5 Development Lifecycle

TSP projects use the software lifecycle activities that are listed in Table 2. These activities are con-
sidered the primary logical phases through which a software component or a change to a feature
must pass. Please note that this does not imply a sequential approach without iteration. Rather, it
characterizes the activities that should be performed on the product for each iterative cycle. Any
phase can include defect injection or removal. However, each phase is characterized as being one
where defects are primarily injected or removed. The Creation phase type indicates a phase where
something is developed and defects are typically injected. The Appraisal phase type is one in which
developers or technical peers examine the product and discover and remove defects. The phase type
Failure is a phase where the product is tested and defect symptoms are identified. Developers must
then isolate the defect causing the symptom and fix it. Defect removal through appraisal or failure
typically incurs different costs. Table 2 indicates the phase type for typical TSP phases.

Table 2: Typical Phases of a TSP Project

TSP Phases Description Phase Type

DLD Detailed-level design Creation

DLDR Personal review of the detailed design Appraisal

TD Unit test case development Creation

DLDI Peer inspection of the detailed design Appraisal

Code Writing the source code Creation

CR Personal review of the source code Appraisal

CI Peer inspection of the source code Appraisal

UT Developer unit test execution Failure

IT Integration test Failure

ST System test Failure

UAT User acceptance test Failure

PL Product life Failure

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14
[Distribution Statement A] Approved for public release and unlimited distribution

The TSP approach has many characteristics in common with Agile projects. While there are a num-
ber of distinctions that set TSP apart from Agile, the most significant difference is the focus on qual-
ity and the inclusion of a measurement framework that makes it possible for software engineers to
improve their performance. The TSP approach is defined in a series of process scripts that describe
all aspects of project planning and product development. Within the scripts, operational definitions
specify how measures are defined, estimated, collected, reported, and analyzed. The data that is
used in this study is a compilation of data that was recorded in real time by software engineers as
they conducted their work.

Table 3 lists the measures that are collected by teams using the TSP approach [Humphrey 2010].
In addition to the base measures, additional measures derived from them can provide insight into
team performance in terms of cost, schedule, and quality.

Measures are collected in real time throughout the project and analyzed on a daily basis to guide and
improve performance. This is accomplished using an automated tool called the Process Dashboard
[SPDI 2017]. Each member of a TSP team enters their personal performance data into the Process
Dashboard. The entries are compiled and combined automatically into a Team Dashboard that pro-
vides a daily accounting of overall team performance throughout the development lifecycle.

Table 3: Product Size Measures Collected Using the TSP Approach

Size Data Quality Data Schedule Data

Added product size Defect ID Task time and phase; product/ele-
ment involved

Added and modified product size Defect type Task commitment date and task
completion date

Base product size Phase where defect was discov-
ered

Modified product size Phase where defect was removed

New reuse product size Defect fix time

Modified product size Brief description of defect

New reuse product size

Reusable product size

Reused product size

Total product size

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15
[Distribution Statement A] Approved for public release and unlimited distribution

2 Research Approach

Performance was evaluated using the cost of quality model that was briefly discussed in Section
1.2 (see “Plan for Success, Model the Cost of Quality” [Nichols 2012] for a detailed description
of the model). For each of the three organizations, performance was evaluated with the use of the
static analysis tool included and then compared to the hypothetical case in which the static analy-
sis tool was not used.

2.1 Approach Background

According to Runeson, research serves four distinct purposes [Runeson 2012]:

1. Exploratory—finding out what is happening, seeking new insights, and generating ideas and
hypotheses for new research.

2. Descriptive—portraying a situation or phenomenon.
3. Explanatory—seeking an explanation of a situation or a problem, mostly, but not necessarily,

in the form of a causal relationship.
4. Improving—trying to improve a certain aspect of the studied phenomenon.

Since our research includes elements of improvement for quality, security, and cost, we adopt
methods from software process improvement. Other important aspects include describing the phe-
nomena for use in benchmarking and modeling and exploring how the tools are used in practice
and describing the use quantitatively. Explanation is not a priority for this work. Our focus is on
real-world application of the tools rather than use under ideal conditions. Research on real-world
issues includes a trade-off between level of researcher control and realism. This is essentially a
tradeoff between internal validity and external validity; this tradeoff has been discussed in medi-
cal effectiveness studies (as opposed to efficacy studies) [Singal 2014, Fritz 2003, Westfall 2007].
In other words, we do not seek to measure the efficacy of these tools in finding vulnerabilities; in-
stead we want to evaluate how the use of these tools under real world conditions affects develop-
ment. Therefore, our work is designed to fill a research gap in this aspect of external validity. In
designing our approach to the research questions, we draw on experience from software process
improvement, case studies, and medical literature on effectiveness studies.

2.1.1 Software Process Improvement

Software process improvement (SPI) is a systematic approach to increase the efficiency and effec-
tiveness of software development. Because our research objective is at least partially aligned with
the goals of SPI, we examined approaches for evaluating proposed process improvements. A sys-
tematic review of SPI literature evaluated 148 papers and summarized the approaches used [Un-
terkalmsteiner 2012]. The following approaches were found (ordered by frequency from most
used to least):

• pre-post comparison
• statistical analysis
• pre-post comparison and survey

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16
[Distribution Statement A] Approved for public release and unlimited distribution

• cost/benefit analysis
• pre-post comparison and cost analysis
• statistical process control
• statistical analysis and survey
• software productivity analysis
• cost/benefit analysis and survey

We will briefly discuss some of these approaches, including their requirements and weaknesses.

2.1.1.1 Pre-Post Comparison

Pre-post comparison compares the value of pre-identified success indicators before and after the
SPI initiatives took place. For a pre-post comparison of success indicators, it is necessary to set up
a baseline from which the improvements can be measured. The major difficulty here is to identify
reasonable baseline values against which the improvements can be measured [Rozum 1993].

One strategy could be to use the values from a representative successful project as the benchmark.
An example that illustrates how to construct a baseline for organizational performance is provided
by Daniel Paulish and colleagues [Paulish 1993, 1994]. A challenge to this approach, however, is
the stability of the process benchmarks and wide variation [Gibson 2006].

2.1.1.2 Statistical Analysis

The statistical techniques presented in “Quantitative Evaluation of Software Process Improve-
ment” [Henry 1995] can be used to create baselines of quality and productivity measurements.
The statistical analysis includes descriptive statistics summarizing the numeric data (e.g., tables of
the mean, median, standard deviation, interquartile range, and so forth) or graphically (e.g., with
histograms, box plots, scatter plots, Pareto charts, or run charts). Inferential statistics can general-
ize representative samples to a larger population through hypothesis testing, numerical estimates,
correlation, and regression or other modeling.

2.1.1.3 Cost/Benefit Analysis

Evaluating an improvement initiative with a cost/benefit measure is important since the budget for
the program must be justified to avoid discontinuation or motivate broader rollout [Kitchenham
1996, van Solingen 2004]. Furthermore, businesses need to identify efficient investment opportu-
nities and means to increase margins [van Solingen 2004]. When assessing cost, organizations
should also consider resources beyond pure effort (which can be measured with relative ease); for
example: office space, travel, computer infrastructure [van Solingen 2004], training, coaching, ad-
ditional metrics, additional management activities, and process maintenance. Nonetheless, activ-
ity-based costing helps to relate certain activities with the actual effort spent [Ebert 1998].

Since actual cost and effort data can be collected in projects, they should be used. A useful tech-
nique to support estimation is the “what-if-not” analysis [Ebert 1998]. Project managers could be
asked to estimate how much effort was saved due to the implemented improvement in follow-up
projects. In our research, rather than use a subjective estimate, we used actual collected data to
calibrate models for process variants.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17
[Distribution Statement A] Approved for public release and unlimited distribution

2.1.1.4 Statistical Process Control

Statistical process control (SPC), often associated with time series analysis, can provide infor-
mation about when an improvement should be carried out and help determine the efficacy of the
process changes [Caivano 2005, Hare 1995]. SPC is often used to identify trends or outliers
[Paulk 2009]. SPC can also be used to identify and evaluate stability using shape metrics, which
are analyzed by visual inspection of data that is summarized by descriptive statistics (e.g., histo-
grams and trend diagrams) [Schneidewind 1999].

2.1.1.5 Historic SPI Study Weaknesses

A number of common deficiencies were found in the literature [Unterkalmsteiner 2012]:

• Incomplete context descriptions were used that did not contain a complete description of the
process change or the environment. The importance of context in software engineering is em-
phasized by other authors [Petersen 2009; Dybå 2012, 2013].

• Confounding factors were rarely discussed; frequently, multiple changes were introduced at
once, presenting challenges for evaluation validity.

• Imprecise measurement definitions resulted in many problems, including broad ranges for in-
terpretation [Kaner 2004].

• Scope was lacking beyond pilot projects. The effects on business, wider deployment, and
fielded products were rarely discussed.

2.1.1.6 Hybrid Methods Using Participant Surveys

Our data collection was previously approved for use in research, but any surveys we conducted
would require further approval from our institutional review board (IRB) for research involving
human subjects. In light of time and project constraints, we decided to avoid the risk by foregoing
the use of participant surveys.

2.1.2 Case Studies, Quasi-experiments, and Action Research

Research approaches in the literature include case studies, quasi-experiments, action research,
project monitoring, and field study. Although the characteristics of these approaches have over-
lapping and sometimes shifting definitions, the guidelines for conducting case studies [Runeson
2008], can be applied to all of these approaches.

We had intended to apply the action research by helping the subjects implement both tools and
measurement. We were unsuccessful in obtaining sufficient cooperation to introduce changes,
however, so we reverted to observation of their currently implemented processes.

2.1.3 Effectiveness vs. Efficacy

Despite laboratory demonstrations of effectiveness, there remain a number of threats to the real-
world effectiveness of tools and techniques. Scientifically valid tests can impose selection criteria
on the subjects of the study, exert considerable control over the execution, and take place using
highly skilled specialists who may not be generally available. Following the example of the medi-
cal industry, we distinguished between efficacy (explanatory) and effectiveness (pragmatic) trials
[Fritz 2003]. The goal of efficacy trials is to determine how a technique, tool, or treatment works

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18
[Distribution Statement A] Approved for public release and unlimited distribution

under ideal circumstances, which requires minimization of confounding factors. In practice, pro-
tocol deviations, other techniques, compliance, adverse events, and so forth can affect efficacy.
Effectiveness studies evaluate the usefulness under real world conditions (i.e., in less than ideal
situations or when tools are inexpertly applied).

Criteria that distinguish efficacy from effectiveness studies include the following [Gartlehner
2006]:

1. The setting is more or less representative of the state of the practice. The setting should not
include extraordinary resources, equipment, training, or specialized skills.

2. The subjects should be representative of the general population with few restrictions. Selec-
tion and randomization enhance internal validity at the expense of generalizability.

3. The measure of success is the final outcome unless empirical evidence verifies that the ef-
fects on intermediate points fully captures the net effect.

4. Durations should mimic real application under conventional settings. Those implementing
the techniques should exercise their judgment rather than be restricted by research protocols.
Moreover, those judgments should reflect a primary concern for achieving project outcomes
rather than satisfying the needs of explanatory research.

5. There should be an assessment of adverse events to balance benefits and risks. In effective-
ness studies, for example, discontinuation rates and compliance are a feature, not a bug.

6. Adequate sample size is needed to assess a minimally important difference.

2.2 Study Design

In preparing this study we faced several constraints:

1. Without prior fundamental research approval, we were limited in what we could share with
potential collaborators.

2. Without prior approval from the IRB for research involving human subjects, we were reluc-
tant to include participant surveys as part of our design. This increased our reliance upon the
software development process data.

3. Funding was limited to a single fiscal year, with the potential for modest extensions of un-
used funds.

4. We needed data that could answer our research question using our proposed technique, thus
limiting potential collaborators.

5. Collaborators had to be willing to instrument their project to collect the required data.

2.2.1 Participant Selection

To address the fundamental research concerns we adopted two strategies. The first involved work-
ing with DoD development teams directly. The second was to identify suitable projects with data
in the SEMPR repository.

The DoD collaborators were chosen by convenience: Because we had previously worked with
these groups, we had existing relationships to leverage. For the other group we searched the
SEMPR task logs, time logs, and defect logs for keywords associated with static analysis tools.
We also sent email to TSP partners asking for projects that used these tools.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19
[Distribution Statement A] Approved for public release and unlimited distribution

In SEMPR, we selected projects that met the following criteria:
• Multiple projects from the same organization were available.
• Tool use could be reliably determined from the log data.
• Project data without the tools existed.
• Data was complete (i.e., it included size, time logs, and defect logs).

One DoD project provided us with the data requested. The others offered test data, but declined to
help with instrumenting the tool use. Because of the data gaps, we were only able to analyze the
projects that sent the TSP data.

2.2.2 Data Collection

The primary data collection consisted of developer entries into the Process Dashboard tool. The
DoD project data was sent to us in September 2017 following the end of the most recent develop-
ment cycle. The data included prior cycles.

The other project data was submitted to the SEI through the Partner Network, meeting the terms
of TSP licensing. The data included the Process Dashboard data files, project launch records, pro-
ject meeting notes, and post-mortem reports.

2.2.3 Data Storage

Project data was stored on a secure SEI file system. The Dashboard files were imported into the
SEMPR Repository [Shirai 2014] using the Data Warehouse [SPDI 2014]. After extraction, data
was collected into fact sheets for summary [Shirai 2015].

2.2.4 Data Analysis

The data analysis included the following steps:

1. data extraction
2. data cleaning
3. statistical analysis
4. establishing baselines
5. model building

2.2.4.1 Data Extraction

Our first step was to identify projects of interest. For the DoD projects we traced the Process
Dashboards to project IDs in the SEMPR repository. For the others, we first identified projects of
interest based on the key words and found two organizations with sufficient data. We then identi-
fied specific project IDs associated with the static analysis tools. We verified our selections by

• reviewing the Project Dashboard data directly
• examining other project artifacts to confirm our assumptions
• holding discussions in person and by email with project participants to confirm tool usage and

context

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20
[Distribution Statement A] Approved for public release and unlimited distribution

We then proceeded to data extraction. The Data Warehouse is built on a Microsoft SQL server.
We developed scripts to query the database to extract the data needed to compute the parameters.

2.2.4.2 Data Cleaning

Although TSP data is of generally high quality, we needed to perform several steps to clean the
data. First, we adjusted the development phases to a common baseline. Individual projects some-
times adapt the frameworks or use phases out of true order. We verified phase order with time log
entries and discussions with project members. For one organization we combined phases into a
single requirements phase and adjusted for some process name changes. For another organization
we noted that “acceptance test” preceded system test and was used as part of the build.

Second, our measure of size includes “added” and “modified.” In practice, this number should be
derived from base, total, added, and deleted. Some projects, however, entered this value directly.

The output fact sheets are provided as a research artifact available online in the SEI Library to
those who would like to repeat this research or apply the data to other research questions. We also
provide fact sheets that include the work breakdown structure coding, providing data at the com-
ponent rather than the aggregated project level.

2.2.4.3 Statistical Analysis

To prepare for modeling, we extracted the direct data (size, phased effort, defects injected, and de-
fects removed) and aggregated it to the project level. From there we derived phase injection rates,
phase removal rates, phase defect fix times, phase performance rates, phase defect removal yields,
phase defect densities, phase defect removal densities, and phase development rates with the re-
work time (defect find and fix effort removed). We collected parametric and non-parametric pa-
rameters and compared them to identify baseline projects.

2.2.4.4 Modeling

Using the project parameters for the organization averages, we applied our TSP quality model
(similar to COQUALMO) [Nichols 2012, Madachy 2008]. The most significant adjustment here
was to restrict the range of allowable ranges in system test.

Because some parameter uncertainties were large, we compared them with alternative scenarios in
which we set the static removal phase effort to zero and the yield to zero. We then compared the
resulting efforts and escape defect densities. Note that removing the tool allows more defects to
escape into later phases. The model assumes a fixed yield in these phases so that overall defect
escapes increase, but some of those defects are captured and removed in the later test phases. De-
pending on fix times and capture levels, this could potentially increase overall time to delivery.
The result of this is an estimate of the net cost of applying the tool and the benefit as measured by
defect density after system test.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21
[Distribution Statement A] Approved for public release and unlimited distribution

3 Data Collection and Processing

Source data for this study was provided by 35 projects from three organizations that develop soft-
ware in avionics, design automation, and business intelligence (see Table 4).

Table 4: Participating Organizations and Projects

Organization # Projects Domain Total LoC Total Defects

A 5 Avionics 641305 22160

B 16 Business Intelligence 118933 10676

C 14 Design Automation 178532 40542

Detailed data for each project are provided in the CESAW_Project_data.csv fact sheet (available
online in the SEI Library), which includes information for each project (total added and modified
lines of code) and each development cycle process (effort, defects found, defects removed, defect
find and fix time). Project summaries are included in Table 5.

Table 5: Project Summary Data

Org Project
Key

Team
Size Start Date End Date A&M [LoC] Effort [Hours] Duration [Days]

A 615 48 8-Sep 14-Oct 796887 35091.5 2215

A 613 35 13-May 16-Mar 117279 7130.8 490

A 614 30 14-Jun 15-Jul 246118 7746.8 391

A 612 36 15-Jul 16-Nov 89127 10927.9 490

A 617 41 16-Apr 17-Jul 84316 10851.6 457

B 180 16 11-Jun 12-Feb 20318 2626.3 246

B 49 11 12-Jan 12-Dec 22411 1929.0 327

B 181 8 12-Jan 13-Jul 37123 3950.7 552

B 47 13 12-Jul 12-Aug 484 537.4 47

B 48 13 12-Jul 12-Aug 1865 707.9 47

B 606 12 12-Jul 12-Oct 4020 1278.4 88

B 50 15 12-Aug 14-Dec 6089 2248.8 844

B 56 4 12-Sep 13-Feb 0 749.4 148

B 182 7 12-Sep 12-Nov 4494 924.5 53

B 183 9 12-Nov 13-Jul 5148 1234.0 264

B 184 7 12-Nov 13-Aug 38302 3165.5 272

B 70 10 13-Feb 13-May 442 788.5 92

B 71 6 13-Feb 13-May 0 516.8 98

B 72 5 13-Feb 13-May 0 621.5 85

B 83 11 13-Apr 13-Aug 0 1334.2 112

B 84 4 13-May 13-Aug 0 556.6 100

C 23 3 11-Sep 11-Oct 23 21.2 21

C 456 22 12-Feb 13-Jul 2554 3207.8 512

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22
[Distribution Statement A] Approved for public release and unlimited distribution

Org Project
Key

Team
Size Start Date End Date A&M [LoC] Effort [Hours] Duration [Days]

C 455 19 12-Dec 13-Dec 737 572.2 374

C 458 20 13-Jul 13-Nov 0 2428.0 138

C 415 5 13-Sep 14-Mar 4042 815.8 178

C 459 20 13-Nov 14-Apr 83 1296.8 129

C 416 8 14-Jan 14-Apr 9678 1282.8 91

C 419 7 14-Jul 14-Oct 13333 1532.2 114

C 420 8 14-Nov 15-Jan 9741 1282.5 73

C 171 19 12-Jul 12-Dec 1817 2294.6 149

C 79 9 13-Jan 13-May 8998 1941.9 140

C 449 11 14-Jan 14-Nov 6500 2253.7 316

C 418 8 14-Apr 14-Jul 7806 1141.9 72

C 460 25 14-Apr 14-Oct 66499 3294.8 180

C 461 25 14-Sep 15-Jan 46694 3392.4 137

3.1 Process Activity Mapping

A traditional TSP development approach was briefly presented in Table 2. However, projects typi-
cally customize the process to fit their particular circumstances (e.g., whether systems engineering
phases are included, inclusion of requirements definition phases or documentation phases, etc.). Alt-
hough there is process customization, a key principle is followed: a quality assurance phase always
follows a process phase in which product is created. That is, each product creation process phase is
followed by an appraisal process.

The three organizations that are part of this study chose to customize the TSP development ap-
proach in various ways. Projects within each organization used their organization’s customized
TSP lifecycle definition. For the purposes of this study, it was necessary to use a common devel-
opment lifecycle framework so comparisons could be made among the projects from different or-
ganizations. Therefore, the customized framework used by each project in this study was mapped
to a standard framework that is presented in Table 6. The Process Type column lists the lifecycle
type for the phase name in the first column. The Phase Type column distinguishes the purpose of
the phase by one of four attributes: overhead, construction, appraisal, or failure.

Table 6: Standard Process Phases Mapped to Process Type and Phase Type

Standard Lifecycle Activity Name Process Type Activity Type

Launch and Strategy Strategy Overhead

Planning Planning Overhead

System Engineering Requirements Identification System Requirements Construction

System Engineering Requirements Identification Inspection System Requirements Appraisal

System Engineering Requirements Analysis System Requirements Appraisal

Launch and Strategy Strategy Overhead

System Engineering Requirements Review System Requirements Appraisal

System Engineering Requirements Inspection System Requirements Appraisal

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23
[Distribution Statement A] Approved for public release and unlimited distribution

Standard Lifecycle Activity Name Process Type Activity Type

System Engineering Test Plan System Requirements Construction

System Design System Requirements Construction

System Design Review System Requirements Appraisal

System Design Inspection System Requirements Appraisal

Software Requirements analysis Software Requirements Construction

Software System Test Plan Software Requirements Construction

Software Requirements Review Software Requirements Appraisal

Software Requirements Inspection Software Requirements Appraisal

High-Level Design High Level Design Construction

Integration Test Plan High Level Design Construction

HLD Review High Level Design Appraisal

HLD Inspection High Level Design Appraisal

Detailed Design Detailed Level Design Construction

Unit Test Development Detailed Level Design Construction

Detailed Design Review Detailed Level Design Appraisal

Detailed Design Inspection Detailed Level Design Appraisal

Code Coding Construction

Code Review Coding Appraisal

Compile Coding Failure

Code Inspection Coding Appraisal

Unit Test Module Test Failure

Independent Test Plan Construction

Build and Integration Integration Test Failure

Functional Test

Software System Test Software System Test Failure

Documentation Construction

Acceptance Test Failure

Postmortem

Transition and Deployment Construction

After Development

Product Life Failure

Other Test Plan

Other Test Plan Review and Inspect

Other Test Development

Other Test Case Review and Inspect

Other Testing

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24
[Distribution Statement A] Approved for public release and unlimited distribution

Table 7 illustrates how the lifecycle phases of each organization are mapped to the standard
lifecycle phases.

Table 7: Project Phases Mapped to Standard Lifecycle Phases

Standard Lifecycle Phase Name Organization A Organization B Organization C

Management and Miscellaneous Management and Mis-
cellaneous

Management and Mis-
cellaneous

Management and Mis-
cellaneous

Launch and Strategy Launch and Strategy Launch Launch and Strategy

Planning Planning Planning Planning

System Engineering Requirements
Identification Problem Identification

System Engineering Requirements
Identification - Inspection Problem Identification

Inspection

System Engineering Requirements
Analysis In Work

System Engineering Requirements
Review Work Inspection -

Author

System Engineering Requirements
Inspection Work Inspection -

Others

System Engineering Test Plan Integration Test

System Design

System Design Review

System Design Inspection

Software Requirements analysis Requirements Requirements Requirements

Software System Test Plan System Test Plan System Test Plan

Software Requirements Review Requirements Review Requirements Review

Software Requirements Inspection Requirements Inspec-
tion

Requirements Inspec-
tion

Requirements Inspec-
tion

High-Level Design High-Level Design High-Level Design High-Level Design

Integration Test Plan Integration Test Plan

HLD Review HLD Review HLD Review

HLD Inspection HLD Inspection HLD Inspection HLD Inspection

Detailed Design Detailed Design Detailed Design Detailed Design

Unit Test Development Test Development Detailed Design Re-
view

Detailed Design Review Detailed Design Re-
view Test Development Detailed Design Re-

view

Detailed Design Inspection Detailed Design In-
spection

Detailed Design
Inspection

Detailed Design In-
spection

 Unit Test Development

Code Code Code Code

Code Review Code Review Code Review Code Review

Compile Compile Compile Compile

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25
[Distribution Statement A] Approved for public release and unlimited distribution

Standard Lifecycle Phase Name Organization A Organization B Organization C

Code Inspection Code Inspection Code Inspection Code Inspection

Unit Test Unit Test Unit Test Unit Test

Independent Test Plan

Build and Integration Build and Integration
Test

Build and Integration
Test

Build and Integration
Test

Functional Test

Software System Test System Test System Test System Test

Documentation Documentation Documentation

Acceptance Test Acceptance Test Acceptance Test

Postmortem Postmortem Postmortem

Transition and Deployment Product Life

After Development

Product Life Product Life Product Life Documentation

Other Test Plan Documentation Review

Other Test Plan Review and In-
spect Q-Test Planning

Other Test Development Documentation Inspec-
tion

Other Test Case Review and In-
spect Q-Manual Test Case

Design

Other Testing Q-Manual Test Case
Development

 Q-Manual Test Case
Review

 Q-Manual Test Case
Inspection

 Q-Auto Test Case De-
sign

 Q-Auto Test Case De-
velopment

 Q-Auto Test Case Re-
view

 Q-Auto Test Case In-
spection

 Do Not Use - Integra-
tion Test Plan

 Do Not Use - System
Test Plan

3.2 Data Collection

Organizations recorded their own data using the Process Dashboard [Shirai 2014] while using the
Team Software Process to plan and track their software projects. The data collection consists of

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26
[Distribution Statement A] Approved for public release and unlimited distribution

logging all direct effort on project tasks, recording defects detected and repaired, and recording
product size as measured in lines of code.

Project data from each organization included the variables described in Table 8 through Table 11.
The project data from each organization were combined and averages were used for the perfor-
mance comparisons.

3.3 Data Definitions

This section describes the data variables that were evaluated for the performance analysis.

Table 8: Variables Identifying the Source Data

Variable Description

project_id Unique numerical identifier of the project

organization_key Unique numerical identifier of the project’s organization

team_key Unique numerical identifier of the project team

wbs_element_key Numerical assignment that identifies the work breakdown structure element to which
each data record applies

Table 9: Variables Used For Recording Product Size Information

Measure Description

size_metric_short_name Abbreviation for the size measure that is being used for product size. Examples include
lines of code (LOC), pages, and use cases.

size_added_and_modified Number of new units of size that are added to a new or existing product

size_added Number of new units of size that have been added to the product

base_size Number of units of size already existing in a product before it is modified by the devel-
oper to arrive at the new product

size_deleted Number of units of size that are deleted from an existing product during modification by
the developer to arrive at the new product

size_modified Number of units of size of existing product that are modified to arrive at the new product

size_reused Number of units of size that are copied from a library or repository “as-is” and included
in the product under development

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27
[Distribution Statement A] Approved for public release and unlimited distribution

Table 10: Variables Associated with Software Product Quality

Measure Description

Cumulative Defect Injections Sum of defects injected in the product during the current and all previous product devel-
opment phases

Cumulative Removals Sum of defects removed in a product during the current and all previous product devel-
opment phases

Defect Density Number of defects detected in the product during a phase divided by the size of the
product

defect injection rate Number of defects injected into the product per hour

Defect_fix_time Total number of task time minutes required to fix all discovered defects within a process
phase

Defects Injected Total number of defects injected into a product during a process phase

Defects Removed Total number of defects removed during a process phase

Development Effort Total number of task time minutes in a process phase

phase effort per_defect Number of task time hours associated with finding and fixing errors for each defect

Phase_Escapes Within a given process phase, the cumulative removals minus the cumulative defect in-
jections

Phase_no.Defect_cost Total number of task time minutes within a process phase applied to product develop-
ment, minus the task time minutes associated with finding and fixing defects within that
phase (Phase_no.Defect_cost =Total.Phase.Effort - sum(defect.Find&Fix_Effort)

Phase_Rate_no.defect_ef-
fort/LOC

Total number of task time hours per LOC associated with product development minus
the task time hours per LOC associated with finding/fixing product defects

Size Size of the product measured in lines of code

Yield Percentage of product defects that are removed during a process phase

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28
[Distribution Statement A] Approved for public release and unlimited distribution

Table 11: Variables Associated with Development Effort

Measure Description

0000_BeforeDev_act_time_min Task time applied to project before software development begins

1000_Misc_act_time_min Miscellaneous task time applied to project activities. Some TSP teams used
this category to track task time that is not directly applied to development ac-
tivities.

1100_Strat_act_time_min Task time applied to developing the strategy for the project

1150_Planning_act_time_min Task time applied to planning the project

1200_SE_REQ_act_time_min Task time applied to systems engineering requirements definition/analysis

1220_SE_REQR_act_time_min Task time applied to reviewing and fixing defects in the requirements

4030_STest_act_time_min Task time applied to developing the system test plan

4040_Doc_act_time_min Task time applied to developing documentation (e.g., installation manuals,
user guides, etc.)

4050_ATest_act_time_min Task time applied to developing the acceptance test plan for the product

5000_PM_act_time_min Task time applied to post mortem (lessons learned) activities throughout the
project

6100_PLife_act_time_min Task time applied during the product life phase (following product release)

6200_AfterDev_act_time_min Task time applied after product development but before product release

0000_BeforeDev_fix_time Task time applied to finding and fixing defects in an existing product before it
is enhanced

1000_Misc_fix_time Placeholder for fix time data that did not map to other process phases

1100_Strat_fix_time Task time applied to making corrections or changes to the current strategy for
the project

1150_Planning_fix_time Task time applied to making changes to the software development plan

1200_SE_REQ_fix_time Task time applied to making corrections or additions to the systems engineer-
ing requirements during the requirements process phase

1220_SE_REQR_fix_time Task time applied to personal review of the requirements, and finding and fix-
ing any errors during the systems engineering requirement process phase

1240_SE_REQI_fix_time Task time applied to multi-person review of the requirements, and finding and
fixing any errors during the systems engineering requirements inspection
phase

1250_SE_REQ_Val_fix_time Task time applied to validation of the requirements and finding and fixing any
errors during the systems engineering requirements validation phase

3000_Req_fix_time Task time applied to finding and fixing any software defects during the require-
ments phase of the project

3020_ReqR_fix_time Task time applied to finding and fixing software defects during the require-
ments review phase of the project

3040_ReqI_fix_time Task time applied to finding and fixing software defects during the require-
ments inspection phase of the project

3100_HLD_fix_time Task time applied to finding high-level design defects during the high-level de-
sign development phase of the project

3110_ITP_fix_time Task time applied to finding and fixing defects during the integration test plan-
ning process phase

3120_HLDR_fix_time Task time applied to finding and fixing design defects during the high-level de-
sign review process phase

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29
[Distribution Statement A] Approved for public release and unlimited distribution

Measure Description

3140_HLDI_fix_time Task time applied to finding and fixing detailed design defects during the high-
level design inspection phase

3200_DLD_fix_time Task time applied to finding and fixing detailed design defects during the de-
sign phase

3210_TD_fix_time Task time applied to finding and fixing defects during the test development
phase

3220_DLDR_fix_time Task time applied to finding and fixing defects during the detailed design per-
sonal review phase

3220_DLDI_fix_time Task time applied to finding and fixing defects during the detailed design in-
spection phase

3300_Code_fix_time Task time applied to finding and fixing defects during the coding phase

3320_CodeR_fix_time Task time applied to finding and fixing defects during the personal code review
phase

3330_Compile_fix_time Task time applied to finding and fixing defects during the compile phase

3340_CodeI_fix_time Task time applied to finding and fixing defects during the code inspection
phase

3350_UTest_fix_time Task time applied to finding and fixing defects during the unit test phase

3400_TestCaseDevel_fix_time Task time applied to finding and fixing defects during the test case develop-
ment phase

4010_BITest_fix_time Task time applied to finding and fixing defects during the build and integration
testing phase

4030_STest_fix_time Task time applied to finding and fixing defects during the system test phase

4040_Doc_fix_time Task time applied to finding and fixing defects during the documentation phase

4050_ATest_fix_time Task time applied to finding and fixing defects during the acceptance test
phase of the project

5000_PM_fix_time Task time applied to finding and fixing defects during the post mortem phase
of the project

6100_PLife_fix_time Task time applied to finding and fixing defects during the product life phase of
the project

6200_AfterDev_fix_time Task time applied to finding and fixing defects after the product has been de-
veloped but before the product has been released

0000_BeforeDev_def_rem Task time applied to finding and fixing defects before the project begins

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30
[Distribution Statement A] Approved for public release and unlimited distribution

4 Results

This section provides performance results for organizations A, B, and C. It includes our findings
about effectiveness and cost for each organization and answers these primary research questions:

1. How do static analysis tools affect defect escapes?
2. Does employing the static analysis tools increase or reduce total development effort?

We operationalize the first question in terms of defect finds and escapes. The second question is
addressed by observing phase effort, phase defect removals, and effort required to mitigate the de-
fects found. We use the model to estimate the secondary effects downstream of the actual static
analysis.

To address these primary research questions, we must also answer these secondary questions:

1. How are the static analysis tools included in the overall development process?
2. What are the phase defect removal yields?
3. What are the find and fix times for the removed defects in each phase?
4. What are the completion rates for each phase with and without rework?

These secondary questions help us to populate the local model. We present distributions with par-
ametric and non-parametric statistics for these values using the project as the unit of analysis.

4.1 Organization A

Organization A projects employed the static analysis tool, Tool A, as part of their personal review
phase. The count of removed defects by origin phase is shown in Figure 1; the removal phase is
shown in Figure 2. The injection removal count matrix is shown in Table 12. The fix time matrix
is shown in Table 13, and the average fix time per defect is shown in Table 14. Summary statistics
are included in Table 15.

These projects were executed in sequence by essentially the same team over a period of several
years. To understand the project development parameters and consistency over time, we examined
the phased effort and defects in each of the projects and as a group. We began by comparing the
distribution of all defect find and fix times by project in Figure 68, Figure 69, Figure 70, and Fig-
ure 72. A visual inspection suggests that the defect fix time distribution was similar across the
projects.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 1: Defect Origin Phase (Organization A)

Figure 2: Defect Removal Phase (Organization A)

0

2000

4000

6000

8000

10000

12000

14000

16000
Org A, Defect Injection

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
Org A, Defect Removal

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32
[Distribution Statement A] Approved for public release and unlimited distribution

Table 12: Defect Count by Origin and Removal (Organization A)

 HLD HLD
Review

HLD
Inspect

Design Design
Review

Design
Inspect

Test
Devel

Code Code
Review

Compile Code
Inspect

Test IT Sys Test

HLD 30 13 55 25 3 27 1 12 3 12 6

HLD Review 2

HLD Inspect 1

Design 30 1118 3153 15 229 50 8 262 524

Design Review 26 21 1

Design Inspect 79 3 2 3

Test Devel 34 4 2

Code 233 141 2135 746 7722 1179

Code Review 25 3 14 6

Compile 12 2 2

Code Inspect 199 2

Test 58 1

IT 28

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33
[Distribution Statement A] Approved for public release and unlimited distribution

Table 13: Sum of Defect Fix Time by Origin and Removal (Organization A)

 HLD HLD
Review

HLD
Inspect

Design Design
Review

Design
Inspect

Test
Devel

Code Code
Review

Compile Code
Inspect

Test IT Sys
Test

HLD 656.4 57.5 412.7 639.5 46.8 110.4 35.3 452.1 283.9 557.4 241.1

HLD Review 17.0

HLD Inspect 2.7

Design 592.3 6867.9 16797.2 413.2 3524.6 725.8 110.5 4680.0 19493.4

Design Review 115.0 185.1 0.4

Design Inspect 1242.9 110.4 6.6 127.1

Test Devel 553.6 8.5 23.6

Code 1727.2 2001.7 10567.4 2535.1 52715.6 25218.5

Code Review 166.5 2.6 73.5 63.5

Compile 44.9 123.6 96.9

Code Inspect 2013.5 54.0

Test 1712.6 236.5

IT 1097

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34
[Distribution Statement A] Approved for public release and unlimited distribution

Table 14: Average Defect Fix Effort by Origin and Removal (Organization A)

 HLD HLD
Review

HLD
Inspect

Design Design
Review

Design
Inspect

Test
Devel

Code Code
Review

Compile Code
Inspect

Test IT Sys Test

HLD 21.9 4.4 7.5 25.6 15.6 4.1 35.3 37.7 94.6 46.4 40.2

HLD Review 8.5

HLD Inspect 2.7

Design 19.7 6.1 5.3 27.5 15.4 14.5 13.8 17.9 37.2

Design Review 4.4 8.8 0.4

Design Inspect 15.7 36.8 3.3 42.4

Test Devel 16.3 2.1 11.8

Code 7.4 14.2 4.9 3.4 6.8 21.4

Code Review 6.7 0.9 5.2 10.6

Compile 3.7 61.8 48.5

Code Inspect 10.1 27.0

Test 29.5 236.5

IT 39.2

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35
[Distribution Statement A] Approved for public release and unlimited distribution

Table 15: Phase Defect Fix Effort Statistics (Organization A)

Removed_Phase N Mean SE Mean StDev Minimum Q1 Med Q3 Max IQR

HLD 15 67.7 16.7 64.8 1.8 18.1 39.7 120.0 195.0 101.9
HLD Review 11 5.2 2.1 6.9 0.1 0.5 3.7 5.4 20.8 4.9
HLD Inspect 51 8.5 2.0 14.5 0.0 1.4 2.8 10.1 76.0 8.7
Design 56 22.2 5.3 40.0 0.0 2.9 6.1 24.1 241.5 21.3
Design Review 814 9.0 0.8 23.3 0.0 1.0 3.0 8.0 364.5 7.0
Design Inspect 2296 9.1 0.5 22.4 0.0 1.1 3.0 7.9 367.1 6.8
Code 373 24.5 3.8 73.9 0.0 2.0 5.5 16.7 992.0 14.7
Code Review 1592 7.6 0.5 19.5 0.0 0.9 2.1 6.0 270.0 5.1
Compile 293 10.3 2.4 40.6 0.1 0.9 2.5 6.2 603.0 5.3
Code Inspect 6571 10.1 0.3 27.1 0.0 1.2 3.4 8.6 640.5 7.4
IT 127 42.3 10.0 112.3 0.0 2.5 10.4 38.5 1060.0 36.0
After Development 4 43.7 21.6 43.2 3.6 5.3 40.6 85.2 90.0 79.9

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 3: Defect Counts and Fix Time by Type (Organization A)

Figure 4: Phase Defect Fix Effort Box Plot (Organization A)

Wor
k

Te
st

Deve
l

Te
st

Sy
s T

est

Produc
t L

ife

Pla
nning

MiscIT

Int
 Te

st

Insp
ect

 -
Others

Ins
pe

ct
- A

utho
r

Iden
t In

sp
ect

Iden
t

HLD
 Rev

iew

HLD
 In

sp
ectHLD

Doc
um

en
tat

ion

Des
ign R

ev
iew

Desi
gn

 In
sp

ect

Desi
gn

Compile

Co
de R

ev
iew

Code
 In

sp
ectCode

Afte
r D

ev
elo

pmen
t

1800

1600

1400

1200

1000

800

600

400

200

0

removed_phase_name

de
fe

ct
_f

ix
_t

im
e_

m
in

ut
es

Boxplot of defect_fix_time_minutes

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37
[Distribution Statement A] Approved for public release and unlimited distribution

Table 16: Cost and Quality Performance in the Absence of Tool_A

Phase No.Defect.Phase.
Rate [Hr/LOC]

Def_Inj_Rate
[Def/Hr] Yield FixRate [Hr/

Defect]

0000_BeforeDev 0.00000 0.00

1000_Misc 0.01923 0.000 0.417

1100_Strat 0.00018 0.000

1150_Planing 0.00068 0.016 0.012

1200_SE_REQ 0.02440 0.048 0.276

1220_SE_REQR 0.00434 0.028 0.25 0.066

1240_SE_REQI 0.00321 0.027 0.051

1250_SE_REQ_val 0.00443 0.010 0.12 0.477

3000_Req 0.00000

3020_ReqR 0.00005 0.062

3040_ReqI 0.00408 0.001

3100_HLD 0.00410 0.077 0.458

3110_ITP 0.00000

3120_HLDR 0.00000 2.087 0.01 0.074

3140_HLDI 0.00122 0.001 0.04 0.124

3200_DLD 0.00691 1.234 0.351

3210_TD 0.00023 0.259 0.467

3220_DLDR 0.00174 0.039 0.16 0.105

3220_DLDI 0.00333 0.035 0.60 0.097

3300_Code 0.00945 2.174 0.318

3320_CodeR 0.00141 0.044 0.14 0.090

3330_Compile 0.00036 0.061 0.07 0.051

3340_CodeI 0.00468 0.062 0.68 0.128

3350_UTest 0.00561 0.015 0.51 0.441

3551xxxx 0.00000 0.000 0.00 0.000

3400_TestCaseDevel 0.00000

4010_BITest 0.00300 0.051 0.40 0.508

4015_xxxx 0.00000 0.000 0.00 0.000

4030_STest 0.00000 0.000 0.17 3.942

4040_Doc 0.00233 0.035 1.00 0.148

4050_ATest 0.00000 0.00

5000_PM 0.00039 0.000

6100_PLife 0.00000 23.077 0.00 0.043

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38
[Distribution Statement A] Approved for public release and unlimited distribution

To simulate the cost and quality performance of Organization A projects in the absence of static
analysis, the data was modified in the following ways:

• The personal review phase (i.e., 3320_CodeR) was removed (i.e., variable values were
set to zero).

• The documentation phase was removed from consideration (since documentation activities do
not affect software code defect values). The yield was changed from 1.00% to 0.00%.

Since a small number of defects escaped into the system test phase, the yield of 0.17% for this
phase was not modified within the cost quality model for simulating the case where a static analy-
sis tool was not used.

Table 17 presents cost and quality performance data for Organization A in the absence of Tool A
during the personal review phase.

Table 17: Cost and Quality Performance in the Absence of Tool_A (Organization A)

Phase
No.De-
fect.Phase. Rate
[Hr/LOC]

Def_Inj_Rate
[Def/Hr] Yield FixRate

[Hr/Defect]

0000_BeforeDev 0.00000 0.00

1000_Misc 0.01923 0.000 0.417

1100_Strat 0.00018 0.000

1150_Planing 0.00068 0.016 0.012

1200_SE_REQ 0.02440 0.048 0.276

1220_SE_REQR 0.00434 0.028 0.25 0.066

1240_SE_REQI 0.00321 0.027 0.051

1250_SE_REQ_val 0.00443 0.010 0.12 0.477

3000_Req 0.00000

3020_ReqR 0.00005 0.062

3040_ReqI 0.00408 0.001

3100_HLD 0.00410 0.077 0.458

3110_ITP 0.00000

3120_HLDR 0.00000 2.087 0.01 0.074

3140_HLDI 0.00122 0.001 0.04 0.124

3200_DLD 0.00691 1.234 0.351

3210_TD 0.00023 0.259 0.467

3220_DLDR 0.00174 0.039 0.16 0.105

3220_DLDI 0.00333 0.035 0.60 0.097

3300_Code 0.00945 2.174 0.318

3320_CodeR 0.00000 0.000 0.00 0.000

3330_Compile 0.00036 0.061 0.07 0.051

3340_CodeI 0.00468 0.062 0.68 0.128

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39
[Distribution Statement A] Approved for public release and unlimited distribution

Phase
No.De-
fect.Phase. Rate
[Hr/LOC]

Def_Inj_Rate
[Def/Hr] Yield FixRate

[Hr/Defect]

3350_UTest 0.00561 0.015 0.51 0.441

3551xxxx 0.00000 0.000 0.00 0.000

3400_Test-
CaseDevel

0.00000

4010_BITest 0.00300 0.051 0.40 0.508

4015_xxxx 0.00000 0.000 0.00 0.000

4030_STest 0.00000 0.000 0.17 3.942

4040_Doc 0.00233 0.035 0.00 0.148

4050_ATest 0.00000 0.00

5000_PM 0.00039 0.000

6100_PLife 0.00000 23.077 0.00 0.043

Figure 5 illustrates the impact on defect density from removing the personal review process phase
(which included Static Analysis Tool A) from the development.

Figure 5: Defect Density with and without Static Analysis Tool A (Organization A)

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 6: Cumulative Development Effort with and without Static Analysis Tool A (Organization A)

Figure 7: Cumulative Defect Flow with Static Analysis Tool A (Organization A)

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 8: Cumulative Defect Flow without Static Analysis Tool A (Organization A)

Figure 9: Defect Removal by Phase with and without Static Analysis (Organization A)

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 10: Coding Process Rates (Organization A)

Figure 11: Code Review Yield vs. Review Rate (Organization A)

4.2 Organization B

Organization B projects employed the static analysis tools Tool_B_1 and Tool_B_2. A histogram
of defect removals is shown in Figure 13. The tools were primarily used in the compile phase of
development, and then in the personal review phase and the inspection phase. The counts of dis-
covered defect types by orthogonal defect category are shown in Figure 12. The most common
types are violations of development standards and inconsistent interfaces.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 12: Defect Types (Organization B)

Figure 13: Number of Defects Removed During Development Phases (Organization B)

In order to address the main research question (What are the model parameters with and without
using these tools?) we performed additional analysis on the defect rates and fix times. The related
research questions included the following:

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44
[Distribution Statement A] Approved for public release and unlimited distribution

1. Where were the defects injected?
2. Where were the defects removed?
3. How much effort was spent per defect by phase?
4. How much total effort was required to use the tools?

Tool_B_1 defect finds by phase origin are presented in Table 18. Defect injections are shown
along the rows, and defect removals are shown in the columns. Table cells exclude the phases
prior to design. Defect finds were more or less equal in the code review, code inspect, and com-
pile phases. The effort recorded fixing these defects is summarized in Table 19. The average find
and fix times by removal and origin phase are summarized in Table 20. Similar tables for
Tool_B_2 defects are summarized in Table 22, Table 23, and Table 24.

The descriptive statistics for the removal phase are summarized in Table 27. Detailed parametric
and non-parametric descriptions of find and fix time in each phase are included in Figure 14, Fig-
ure 15, Figure 19, Figure 20, and Figure 21.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45
[Distribution Statement A] Approved for public release and unlimited distribution

Table 18: Tool_B_1 Origin and Removal Phase of Defect Found

Sum of Fix Count Removed

Injected
Design
Inspect Code

Code
Review

Code
Inspect Compile

After Devel-
opment Grand Total

Before Development 1 1 1 3

Design 2 2

Code 10 14 10 34

Compile 1 1

Code Inspect 3 3

Test 1 1

Grand Total 2 1 10 19 11 1 44

Table 19: Tool_B_1 Total Defect Fix Effort by Phase of Origin and Removal

Sum of Tool_B_1-Effort Removed

Injected
Design
Inspect Code

Code
Review Compile

Code
Inspect Test

After Devel-
opment Grand Total

Before Development 260.4 30.5 1 291.9

Design 0.8 0 0 0.8

Code 48.2 89.1 115.1 252.4

Code Inspect 30.6 0 30.6

Compile 4.1 4.1

Test 3.3 3.3

Grand Total 0.8 260.4 48.2 119.6 150.8 0 3.3 583.1

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46
[Distribution Statement A] Approved for public release and unlimited distribution

Table 20: Tool_B_1 Fix Effort per Defect by Phase of Origin and Removal

Average Fix Effort per Defect Removed

Injected Design
Inspect

Code Code
Review

Compile Code
Inspect

Test After
Development

Grand
Total

Before Development 86.80 6.10 1.00 32.43

Design 0.40 0.40

Code 4.82 8.91 8.85 7.65

Code Inspect 10.20 10.20

Compile 4.10 4.10

Test 3.30 3.30

 Grand Total 0.4 86.8 4.82 7.97 8.38 3.3 11.9

These are a small portion of all development defects. Table 24 summarizes counts of all defects found and removed by phase. Total and average fix times
by phase origin and removal are included in Table 25 and Table 26. Descriptive statistics for all defects are summarized in Table 27. Defect types are
included in Table 28. Histograms of the fix time distributions, along with statistics are included in Figure 14 through Figure 22. Category_0 refers to
Tool_B_1, which only scans source code, while Category_1 refers to Tool_B_2, which also scans the compiled binary.

The graphic data provides a way to visualize the statistical significance of the differences in the mean values for different phases or removal activities.
The range of find and fix times is wide and the distributions are highly skewed, but the distributions are unimodal. Because our model will add data be-
tween phases rather than multiply, use the mean values to obtain average behavior. Nonetheless, distribution data suggests that we can expect wide ranges
of behavior with small samples. Future work may use Monte Carlo rather than point solutions to obtain expected performance ranges.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47
[Distribution Statement A] Approved for public release and unlimited distribution

Table 21: Defects Coded for Tool_B_2 by Phase of Origin and Removal

Tool_B_2 Removed

Injected
Design
Inspect Code

Code
Review Compile

Code
Inspect Test

After
Development Grand Total

Before Development

Design 5 1 6

Code 1 12 1 14

Code Inspect 3 2 5

Compile

Test 1 1

Grand Total 1 17 5 2 1 26

Table 22: Tool_B_2 Defect Removal Effort by Phase of Origin and Removal

Sum of FX-Effort Removed

Injected
Design
Inspect Code

Code
Review Compile

Code
Inspect Test

After
Development Grand Total

Before Development 0 0 0 0

Design 0 8.3 3.3 11.6

Code 1.7 20.8 0.5 23

Code Inspect 34.7 31 65.7

Compile 0 0

Test 3.3 3.3

Grand Total 0 0 1.7 29.1 38.5 31 3.3 103.6

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48
[Distribution Statement A] Approved for public release and unlimited distribution

Table 23: Tool_B_2 Removal Effort per Defect by Phase of Origin and Removal

Average Fix Effort
per Defect Removed

Injected Design Inspect Code
Code
Review Compile

Code
Inspect Test

After
Development

Grand
Total

Before Development
Design 1.66 3.30 1.93

Code 1.70 1.73 0.50 1.64

Code Inspect 11.57 15.50 13.14

Compile
Test 3.30 3.30

 Grand Total 1.7 1.71 7.7 15.5 3.3 3.98

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49
[Distribution Statement A] Approved for public release and unlimited distribution

Table 24: All Defects, Phase of Origin (Injection) and Removal

Defects Removed

Phase Injected
Design
Review

Design
Inspect Code

Code
Review Compile

Code
Inspect Test Int Test Sys Test

Accept
Test

Product
Life

After
Development Total

Design 1070 1607 271 85 19 220 246 2 20 7 3547

Design Review 17 6 2 1 1 1 28

Design Inspect 48 45 13 1 20 7 1 135

Code 6 1204 361 2160 230 11 27 1 2 4002

Code Review 8 14 4 6 32

Code Inspect 84 65 1 1 151

Compile 10 1 11

Test Devel 8 6 4 82 128 298 526

Test 19 4 15 1 39

Int Test 7 34 5 46

Grand Total 1087 1661 332 1317 395 2503 657 153 396 5 1 10 8517

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50
[Distribution Statement A] Approved for public release and unlimited distribution

Table 25: Total Defect Find and Fix Time (After High-Level Design)

Sum of Fix Time [Minutes]

Phase
Injected

Design
Review

Design
Inspect Code

Code
Review Compile Code Inspect Test Int Test Sys Test

Accept
Test

Product
Life

After
Development Total

Design 6172.8 10798.3 2378.2 1008.9 150.9 1981.2 6986.6 30.9 1120.7 830.2 31458.7

Design
Review 198.7 23.1 2.9 21.8 2.5 23.7 272.7

Design
Inspect 209.6 141.6 124.2 1.2 129 30.5 14.4 650.5

Code 23.3 5169.4 1091.1 10868.7 2507.8 586.9 984.3 99.8 56.8 21388.1

Code Review 33.4 23.9 34.6 30.7 122.6

Code Inspect 455.5 604.9 182 11 1253.4

Compile 36.6 11 47.6

Test Devel 51.8 42.3 129.8 127.4 347.8 752.7 1451.8

Test 212.8 1.7 82.6 3.3 300.4

Int Test 9.4 151.4 4.1 164.9

Grand Total 6371.5 11031 2597.8 6400 1267.1 13637.9 10535.4 1158.7 3117.1 4.1 99.8 890.3 57110.7

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51
[Distribution Statement A] Approved for public release and unlimited distribution

Table 26: Average Defect Fix Effort by Removal and Origin

Average Defect Effort [Minutes/Defect]

Phase
Injected

Design
Review

Design
Inspect Code

Code
Review Compile

Code In-
spect Test Int Test Sys Test

Accept
Test

Product
Life

After
Development Total

Design 5.8 6.7 8.8 11.9 7.9 9.0 28.4 15.5 56.0 118.6 8.87

Design Review 11.7 3.9 1.5 21.8 2.5 23.7 9.74

Design Inspect 4.4 3.1 9.6 1.2 6.5 4.4 14.4 4.82

Code 3.9 4.3 3.0 5.0 10.9 53.4 36.5 99.8 28.4 5.34

Code Review 4.2 1.7 8.7 5.1 3.83

Code Inspect 5.4 9.3 182.0 11.0 8.30

Compile 3.7 11.0 4.33

Test Devel 6.5 7.1 32.5 1.6 2.7 2.5 2.76

Test 11.2 0.4 5.5 3.3 7.70

Int Test 1.3 4.5 0.8 3.58

Total 5.86155 6.64118 7.8247 4.85953 3.20785 5.44862 16.0356 7.5732 7.87146 0.82 99.8 89.03 6.71

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52
[Distribution Statement A] Approved for public release and unlimited distribution

Table 27: Descriptive Statistics for All Defects by Removal Phase

Phase N Mean SE Mean StDev Minimum Q1 Median Q3 Maximum

Fix Time Accept Test 5 0.82 0.536 1.199 0.1 0.1 0.2 1.85 2.9

After Development 10 89 24.2 76.5 3.3 24.4 72.3 142.8 240

Code 344 9.27 1.34 24.86 0 1.1 2.9 6.4 257.4

Code Inspect 2607 5.404 0.258 13.152 0 0.7 1.6 4.7 242.9

Code Review 1337 4.894 0.315 11.5 0.1 0.8 1.8 4.3 171.1

Compile 415 3.258 0.541 11.014 0.1 0.6 1.2 2.6 198.9

Design 4 13.15 4.97 9.95 3.1 4 12.55 22.9 24.4

Design Inspect 1690 6.82 0.459 18.862 0 0.7 1.9 5.125 363.3

Design Review 1094 5.961 0.506 16.743 0.1 0.8 1.75 4.4 239.7

Documentation 49 10.89 2.03 14.24 0.2 1.65 5.4 17.45 72.2

HLD Inspect 35 9.59 3.16 18.71 0.2 1.2 3.1 11.3 103.3

HLD Review 19 9.08 3.16 13.77 0.7 1.6 3.5 13 59.9

Int Test 153 7.57 3.22 39.89 0.1 0.5 1 4 459.3

Int Test Plan 79 2.172 0.577 5.126 0 0.1 0.5 2 40

Planning 7 30.9 11.2 29.8 0.7 2.3 23.9 49 82.8

Product Life 2 261 161 228 100 * 261 * 422

Reqts Inspect 469 3.861 0.327 7.074 0 0.8 2.6 5 116.6

Reqts Review 172 2.222 0.36 4.727 0.1 0.4 1 2.2 54.6

Sys Test 401 8.31 1.76 35.3 0 0.3 0.8 2.45 510

Test 691 18.27 1.68 44.26 0 2.1 5.5 14.8 654

Test Devel 6 14.32 4.77 11.69 0.5 6.65 11.6 22.88 34.5

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 14: All Other Defects, Code Review

1 st Quartile 0.800
Median 1 .800
3rd Quartile 4.1 00
Maximum 1 71 .1 00

4.1 35 5.406

1 .600 1 .900

1 1 .1 48 1 2.047

A-Squared 244.70
P-Value <0.005

Mean 4.770
StDev 1 1 .580
Variance 1 34.098
Skewness 7.8782
Kurtosis 82.8596
N 1 279

Minimum 0.1 00

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 501 251 007550250

Median

Mean

5432

95% Confidence Intervals

Summary Report for average_fix_time
category = 0

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 15: Tool_B_1 Defect Find and Fix Time, Code Review

1 st Quartile 1 .1 000
Median 2.8000
3rd Quartile 9.8500
Maximum 1 3.9000

1 .1 21 8 9.21 1 5

0.8823 1 1 .8907

3.5543 1 0.081 0

A-Squared 0.69
P-Value 0.046

Mean 5.1 667
StDev 5.2621
Variance 27.6900
Skewness 1 .06301
Kurtosis -0.31 51 9
N 9

Minimum 0.2000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 501 251 007550250

Median

Mean

1 21 086420

95% Confidence Intervals

Summary Report for average_fix_time Code Review
category = 1

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 16: Other Defects, Average Find and Fix Time, Compile

1 st Quartile 0.600
Median 1 .1 00
3rd Quartile 2.400
Maximum 1 98.900

1 .959 4.354

1 .000 1 .200

1 0.655 1 2.354

A-Squared 83.90
P-Value <0.005

Mean 3.1 57
StDev 1 1 .441
Variance 1 30.904
Skewness 1 4.591
Kurtosis 245.309
N 353

Minimum 0.1 00

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 801 501 209060300

Median

Mean

4321

95% Confidence Intervals

Summary Report for average_fix_time Compile Defects
category = 0

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 17: Tool_B_1 Defects, Average Fix Time, Compile

1 st Quartile 1 .1 500
Median 1 .8000
3rd Quartile 9.2250
Maximum 48.2000

-2.501 8 20.321 8

1 .1 31 5 1 1 .41 35

1 0.9728 29.1 232

A-Squared 1 .98
P-Value <0.005

Mean 8.91 00
StDev 1 5.9526
Variance 254.4854
Skewness 2.1 7088
Kurtosis 4.1 31 77
N 1 0

Minimum 0.3000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 801 501 209060300

Median

Mean

201 51 050

95% Confidence Intervals

Summary Report for average_fix_time Compile Defects
category = 1

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 18: Tool_B_2 Defects, Average Find and Fix Time, Compile

1 st Quartile 0.7500
Median 1 .6000
3rd Quartile 2.3500
Maximum 5.4000

1 .0559 2.3677

0.9000 2.2928

0.9501 1 .941 5

A-Squared 0.54
P-Value 0.1 42

Mean 1 .71 1 8
StDev 1 .2757
Variance 1 .6274
Skewness 1 .48448
Kurtosis 3.331 82
N 1 7

Minimum 0.2000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 97.41 69.21 41 .01 1 2.884.656.428.20.0

Median

Mean

2.502.252.001 .751 .501 .251 .00

95% Confidence Intervals

Summary Report for average_fix_time Compile Defects
category = 2

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 19: Other Defects, Fix Time Distribution, Code Inspect

1 st Quartile 0.700
Median 1 .600
3rd Quartile 4.700
Maximum 1 48.400

4.678 5.596

1 .400 1 .700

1 1 .066 1 1 .71 5

A-Squared 405.93
P-Value <0.005

Mean 5.1 37
StDev 1 1 .381
Variance 1 29.532
Skewness 6.21 66
Kurtosis 52.0753
N 2364

Minimum 0.01 0

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

2382041 701 361 0268340

Median

Mean

654321

95% Confidence Intervals

Summary Report for average_fix_time
category = 0

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 20: Tool_B_1, Defect Fix Time Distribution, Code Inspect

1 st Quartile 0.6000
Median 1 .6000
3rd Quartile 1 0.0000
Maximum 62.0000

-1 .3051 1 9.01 28

0.6739 1 0.0000

1 2.0551 27.7509

A-Squared 2.28
P-Value <0.005

Mean 8.8538
StDev 1 6.81 1 2
Variance 282.61 77
Skewness 3.03631
Kurtosis 9.90652
N 1 3

Minimum 0.2000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

2311 981 651 329966330

Median

Mean

201 51 050

95% Confidence Intervals

Summary Report for average_fix_time
category = 1

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 21: Tool_B_2 Defect Find and Fix Distribution, Code Inspect

1 st Quartile 0.500
Median 3.300
3rd Quartile 242.900
Maximum 242.900

-263.431 427.897

0.500 242.900

72.449 874.51 1

A-Squared 0.48
P-Value 0.062

Mean 82.233
StDev 1 39.1 48
Variance 1 9362.293
Skewness 1 .731 26
Kurtosis *
N 3

Minimum 0.500

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

24521 01 751 401 0570350

Median

Mean

4002000-200

95% Confidence Intervals

Summary Report for average_fix_time, Code Inspection
category = 2

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 22: Tool_B_1 Defect Find and Fix Distribution

1 st Quartile 1 .000
Median 2.450
3rd Quartile 1 0.000
Maximum 1 01 .400

4.938 1 9.01 5

1 .483 4.774

1 9.660 29.854

A-Squared 8.68
P-Value <0.005

Mean 1 1 .976
StDev 23.702
Variance 561 .806
Skewness 2.82541
Kurtosis 7.58304
N 46

Minimum 0.01 0

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

6305404503602701 80900

Median

Mean

201 51 050

95% Confidence Intervals

Summary Report for average_fix_time
category = 1

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62
[Distribution Statement A] Approved for public release and unlimited distribution

In this project we observed a strong correlation between effectiveness of the personal code review
and the peer code inspections (see Figure 23). We normally expect to see this correlation (but do
not always) because similar skills are applied. The range of review and inspection yields is very
wide.

Figure 23: Inspection Phase Yield vs. Personal Review Phase Yield (Organization B)

0.350.300.250.200.1 50.1 00.050.00

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

S 0.132265
R-Sq 77.5%
R-Sq(adj) 75.0%

Yield Code Personal Review

Yi
el

d
Co

de
 In

sp
ec

tio
n

Removal Yields, Code Peer Inspection vs Personal Review
Inspection_Yield = 0.1 146 + 2.183 Personal_Review_Yield

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63
[Distribution Statement A] Approved for public release and unlimited distribution

Table 28: Defect Type Frequencies Found During Development Phase (Organization B)

Defect Type After
Development

Code
Inspection Code Review Compile Test Row Totals

Assignment 1 1

Checking 2 2

DESIGN - Interface 1 1

DESIGN - Stand-
ards

 1 1 2

DEV - Assignment 1 2 3

DEV - Interface 1 1

DEV - Standards 2 3 5

DEV - Syntax 1 1

Function 1 1

Interface 4 1 5

Syntax 2 1 3

Column Totals 1 4 1 17 2 25

Figure 24, a scatterplot of project average code review yields versus code review rates in lines of
code per hour, shows very weak correlation between the yield in code review and the rate at
which code was reviewed. Nonetheless, though the review rate never exceeded 500 LOC per
hour, about half the reviews exceeded the 200 LOC per hour recommendation. This lack of corre-
lation is observed at a project level; the individual developer or component levels were not exam-
ined. Although a plausible explanation is that there was large variance among individual develop-
ers in review effectiveness, this analysis was not pursued because it was beyond the scope of our
research questions.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 24: Personal Review Rate vs. Code Review Yield (Organization B)

We had identified a set of projects before the tools were inserted into the development with the
intention of analyzing the parameters pre- and post-. However, the pre-post differences were ob-
scured by the large overall performance variation. We therefore adopted a different analysis strat-
egy to estimate tool effectiveness. Our key observation from the “before” projects was that no de-
fects were logged to the “compile” activity. After verifying with project members, we attributed
all compile activity to the tools in the “post” projects. That is, “compile” was used only as a tool
activity, not to record actual compile time. We then used the data that was explicitly activity as
“static analysis” to estimate adjustments to the other code review and code inspection phases. The
statistical parameters are included in Table 29.

Table 29: Performance with Tool_B_2 and Tool_B_1 Static Analysis (Organization B)

Phase
No.Defect.
Phase.Rate
[LOC/Hr]

No.Defect.
Phase.Rate
[Hr/LOC]

Def_Inj_Rate
[Def/Hr] Yield FixRate

[Hr/Defect]

0000_BeforeDev 0.0000 0.0000

1000_Misc 128.0464 0.0078 0.0000

1100_Strat 903.5513 0.0011 0.0000

1150_Planing 164.2225 0.0061 0.0345 0.4517

3000_Req 209.0475 0.0048 1.3872 0.4517

3020_ReqR 612.7987 0.0016 0.0112 0.2066 0.0370

3040_ReqI 276.1358 0.0033 0.0681 0.7856 0.0582

3100_HLD 2238.8472 0.0004 1.4939 0.3050

3110_ITP 257.4165 0.0039 0.1553 0.0806 0.0398

3120_HLDR 13878.0127 0.0000 0.0000 0.0979 0.1513

5004003002001000

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

S 0.107340
R-Sq 8.7%
R-Sq(adj) 0.0%

CR LOC/Hr

33
20

_C
od

eR
_Y

ie
ld

Fitted Line Plot
3320_CodeR_Yield = 0.1582 + 0.000181 CR LOC/Hr

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 65
[Distribution Statement A] Approved for public release and unlimited distribution

Phase
No.Defect.
Phase.Rate
[LOC/Hr]

No.Defect.
Phase.Rate
[Hr/LOC]

Def_Inj_Rate
[Def/Hr] Yield FixRate

[Hr/Defect]

3140_HLDI 1995.2280 0.0004 0.0182 0.2000 0.1627

3200_DLD 108.8589 0.0092 3.4666 0.2192

3210_TD 288.3239 0.0034 1.4073 0.1842

3220_DLDR 327.9854 0.0020 0.0869 0.2583 0.1002

3220_DLDI 86.2034 0.0098 0.1079 0.4818 0.1194

3300_Code 95.8922 0.0099 3.3868 0.1574

3320_CodeR 332.3528 0.0019 0.0972 0.2528 0.0914

3330_Compile 1713.4691 0.0004 0.1723 0.1043 0.0551

3340_CodeI 64.4342 0.0133 0.0801 0.6539 0.1007

3350_UTest 160.2417 0.0043 0.0557 0.5511 0.3120

3400_Test-
CaseDevel

0.0000 0.0000 0.0000 0.0000 0.0000

4010_BITest 122.4605 0.0080 0.0515 0.2166 0.1409

4015_xxxx 0.0000 0.0000 0.0000 0.0000 0.0000

4030_STest 343.4037 0.0024 0.0000 0.4000 0.1476

4040_Doc 608.1998 0.0016 0.2001 0.1250 0.2403

4050_ATest 95.3808 0.0105 0.0000 0.4000 0.0137

5000_PM 1296.2678 0.0008 0.0000

6100_PLife 12385.4713 0.0000 0.0000 0.4000 4.3500

Table 30: Performance without Tool_B_2 or Tool_B_1 Static Analysis (Organization B)

Phase
No.Defect.
Phase.Rate
{LOC/Hr]

No.Defect.
Phase.Rate
[Hr/LOC]

Def_Inj_Rate
[Def/Hr] Yield FixRate

[Hr/Defect]

0000_BeforeDev 0.0000 0.0000

1000_Misc 128.0464 0.0078 0.0000

1100_Strat 903.5513 0.0011 0.0000

1150_Planing 164.2225 0.0061 0.0345 0.4517

3000_Req 209.0475 0.0048 1.3872 0.4517

3020_ReqR 612.7987 0.0016 0.0112 0.2066 0.0370

3040_ReqI 276.1358 0.0033 0.0681 0.7856 0.0582

3100_HLD 2238.8472 0.0004 1.4939 0.3050

3110_ITP 257.4165 0.0039 0.1553 0.0806 0.0398

3120_HLDR 13878.0127 0.0000 0.0000 0.0979 0.1513

3140_HLDI 1995.2280 0.0004 0.0182 0.2000 0.1627

3200_DLD 108.8589 0.0092 3.4666 0.2192

3210_TD 288.3239 0.0034 1.4073 0.1842

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66
[Distribution Statement A] Approved for public release and unlimited distribution

Phase
No.Defect.
Phase.Rate
{LOC/Hr]

No.Defect.
Phase.Rate
[Hr/LOC]

Def_Inj_Rate
[Def/Hr] Yield FixRate

[Hr/Defect]

3220_DLDR 327.9854 0.0020 0.0869 0.2583 0.1002

3220_DLDI 86.2034 0.0098 0.1079 0.4818 0.1194

3300_Code 95.8922 0.0099 3.3868 0.1574

3320_CodeR 332.3528 0.0019 0.0972 0.2400 0.0914

3330_Compile 0.0000 0.0000 0.0000 0.0000 0.0000

3340_CodeI 64.4342 0.0133 0.0801 0.6300 0.1007

3350_UTest 160.2417 0.0043 0.0557 0.5511 0.3120

3551xxxx 0.0000 0.0000 0.0000 0.0000 0.0000

3400_Test-
CaseDevel

 0.0000

4010_BITest 122.4605 0.0080 0.0515 0.2166 0.1409

4015_xxxx 0.0000 0.0000 0.0000 0.0000 0.0000

4030_STest 343.4037 0.0024 0.0000 0.4000 0.1476

4040_Doc 608.1998 0.0016 0.2001 0.0000 0.2403

4050_ATest 95.3808 0.0105 0.0000 0.4000 0.0137

5000_PM 1296.2678 0.0008 0.0000

6100_PLife 12385.4713 0.0000 0.0000 0.4000 4.3500

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67
[Distribution Statement A] Approved for public release and unlimited distribution

Table 31: Number of Defects Removed per Phase with Static Analysis (Organization B)

Injected
Phase

Design
Review

Design
Inspect Code Code

Review Compile Code
Inspect Test Int Test Sys Test Accept

Test
Product
Life

After
Development Total

Design 1070 1607 271 85 19 220 246 2 20 7 3547

Design
Review

17 6 2 1 1 1 28

Design
Inspect

 48 45 13 1 20 7 1 135

Code 6 1204 361 2160 230 11 27 1 2 4002

Code
Review

 8 14 4 6 32

Code
Inspect

 84 65 1 1 151

Compile 10 1 11

Test
Devel

 8 6 4 82 128 298 526

Test 19 4 15 1 39

Int Test 7 34 5 46

Total 1087 1661 332 1317 395 2503 657 153 396 5 1 10 8517

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 68
[Distribution Statement A] Approved for public release and unlimited distribution

Table 32: Effort Spent on Defect Removal with Static Analysis (Organization B)

Injected
Phase

Design
Review

Design
Inspect Code Code Re-

view Compile Code In-
spect Test Int Test Sys Test Accept

Test
Product
Life

After
Development Total

Design 6172.8 10798.3 2378 1008.9 150.9 1981.2 6987 30.9 1121 830.2 31458.7

Design
Review 198.7 23.1 2.9 21.8 2.5 23.7 272.7

Design
Inspect 209.6 141.6 124.2 1.2 129 30.5 14.4 650.5

Code 23.3 5169.4 1091.1 10868.7 2508 586.9 984.3 99.8 56.8 21388.1

Code Re-
view 33.4 23.9 34.6 30.7 122.6

Code In-
spect 455.5 604.9 182 11 1253.4

Compile 36.6 11 47.6

Test
Devel 51.8 42.3 129.8 127.4 347.8 752.7 1451.8

Test 212.8 1.7 82.6 3.3 300.4

Int Test 9.4 151.4 4.1 164.9

Total 6371.5 11031 2598 6400 1267.1 13637.9 10535 1158.7 3117 4.1 99.8 890.3 57110.7

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 69
[Distribution Statement A] Approved for public release and unlimited distribution

Table 33: Average Amount of Effort to Find and Fix Defects without Static Analysis (Organization B)

Injected
Phase

Design
Review

Design
Inspect Code Code

Review Compile Code
Inspect Test Int Test Sys Test Accept

Test
Product
Life

After
Development Total

Design 5.768971963 6.71954 8.776 11.869 7.9421 9.00545 28.4 15.45 56.04 118.6 31458.7

Design
Review

11.69 3.85 1.45 21.8 2.5 23.7 272.7

Design
Inspect

 4.37 3.15 9.55 1.2 6.45 4.357 14.4 650.5

Code 3.88 4.29 3.02 5.03 10.9 53.35 36.46 99.8 28.4 21388.1

Code
Review

 4.18 1.70 8.65 5.1 122.6

Code In-
spect

 5.42 9.3 182 11 1253.4

Compile 3.66 11 47.6

Test
Devel

 6.475 7.05 32.45 1.55 2.75 2.53 1451.8

Test 11.2 0.425 5.51 3.3 300.4

Int Test 1.342 4.45 0.82 164.9

Total 5.86 6.64118 7.825 4.86 3.21 5.45 16.04 7.57 7.871 0.82 99.8 89.03 57110.7

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 70
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 25: Defect Density per Phase with and without Static Analysis (Organization B)

Our analysis of the measured results by phase and the expected results by phase if the static analy-
sis tools had not been used are shown in Figure 25 through Figure 29. For these projects in this
organization, the effects were very small. Cumulative effort was slightly lower using the tools
(see Figure 26) because effort increased by a tiny amount in the removal phases (see Figure 27),
but was more than compensated for by the lower effort in test. Test effort was reduced because
the defect density was reduced by a small amount prior to test. For phased defect removal, see
Figure 30.

The cumulative defect flows cannot be easily distinguished graphically (see Figure 28 and Figure
29). We believe the effects of using these tools were positive both for escaped defect density and
total effort, but the effect was modest. The vast majority of defects were removed using conven-
tional techniques of review and test. A potential benefit of the tools is targeted removal of specific
known weaknesses that might escape review, inspection, and test.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 71
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 26: Cumulative Amount of Effort with and without Static Analysis (Organization B)

Figure 27: Team Effort by Phase with and without Static Analysis (Organization B)

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 72
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 28: Cumulative Defect Flow with Static Analysis (Organization B)

Figure 29: Cumulative Defect Flow without Static Analysis (Organization B)

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 73
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 30: Defects Removed per Phase with and without Static Analysis during Personal Review Phase
(Organization B)

4.3 Organization C

Organization C used a commercial tool that statically analyzed both the source code and the final
binary. The tool was integrated into the build process and executed prior to test.

Related research questions for this case include the following:

• How much time does the project spend in each development process?
• What are the find and fix times for defects found by the various activities?

The phase effort question is partially addressed in Figure 31. The fraction of time in individual
phases varied widely. This may have resulted from different processes, but can also result from
differences in the specific work packages in the project. Figure 32 shows that all removal yields
vary widely, but none as much as test. Descriptive statistics for yields are summarized in Table
34.

The find and fix time distribution for the static analysis tool is shown in Figure 34, with statistics
provided in Table 35.

The majority of the defects were injected in code. The fix times for those defects by removal
phase are shown in Figure 35. A small number of the defects were injected in prior projects. Fol-
lowing this is the distribution of the defect removal efforts by phase. The average values are used
in the model. Again, we note that the distributions are highly skewed (approximately log-normal
in frequency). A table summarizing the final parameters used in the model is included in Table
36.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 74
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 31: Project Development Process Effort (Organization C)

Figure 32: Project Defect Removal Yields (Organization C)

61
00_

PL
ife

_p
hase

_fr
ac

tio
n

500
0_P

M_p
ha

se_
fra

cti
on

40
50

_A
Te

st_
phase

_fr
ac

tio
n

40
30_S

Test
_p

hase
_fr

ac
tio

n

401
0_B

ITest
_p

ha
se_

fra
cti

on

340
0_T

est
Case

Dev
el_

ph
as

e_f
rac

ti

335
0_U

Test
_p

hase
_fr

ac
tio

n

3340
_C

od
eI_

pha
se_

fra
cti

on

3330
_C

om
pil

e_
phase

_fr
ac

tio
n

3320
_C

od
eR

_p
hase

_fr
ac

tio
n

330
0_C

ode_
pha

se_
fra

cti
on

322
0_D

LD
I_p

hase
_fr

ac
tio

n

322
0_D

LD
R_p

hase
_fr

ac
tio

n

321
0_T

D_p
hase

_fr
ac

tio
n

320
0_D

LD
_p

ha
se_

fra
cti

on

31 40
_H

LD
I_p

hase
_fr

ac
tio

n

31 20
_H

LD
R_p

hase
_fr

ac
tio

n

311
0_

ITP
_p

ha
se_

fra
cti

on

31 00
_H

LD
_p

hase
_fr

ac
tio

n

30
40_

Req
I_p

hase
_fr

ac
tio

n

30
20_

Req
R_p

ha
se_

fra
cti

on

3000
_R

eq
_p

hase
_fr

ac
tio

n

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Ph
as

e
Fr

ac
tio

n
of

 D
ev

el
op

m
en

t E
ff

or
t Organization C Project Phase Effort Distribution

405
0_A

Test
_Y

iel
d

40
30_

ST
est

_Y
iel

d

40
1 0_

BIT
est

_Y
iel

d

340
0_T

est
Case

Dev
el_

Yie
ld

335
0_U

Test
_Y

iel
d

334
0_C

odeI_
Yie

ld

33
30_

Compile
_Y

iel
d

3320
_C

od
eR

_Y
iel

d

3240
_D

LD
I_Y

iel
d

3210
_T

D_Y
iel

d

1 .0

0.8

0.6

0.4

0.2

0.0

D
at

a

Boxplot of 321 0_TD_Yiel, 3240_DLDI_Yi, 3320_CodeR_Y, 3330_Compile, ...

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 75
[Distribution Statement A] Approved for public release and unlimited distribution

Table 34: Descriptive Statistics, Phase Yields (Organization C)

 N N_missing Mean SE Mean StDev Minimum Q1 Median Q3 Maximum

3210_TD_Yield 14 0 0.16 0.04 0.13 0.00 0.05 0.12 0.27 0.46

3240_DLDI_Yield 14 0 0.27 0.06 0.24 0.00 0.01 0.28 0.48 0.65

3320_CodeR_Yield 14 0 0.25 0.04 0.14 0.00 0.15 0.25 0.35 0.51

3330_Compile_Yield 14 0 0.07 0.03 0.11 0.00 0.00 0.02 0.07 0.33

3340_CodeI_Yield 14 0 0.32 0.06 0.22 0.01 0.16 0.28 0.47 0.76

3350_UTest_Yield 14 0 0.65 0.08 0.31 0.00 0.49 0.69 0.96 0.99

3400_TestCaseDevel_Yield 14 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4010_BITest_Yield 14 0 0.32 0.10 0.37 0.00 0.00 0.12 0.59 1.00

4030_STest_Yield 13 1 0.53 0.14 0.50 0.00 0.00 0.91 1.00 1.00

4050_ATest_Yield 9 5 0.50 0.17 0.50 0.00 0.00 0.50 1.00 1.00

To address the question of how much effort is required to fix defects in each development activity, we collected the histograms, boxplots, and descriptive
statistics of the find and fix times, shown in Figure 33 through Figure 45.

Figure 33 displays the find and fix time distribution for defects injected in code or design and removed in acceptance test. Figure 34 shows the distribution
of defects explicitly coded as found in “static analysis” with the descriptive statistics included in Table 35. The acceptance test has a high uncertainty in
the median value that cannot be distinguished from the static analysis. Nonetheless, the mean values (dominated by the more expensive events) indicate a
statistically important difference in the mean values of find and fix time.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 76
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 33: Defect Find and Fix Time in Acceptance Test, for Code and Design Defects

1 st Quartile 0.400
Median 2.800
3rd Quartile 1 0.600
Maximum 1 33.000

6.1 57 1 9.956

1 .1 01 7.800

20.526 30.495

A-Squared 7.67
P-Value <0.005

Mean 1 3.057
StDev 24.532
Variance 601 .800
Skewness 3.1 601
Kurtosis 1 1 .7424
N 51

Minimum 0.200

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

135.01 12.590.067.545.022.50.0

Median

Mean

20151050

95% Confidence Intervals

 defect_fix_time_minutes for Accpt Test, Code/Design Injections

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 77
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 34: Static Analysis (Code and Binary) Defect Find/Fix Time

Table 35: Distribution of Static Analysis (Code and Binary) Defect Fix Times

Variable N N* Mean SE. Mean StDev Minimum Q1 Median Q3 Maximum

defect_fix_min 38 0 3.987 0.957 5.898 0.2 0.3 1.6 4.825 23.1

To model the scenarios with and without the static checker, we used data from the projects that explicitly attributed the defect finds and effort to ac-
ceptance test. Although the TSP uses this phase after system test, these teams used the acceptance test phase to collect defects between build and integra-
tion test and system test. We made the appropriate adjustment in the data.

21.618.014.410.87.23.60.0

14

12

10

8

6

4

2

0

defect_fix_min

Fr
eq

ue
nc

y

Histogram of defect_fix_min

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 78
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 35: Project Distribution of Code Defect Find and Fix Time by Removal Phase (Organization C)

For defects explicitly marked as “static analysis” defects, we summarize the find and fix rates in
Figure 34 and Table 35. These find and fix times can be compared to the distributions for all de-
fects removed in each activity as shown in the boxplots in Figure 35 and the more detailed distri-
butions that follow.

61
00

_PLife
_ef

fort_
pe

r_d
efe

ct

40
50

_A
Te

st_
eff

or
t_p

er_
de

fec
t

40
30

_ST
est

_ef
for

t_p
er_

de
fec

t

40
10

_BI
Te

st_
eff

ort_
per_

defe
ct

33
50

_U
Te

st_
eff

ort_
per_

defe
ct

33
40

_Code
I_e

ffo
rt_

pe
r_d

efe
ct

33
30

_Co
mpile_

eff
ort_

pe
r_d

efe
ct

33
20

_Cod
eR

_ef
for

t_p
er_

de
fec

t

33
00

_Co
de_e

ffo
rt_

per_
de

fec
t

32
40

_D
LD

I_e
ffo

rt_
per_

defe
ct

32
10_

TD
_ef

fort_
per_

defe
ct

32
20

_D
LD

R_ef
fort_

pe
r_d

efe
ct

32
00

_D
LD

_ef
fort_

pe
r_d

efe
ct

31
40

_H
LD

I_e
ffo

rt_
per_

de
fec

t

311
0_I

TP
_ef

for
t_p

er_
de

fec
t

31
00

_H
LD

_ef
fort_

per_
defe

ct

30
40

_Req
I_e

ffo
rt_

per_
defe

ct

30
20

_Req
R_ef

fort_
pe

r_d
efe

ct

30
00_

Req
_ef

fort_
pe

r_d
efe

ct

11
50

_Pl
an

ing_e
ffo

rt_
per_

de
fec

t

200

150

100

50

0D
ev

el
op

er
 M

in
ut

es
 p

er
 D

ef
ec

t
Boxplot (Project) Code Defect Fix Effort by phase

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 79
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 36: Defect Fix Time, Design Review (Organization C)

Figure 37: Defect Fix Time, Design Inspect (Organization C)

1 st Quartile 0.900
Median 1 .800
3rd Quartile 5.075
Maximum 1 20.000

4.874 1 0.499

1 .300 2.1 00

1 5.303 1 9.31 1

A-Squared 27.98
P-Value <0.005

Mean 7.686
StDev 1 7.074
Variance 291 .51 3
Skewness 4.1 229
Kurtosis 1 9.6847
N 1 44

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

6.92
26E

+02

5.9
337

E+
02

4.944
7E+

02

3.95
58E

+02

2.9
668

E+
02

1 .977
9E+

02

98
.894

472
4

0.00
000

00

Median

Mean

1 086420

95% Confidence Intervals

Summary Report for defect_fix_time_minutes
removed_phase_name = Design Review

1 st Quartile 0.750
Median 2.000
3rd Quartile 1 0.000
Maximum 271 .700

8.068 1 6.880

1 .400 3.1 46

28.534 34.799

A-Squared 39.1 9
P-Value <0.005

Mean 1 2.474
StDev 31 .355
Variance 983.1 1 7
Skewness 5.0835
Kurtosis 31 .71 21
N 1 97

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 1 23.5963.0802.5642.0481 .5321 .01 60.50.0

Median

Mean

1 61 2840

95% Confidence Intervals

Summary Report for defect_fix_time_minutes
removed_phase_name = Design Inspect

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 80
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 38: Defect Fix Time, Code Inspect (Organization C)

Figure 39: Defect Fix Time, Code Review (Organization C)

1 st Quartile 0.400
Median 1 .700
3rd Quartile 7.050
Maximum 200.300

6.994 9.801

1 .300 2.000

1 8.624 20.61 2

A-Squared 1 30.58
P-Value <0.005

Mean 8.397
StDev 1 9.568
Variance 382.887
Skewness 5.201 6
Kurtosis 35.4936
N 749

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 1 25.6964.8804.0643.2482.4321 .61 60.80.0

Median

Mean

1 08642

95% Confidence Intervals

Summary Report for defect_fix_time_minutes
removed_phase_name = Code Inspect

1 st Quartile 0.400
Median 1 .000
3rd Quartile 4.400
Maximum 240.000

4.276 6.720

0.900 1 .200

1 6.223 1 7.954

A-Squared 1 54.25
P-Value <0.005

Mean 5.498
StDev 1 7.045
Variance 290.51 6
Skewness 9.597
Kurtosis 1 1 5.545
N 750

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 1 23.5963.0802.5642.0481 .5321 .01 60.50.0

Median

Mean

7654321

95% Confidence Intervals

Summary Report for defect_fix_time_minutes
removed_phase_name = Code Review

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 81
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 40: Defect Fix Time, Compile (Organization C)

Figure 41: Defect Fix Time, Test (Organization C)

1 st Quartile 0.200
Median 0.400
3rd Quartile 1 .250
Maximum 1 00.400

0.256 3.81 0

0.300 0.500

8.474 1 1 .01 0

A-Squared 32.55
P-Value <0.005

Mean 2.033
StDev 9.576
Variance 91 .696
Skewness 9.826
Kurtosis 1 00.955
N 1 1 4

Minimum 0.1 00

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

680.4583.2486.0388.8291 .61 94.497.20.0

Median

Mean

43210

95% Confidence Intervals

Summary Report for defect_fix_time_minutes
removed_phase_name = Compile

1 st Quartile 0.400
Median 1 .600
3rd Quartile 1 1 .625
Maximum 540.000

1 2.357 1 7.232

1 .300 2.1 00

38.980 42.431

A-Squared 21 2.43
P-Value <0.005

Mean 1 4.794
StDev 40.632
Variance 1 650.940
Skewness 6.4798
Kurtosis 57.21 96
N 1 070

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 1 3497281 06484863241 620

Median

Mean

1 61 2840

95% Confidence Intervals

Summary Report for defect_fix_time_minutes
removed_phase_name = Test

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 82
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 42: Defect Fix Time, Integration Test (Organization C)

Figure 43: Defect Fix Time, Acceptance Test (Organization C)

1 st Quartile 1 .63
Median 5.45
3rd Quartile 25.20
Maximum 1 1 30.40

8.04 65.70

3.57 1 0.23

1 1 3.75 1 55.06

A-Squared 1 9.57
P-Value <0.005

Mean 36.87
StDev 1 31 .21
Variance 1 721 6.41
Skewness 7.4661
Kurtosis 61 .3072
N 82

Minimum 0.1 0

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 1 3497281 06484863241 620

Median

Mean

60504030201 00

95% Confidence Intervals

Summary Report for defect_fix_time_minutes
removed_phase_name = Int Test

1 st Quartile 0.400
Median 3.200
3rd Quartile 1 0.675
Maximum 1 33.000

6.282 20.330

1 .436 7.866

20.646 30.799

A-Squared 7.40
P-Value <0.005

Mean 1 3.306
StDev 24.71 5
Variance 61 0.852
Skewness 3.1 270
Kurtosis 1 1 .4922
N 50

Minimum 0.200

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 1 23.5963.0802.5642.0481 .5321 .01 60.50.0

Median

Mean

201 51 050

95% Confidence Intervals

Summary Report for defect_fix_time_minutes
removed_phase_name = Accept Test

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 83
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 44: Defect Fix Time, System Test (Organization C)

Figure 45: Defect Fix Time, After Development (Organization C)

1 st Quartile 0.600
Median 1 .400
3rd Quartile 1 2.000
Maximum 1 20.000

7.429 1 3.379

1 .000 2.421

1 6.747 20.984

A-Squared 20.61
P-Value <0.005

Mean 1 0.404
StDev 1 8.626
Variance 346.926
Skewness 3.1 406
Kurtosis 1 1 .7932
N 1 53

Minimum 0.1 00

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

622.6524.2425.8327.4229.01 30.632.2

Median

Mean

1 5.01 2.51 0.07.55.02.50.0

95% Confidence Intervals

Summary Report for defect_fix_time_minutes
removed_phase_name = Sys Test

1 st Quartile 0.000
Median 0.600
3rd Quartile 20.000
Maximum 240.000

1 8.51 6 40.546

0.000 0.900

52.791 68.51 6

A-Squared 22.30
P-Value <0.005

Mean 29.531
StDev 59.629
Variance 3555.565
Skewness 2.1 5676
Kurtosis 3.70452
N 1 1 5

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 1 37.5975.081 2.5650.0487.5325.01 62.50.0

Median

Mean

4030201 00

95% Confidence Intervals

Summary Report for defect_fix_time_minutes
removed_phase_name = After Development

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 84
[Distribution Statement A] Approved for public release and unlimited distribution

Table 36: Average Parameters, using Static Analysis (Organization C)

No.Defect.
Phase.Rate
{LOC/Hr]

No.De-
fect.Phase.Rate
[Hr/LOC]

Def_Inj_Rate
[Def/Hr] Yield

FixRate
[Hr/De-
fect]

Req 153.1 0.0 0.1

ReqR 1184.2 0.0 0.0 0.0308 0.04

ReqI 4439.3 0.0 0.0 0.2698 0.03

HLD 580.7 0.0 0.1 0.18

ITP 201426.2 0.0 25.2 0.04

HLDI 50356.5 0.0 0.0 0.0377 0.21

DLD 60.9 0.0 0.3 0.64

 TD 466.2 0.0 0.1 0.67

DLDR 247.7 0.0 0.0 0.1856 0.19

DLDI 282.9 0.0 0.0 0.3070 0.18

Code 32.2 0.0 0.4 0.22

CodeR 126.1 0.0 0.0 0.2363 0.13

Compile 2047.5 0.0 0.1 0.0521 0.02

CodeI 161.1 0.0 0.0 0.3729 0.17

Utest 41.3 0.0 0.0 0.6881 0.32

BITest 173.2 0.0 0.0 0.1500 0.43

StaticAnalysis 392.4 0.0 0.0 0.3750 0.22

STest 174.9 0.0 0.0 0.4000 0.22

PM 1028.8 0.0 0.0

PLife 221.2 0.0 0.0 0.4000 0.55

In this case, the model differences only occur after use of static analysis between the integration
and system test phases. The test yields have a very large variation in performance, so the results
are only a long-term expected average. The results suggest a modest reduction in defect density.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 85
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 46: Defect Density with and without Static Analysis Phase (Organization C)

Figure 47: Defect Removals by Phase (Organization C)

In this case, the defect density after test is lower, but total effort increased. This occurs because
more defects were removed in test, and these defects required additional effort to repair. The find
and fix time was comparable to the other test defects.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 86
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 48: Cumulative Effort with and without Static Analysis

Figure 49: Cumulative Flow of Defects with Static Analysis

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 87
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 50: Defect Cumulative Flow, without Static Analysis

4.4 Overall Find and Fix Times

Figure 51: Organization Find and Fix Time Distributions

The organization results for defect find and fix time distributions for organizations A, B, and C
are included, along with another organization (Organization D) that was not included in the study
from an embedded devices domain. The vertical and horizontal scales are the same. The distribu-
tions are similar in overall range and roughly in shape. Organization A has the fewest very short
find and fix times. In all organizations, the vast majority of defects were resolved in less than 15
minutes.

9884705642281 40

0.4

0.3

0.2

0.1

0.0

9884705642281 40

0.4

0.3

0.2

0.1

0.0

Loc 1 .297
Scale 1 .429
N 15517

A

Loc 0.7648
Scale 1 .394
N 10700

B

Loc 0.7476
Scale 1 .677
N 3245

C

Loc 0.8450
Scale 1 .448
N 3857

D

A

Defect Fix Time [minutes]

Co
un

t

B

C D

Lognormal

Panel variable: Organization
Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

Defect Find and Fix Times (All Projects)

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 88
[Distribution Statement A] Approved for public release and unlimited distribution

5 Discussion

5.1 Effectiveness of Defect Removal

Static analysis is effective, but it does not replace other quality activities. Organization A used
static analysis in the code review phase and had a median removal yield of 12.4% and a range of
10.5% to 18.1%. The total number of defects removed, 2256, was 2.3 times the number removed
in compile, but only about one-fourth as many defects as were removed in code inspection. Code
inspection yield had a median value of 68% and a range between 54% and 76%. The high yield
and relatively low rates for code inspection demonstrate that the team understood how to perform
effective reviews and inspections. The high rates, rate variance, and lack of correlation between
rate and yield in code review reinforce our belief that defect removal in the review phase is en-
tirely driven by the tool, not by personal review techniques.

In context, the static analysis removal yield is only a fraction of the removal yields for code in-
spection, design inspection, or unit test. Moreover, the static analysis yield is lower than we would
expect from a good code review. If the static analysis has crowded out personal code review, the
net defect removal may have gone down. This suggests a potential risk of a so-called Peltzman
effect in which compensating behavior partially offsets the benefits [Peltzman 1975].

Organization B did not isolate the tool use into a separately tracked activity as did Organization A
and, to a lesser extent, Organization C. The strong correlation between code review and code in-
spection yields as seen in Figure 24 suggest that code reviews proceed independently.

Based on the modeling and defect labeling, we estimated a company-average reduction of 11% in
escapes, which is comparable to the lower bound of Company A. Unfortunately, we also see some
hints of a Peltzman effect by observing that the median review rate was 165 LOC/hr for the pro-
jects with the most static analysis finds, while the median code review rate was 359 LOC/hr for
the others. Nonetheless, the median review yield was 22% for all projects and also 22% for the
projects with the most static analysis finds.

A 12% reduction in defects is modest compared to the high yields in code inspection and unit test,
which had yields of 67% and 60%. As with Organization A we found a modest improvement ra-
ther than a replacement for other activities.

Organization C had the smallest obvious improvement by implementing code and static analysis
at build time before final test. This small scale is an artifact of the overall low levels of defects en-
tering that phase because the yield was 63%. This high yield could be an artifact of either 1) inef-
fective finds of defects downstream (leading to an overestimation of the yield), or 2) the new tool
finding defects that were resistant to other techniques.

In either case, the tool was clearly effective, finding 74 total defects and reducing the defect den-
sity from 1.9 to 1.2 defects/KLOC.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 89
[Distribution Statement A] Approved for public release and unlimited distribution

5.2 Cost of Defect Removal

Organization C ran the tool during the build process. Developers only remediated the issues. We
looked at both time of defects and total time during acceptance test. The phase time divided by
defects gives 149 minutes per defect. The logged fix time was only 535 minutes compared to
11055 minutes in that phase. The actual defect fix time was only about 7.2 minutes per defect.

The difference appears to be that the analysis time for the tool findings was considerably greater
for this phase. We cannot resolve how much was identifying false positives and how much was
simply separating analysis (i.e., find time) from the actual fix. For our economic analysis we in-
cluded a fixed cost of running the tool based on the difference.

5.3 Are False Positives a Problem?

We have heard concerns about the level of false positives (i.e., spurious warnings) that would in-
crease development costs without any direct benefit. Our data did not record all warnings, so we
cannot directly measure the false positive rate. We did, however, measure the total developer ef-
fort in a phase and found no evidence that false positives were a problem. It may be that false pos-
itives were resolved very quickly, or that the tools were configured to reduce the incidence of
false positives. The latter might also reduce overall effectiveness. Our study cannot resolve this,
except to note that false positives were not a visible problem.

Static analysis cannot solve all quality or security problems. At most, static analysis tools look for
a fixed set of patterns, or rules, in the code. Both false positives and false negatives (i.e., escapes)
will occur. Because static analysis is prescriptive, the findings for a given situation will be con-
sistent and depend entirely on the state of the code/binary. Future work might analyze the types of
defects found in the different phases to better estimate the local rates of defect escapes.

5.4 Threats to Validity

Our analysis can be replicated if the key parameters can be measured with reasonable accuracy.
Although our overall approach was designed to prefer external validity to internal validity, the re-
sults may not generalize.

5.4.1 External Validity

We cannot claim that results would be representative for all kinds of software projects. Although
we included results from 39 projects, the variation of development parameters was wide among
projects, even within the same company. More projects would reduce the standard errors of the
parameters used. It is possible, for example, that the difference in fix times for system test and
code review is much smaller than our measured averages. However, the number of projects may
be constrained by a need to examine results from similar contexts. Moreover, the injection rates
with an organization were much more consistent than the removal yields. Static analysis should
consistently find certain types of defects if they are present. Defect injection consistency suggests
that the defects will be there to be removed with any effective approach.

While we examined projects from three organizations in different development domains, an effi-
cacy study gains strength with a broader sample. Nonetheless, this is a start on which further re-
search should build. Another domain might have different parameters, including substantially

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 90
[Distribution Statement A] Approved for public release and unlimited distribution

lower static analysis yields, higher costs of static analysis remediation, higher static analysis fixed
cost (e.g., higher rates of false positives or difficulty disposing of them), or much lower costs of
remediation in test (coupled with high test yields). We can think of no domain where this is likely,
but acknowledge the possibility that such a domain exists.

The use of TSP was a necessary condition to be included in this study; this may lead to a selection
bias. TSP projects in general have a tendency to higher quality, thus biasing the results. Moreover,
TSP projects already exhibit a level of process discipline that may not be expected in the general
population, and this discipline may carry over to use of static analysis tools. Less than competent
use of the tools may not provide overall benefits.

Our analysis approach requires data from a more or less complete project. There may be an un-
seen survival bias in which failed or canceled projects behave differently with respect to the static
analysis.

5.4.2 Construct Validity

Construct validity assesses whether the study findings could be incorrect because of misleading
data or incorrect assumptions in the model.

TSP data quality has previously been studied [Shirai 2014, Salazar 2014]. The projects that were
used all contained data that passed basic required consistency checks including distributional
properties and consistence among the logs. The association of defect finds with the tool was dis-
cussed with the data analysis.

We make the simplifying assumption that all defects are removed with similar effectiveness in
different phases and that the finds will be more or less random. We know different types of activi-
ties remove defect types at different rates [Vallespir 2011, 2012]. Addressing this threat remains
for future work.

The model also uses average values for the organizations. Mathematically, the project parameters
will reproduce, ex post, the project results. In practice, parameters vary both statistically and be-
cause of process drift. With sufficient data, the model could be extended to use distributions to
produce probability ranges for the outcomes. This remains for future work.

We measure the defect findings, but do not directly measure fielded faults, severity, or association
of the defects with security. We assume relationships found in prior work [Woody 2015, Emanu-
elsson 2008, Wheeler 2016, Chulani 1999].

5.4.3 Internal Validity

Internal validity evaluates whether causal findings are due to factors that have not been controlled
or measured. Causality, by design, is beyond the scope of this work because attempts to control
the behavior would weaken external validity. Instead, we assume a causal system and attempt to
measure the effects of the tools as implemented in real-world environments. Internal validity
could suffer to the extent that the assumptions were violated by subjective judgments or by the
participants or the analyst.

Under everyday real-world development settings, factors such as developer or management pref-
erences, process compliance, education, training, and so forth will affect the results. Although

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 91
[Distribution Statement A] Approved for public release and unlimited distribution

some of these factors could be accounted for with additional observation or surveys, these were
beyond the scope of this work. Blinding the analyst was impractical. The effect is minimized by
minimizing subjective judgment.

5.5 Limitations and Future Work

Our effectiveness analysis is limited to the defect removal of the tools in the project context and
the operational costs. A more complete treatment of cost/benefit would include acquisition and
licensing costs of the tools, the cost of fielded defects, and the external costs such as impact on the
user. Given additional cost information, a more complete treatment can be found in [Zheng 2006].

In this study we analyzed the operational cost and effectiveness of applying the tools in a real-
world setting. We did not investigate ways to use the tools more effectively or assess the individ-
ual tool use for compliance, specific usage, or comparative effectiveness with tools of similar or
dissimilar type.

We did not investigate the specific coverage of tools with respect to defect type or defect severity;
therefore we cannot assess potential secondary effects when multiple tools are combined. We did,
however, demonstrate that in principle it is possible to gather data using orthogonal defect catego-
rization, and this could be used to extend the analysis capabilities. While the tool yields remain
modest, it seems likely that interactions will be secondary, possibly even for similar tool types.

We investigated the cost effectiveness in organizations that already had defect escape levels that
are low by industry standards [Jones 2011]. Effectiveness for lesser quality development pro-
cesses was not demonstrated. In principle, our model should apply equally well to other organiza-
tions; however, the study may be inhibited by lower quality data. Our model suggests settings
with less effective quality practices should benefit more from these tools because the absolute find
rates will be higher and the potential reduction of test time will be greater.

The sample size is not large enough to exclude the possibility of circumstances that would make
the tools very effective or very ineffective. Absence of evidence is not evidence of absence. Stud-
ies with substantially larger samples are possible in principle but face practical difficulties. We
provide some recommendations for instrumentation that will make the gathering and analysis
more consistent and analyzable.

Because the effect of individual tools can be modest in either relative or absolute terms, observa-
tional studies with less detailed process data will be challenged to resolve the effects on defect es-
capes. This will become more pronounced as additional tools are included in the development. In-
consistencies in which kinds of defects are counted in which of the development phases, and
inconsistencies in effort accounting, will introduce threats to construct validity.

Following products for a longer term to track maintenance effort, deployed defects and
vulnerabilities, patch deployment costs, external costs to users, and so forth will enhance external
validity.

In summary, more study is needed, but the study will require improvements to the process instru-
mentation and data collection.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 92
[Distribution Statement A] Approved for public release and unlimited distribution

5.6 Implications for Cost-Effective Process Composition

Each organization’s use of the tools was modestly effective. There seems little doubt that even
software development projects that are performing well can improve code quality by including
static analysis tools in the development process. Moreover, using these static analysis tools early
is modestly effective in reducing development time by reducing defect find and fix in test. The
difference in find and fix phase efforts more than compensated for the time to operate the tools
and find/fix in test. A partial exception was when the tools were run at integration. The find/fix
advantage is reduced and disappears when we consider the fix cost of evaluating the warnings.

The tools were applied inconsistently not only between organizations but between projects within
the same organization. This could lead not only to inconsistent tool effectiveness, but also to diffi-
culties in evaluating cost effectiveness. We recommend that projects adopt practices that enhance
the consistency of tool use and measurement rather than leave each project to adopt an ad hoc ap-
proach.

Developers and project managers were unwilling to commit resources to either measuring or auto-
mating tool use for this study. No organization had a clear understanding of the cost effectiveness
of the tools. When we consider the modest effects of the tools on the process, we are concerned
that the cost/benefit trade-offs will not be apparent to management or software acquirers. We
therefore recommend the automation of tool usage when practicable to improve both usage con-
sistency and measurement. Isolating tool usage was a mechanism that was helpful with the ac-
counting. Building automation into the build process helped Organization C institutionalize use.

We recommend the following actions to establish usage standards:
• Define the overall workflow and specify when in the development process the tools should be

applied.
• Document the settings to be applied.
• Set clear guidelines for when issues must be remediated, mitigated, or ignored.

We recommend the following actions to establish measurement standards:
• Count all issues reported and mitigated.
• Account for all effort expended running the tool and resolving the issues.

Apply the tools after other manual practices. Tools were observed to sometimes crowd out manual
activities. In particular, we observed a static analysis tool replacing the personal review. The
teams that segregated tool use to after development, reviews, and inspection, but before test,
avoided this problem.

We recommend using static checking tools before test, but after manual review and inspection for
the following reasons:
• Defects are removed when the costs are less than in test.
• It avoids crowding out other effective removal techniques.
• Objective measures of the defect escapes from earlier removal activities are provided.

Defects found by static binary checkers and dynamic checkers have comparable find/fix effort to
other system test defects. Where test resources are constrained (i.e., by personnel availability, the

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 93
[Distribution Statement A] Approved for public release and unlimited distribution

need for special equipment, or by large and time consuming regression tests), it makes the most
sense to run the checkers prior to test. However, if these factors do not apply, the binary and dy-
namic checkers could potentially be used to validate test completeness.

Finally, we observed that there are two simple ways to get through test quickly:
1. Run ineffective tests (or no tests at all).
2. Make sure that the code being tested has few or no bugs to be found.

Software quality and security checking tools should not replace reviews and tests (even uninten-
tionally). Instead, the processes should be composed to verify and validate that the development
process is effective.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 94
[Distribution Statement A] Approved for public release and unlimited distribution

6 Conclusions

In this research we examined data from 39 software projects in three organizations and applica-
tion domains that applied static analysis on code or code and binary, looking for evidence show-
ing how static analysis affects development effort and quality. We gathered the historical process
development parameters from the projects’ data logs and analyzed how sensitive cost and defect
escapes were to changes in the parameters that are affected by static analysis tools. Although or-
ganizations applied different tools at different times during the development process, the results
are consistent with the conclusion that static analysis modestly improves the delivered quality,
and presumably reduces escaped vulnerabilities.

Our analysis was based only on the operational costs; we did not consider the cost of software li-
censes or training costs.

We reached the following conclusions:
1. The tools studied have a positive, but modest, effect on reducing defect escapes.
2. When applied to the code or code and binary prior to integration, the tools studied also have

a modest positive effect on reducing overall project costs.
3. When applied to the code and binary at or after integration, costs increased slightly but were

consistent with the costs of remediating the found defects.
4. Defect fix effort from static code analysis was comparable to personal review and inspection

defect fix times.
5. Defect fix times from static binary analysis were closer to defect fix times from system test.
6. Static code analysis tools are associated with reduced overall development time because they

reduce the number of defects found in the more expensive test phases.
7. Static binary analyses do not shorten development time and require a substantial effort to ad-

dress the findings. The defect fix costs are similar to system test.

We found that defect fix effort was similar to that of defects found in inspections, and binary anal-
ysis results were between code inspection and late test. We therefore observe that overall develop-
ment time is reduced when the defects are removed earlier in the process, but effort is not reduced
when the tools are applied later.

Because static analysis finds were only a small portion the total defects, we also conclude that
static analysis alone is not sufficient, but is a cost effective, incremental improvement to develop-
ment that should be used with other defect removal techniques. This raises the question of why
static analysis is not universally practiced and what incentives will be necessary to increase utili-
zation. One potential answer to the usage gap may be that while the benefits are real but modest,
without detailed effort and defect accounting they may be obscured by natural variation in the
software development process. A second answer may be that the costs are very visible, while the
benefits (i.e., reductions in downstream defects) are less apparent because they are delayed in time
and are sometimes observed by a different set of developers.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 95
[Distribution Statement A] Approved for public release and unlimited distribution

Another observation about the results of using the tools is that the benefits are challenging to con-
nect directly to effort, quality, or development duration. Despite similar data gathering and pro-
cess phases, these three organizations implemented the tools somewhat differently. Understanding
the context and specific usage was a major challenge during our research and required much addi-
tional background information, including discussions with participants and the use of project rec-
ords. This approach will not scale to larger studies. More standardization in the accounting and
automation could enable studies with more data and a broader set of domains.

Increased automation of static analysis and data collection may help to mitigate another problem
we observed. At least one organization appears to have more or less ceased to perform personal
reviews of the code, depending instead on the static analysis tool. This suggests that there is a risk
that the benefits may be partially offset by developers relying on the tool and foregoing or superfi-
cially executing other effective defect removal techniques. The other two organizations at least
partially automated the static analysis into the build later in the development. The organization
that most fully automated the tool had no obvious problems with process compliance.

Finally, continued progress of software analytics can make economic analyses (such as those in
this report) more cost-effective and feasible. Although global rules may apply, examination of lo-
cal behaviors is of significant benefit.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 96
[Distribution Statement A] Approved for public release and unlimited distribution

Appendix: Additional Data

Figure 52: Defect Distribution, HLD (Organization A)

Figure 53: Defect Distribution, HLD Review (Organization A)

1 st Quartile 1 8.1 00
Median 39.700
3rd Quartile 1 20.000
Maximum 1 95.000

31 .848 1 03.632

1 8.735 1 1 3.389

47.450 1 02.21 4

A-Squared 0.85
P-Value 0.022

Mean 67.740
StDev 64.81 2
Variance 4200.554
Skewness 0.876676
Kurtosis -0.606947
N 1 5

Minimum 1 .800

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

1 201 0080604020

95% Confidence Intervals

Organization A, defect_fix_time_minutes "HLD"
removed_phase_name = HLD

1 st Quartile 0.5000
Median 3.7000
3rd Quartile 5.4000
Maximum 20.8000

0.5779 9.8767

0.4753 6.2878

4.8356 1 2.1 454

A-Squared 1 .24
P-Value <0.005

Mean 5.2273
StDev 6.9207
Variance 47.8962
Skewness 1 .67990
Kurtosis 1 .89839
N 1 1

Minimum 0.1 000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

1 086420

95% Confidence Intervals

Organization A, defect_fix_time_minutes
removed_phase_name = HLD Review

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 97
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 54: Defect Distribution, HLD Inspect (Organization A)

Figure 55: Defect Distribution, Design (Organization A)

1 st Quartile 1 .4000
Median 2.8000
3rd Quartile 1 0.1 000
Maximum 76.0000

4.41 08 1 2.5460

2.0000 4.9973

1 2.1 007 1 7.9778

A-Squared 7.1 4
P-Value <0.005

Mean 8.4784
StDev 1 4.4623
Variance 209.1 581
Skewness 3.21 54
Kurtosis 1 1 .6474
N 51

Minimum 0.0000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

1 41 21 08642

95% Confidence Intervals

Organization A, defect_fix_time_minutes
removed_phase_name = HLD Inspect

1 st Quartile 2.850
Median 6.050
3rd Quartile 24.1 25
Maximum 241 .500

1 1 .498 32.895

3.861 9.800

33.680 49.1 07

A-Squared 7.83
P-Value <0.005

Mean 22.1 96
StDev 39.949
Variance 1 595.91 7
Skewness 3.6089
Kurtosis 1 6.4656
N 56

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

3025201 51 050

95% Confidence Intervals

Organization A, defect_fix_time_minutes
removed_phase_name = Design

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 98
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 56: Defect Distribution, Design Review (Organization A)

Figure 57: Defect Distribution, Design Inspect (Organization A)

1 st Quartile 1 .000
Median 3.000
3rd Quartile 8.000
Maximum 364.500

7.374 1 0.579

2.600 3.400

22.21 3 24.482

A-Squared 1 59.58
P-Value <0.005

Mean 8.977
StDev 23.292
Variance 542.502
Skewness 8.1 066
Kurtosis 91 .0082
N 81 4

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

1 08642

95% Confidence Intervals

Summary Report for defect_fix_time_minutes
removed_phase_name = Design Review

1 st Quartile 1 .1 00
Median 3.000
3rd Quartile 7.900
Maximum 367.1 00

8.1 71 1 0.002

3.000 3.200

21 .739 23.034

A-Squared 432.50
P-Value <0.005

Mean 9.087
StDev 22.367
Variance 500.295
Skewness 8.0360
Kurtosis 92.8891
N 2296

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

1 08642

95% Confidence Intervals

Organizatioln A, defect_fix_time_minutes
removed_phase_name = Design Inspect

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 99
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 58: Defect Distribution, Test Development (Organization A)

Figure 59: Defect Distribution, Code (Organization A)

1 st Quartile 3.225
Median 1 3.700
3rd Quartile 34.475
Maximum 1 41 .600

7.227 48.836

3.686 32.783

28.841 60.426

A-Squared 1 .74
P-Value <0.005

Mean 28.031
StDev 39.043
Variance 1 524.342
Skewness 2.0461 4
Kurtosis 4.1 0389
N 1 6

Minimum 0.300

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

504030201 00

95% Confidence Intervals

Defect efect_fix_time_minutes, Organization A, "Test Development"
removed_phase_name = Test Devel

1 st Quartile 2.000
Median 5.500
3rd Quartile 1 6.700
Maximum 992.000

1 6.937 31 .980

5.000 7.476

68.929 79.598

A-Squared 81 .1 4
P-Value <0.005

Mean 24.458
StDev 73.878
Variance 5457.925
Skewness 8.3889
Kurtosis 91 .0724
N 373

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

353025201 51 05

95% Confidence Intervals

Organization A defect_fix_time_minutes
removed_phase_name = Code

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 100
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 60: Defect Distribution, Code Review (Organization A)

Figure 61: Defect Distribution, Compile (Organization A)

1 st Quartile 0.900
Median 2.1 00
3rd Quartile 6.000
Maximum 270.000

6.683 8.605

2.000 2.300

1 8.893 20.253

A-Squared 31 5.83
P-Value <0.005

Mean 7.644
StDev 1 9.549
Variance 382.1 58
Skewness 6.8889
Kurtosis 63.0763
N 1 592

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

8642

95% Confidence Intervals

Organization A defect_fix_time_minutes
removed_phase_name = Code Review

1 st Quartile 0.900
Median 2.500
3rd Quartile 6.1 50
Maximum 603.000

5.675 1 5.01 5

2.000 3.200

37.572 44.201

A-Squared 76.27
P-Value <0.005

Mean 1 0.345
StDev 40.61 6
Variance 1 649.681
Skewness 1 1 .348
Kurtosis 1 57.31 1
N 293

Minimum 0.1 00

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

1 41 21 08642

95% Confidence Intervals

Organization A defect_fix_time_minutes "Compile"
removed_phase_name = Compile

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 101
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 62: Defect Distribution, Code Inspect (Organization A)

Figure 63: Unit Test Defect Distribution, Test (Organization A)

1 st Quartile 1 .200
Median 3.400
3rd Quartile 8.600
Maximum 640.500

9.41 4 1 0.725

3.200 3.600

26.650 27.577

A-Squared 1 31 9.33
P-Value <0.005

Mean 1 0.069
StDev 27.1 05
Variance 734.688
Skewness 9.868
Kurtosis 1 50.379
N 6571

Minimum 0.000

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

1 0864

95% Confidence Intervals

Organization A defect_fix_time_minutes
removed_phase_name = Code Inspect

1 st Quartile 2.80
Median 1 0.00
3rd Quartile 29.03
Maximum 1 500.00

28.90 37.77

8.70 1 0.37

87.29 93.56

A-Squared 307.38
P-Value <0.005

Mean 33.34
StDev 90.32
Variance 81 57.01
Skewness 8.739
Kurtosis 1 04.71 4
N 1 598

Minimum 0.00

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

40353025201 51 0

95% Confidence Intervals

Organization A defect_fix_time_minutes
removed_phase_name = Test

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 102
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 64: Defect Distribution, Integration Test (Organization A)

Figure 65: Defect Distribution, After Development (Organization A)

1 st Quartile 2.50
Median 1 0.40
3rd Quartile 38.50
Maximum 1 060.00

22.63 62.06

7.29 1 5.00

99.96 1 28.08

A-Squared 24.36
P-Value <0.005

Mean 42.34
StDev 1 1 2.27
Variance 1 2605.03
Skewness 6.7350
Kurtosis 55.51 26
N 1 27

Minimum 0.00

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

60504030201 00

95% Confidence Intervals

Organization A defect_fix_time_minutes
removed_phase_name = IT

1 st Quartile 5.300
Median 40.600
3rd Quartile 85.200
Maximum 90.000

-25.01 8 1 1 2.41 8

3.600 90.000

24.464 1 61 .020

A-Squared 0.36
P-Value 0.244

Mean 43.700
StDev 43.1 86
Variance 1 865.000
Skewness 0.1 4691
Kurtosis -4.92273
N 4

Minimum 3.600

Anderson-Darling Normality Test

95% Confidence Interval for Mean

95% Confidence Interval for Median

95% Confidence Interval for StDev

1 5751 3501 1 259006754502250

Median

Mean

1 2080400

95% Confidence Intervals

Organization A defect_fix_time_minutes
removed_phase_name = After Development

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 103
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 66: Defect Fix Time Distribution, Project 612 (Organization A)

Figure 67: Defect Fix Time Distribution, Project 613 (Organization A)

9884705642281 40

0.25

0.20

0.1 5

0.1 0

0.05

0.00

Loc 1 .173
Scale 1 .372
N 2650

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 612

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

9884705642281 40

0.25

0.20

0.1 5

0.1 0

0.05

0.00

Loc 1 .176
Scale 1 .430
N 2122

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 613

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 104
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 68: Defect Fix Time Distribution, Project 614 (Organization A)

Figure 69: Defect Fix Effort, Project 615 (Organization A)

9884705642281 40

0.20

0.1 5

0.1 0

0.05

0.00

Loc 1 .382
Scale 1 .376
N 1612

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 614

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

9884705642281 40

0.20

0.1 5

0.1 0

0.05

0.00

Loc 1 .299
Scale 1 .436
N 7306

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 615

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 105
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 70: Defect Fix Effort, Project 617 (Organization A)

Figure 71: Time Log Entries (Organization A)

1 401 201 00806040200

0.20

0.1 5

0.1 0

0.05

0.00

Loc 1 .534
Scale 1 .493
N 1827

defect_fix_time_minutes

Co
un

t
Histogram of defect_fix_time_minutes

Lognormal
project_key = 617

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

29425221 01 681 2684420

7000

6000

5000

4000

3000

2000

1 000

0

Loc 3.026
Scale 1 .1 77
N 182728

Minutes

Fr
eq

ue
nc

y

Lognormal

Results include rows where 'time_log_delta_minutes' > 0.01 And 'time_log_delta_minutes' < 241.

Organizaton A Time Log Entry Durations

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 106
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 72: Defect Fix Time Distributions for Four Organizations

Figure 73: Defect Fix Time Distributions, Project 47

9884705642281 40

0.4

0.3

0.2

0.1

0.0

9884705642281 40

0.4

0.3

0.2

0.1

0.0

Loc 1 .297
Scale 1 .429
N 15517

A

Loc 0.7648
Scale 1 .394
N 10700

B

Loc 0.7476
Scale 1 .677
N 3245

C

Loc 0.8450
Scale 1 .448
N 3857

D

A

Defect Fix Time [minutes]

Co
un

t
B

C D

Lognormal

Panel variable: Organization
Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

Defect Find and Fix Times (All Projects)

9178655239261 30

0.25

0.20

0.1 5

0.1 0

0.05

0.00

Loc 1 .200
Scale 1 .167
N 123

defect_fix_time_minutes

Co
un

t

Histogram of defect_fix_time_minutes
Lognormal

project_key = 47

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 107
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 74: Defect Fix Time Distributions, Project 48

Figure 75: Defect Fix Time Distributions, Project 49

9178655239261 30

0.4

0.3

0.2

0.1

0.0

Loc 0.8602
Scale 1 .361
N 190

defect_fix_time_minutes

Co
un

t

Histogram of defect_fix_time_minutes
Lognormal

project_key = 48

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

1 961 681 401 1 28456280

0.20

0.1 5

0.1 0

0.05

0.00

Loc 1 .718
Scale 1 .560
N 181

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 49

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 108
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 76: Defect Fix Time Distributions, Project 50

Figure 77: Defect Fix Time Distributions, Project 56

2662281 901 521 1 476380

0.1 2

0.1 0

0.08

0.06

0.04

0.02

0.00

Loc 1 .977
Scale 1 .580
N 135

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 50

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

9178655239261 30

0.35

0.30

0.25

0.20

0.1 5

0.1 0

0.05

0.00

Loc 1 .1 16
Scale 1 .331
N 84

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 56

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 109
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 78: Defect Fix Time Distributions, Project 83

Figure 79: Defect Fix Time Distributions, Project 84

1 751 501 251 007550250

0.04

0.03

0.02

0.01

0.00

Loc 2.838
Scale 1 .004
N 42

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 83

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

9178655239261 30

0.30

0.25

0.20

0.1 5

0.1 0

0.05

0.00

Loc 0.8875
Scale 1 .257
N 112

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 84

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 110
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 80: Defect Fix Time Distributions, Project 95

Figure 81: Defect Fix Time Distributions, Project 101

9884705642281 40

0.4

0.3

0.2

0.1

0.0

Loc 0.8045
Scale 1 .473
N 3335

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 95

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

9178655239261 30

0.25

0.20

0.1 5

0.1 0

0.05

0.00

Loc 1 .101
Scale 1 .251
N 519

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 101

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 111
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 82: Defect Fix Time Distributions, Project 171

Figure 83: Defect Fix Time Distributions, Project 180

1 681 441 20967248240

0.4

0.3

0.2

0.1

0.0

Loc 0.5558
Scale 1 .995
N 180

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 171

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

9178655239261 30

0.4

0.3

0.2

0.1

0.0

Loc 0.5964
Scale 1 .307
N 1440

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 180

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 112
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 84: Defect Fix Time Distributions, Project 181

Figure 85: Defect Fix Time Distributions, Project 182

9178655239261 30

0.4

0.3

0.2

0.1

0.0

Loc 0.5366
Scale 1 .365
N 4478

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 181

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

9178655239261 30

0.5

0.4

0.3

0.2

0.1

0.0

Loc 0.4757
Scale 1 .343
N 617

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 182

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 113
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 86: Defect Fix Time Distributions, Project 183

Figure 87: Defect Fix Time Distributions, Project 184

9178655239261 30

0.30

0.25

0.20

0.1 5

0.1 0

0.05

0.00

Loc 0.9820
Scale 1 .400
N 928

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 183

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

9178655239261 30

0.25

0.20

0.1 5

0.1 0

0.05

0.00

Loc 1 .053
Scale 1 .319
N 1955

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 184

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 114
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 88: Defect Fix Time Distributions, Project 415

Figure 89: Defect Fix Time Distributions, Project 416

9178655239261 30

0.30

0.25

0.20

0.1 5

0.1 0

0.05

0.00

Loc 0.9814
Scale 1 .509
N 147

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 415

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

9178655239261 30

0.5

0.4

0.3

0.2

0.1

0.0

Loc 0.3703
Scale 1 .372
N 303

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 416

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 115
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 90: Defect Fix Time Distributions, Project 419

Figure 91: Defect Fix Time Distributions, Project 449

9884705642281 40

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Loc -0.2248
Scale 1 .121
N 277

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 419

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

1 401 201 00806040200

0.35

0.30

0.25

0.20

0.1 5

0.1 0

0.05

0.00

Loc 1 .350
Scale 1 .580
N 245

defect_fix_time_minutes

Co
un

t

Histogram of defect_fix_time_minutes
Lognormal

project_key = 449

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 116
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 92: Defect Fix Time Distributions, Project 455

Figure 93: Defect Fix Time Distributions, Project 459

1 541 321 1 0886644220

0.25

0.20

0.1 5

0.1 0

0.05

0.00

Loc 0.8202
Scale 1 .849
N 77

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 455

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

9178655239261 30

0.5

0.4

0.3

0.2

0.1

0.0

Loc 0.3124
Scale 1 .709
N 57

defect_fix_time_minutes

Co
un

t

Histogram of defect_fix_time_minutes
Lognormal

project_key = 459

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 117
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 94: Defect Fix Time Distributions, Project 460

Figure 95: Defect Fix Time Distributions, Project 461

1 401 201 00806040200

0.20

0.1 5

0.1 0

0.05

0.00

Loc 1 .372
Scale 1 .570
N 458

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 460

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

1 1 91 02856851341 70

0.20

0.1 5

0.1 0

0.05

0.00

Loc 1 .338
Scale 1 .507
N 509

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 461

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 118
[Distribution Statement A] Approved for public release and unlimited distribution

Figure 96: Defect Fix Time Distributions, Project 606

1 1 91 02856851341 70

0.1 4

0.1 2

0.1 0

0.08

0.06

0.04

0.02

0.00

Loc 1 .660
Scale 1 .363
N 146

defect_fix_time_minutes

D
en

sit
y

Histogram of defect_fix_time_minutes
Lognormal

project_key = 606

Results include rows where 'defect_fix_time_minutes' >0 And 'defect_fix_time_minutes' < 101.

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 119
[Distribution Statement A] Approved for public release and unlimited distribution

References/Bibliography

[Baldwin 2011]
Baldwin, Kristen; Dahmann, Judith; & Goodnight, Jonathan. Systems of Systems and Security: A
Defense Perspective. INCOSE Insight. Volume 14. Issue 2. July 2011. Pages 11-13.

[Bartol 2008]
Bartol, Nadya. Practical Measurement Framework for Software Assurance and Information Secu-
rity, Version 1.0. Practical Software and Systems Measurement. October 1, 2008.
http://www.psmsc.com/Downloads/TechnologyPapers/SwA%20Measurement%2010-08-08.pdf

[Caivano 2005]
Caivano, Danilo. Continuous Software Process Improvement through Statistical Process Control.
Pages 288-293. 9th European Conference on Software Maintenance and Reengineering. IEEE
Press, Manchester. March 2005. https://doi.org/10.1109/CSMR.2005.20

[Caralli 2010]
Caralli, Richard; Allen, Julia; Curtis, Pamela; White, David; & Young, Lisa. CERT Resilience
Management Model, Version 1.0. CMU/SEI-2010-TR-012. Software Engineering Institute, Car-
negie Mellon University. 2010. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=9479

[Chulani 1999]
Chulani, Sunita & Boehm, Barry. Modeling Software Defect Introduction and Removal:
COQUALMO (COnstructive QUALity MOdel). 1999. http://sun-
set.usc.edu/TECHRPTS/1999/usccse99-510/usccse99-510.pdf

[DoD 2017]
Office of Small Business Programs, Department of Defense. Cybersecurity Challenges Protecting
DoD’s Unclassified Information. 2017. http://business.defense.gov/Portals/57/Documents/Pub-
lic%20Meeting%20-%20Jun%2023%202017%20Final.pdf?ver=2017-06-26-143959-047

[Dybå 2012]
Dybå, Tore; Sjøberg, Dag; & Cruzes, Daniela. What Works for Whom, Where, When, and Why?
On the Role of Context in Empirical Software Engineering. 2012 ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM). September 2012.
https://ieeexplore.ieee.org/document/6475393/

[Dybå 2013]
Dybå, Tore. Contextualizing Empirical Evidence. IEEE Software. Volume 30. Issue 1. January-
February 2013. Pages 81-83.

[Ebert 1998]
Ebert, Christof. The Quest for Technical Controlling. Software Process: Improvement and Prac-
tice. Volume 4. Issue 1. March 1998. Pages 21-31. https://doi.org/10.1002/(SICI)1099-
1670(199803)4:1<21::AID-SPIP92>3.0.CO;2-Q

https://doi.org/10.1002/(SICI)1099-1670(199803)4:1%3c21::AID-SPIP92%3e3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1099-1670(199803)4:1%3c21::AID-SPIP92%3e3.0.CO;2-Q
http://www.psmsc.com/Downloads/TechnologyPapers/SwA%20Measurement%2010-08-08.pdf
https://doi.org/10.1109/CSMR.2005.20
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=9479
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=9479
http://sun-set.usc.edu/TECHRPTS/1999/usccse99-510/usccse99-510.pdf
http://sun-set.usc.edu/TECHRPTS/1999/usccse99-510/usccse99-510.pdf
http://business.defense.gov/Portals/57/Documents/Pub-lic%20Meeting%20-%20Jun%2023%202017%20Final.pdf?ver=2017-06-26-143959-047
http://business.defense.gov/Portals/57/Documents/Pub-lic%20Meeting%20-%20Jun%2023%202017%20Final.pdf?ver=2017-06-26-143959-047
https://ieeexplore.ieee.org/document/6475393/

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 120
[Distribution Statement A] Approved for public release and unlimited distribution

[Emanuelsson 2008]
Emanuelsson, Pär & Nilsson, Ulf. A Comparative Study of Industrial Static Analysis Tools. Elec-
tronic Notes in Theoretical Computer Science. Volume 217. July 21, 2008. Pages 5–21.
https://doi.org/10.1016/J.ENTCS.2008.06.039

[Forrester 2006]
Forrester, Eileen. A Process Research Framework. Software Engineering Institute, Carnegie
Mellon University. December 2006. ISBN: 0-9786956-1-5. https://resources.sei.cmu.edu/li-
brary/asset-view.cfm?assetid=30501

[Fritz 2003]
Fritz, Julie & Cleland, Joshua. Effectiveness versus Efficacy: More Than a Debate Over Language.
Journal of Orthopaedic & Sports Physical Therapy. Volume 33. Issue 4. 2003. Pages 163–165.
https://doi.org/10.2519/jospt.2003.33.4.163

[Gartlehner 2006]
Gartlehner, Gerald; Hansen, Richard; Nissman, Daniel; Lohr, Kathleen; & Carey, Timothy.
Criteria for Distinguishing Effectiveness from Efficacy Trials in Systematic Reviews. Technical
Review 12 (Prepared by the RTI-International-University of North Carolina Evidence-based Prac-
tice Center under Contract No. 290-02-0016.) AHRQ Publication No. 06-0046. Rockville, MD:
Agency for Healthcare Research and Quality. April 2006.

[Gibson 2006]
Gibson, Diane; Goldenson, Dennis; & Kost, Keith. Performance Results of CMMI-Based Process
Improvement. CMU/SEI-2006-TR-004. Software Engineering Institute, Carnegie Mellon Univer-
sity. 2006. http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8065

[Hare 1995]
Hare, L.B., Hoerl, R.W., Hromi, J.D., and Snee, R.D. The Role of Statistical Thinking in Manage-
ment. Quality Progress. February 1995. Pages 53-60.

[Heffley 2004]
Heffley, Jon & Meunier, Pascal. Can Source Code Auditing Software Identify Common Vulnera-
bilities and Be Used to Evaluate Software Security? Proceedings of the 37th Annual Hawaii Inter-
national Conference on System Sciences, 2004. https://doi.org/10.1109/HICSS.2004.1265654

[Henry 1995]
Henry, Joel; Rossman, Allan; & Snyder, John. Quantitative Evaluation of Software Process Im-
provement. Journal of Systems and Software, Volume 28, Issue 2, Pages 169–177.
https://doi.org/10.1016/0164-1212(94)00053-P

[Howard 2007]
Howard, Michael & Lipner, Steve. The Security Development Lifecycle. Microsoft Press. May
2006. http://download.microsoft.com/download/f/c/7/fc7d048b-b7a5-4add-be2c-
baaee38091e3/9780735622142_SecurityDevLifecycle_ch01.pdf

https://doi.org/10.1016/J.ENTCS.2008.06.039
https://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetid=30501
https://resources.sei.cmu.edu/li-brary/asset-view.cfm?assetid=30501
https://doi.org/10.2519/jospt.2003.33.4.163
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8065
https://doi.org/10.1109/HICSS.2004.1265654
https://doi.org/10.1016/0164-1212

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 121
[Distribution Statement A] Approved for public release and unlimited distribution

[Humphrey 1999]
Humphrey, Watts. Introduction to the Team Software Process. Addison-Wesley Professional.
1999.

[Humphrey 2010]
Humphrey, Watts; Chick, Timothy; Nichols, William; & Pomeroy-Huff, Marsha. Team Software
Process (TSP) Body of Knowledge (BOK). CMU/SEI-2010-TR-020. Software Engineering Insti-
tute, Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/library/asset-view.cfm?As-
setID=9551

[Jones 2011]
Jones, Capers & Bonsignour, Olivier. The Economics of Software Quality. Addison-Wesley Pro-
fessional. 2011. ISBN-13: 978-0132582209

[Kaner 2004]
Kaner, Cem & Bond, Walter. Software Engineering Metrics: What Do They Measure and How
Do We Know? 10th International Software Metrics Symposium, Metrics. 2004.
http://www.kaner.com/pdfs/metrics2004.pdf

[Kitchenham 1996]
Kitchenham, B & Pfleeger, S. Software Quality: The Elusive Target. IEEE Software. Volume 13.
Issue 1. January 1996. Pages 12–21. https://doi.org/10.1109/52.476281

[Madachy 2008]
Madachy, Raymond & Boehm, Barry. Assessing Quality Processes with ODC COQUALMO. In:
Wang Q., Pfahl D., Raffo D.M. (eds) Making Globally Distributed Software Development a Suc-
cess Story. ICSP 2008. Lecture Notes in Computer Science. Volume 5007. Springer.

[Martin 2014]
Martin, Robert. Non-Malicious Taint: Bad Hygiene Is as Dangerous to the Mission as Malicious
Intent. CrossTalk. Volume 2. March/April 2014. Pages 4–9.

[Mead 2010]
Mead, Nancy & Allen, Julia. Building Assured Systems Framework. CMU/SEI-2010-TR-025.
Software Engineering Institute, Carnegie Mellon University. 2010. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=9611

[Nichols 2012]
Nichols, William. Plan for Success, Model the Cost of Quality. Software Quality Professional.
Volume 14. Issue 2. March 2012. Pages 4–11.

[Paulish 1993]
Paulish, Daniel. Case Studies of Software Process Improvement Methods. CMU/SEI-93-TR-026.
Software Engineering Institute, Carnegie Mellon University. 1993. http://resources.sei.cmu.edu/li-
brary/asset-view.cfm?AssetID=11977

http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=9551
http://resources.sei.cmu.edu/library/asset-view.cfm?As-setID=9551
http://www.kaner.com/pdfs/metrics2004.pdf
https://doi.org/10.1109/52.476281
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=9611
http://resources.sei.cmu.edu/li-brary/asset-view.cfm?AssetID=9611

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 122
[Distribution Statement A] Approved for public release and unlimited distribution

[Paulish 1994]
Paulish, Daniel & Carleton, Anita. Case Studies of Software-Process-Improvement Measurement.
Computer. Volume 27. Issue 9. 1994. Pages 50–57. https://doi.org/10.1109/2.312039

[Paulk 2009]
Paulk, M.; Needy, L.; & Rajgopal, J. Identify Outliers, Understand the Process. ASQ Software
Quality Professional, Volume 11. Issue 2. March 2009. Pages 28-37.

[Peltzman 1975]
Peltzman, Sam. The Effects of Automobile Safety Regulation. Journal of Political Economy. Vol-
ume 83. Issue 4. August 1975. Pages 677-726. https://doi.org/10.1086/260352

[Petersen 2009]
Petersen, Kai & Wohlin, Claes. Context in Industrial Software Engineering Research. ESEM '09
Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and
Measurement. Pages 401–404. https://doi.org/10.1109/ESEM.2009.5316010

[Rozum 1993]
Rozum, James. Concepts on Measuring the Benefits of Software Process Improvement.
CMU/SEI-93-TR-009. Software Engineering Institute, Carnegie Mellon University. 1993.
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11871

[Runeson 2008]
Runeson, P. & Höst, M. Guidelines for Conducting and Reporting Case Study Research in Soft-
ware Engineering. Empirical Software Engineering. Volume 14. 2009. Page 131–164.
https://doi.org/10.1007/s10664-008-9102-8

[Runeson 2012]
Runeson, Per; Host, Martin; Rainer, Austen; & Regnell, Bjorn. Case Study Research in Software
Engineering: Guidelines and Examples. John Wiley & Sons Inc. April 2012.

[Salazar 2014]
Salazar, Rafael; Mejorado, Antonio; & Nichols, William. TSP-PACE: Process and Capability
Evaluation, an Experience Report. TSP Symposium 2014 Proceedings and Presentations. Pages
378–383. Software Engineering Institute, Carnegie Mellon University.

[Schneidewind 1999]
Schneidewind, Norman. Measuring and Evaluating Maintenance Process Using Reliability, Risk,
and Test Metrics. IEEE Transactions on Software Engineering. Volume 25. Issue 6. Novem-
ber/December 1999. Pages 769 – 781. https://doi.org/10.1109/ICSM.1997.624250

[Shin 2011]
Shin, Yonghee & Williams, Laurie. Can Traditional Fault Prediction Models Be Used for Vulner-
ability Prediction? Empirical Software Engineering. Volume 18. 2011. Pages 25–59.
https://doi.org/10.1007/s10664-011-9190-8

https://doi.org/10.1109/2.312039
https://doi.org/10.1086/260352
https://doi.org/10.1109/ESEM.2009.5316010
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=11871
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/ICSM.1997.624250

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 123
[Distribution Statement A] Approved for public release and unlimited distribution

[Shirai 2015]
Shirai Yasutaka & Nichols, William. Project Fact Sheets from the Team Software Process
SEMPR Warehouse. CMU/SEI-SR-007. 2015. Software Engineering Institute, Carnegie Mellon
University.

[Shirai 2014]
Shirai, Yasutaka; Nichols, William; & Kasunic, Mark. Initial Evaluation of Data Quality in a TSP
Software Engineering Project Data Repository. ICSSP 2014 Proceedings of the 2014 Interna-
tional Conference on Software and System Process. Pages 25–29. ACM.
https://doi.org/10.1145/2600821.2600841

[Singal 2014]
Singal, A.; Higgins, P.; & Walijee, A. A Primer on Effectiveness and Efficacy Trials. Clinical and
Translational Gastroenterology. Volume 5. Issue 2. January 2014.
https://doi.org/10.1038/ctg.2013.13

[Snyder, 2015]
Snyder, Don; Powers, James; Bodine-Baron, Elizabeth; Fox, Bernard; Kendrick, Lauren; & Pow-
ell, Michael. Improving the Cybersecurity of U.S. Air Force Military Systems Throughout Their
Lifecycles. Rand Research Report. 2015. ISBN: 978-0-8330-8900-7. https://www.rand.org/con-
tent/dam/rand/pubs/research_reports/RR1000/RR1007/RAND_RR1007.pdf

[SPDI 2014]
Software Process Dashboard Initiative. TSP Process Dashboard Data Warehouse. 2014.
http://www.processdash.com/tpdw

[SPDI 2017]
Software Process Dashboard Initiative. The Software Process Dashboard. August 5, 2017.
http://www.processdash.com/

[Unterkalmsteiner 2012]
Unterkalmsteiner, Michael; Gorschek, Tony; Islam, Moinul; Cheng, Chow Kian, Permadi, Ra-
hadian Bayu; and Feldt, Robert. Evaluation and Measurement of Software Process Improve-
ment—A Systematic Literature Review. IEEE Transactions on Software Engineering. Volume
38. Issue 2. Pages 398-424. DOI: 10.1109/TSE.2011.26

[Vallespir 2011]
Vallespir, Diego & Nichols, William. Analysis of Design Defect Injection and Removal in PSP.
TSP Symposium 2011. Pages 1–28. Software Engineering Institute, Carnegie Mellon University.

[Vallespir 2012]
Vallespir, Diego & Nichols, William. An Analysis of Code Defect Injection and Removal in PSP.
Proceedings of the TSP Symposium 2012. Software Engineering Institute, Carnegie Mellon Uni-
versity.

[van Solingen, 2004]
van Solingen, Rini. Measuring the ROI of Software Process Improvement. IEEE Software. Vol-
ume 21. Issue 3. May-June 2004. Pages 32-38. https://doi.org/10.1109/MS.2004.1293070

https://doi.org/10.1145/2600821.2600841
https://doi.org/10.1038/ctg.2013.13
https://www.rand.org/con-tent/dam/rand/pubs/research_reports/RR1000/RR1007/RAND_RR1007.pdf
https://www.rand.org/con-tent/dam/rand/pubs/research_reports/RR1000/RR1007/RAND_RR1007.pdf
http://www.processdash.com/tpdw
http://www.processdash.com/

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 124
[Distribution Statement A] Approved for public release and unlimited distribution

[Westfall 2007]
Westfall, John; Mold, James; & Fagnan, Lyle. Practice-Based Research—“Blue Highways” on
the NIH Roadmap. JAMA. Volume 297. Issue 4. 2007. Pages 403–406.
doi:10.1001/jama.297.4.403

[Wheeler 2016]
Wheeler, David & Henninger, Amy. State-of-the-Art Resources (SOAR) for Software Vulnerabil-
ity Detection, Test, and Evaluation V2.2. Institute for Defense Analysis. 2016. https://doi.org/IDA
Paper P-5061

[Woody 2015]
Woody, C.; Ellison, R.; & Nichols, W. Predicting Cybersecurity Using Quality Data. 2015 IEEE
International Symposium on Technologies for Homeland Security. 2015. Pages 1–5.
https://doi.org/10.1109/THS.2015.7225327

[Zheng 2006]
Zheng, Jiang; Williams, Laurie; Nagappan, Nachiappan; Snipes, Will; Hudepohl, John; & Vouk,
Mladen. On the Value of Static Analysis for Fault Detection in Software. IEEE Transactions on
Software Engineering. Volume 32. Issue 4. Pages 240–253. https://doi.org/10.1109/TSE.2006.38

https://doi.org/IDA
https://doi.org/10.1109/THS.2015.7225327
https://doi.org/10.1109/THS.2015.7225327

CMU/SEI-2018-TR-004 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY
http://www.sei.cmu.edu

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Publicreportingburdenforthiscollectionofinformationisestimat-
edtoaverage1hourperresponse,includingthetimeforreviewinginstructions,searchingexistingdatasources,gatheringandmaintainingthedataneeded,andcom-
pletingandreviewingthecollectionofinformation.Sendcommentsregardingthisburdenestimateoranyotheraspectofthis-
collectionofinformation,includingsuggestionsforreducingthisburden,toWashingtonHeadquartersServices,DirectorateforinformationOperationsandReports,12
15JeffersonDavisHighway,Suite1204,Arlington,VA22202-4302,andtotheOfficeofManagementandBudget,PaperworkReductionProject(0704-
0188),Washington,DC20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

October 2018
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
Composing Effective Software Security Assurance Workflows

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
William R. Nichols, James D. McHale, David Sweeney, William Snavely, & Aaron Volkman

7. PERFORMING ORGANIZATION NAME(S)AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER
CMU/SEI-2018-TR-004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AFLCMC/PZE/Hanscom
Enterprise Acquisition Division
20 Schilling Circle
Building 1305
Hanscom AFB, MA01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER
n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT(MAXIMUM 200 WORDS)
In an effort to determine how to make secure software development more cost effective, the SEI conducted a research study to empiri-
cally measure the effects that security tools—primarily automated static analysis tools—had on costs (measured by developer effort and
schedule) and benefits (measured by defect and vulnerability reduction). The data used for this research came from 35 projects in three
organizations that used both the Team Software Process and at least one automated static analysis (ASA) tool on source code or
source code and binary. In every case quality levels improved when the tools were used, though modestly. In two organizations, use of
the tools reduced total development effort. Effort increased in the third organization, but defect removal costs were reduced compared to
the costs of fixes in system test. This study indicates that organizations should employ ASA tools to improve quality and reduce effort.
There is some evidence, however, that using the tools could “crowd out” other defect removal activities, reducing the potential benefit.
To avoid overreliance, the tools should be employed after other activities where practicable. When system test cycles require expensive
equipment, ASA tools should pre-cede test; otherwise, there are advantages to applying them after system test.

14. SUBJECT TERMS
Software measurement, software security, static analysis, automated static analysis, secure
software development, case study, tools

15. NUMBER OF PAGES
125

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN7540-01-280-5500 Standard Form 298 (Rev.2-89) Prescribed by ANSI Std. Z39-
18298-102

http://www.sei.cmu.edu

	Acknowledgments
	Abstract
	1 Introduction
	1.1 An Economic Challenge for Cybersecurity
	1.2 Modeling and Predicting Software Vulnerabilities
	1.3 Software Development Approaches
	1.4 Static Analysis Tools
	Static Analysis Tool A
	Tool_B_1
	Tool_B_2
	Tool_C

	1.5 Development Lifecycle

	2 Research Approach
	2.1 Approach Background
	2.1.1 Software Process Improvement
	2.1.1.1 Pre-Post Comparison
	2.1.1.2 Statistical Analysis
	2.1.1.3 Cost/Benefit Analysis
	2.1.1.4 Statistical Process Control
	2.1.1.5 Historic SPI Study Weaknesses
	2.1.1.6 Hybrid Methods Using Participant Surveys

	2.1.2 Case Studies, Quasi-experiments, and Action Research
	2.1.3 Effectiveness vs. Efficacy

	2.2 Study Design
	2.2.1 Participant Selection
	2.2.2 Data Collection
	2.2.3 Data Storage
	2.2.4 Data Analysis
	2.2.4.1 Data Extraction
	2.2.4.2 Data Cleaning
	2.2.4.3 Statistical Analysis
	2.2.4.4 Modeling

	3 Data Collection and Processing
	3.1 Process Activity Mapping
	3.2 Data Collection
	3.3 Data Definitions

	4 Results
	4.1 Organization A
	4.2 Organization B
	4.3 Organization C
	4.4 Overall Find and Fix Times

	5 Discussion
	5.1 Effectiveness of Defect Removal
	5.2 Cost of Defect Removal
	5.3 Are False Positives a Problem?
	5.4 Threats to Validity
	5.4.1 External Validity
	5.4.2 Construct Validity
	5.4.3 Internal Validity

	5.5 Limitations and Future Work
	5.6 Implications for Cost-Effective Process Composition

	6 Conclusions
	Appendix: Additional Data
	References/Bibliography

