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Executive Summary 

Recent trends in System-on-a-Chip show that an increasing number of special-purpose processors 
are being added to improve the efficiency of common operations. Unfortunately, the use of these 
processors may introduce suspension delays incurred by communication, synchronization, and ex-
ternal I/O operations. When these processors are used in real-time systems, conventional sched-
ulability analyses incorporate these delays in the worst-case execution/response time, hence sig-
nificantly reducing the schedulable utilization. 

This report describes schedulability analyses and proposes segment-fixed priority scheduling for 
self-suspending tasks. We model the tasks as segments of execution separated by suspensions. We 
start from providing response-time analyses for self-suspending tasks under Rate Monotonic 
Scheduling (RMS). While RMS is shown to not be optimal, it can be used effectively in some 
special cases that we have identified. We then derive a utilization bound for the cases as a func-
tion of the ratio of the suspension duration to the period of the tasks. For general cases, we de-
velop a segment-fixed priority scheduling scheme. Our scheme assigns individual segments dif-
ferent priorities and phase offsets that are used for phase enforcement to control the unexpected 
self-suspending nature. 
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1 Introduction 

Recent trends in System-on-a-Chip (SoC) show that an increasing number of special-purpose 
processors in these systems are added to improve the efficiency of frequently-used operations [5]. 
For example, NVIDIA offers a CUDA-compatible mobile processor [10] to support demanding 
operations on mobile platforms. Figure 1 illustrates a high-level diagram of a modern SoC 
composed of various subsystems such as multimedia and modem subsystems. Unfortunately, the 
use of such special-purpose processors (a.k.a. hardware accelerators) may introduce suspension 
delays that must be taken into account in a schedulability analysis when a task waits for a shared 
resource and interacts with an I/O device or communication interface. Offloading complex 
computations to hardware accelerators such as Digital Signal Processors (DSPs) or Graphics 
Processing Units (GPUs) can cause suspension delays as well. Many conventional real-time 
theories [17] have incorporated the delays in the worst-case execution/response time of a task that 
suspends itself1. Even though the analyses can guarantee the timeliness of systems, the analysis 
results may have significant pessimism. A pessimistic analysis is not desirable in a compute-
intensive system such as a self-driving car that we have recently developed [28]. Such systems 
run computation-demanding algorithms ranging from perception [6] to planning [19], [9] on 
GPUs in real-time. In this case, if we use traditional schedulability analysis, the potential 
utilization improvement due to the use of GPUs is eliminated by the pessimism in the CPU 
scheduling. 

 

Figure 1: Modern SoC architecture. 

In this paper, we present a new scheme to schedule self-suspending tasks to improve their 
schedulable utilization. To derive our new scheme we first study the schedulability of these tasks 
under Rate Monotonic Scheduling (RMS) [16] that is widely used in embedded real-time OSes 
like OSEK and general-purpose OSes such as Linux. RMS is also known to be the optimal fixed-
priority scheduling policy for non-suspending tasks. Explicitly modeling self-suspending real-
time tasks is desirable to remove the pessimism described above, but it breaks a common 
assumption of RMS that tasks do not suspend themselves during run-time, making RMS not 

 

1 To be more precise, the self-suspension durations of tasks that have higher priority than the current task should 
also be incorporated. 
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directly applicable. Since such self-suspending behaviors can cause unexpected jitters, the critical 
scheduling instant and utilization bound test defined and proved in [16] do not always hold for 
self-suspending tasks. Therefore, RMS is not an optimal scheduling algorithm for this type of 
tasks. In other words, there exist other scheduling algorithms that can schedule tasksets that 
cannot be scheduled under RMS. 

Research on self-suspending tasks is limited. In [24] the authors proved that the problem of 
scheduling self-suspending tasks is NP-hard in the strong sense. There has also been recent work 
on scheduling self-suspending tasks for soft real-time systems [15]. Table 1 shows a brief 
overview of related research on scheduling self-suspending tasks in hard real-time systems along 
with the problems that we will tackle in this paper. Detailed related work can be found in Section 
5. 

1.1 Contributions2   

In this paper, we provide schedulability analyses for self-suspending tasks. We first provide 
response-time analyses for the highest-priority self-suspending task and non-suspending tasks 
with RMS [16] and identify the conditions when RMS can be used without modifications. We 
then derive a utilization bound as a function of the ratio of suspension time to the task period 
when RMS is compatible. 

Table 1: Overview of related work per research problem 

 Assumptions   

Problems Uses 
enforcement 

Deadlines Arrivals Scheduler Work Comments 

Schedulability 
analysis 

No Constrained 
deadlines 

Periodic FPS [3]  

Schedulability 
analysis 

Yes Implicit 
deadlines 

Sporadic FPS [14] The lowest priority task can suspend 
itself; other tasks cannot. 

Schedulability 
analysis 

No Constrained 
deadlines 

Periodic FPS This 
paper 

The highest priority task can 
suspend itself; other tasks cannot. 

Utilization bound No Implicit 
deadlines 

Periodic FPS This 
paper 

The highest priority task can 
suspend itself; other tasks cannot. 

Schedulability 
analysis 

Yes Constrained 
deadlines 

Sporadic SFPS This 
paper 

 

Phase and 
priority 

assignment 

Yes Constrained 
deadlines 

Sporadic SFPS This 
paper 

Assignment using MILP; it is not 
optimal but it is optimal with respect 
to the schedulability test used. 

Phase and 
priority 

assignment 

Yes Constrained 
deadlines 

Sporadic SFPS This 
paper 

Heuristics 

 

2 This paper is an updated version of our previous paper published at RTSS'13 [13] which had errors. The correc-
tions are mainly made in Sections 3.2 and 4.1. 
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To improve the schedulability of a taskset that is not compatible with RMS, we propose the 
segment-fixed priority scheduling (SFPS) that decomposes self-suspending tasks into multiple 
segments assigning them different priorities if needed. We use phase enforcement to prevent 
jitters [22], [14]. 

1.2 Organization 

The rest of this paper is organized as follows. In Section 2, we define our self-suspending task 
model. Section 3 provides schedulability analyses for self-suspending tasks when a task-fixed 
priority scheduling is used. Then, in Section 4, we propose our new scheme segment-fixed 
priority scheduling to overcome the drawbacks of task-fixed priority scheduling. Section 5 
presents related work. Finally, we conclude our paper and discuss future work in Section 6. 
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2 System Model and Assumptions 

Consider a constrained-deadline sporadic taskset ડ: {߬ଵ, ߬ଶ, … , ߬௡} of multi-stage3 tasks scheduled 
on a single processor. A task ߬௜ generates a (potentially infinite) sequence of jobs. The arrival 
times of two jobs of task ߬௜ are separated by at least ௜ܶ time units. This is referred to as a sporadic 
model. In some cases, we study a periodic model (which is a special case of the sporadic model), 
in which the first job of a task ߬௜ can arrive at any time but arrival times of any pair of consecutive 
jobs of ߬௜ are separated by exactly ௜ܶ time units. 

A task ߬௜ consists of ݏ௜ computing stages (with ݏ௜ ≥ 1) with suspension between consecutive 
computing stages and each stage consists of a single segment — see Figure 2. Let ߬௜,௝ denote the ݆௧௛ computing segment of ߬௜. The times at which ߬௜,ଵ becomes ready for execution are the times 
when a job of task ߬௜ arrives. For 2 ≤ ݆ ≤  ௜, when ߬௜,௝ିଵ finishes its execution, it suspends itselfݏ

for a time duration that lies in ൣܩ௜,௝ିଵெ௜௡ , ௜,௝ିଵெ௔௫ܩ ൧ and then ߬௜,௝ becomes ready for execution. In 

Section 3, we assume ܩ௜,௝ெ௜௡ = ௜,௝ܩ ௜,௝ெ௔௫ and for short-hand notation, letܩ = ௜,௝ெ௜௡ܩ =  ௜,௝ெ௔௫. Inܩ

Section 4, we assume ܩ௜,௝ெ௜௡ and ܩ௜,௝ெ௔௫ can take non-negative values such that ܩ௜,௝ெ௜௡ ≤  ௜,௝ெ௔௫ andܩ

let ܩ௜,௝ =  .௜,௝ெ௔௫ܩ

For each job, a segment ߬௜,௝ executes for a time duration that lies in ൣ0,  ௜,௝൧. The response time ofܥ
a job is the finishing time of ߬௜,௦೔ of the job minus the arrival time of the job. The worst-case 

response time of a task ߬௜ (denoted ܴ௜) is the maximum possible value that the response time of a 
job of task ߬௜ can take. In Section 3, we assume that ߬௜,௝ always executes for ܥ௜,௝. In Section 4, we 
relax this assumption so that the execution time of ߬௜,௝ can vary between 0 and ܥ௜,௝. The deadline 

of ߬௜ is denoted ܦ௜. If ∀߬௜ ∈ ડ: ௜ܦ ≤ ௜ܶ then we say that the taskset is a constrained-deadline 
taskset. If ∀߬௜ ∈ ડ:ܦ௜ = ௜ܶ then we say that the taskset is an implicit-deadline taskset. We 
consider a constrained-deadline sporadic taskset. Our goal is to develop scheduling algorithms 
and for each scheduling algorithm, develop a method (schedulability analysis) that computes ܴ௜ or 
an upper bound on ܴ௜. 
For convenience, we use the following notations: ܥ௜ = ∑௦೔௝ୀଵ ௜ܩ ௜,௝ andܥ = ∑௦೔ିଵ௝ୀଵ ௜ܮ ௜,௝ andܩ =௜ܶ − ܴ௜. We also assume (with no loss of generality) that the tasks in ડ are sorted in non-
decreasing order of ௜ܶ parameters, that is, ଵܶ ≤ ଶܶ ≤ ⋯ ≤ ௡ܶ. We assume that all computing 
segments are preemptable with insignificant cost. We also assume that the cost of state transitions 
between computing and suspending stages is negligible on a processor. 

 

 

3 We will use the terms 'segments' and 'stages' interchangeably because there is exactly one segment per stage. 
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Figure 2: A multi-segment self-suspending real-time task model. 

2.1  Application of a Multi-Segment Self-Suspending Real-Time Task 
Model   

A task leveraging GPU can be modeled using a multi-segment self-suspending real-time task 
model. For example, a planning algorithm for autonomous driving can benefit from using GPU by 
calculating numerous potential paths in parallel [19]. The motion planning algorithm receives its 
inputs such as the current vehicle status, the road map data, and a list of obstacles that are static or 
dynamic. The preprocessing for motion planning (߬௣௟௔௡,ଵ) occurs on CPU, and the processed data 

are transferred to the GPU to generate the best trajectory. While the algorithm runs on the GPU 
 the CPU will let other algorithms run. Once the best trajectory is found, the output is ,(௣௟௔௡,ଵܩ)
extrapolated (߬௣௟௔௡,ଶ) to be used by an embedded controller. This happens repeatedly every ௣ܶ௟௔௡ 
units of time, and this algorithm can be represented as ߬௣௟௔௡: ,௣௟௔௡,ଵܥ)) ,௣௟௔௡,ଵܩ ,(௣௟௔௡,ଶܥ ௣ܶ௟௔௡). 
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3 Fixed Priority Scheduling for Self-Suspending Tasks 

In this section we investigate the schedulability of tasksets composed of periodic self-suspending 
tasks under RMS. We first consider a simple taskset composed of one self-suspending task and 
one non-suspending task4. Under the assumption that the self-suspending task is the highest 
priority task, we provide a response-time test and derive a utilization bound with rate-monotonic 
policy. We then look at the case of having ݊ self-suspending tasks. To simplify our discussion, we 
assume a constant gap ܩ௜,௝ = ௜,௝ெ௜௡ܩ =  ௜,௝ units ofܥ ௜,௝ெ௔௫ and a segment ߬௜,௝ that always runs forܩ

time. 

3.1 One Self-Suspending Task and One Non-Suspending Task 

Consider a taskset Γଵ௦ଵ௡ with one self-suspending task and one non-suspending sporadic task. Let ߬ଵ௦௦ denote the self-suspending task, and ߬ଶ is the non-suspending task. We assume that the self-
suspending task has the highest priority. Then, the following properties are satisfied. 

Theorem 1: For ߁ଵ௦ଵ௡, a critical instant happens when ߬ଶ arrives at the same time as one of the 
segments of ߬ଵ௦௦.  
Proof. A critical instant for ߬ଶ is when the response time of ߬ଶ is maximized. Since ߬ଶ is a non-
suspending task, a processor will be busy during the execution of ߬ଶ including preemptions 
incurred by ߬ଵ௦௦. Let ܴଶଵ denote the response-time of the first job of ߬ଶ. We assume that the first 
job of ߬ଵ௦௦ arrives at the time origin, and ߶ଶ denotes the release time offset of ߬ଶ to the time 
origin. We limit the range of ߶ଶ between 0 to ଵܶ because ߬ଵ௦௦ is periodic and the time origin can 
be transformed to any of the time instant when a job of ߬ଵ௦௦ is released. For ease of notation, we 
define ܥ௜,଴ = 0 and ܩ௜,଴ = 0. Let ݊థమ denote the largest integer in ൛݊|߶ଶ − ∑௡௜ୀ଴ ൫ܥଵ,௜ + ଵ,௜൯ܩ ≥0	and	݊ ∈ ℤ଴ൟ. Then, ܴଶଵ can be found by solving the following equation.   

 ܴଶଵ = ∑௦భ௜ୀଵ ඄ோమభାథమି∑೔షభೕసబ ൫஼భ,ೕାீభ,ೕ൯భ் ඈ ଵ,௜ܥ − ∑௡ഝమ௜ୀ଴  ଵ,௜ܥ
 						−min ൬ܥଵ,௡ഝమାଵ, ߶ଶ − ∑௡ഝమ௝ୀ଴ ൫ܥଵ,௝ + ଵ,௝൯൰ܩ +  ଶ (1)ܥ

Equation (1) calculates the length of busy-period while ߬ଶ is being executed from time ߶ଶ to ߶ଶ +ܴଶଵ. We do not start from the time origin because the processor could be idle while ߬ଵ௦௦ suspends 
itself. That is why we subtract the executions of ߬ଵ௦௦ from the time origin to ߶ଶ, where the first ݊థమ segments of ߬ଵ௦௦ are executed intact and the ൫݊థమ + 1൯௧௛ segment may or may not fully run 

before ߬ଶ arrives. 

 

4 'Periodic tasks' are interchangeably used with 'non-suspending tasks' in this paper. 
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Figure 3: The illustration of Equation (1) to find the response time of ߬ଶ. 

The solution will be the first intersection of a 45∘ line (the left-hand side of Equation (1)) and a 
step function (the right-hand side of Equation (1)) as illustrated in Figure 3. Although the solution 
cannot be obtained easily because there are two unknowns with one equation, we can find a useful 
property of the equation. With respect to ߶ଶ, the term that subtracts in Equation (1) is minimized 

only when ߶ଶ − ∑௡ഝమ௝ୀ଴ ൫ܥଵ,௝ + ଵ,ଵܥ ,ଵ,௝൯ is 0. Therefore, ߶ଶ can be selected from 0ܩ + ଵ,ଵ, ∑ଶ௝ୀଵܩ ൫ܥଵ,௝ + ଵ,௝൯, …, or ∑௦భିଵ௝ୀଵܩ ൫ܥଵ,௝ +  ଵ segments. Those values are alignedݏ ଵ,௝൯ when ߬ଵ௦௦ hasܩ

with the release time of each segment of ߬ଵ௦௦. Then, let Φଶ denote a set of possible values of ߶ଶ 
as described above. 

With the given ߶ଶ, ܴଶଵ can be found from the equation. Let ܴଶଵ(߶) denote the value of the 
response-time of ߬ଶ according to ߶. maxథ∈஍మܴଶଵ(߶) is the worst-case response time of ߬ଶ because 

going through all elements from Φଶ gives all the possible values of the response-time of ߬ଶ. 
Therefore, for Γଵ௦ଵ௡, a critical scheduling instant happens when ߬ଶ arrives at the same time as one 
of the segments of ߬ଵ௦௦.  ∎	 
From Theorem 1, we can derive the following corollary. 

Corollary 1:  For ߁ଵ௦ଵ௡, the worst-case response time of ߬ଶ is given as ܴଶ =  ,(߶)థ∈ఃమܴଶݔܽ݉
where ߔଶ is a set that has each segment release offset of the first job of ߬ଵ௦௦ and ܴଶ(߶) returns the 
response time of ߬ଶ under the given release offset ߶.  

Proof. It follows from the proof of Theorem 1.  ∎ 

The following lemma is useful because the worst-case phasing can be obtained by just checking 
the given task parameters. 

Lemma 1:  Consider a taskset having a self-suspending task with two segments ߬ଵ௦௦: ,ଵ,ଵܥ)) ,ଵ,ଵܩ ,(ଵ,ଶܥ ଵܶ) and a non-suspending task ߬ଶ: ,ଶܥ) ଶܶ). Then, the taskset is compatible 
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with RMS if ܥଵ,ଵ ≥ ଵ,ଶܥ ଵ,ଶ andܥ + ଵܮ ≥ ଵ,ଵܥ + ଵ,ଵ, where ଵܶܩ = ଵ,ଵܥ + ଵ,ଵܩ + ଵ,ଶܥ +  ଵ because ߬ଵ௦௦ is the highest priority task. In other words, the critical scheduling instant for the given tasksetܮ
happens when ߬ଵ௦௦ and ߬ଶ arrive at the same time.  

Proof. Theorem 1 states that we can use either 0 or ܥଵ,ଵ +  .ଵ,ଵ as ߶ for ߬ଶ for this particular caseܩ

Therefore, Equation (1) becomes equivalent to the following:  ܴଶ(߶) = ඄ܴଶ(߶) + ߶ଵܶ ඈ ଵ,ଵܥ + ඄ܴଶ(߶) + ߶ − ଵ,ଵܥ − ଵ,ଵଵܶܩ ඈ ଵ,ଶܥ − ඄߶ܶଵඈ ଵ,ଵܥ − ඄߶ − ଵ,ଵܥ − ଵ,ଵଵܶܩ ඈ +ଵ,ଶܥ  ଶܥ

where ߶ is a release offset of ߬ଶ to ߬ଵ௦௦. Since we assume that ߬ଵ௦௦ is released at the time origin, ߶ 

could be either 0 or ܥଵ,ଵ + ଵ,ଵ. When ߶ is 0, both ቒథ்భቓܩ ଵ,ଵ and ቒథି஼భ,భିீభ,భభ்ܥ ቓ  ଵ,ଶ become 0ܥ

because 0 ≤ ߶ < ଵܶ. Similarly, if ߶ is ܥଵ,ଵ + ଵ,ଵ, ቒథି஼భ,భିீభ,భభ்ܩ ቓ  ଵ,ଶ becomes 0. Then, we have theܥ

following two equations: 

 

 ܴଶ(߶ଶ,ଵ) = ቒோమ(థమ,భ)భ் ቓ ଵ,ଵܥ + ቒோమ(థమ,భ)ି஼భ,భିீభ,భభ் ቓ ଵ,ଶܥ +  ଶ (2)ܥ

 ܴଶ(߶ଶ,ଶ) = ቀቒோమ(థమ,మ)ା஼భ,భାீభ,భభ் ቓ − 1ቁܥଵ,ଵ + ቒோమ(థమ,మ)భ் ቓ ଵ,ଶܥ +  ଶ (3)ܥ

where ߶ଶ,ଵ = 0 and ߶ଶ,ଶ = ଵ,ଵܥ +  .ଵ,ଵܩ

We want to identify conditions where ܴଶ(߶ଶ,ଵ) ≥ ܴଶ(߶ଶ,ଶ) is always satisfied. Let ݂(ݔ) =ቒ ௫்భቓ ଵ,ଵܥ + ቒ௫ି஼భ,భିீభ,భభ் ቓ ଵ,ଶܥ + ݔ)݂ ଶ. Then, the right hand side of Equation (3) isܥ + ଵ,ଵܥ + (ଵ,ଵܩ (ݔ)݂ ଵ,ଵ. If we can find conditions that always satisfyܥ− − ݔ)݂ + ଵ,ଵܥ + (ଵ,ଵܩ + ଵ,ଵܥ ≥ 0, RMS can 

be used without any modification for the given taskset. Then, we can have the following:  

(ݔ)݂  − ݔ)݂ + ଵ,ଵܥ + (ଵ,ଵܩ + ଵ,ଵܥ = ቀ1 + ቒ ௫்భቓ − ቒ௫ା஼భ,భାீభ,భభ் ቓቁ ଵ,ଵܥ − ቀቒ ௫்భቓ − ቒ௫ି஼భ,భିீభ,భభ் ቓቁܥଵ,ଶ 

 = ቀ1 + ቒ ௫்భቓ − ቒ௫ା஼భ,భାீభ,భభ் ቓቁܥଵ,ଵ − ቀ1 + ቒ ௫்భቓ − ቒ௫ା஼భ,మା௅భభ் ቓቁ  ଵ,ଶ (4)ܥ

 If ܥଵ,ଵ ≥ ଵ,ଶܥ ଵ,ଶ andܥ + ଵܮ ≥ ଵ,ଵܥ +  ଵ,ଵ, Equation (4) is always non-negative. This proves theܩ

lemma. 	 ∎ 

Since Lemma 1 shows the property only when ܥଵ,ଵ ≥ -ଵ,ଶ, it would be useful to find RMSܥ
compatible tasksets that having a self-suspending task satisfying ܥଵ,ଵ <  .ଵ,ଶܥ
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(a) ߶ = 0 (b) ߶ = ଵ,ଵܥ +  ଵ,ଵܩ

Figure 4: ܴଶ in the case of ൫ܥଵ,ଵ < ଵ,ଶ൯ܥ ∧ ൫ܩଵ,ଵ ≤ ଶܥ <  .ଵ൯ܮ
Lemma 2: Consider a taskset having a self-suspending task with two segments ߬ଵ௦௦: ,ଵ,ଵܥ)) ,ଵ,ଵܩ ,(ଵ,ଶܥ ଵܶ) and a non-suspending task ߬ଶ: ,ଶܥ) ଶܶ). Then, the taskset is compatible 
with RMS if ܥଵ,ଵ < ଵ,ଵܩ ଵ,ଶ andܥ ≤ ଶܥ <   .ଵܮ

Proof. When ܩଵ,ଵ ≤ ଶܥ <  ଵ, the task ߬ଶ will be preempted more when ߬ଶ is aligned with the firstܮ

segment of ߬ଵ௦௦. The task ߬ଶ will be preempted by both segments of ߬ଵ௦௦, but ߬ଶ will be preempted 
only once if it is aligned with the second segment as illustrated in Figure 4.  ∎ 

 

Figure 5: An exemplary taskset, where the worst case phasing between ߬ଶ and ߬ଵ is different from the 
one between ߬ଷ and ߬ଵ. 

3.2 One Self-Suspending Task and Many Periodic Tasks 

Although we extend the results described in the previous section to understand a case when there 
are one self-suspending task and many non-suspending tasks, finding a critical scheduling instant 
is not trivial. Consider a taskset Γ that is composed of three tasks: ߬ଵ: ,ߝ1,2)) 2),5), ߬ଶ: ,ߝ) 5 +  ,(ߝ
and ߬ଷ: ,ߝ3) 5 +  The worst-case response time of ߬ଶ occurs when ߬ଶ is released with the .(ߝ2
second segment of ߬ଵ; however, this is not the case for ߬ଷ. Instead, the worst-case phasing occurs 
when ߬ଷ is aligned with the first segment of ߬ଵ as depicted in Figure 5. Therefore, we can claim 
the following proposition. 

Proposition 1:  Consider a taskset ߁ଵ௦ that has one self-suspending task and ݊ − 1 non-
suspending tasks. Let ߬ଵ௦௦ denote the self-suspending task, and ߬௜ a non-suspending task when 1 < ݅ ≤ ݊. We assume that the self-suspending task has the highest priority. If ݅ < ݆, ߬௜ has a 
higher priority than ௝߬. We let ߶௜∗ denote the phasing of ߬௜ and ߬ଵ௦௦ that causes the worst-case 
response time of ߬௜. Then, ߶௜∗ may not be the same as ߶௝∗ when ݅ < ݆.  
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We assume that the first job of ߬ଵ௦௦ arrives at the time origin. Let Φଵ௦௦ denote a set of arrival 
times, where each arrival time is a time instant when a segment of the first job of ߬ଵ௦௦ is released. 
In other words, Φଵ௦௦ = {0, ൫ܥଵ,ଵ + …,ଵ,ଵ൯ܩ , ∑௦భିଵ௝ୀଵ ൫ܥଵ,௝ + :ଵ,௝൯}. We also define a function ܴ௜(߶ሬԦ௜) that returns the response time of ߬௜, where ߶ሬԦ௜ܩ (߶ଶ,߶ଷ, … ,߶௜) is a (݅ − 1)-dimensional 
vector for ݅ ≥ 2. Each element of ߶ሬԦ௜ is an arrival offset to the arrival of ߬ଵ௦௦ of a non-suspending 
task ௝߬, ∀݆ ∈ {݆|݆ ∈ ℤାand1 < ݆ ≤ ݅}. The actual value of each element is one of the elements in 

Algorithm 1: CPU-Execution-Before-Arrival(Γ, ݅, ߶పሬሬሬԦ) 
Input: Γଵ௦: a taskset including a self-suspending task and n−1 non-suspending tasks, i: a task index,  ߶పሬሬሬԦ = (߶ଶ,߶ଷ,… ,߶௜): an offset vector 

Output: Amount of CPU execution before ߶௜ from jobs of tasks that have higher priority than τi  

1: Ω ≔ {݊|߶௜ − ∑ ൫ܥଵ,௦ + ଵ,௦൯ܩ ≥ 0௡௦ୀ଴  and ݊ ∈ ℤ଴} 

2: ݊థ೔ ≔  	௡∈ஐ݊ݔܽ݉
3: ⊳ Define an array of idle times between 0 and ߶௜ 
4: for ݈ = 0 to ݊థ೔ do 

[݈]݈݁݀ܫ :5 ≔  ଵ,௟ܩ
థ೔݊ൣ݈݁݀ܫ :6 + 1൧ ≔ max	(0,߶௜ − ∑ ൫ܥଵ,௝ + ଵ,௝൯௡ഝ೔௝ୀ଴ܥ −  (ଵ,௡ഝ೔ାଵܥ
7: ⊳ Consider the execution times of non-suspending tasks. 

8: for ݈ =  do ݅	݋ݐ	2

9: if ߶௟ < 	߶௜  then 

10:  ⊳ Let m be an integer satisfying ߶௟ = 	∑ ଵ,௝ܥ) + ଵ,௝)௠௝ୀ଴ܩ  

௟ܧ  :11 ≔  ௟ܥ
12:  for ݌ = థ೔݊	݋ݐ	݉ + 1	do 

[݌]݈݁݀ܫ   :13 ≔ [݌]݈݁݀ܫ −  ௟ܧ
14:   if Idle[p] < 0 then 

௟ܧ    :15 ≔ [݌]݈݁݀ܫ and [݌]݈݁݀ܫ− ≔ 0 

16:   else 

17:    break 

18: return ߶௜ − ∑ ௡ഝ೔ାଵ௝ୀ଴[݆]݈݁݀ܫ  
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Φଵ௦௦. When ݅ > 2, the actual value of ܴ௜(߶ሬԦ௜) can be obtained by solving the following equation 
that is extended from Equation (1).   ܴ௜(߶ሬԦ௜) = ௜ܥ + ∑௦భ௝ୀଵ ඄ோ೔(థሬሬሬԦ೔)ାథ೔ି∑ೕషభೖసబ ൫஼భ,ೖାீభ,ೖ൯భ் ඈ ଵ,௝ܥ + ∑௜ିଵ௝ୀଶ ඄ோ೔(థሬሬሬԦ೔)ାథ೔ିథೕ்ೕ ඈܥ௝ −  ௜(߶ሬԦ௜) (5)ܧ

where ܧ௜(߶ሬԦ௜) is CPU execution time incurred by tasks that have higher priority than ߬௜ between 
the time origin and the time when ߬௜ arrives. ܧ௜(߶ሬԦ௜) can be found using Algorithm 1. For ease of 
notation, we use ܥ௜,଴ = 0 and ܩ௜,଴ = 0. Equation (5) is similar to Equation (1) except that it 

considers more non-suspending tasks. ܧ௜(߶ሬԦ௜) of the right-hand side of Equation (5) comes from 
the fact that the tasks that have higher priority than ߬௜ can have different release offsets. The 
solution of Equation (5) can be obtained using Algorithm 2. By going through all possible 
combinations of ߶ሬԦ௜, we can find the worst-case response time ܴ௜ of ߬௜. If ܴ௜ ≤  ௜, ߬௜ isܦ
schedulable. 

Although we can find the schedulability of Γଵ௦, the exponential complexity of the given algorithm 
is not desirable. Lemmas 1 and 2 give useful intuitions in this case, where a critical scheduling 
instant for a taskset can be identified by looking at task parameters. If the critical instant is when 
all the tasks arrive at the same time, the traditional fixed priority scheduling properties can be 
applied. In other words, the lemmas can help us with easily classifying a taskset with a self-
suspending task into a category that RMS can be used without any modification. 

 

Algorithm 2: Response-Time(Γ, ݅, ߶పሬሬሬԦ) 
Input: Γଵ௦: a taskset including a self-suspending task and ݊ − 1 non-suspending tasks, ݅: a task index, ߶పሬሬሬԦ = (߶ଶ, ߶ଷ,…߶௜): an offset vector 

Output: The response time of ߬௜ under ߶పሬሬሬԦ 
1: ⊳ Calculate the initial condition for ߬௜. 
௜൫߶పሬሬሬԦ൯ܧ :2 ≔ CPU-Execution-Before-Arrival(Γ, ݅, ߶పሬሬሬԦ) 
3: ௜ܹ଴ ≔ ∑ ଵ,௝௦భ୨ୀଵܥ + ∑ ௝௜௝ୀଶܥ    

4: ݈ ≔ 0 

5: while ௜ܹ௟ାଵ ≠ ௜ܹ௟ do 

6: ⊳ From Equation (5) 

7: ௜ܹ௟ାଵ ≔ ௜ܥ + ∑ ඄ௐ೔೗ାథ೔ି∑ ൫஼భ,ೖାீభ,ೖ൯	ೕషభೖసబ்భ ඈ௦భ௝ୀଵ ଵ,௝ܥ + ∑ ඄ௐ೔೗ାథ೔ିథೕ்ೕ ඈ ௝ܥ − ௜൫థഢሬሬሬሬԦ൯௜ିଵ௝ୀଶܧ  

8: ݈ ≔ ݈ + 1 

9: return ௜ܹ௟ 
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In this section, we assume that (1) a taskset Γଵ௦ has only one self-suspending task that has the 
highest priority, (2) self-suspending times between computing stages are fixed, and (3) execution 
time of each computing segment is same as the worst-case execution time. Therefore, the self-
suspending behavior of task ߬ଵ can be modeled as sporadic events with minimum inter-arrival 
time. That is, if the ݆௧௛ computation segment of task ߬ଵ starts its execution at time ݐ, the earliest 
time for this computation segment to be executed again in the next job of task ߬ଵ is at least ݐ + ߬ଵ. 
Therefore, we can conclude the following lemma: 

Lemma 3: For a taskset ߁ଵ௦ with (1) one self-suspending task as the highest-priority task, (2) 
fixed self-suspending time, and (3) the actual execution time of the self-suspending task always 
equal to the worst-case execution time, a constrained-deadline task ߬௞ can be feasibly scheduled 
by the fixed-priority scheduling strategy if ܥଵ + ଵܩ ≤ ଵ and  ∃0ܦ < ݐ ≤ ,௞ܦ ௞ܥ + ∑௞ିଵ௜ୀଵ ቒ ௧்೔ቓ ௜ܥ ≤ 2	for	ݐ ≤ ݇ ≤ ݊. (6) 

Proof. The condition ܥଵ + ଵܩ ≤ -ଵ is to ensure the feasibility of ߬ଵ. The assumption that the selfܦ
suspension always has fixed suspending time leads to the condition that the minimum inter-arrival 
time of each computation segment of ߬ଵ is ଵܶ. Therefore, we can treat each of them as a sporadic 
task with period ଵܶ. Moreover, since all of them have the same period ଵܶ, we can further merge 
them as a single task with execution time ܥଵ and period ଵܶ. Therefore, we can use the time-
demand analysis in Equation (6) for testing the schedulablity of task ߬௞.  ∎ 

That is, in the taskset Γଵ௦, self-suspension does increase the difficulty of performing schedulability 
analysis as compared to performing schedulability analysis of ordinary sporadic tasks. We have 
the following corollary. 

Corollary 2: Suppose that ߛ = ீభ்భ (is given with 0 ≤ ߛ ≤ 1). For a taskset ߁ଵ௦ with implicit 

deadlines and ଵܶ ≤ ଶܶ ≤ ⋯ ≤ ௡ܶ, ߁ଵ௦ is schedulable by RMS if ܥଵ + ଵܩ ≤ ଵܶ and the total 

utilization of the taskset is less than or equal to ݊ ቀ2భ೙ − 1ቁ, where ݊ is the number of tasks in ߁ଵ௦.  
With the above corollary, we can further build the utilization bound based on the factor ߛ = ீభ்భ. If ܩଵ is close from ଵܶ, ܥଵ cannot be large with respect to ଵܶ because ܥଵ + ଵܵ ≤ ଵܶ. If ߛ is large, to 
ensure the feasibility of task ߬ଵ, the available execution time of task ߬ଵ is also limited. 

Corollary 3: For a taskset ߁ଵ௦ with implicit deadlines and ଵܶ ≤ ଶܶ ≤ ⋯ ≤ ௡ܶ, ߁ଵ௦ is schedulable 
by RMS if ଵܷ ≤ 1 − ௜ୀଵ௡ߎ and ߛ ( ௜ܷ + 1) ≤ 2, where ݊ is the number of tasks in ߁ଵ௦.  
Proof. This comes from Lemma 3 to satisfy ܥଵ + ଵܩ ≤ ଵܶ and Equation (6). Since the test in 
Equation (6) is identical to the case with ݊ sporadic tasks with given utilization ଵܷ, ܷଶ,… ,ܷ௡, we 
can use the hyperbolic bound Π௜ୀଵ௡ ( ௜ܷ + 1) ≤ 2 from [2].  ∎ 

We can then derive the following theorem. 
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Theorem 2: Suppose that ߛ = ீభ்భ (is given with 0 ≤ ߛ ≤ 1). For a taskset ߁ଵ௦ with implicit 

deadlines and ଵܶ ≤ ଶܶ ≤ ⋯ ≤ ௡ܶ, ߁ଵ௦ is schedulable by RMS if ଵܷ ≤ 1 −    and ߛ

 ∑௡௜ୀଵ ௜ܷ ≤ ൮݊ ቀ2భ೙ − 1ቁ 		ߛ		݂݅	 < 		2		 −		2భ೙	(1 − (ߛ + (݊ − 1)ቆቀ ଶଶିఊቁ భ೙షభ − 1ቇ 	݁ݏ݅ݓݎℎ݁ݐ݋	  (7) 

Proof. For the rest of the proof, we explain how to obtain the utilization bound in Equation (7). 
Our objective is to find the infimum ∑௡௜ୀଵ ௜ܷ such that ଵܷ ≤ 1 − and Π௜ୀଵ௡ ߛ ( ௜ܷ + 1) > 2. There 

are two cases: (1) If 2భ೙ − 1 < 1 −  then by following the analysis of the Liu and Layland bound ,ߛ

[16], the utilization bound is ∑௡௜ୀଵ ௜ܷ = ݊ ቀ2భ೙ − 1ቁ with ଵܷ = ቀ2భ೙ − 1ቁ < 1 − If 2భ೙ (2) .ߛ − 1 ≥1 − the the infimum ∑௡௜ୀଵ ,ߛ ௜ܷ is a solution with ଵܷ = 1 −  Together with the fact that the .ߛ

geometric mean ඥΠ௜ୀଶ௡ ( ௜ܷ + 1)೙షభ  is no more than the arithmetic mean 
∑೙೔సమ (௎೔ାଵ)௡ିଵ = ∑೙೔సమ௎೔௡ିଵ + 1, 

we have   

					2 <ෑ௡௜ୀଵ ( ௜ܷ + 1) = (2 − ෑ௡௜ୀଶ(ߛ ( ௜ܷ + 1) 
									≤ (2 − (ߛ ቆ∑௡௜ୀଶ ௜ܷ݊ − 1 + 1ቇ௡ିଵ 

⇒ ଵܷ +෍௡௜ୀଶ ௜ܷ > (1 − (ߛ + (݊ − 1)ቌ൬ 22 − ൰ߛ ଵ௡ିଵ − 1ቍ 

By considering the above two cases, we reach the conclusion.  ∎ 

It is also important to emphasize that the actual utilization bound is min ቄ1 − ,ߛ ݊ ቀ2భ೙ − 1ቁቅ 
instead of the bound in Equation (7) if ଵܷ + ߛ ≤ 1 is not listed in the testing condition. The bound 1 −  .is due to the constraint of the maximum utilization of the self-suspending task ߬ଵ ߛ

The analysis in this section can only be applied when the self-suspension patterns are defined with 
fixed segmentations and with controlled suspension lengths. If a self-suspension interval can be 
shorter than the specified length, the analysis in Lemma 3 cannot be applied. Some jitter terms 
have to be considered. It is also not difficult to see that the utilization bounds in Equation (7) can 
still be improved by adopting more precise analysis than that in Lemma 3. For the target case with 
one self-suspending task at the highest-priority level, we can convert this task into a generalized 
multi-frame task [1]. Then, the schedulability analysis can be done directly by using the test 
proposed by Takada and Sakamura [26]. The generalized utilization-based schedulability test 
framework developed by Chen, Huang, and Liu [4] can be easily applied to improve the 
schedulability used in Equation (7) by generating ݊ different utilization-based schedulability tests 
based on the pseudo-polynomial-time test in [26]. 
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The assumption that the actual execution time should be always the same as the worst-case 
execution time for the self-suspending task is only for being self-contained and the simplicity of 
presentation. Such an assumption can be easily removed because the analysis in Lemma 3 anyway 
merges all the computation segments, and hence in the proof of Theorem 2. 

3.3 Many Self-Suspending Tasks 

We now consider a taskset that has many self-suspending tasks. In the previous section, we have 
shown that finding the worst-case response times of lower-priority non-suspending tasks is not 
trivial because all results from all the possible phases need to be compared against each other 
except for some special cases that we have identified. Therefore, having many self-suspending 
tasks makes the scheduling problem intractable. In addition, the conventional fixed priority 
scheduling such as RMS does not account for a different timing requirement per segment. For 
example, if there is a relatively long suspension time between two segments of a lower priority 
task and the completion time of the second segment is close enough to its deadline, the task may 
not easily meet its deadline. 

Consider a taskset that is composed of two self-suspending tasks: ߬ଵ: ((1,1,1),5) and ߬ଶ: ((2,5,2),10). The executions of ߬ଵ and ߬ଶ with RMS are illustrated in Figure 6. The boxes filled 
with horizontal lines represent ߬ଵ, and the boxes filled with diagonal lines represent ߬ଶ. The 
release of each job is also depicted below the time axis to show the different phasing behaviors. 
By extending Proposition 1, we can understand that we need to consider four different phases. 
The case when ߬ଵ,ଵ and ߬ଶ,ଵ arrive at the same time is depicted in Figure 6 (a). The case when ߬ଵ,ଶ 
and ߬ଶ,ଵ arrive at the same time is illustrated in Figure 6 (b), where ߬ଵ,ଵ and ߬ଶ,ଶ are also released 
at the same time at time 10. The case when ߬ଵ,ଶ and ߬ଶ,ଶ are released together cannot exist for 

Figure 6. Since ߬ଵ has the shortest period, it has the highest priority. As shown in Figure 6, 
regardless of different phases, ߬ଶ always misses its deadline. This happens because the 
conventional fixed priority scheduling does not consider the suspension time between segments. 
For example, ߬ଶ has only 5 units of time to execute for 4 units of time due to 5 units of suspension 
time. 

One possible way of resolving this issue is to assign a segment that requires a faster execution a 
higher priority. Figure 7 illustrates the execution behaviors of ߬ଵ and ߬ଶ when ߬ଶ,ଵ has the highest 
priority, ߬ଵ,ଵ and ߬ଵ,ଶ are assigned the priorities in the middle, and ߬ଶ,ଶ is assigned the lowest 

priority. As shown in Figure 7, ߬ଶ meets its deadline, and the given taskset is schedulable with the 
proposed scheduling method. 

  

(a) (b) 

Figure  6: Scheduling ߬ଵ: ((1,1,1),5) and ߬ଶ: ((2,5,2),10) with rate monotonic scheduling. 
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(a) (b) 

Figure  7: Scheduling ߬ଵ: ((1,1,1),5) and ߬ଶ: ((2,5,2),10) with segment-fixed priority scheduling. 
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4 Segment-Fixed Priority Scheduling 

We propose the segment-fixed priority scheduling, where we decompose a sporadic self-
suspending task into multiple segments and assign them different priorities. In this section, we 
also relax the assumption of a constant gap that was made in Section 3 so that ܩ௜,௝ெ௜௡ ≤  ௜,௝ெ௔௫ isܩ

allowed. In other words, the suspension time can vary during run-time, but it is bounded. 
Although this is a more realistic assumption, varying suspension time easily makes the analysis 
intractable. We have shown that different phases among tasks need to be considered, so the 
varying suspension time gives myriads of different phase differences. This ends up being hard-to-
predict jitters in tasks. This issue can be avoided by leveraging a phase enforcement scheme [22], 
[14], which guarantees that a computing segment of a self-suspending task ߬௜ arrives after an 
offset of ߶௜ time units from the arrival of a job of the task. Hence, a segment does not arrive 
before its enforced phase time. We also allow the execution time of ߬௜,௝ can vary between 0 and ܥ௜,௝. We first provide an non-optimal method to determine phases and priorities to support 

segment-fixed priority scheduling; it is optimal with respect to the schedulability test used though. 

4.1 Schedulability analysis and optimal configuration with MILP 

In this section, we will initially assume that priorities and phases (߶) are given. We will construct 
a Mixed-Integer Linear Program (MILP) such that if this MILP is feasible then the taskset is 
schedulable. This gives us a sufficient schedulability test. We will then use this MILP to obtain a 
configuration of priorities and ߶. In MILP expressions, we let {x..y} denote the set of integers ≥ x 
and ≤ y. And we let s.t. mean such that. 

We will consider tasks where each task has multiple segments and we let ݏ௜ denote the number of 
segments of task ߬௜. Since the first segment of a task arrives when a job is released, the phase of 
this segment is zero. So we only need to specify ݏ௜ − 1 offsets for task ߬௜. Consequently, the 
release time of the ݏ௧௛ segment of task ߬௜ is denoted by ߶௜,௦ିଵ. Let ݉ܽ݋݅ݎ݌ݔ denote the number 

of priority levels available. If we do not specify this explicitly, we assume that ݉ܽ݋݅ݎ݌ݔ =∑௡௜ୀଵ  .௜ because this is enough for making it possible for each segment to have its unique priorityݏ
We assume that if we do not specify the domain of a variable then its domain is non-negative real 
number. Let ܴ௜,௦ denote the response time of the ݏ௧௛ segment of task ߬௜ (the response time is 

counted from the arrival time of the job – not the arrival time of the segment of the job). Let ܴܷܤ௜,௦ denote an upper bound on ܴ௜,௦. Let ݕ௜,௦,௣ = 1 indicate that the ݏ௧௛ segment of ߬௜ is 
assigned priority level ݌; otherwise ݕ௜,௦,௣ = 0. Let ݔ௜,௦,௝,௦ᇱᇱ = 1 indicate that the priority of the ݏ′′௧௛ segment of task ௝߬ is greater than or equal to the priority of the ݏ௧௛ segment of task ߬௜; 
otherwise ݔ௜,௦,௝,௦ᇱᇱ = 0. 

For convenience, let us introduce:   

 ∀τ௜ ∈ 	Γ: ߶௜,଴ = 0  (8) 

Monotonicity of offsets gives us:   

 ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ௜ݏ − 1}:߶௜,௦ିଵ ≤ ߶௜,௦	 (9)	
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Since a segment of a task has exactly one priority level:   

 ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . :{௜ݏ ∑௠௔௫௣௥௜௢௣ୀଵ ௜,௦,௣ݕ = 1 (10) 

We require that the taskset is schedulable. The last segment must finish by its deadline and all 
other segments must finish at a time so that there is enough time until the next segment of the 
same task arrives. Hence:  

 ∀τ௜ ∈ 	Γ: ݏ∀) ∈ {1. . ௜ݏ − 1}: ௜,௦ܤܷܴ + ௜,௦ܩ ≤ ߶௜,௦) ∧ ௜,௦೔ܤܷܴ) ≤  ௜) (11)ܦ

The fact that ݔ௜,௦,௝,௦ᇱᇱ indicates priority relationship gives us:  ∀τ௜ ∈ 	Γ, ∀τ௝ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ′ᇱݏ∀ ∈ ൛1. . ,௝ൟݏ ݌∀ ∈ {1. ᇱ݌∀  ,{݋݅ݎ݌ݔܽ݉. ∈ {1. .s	{݋݅ݎ݌ݔܽ݉. t. (݆ ≠ ݅) ∧ ݌) ≤ ௜,௦,௣ݕ)) :(ᇱ݌ = 1) ∧ ௝,௦ᇱᇱ,௣ᇱݕ) = 1)) ⇒ ௜,௦,௝,௦ᇱᇱݔ) = 1) (12) 

We can now express an upper bound on the response times as follows:  

 ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . :{௜ݏ ௜,௦ܤܷܴ = ߶௜,௦ିଵ + 	௜,௦ݓ (13)		 ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ௜,௦ݓ:{௜ݏ = ௜,௦ܥ + ∑தೕ∈	Γ∧௝ஷ௜ 	௜,௦,௝ܫ (14)	
where ܫ௜,௦,௝ is an upper bound on the interference that ߬௜,௦ suffers from ௝߬. 
In normal response-time calculations, one computes the interference on ߬௜ from all higher-priority 
tasks. In our model, however, a task ௝߬ can have multiple segments so that some of the segments 
of ௝߬ have higher priority than the ݏ௧௛ segment of task ߬௜ and other segments of ௝߬ have lower 

priority than the ݏ௧௛ segment of task ߬௜. For this reason, when we compute the interference that a 
given segment of ߬௜ suffers from, we compute it based on all other segments from all other tasks 
and add up all terms. Some of these segments of other tasks will have lower priority than the 
segment of task ߬௜; these will have zero terms. That is, in some terms ܫ௜,௦,௝ may be zero. 

We would like to compute ܫ௜,௦,௝. One can note that this is constituted of two types of execution (i) 
carry-in execution and (ii) non-carry-in execution. The former is execution of a segment of ௝߬ that 
delays the segment ߬௜,௦ and this execution comes from a segment of ௝߬ that arrives before the 
segment ߬௜,௦ arrives. The latter is execution of a segment of ௝߬ that delays the segment ߬௜,௦ and this 
execution comes from segment(s) of ௝߬ that arrive not before the segment ߬௜,௦ arrives. In order to 

discuss carry-in and non-carry-in execution, let us define the function prec(ݏ′, ݆) as follows: if ݏ′ =1 then prec(ݏ′, ݆) = ,′ݏ)௝ else precݏ ݆) = ′ݏ − 1. Intutively, the function prec(ݏ′, ݆) finds the 
segment that precedes segment ݏ′ of task ௝߬. 
Consider those segments of task ௝߬ that arrive after ߬௜,௦ arrives. Among those, consider the one 
with the earliest arrival let and let ݏ′ be its segment index of task ௝߬. Hence: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ	s. t. ݆ ≠ ௜,௦,௝ܫ :݅ = max௦ᇱ∈{ଵ..௦ೕ}(ܿ݁ݔ݁ܫܥ௜,௦,௝௦ᇱ + ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥܰ ) (15) 

Carry-in from task ௝߬ can only happen from a single segment of task ௝߬ and only if this segment 

has priority that is higher or the same.  Hence: 
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∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥ :݅ = ௝,୮୰ୣୡ(௦ᇲ,୨)ܥ ⋅  ௜,௦,୨,୮୰ୣୡ(௦ᇲ,୨)  (15b)ݔ

Let ܰܿ݁ݔ݁ܫܥ௜,௦,௝௦ᇱ  denote the interference of task ௝߬ on ݏ௧௛ segment of task ߬௜ for the case that s’ is 
as mentioned above. ܰܿ݁ݔ݁ܫܥ௜,௦,௝௦ᇱ   can be expressed as a sum of terms where each term is of a 
segment of task ௝߬. Hence: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥܰ :݅ = ∑௦ᇱᇱ∈{ଵ..௦ೕ} ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ  (16) 

Each of these terms can be expressed by counting the number of jobs of segment ݏ′′ of task ௝߬ that 

impacts the response time of a job of segment ݏ of task ߬௜ for the case that s’ is as mentioned 
above. Hence: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ᇱݏ∀ ∈ ൛1. . ,௝ൟݏ ᇱᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ :݅ = ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ ⋅ ௝,௦ᇱᇱܥ ⋅  ௜,௦,௝,௦ᇱᇱ (17)ݔ

Considering that the ݏ′′௧௛ segment of ௝߬ may arrive at or later than the time that segment ݏ of task ߬௜ arrives gives us: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ ൛1. . .s	௝ൟݏ t. (݆ ≠ ݅) ∧ ′′ݏ) ≥ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ :(′ݏ = ඄௪೔,ೞି(థೕ,ೞᇲᇲషభିథೕ,ೞᇲషభ)்ೕ ඈ (18) 

Considering that the ݏ′′௧௛ segment of ௝߬ may arrive before the time that segment ݏ of task ߬௜ 
arrives gives us: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ {1. . .s	௝}ݏ t. (݆ ≠ ݅) ∧ ≥′′ݏ) ′ݏ − ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ :(1 = ඄௪೔,ೞି(்ೕି(థೕ,ೞᇲషభିథೕ,ೞᇲᇲషభ))்ೕ ඈ (19) 

If values of ߶ and ݕ are given, then determining feasibility of these constraints is equivalent to 
determining if the taskset is schedulable. If ߶ and ݕ are not given, then determining feasibility of 
these constraints is equivalent to determining if there exists a configuration of ߶ and priorities that 
makes the taskset schedulable. These constraints are not MILP expressions but they can be 
rewritten to MILP expressions (a problem for which many tools are available). We have rewritten 
them to MILP (see Appendix 6 and B) and used Gurobi (a state-of-the-art MILP solver) to create 
a tool for exact schedulability analysis and optimal configuration of ߶ and priorities. 

4.2 Fast Deadline and Phase Assignment using Heuristics 

Although the optimal priorities and phases can be obtained using the above-mentioned method, 
the execution time of the algorithm tends to grow rapidly with the number of tasks and segments. 
To overcome this, we propose four heuristics in this subsection. The high-level ideas are (1) 
taking into account only available CPU time for a task after subtracting suspension time from its 
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deadline, (2) distributing its slack to each segment based on computation demands, (3) assigning a 
segment a deadline with a phase, and (4) scheduling each segment using Deadline-Monotonic 
Scheduling (DMS). The four heuristics are about how to distribute the slack of a self-suspending 
task to assign a segment a deadline, hence assigning the segment a priority. 

 

To effectively show how the algorithms work, we introduce a few new notations. Since we want 
to assign intermediate segment-level deadlines to determine the priorities of task segments, we let ܦ௜,௝ denote the segment-level deadline of ߬௜,௝ relative to its release time that is represented as ߶௜,௝ିଵ. Then, we define a segment density ߥ௜,௝ as the ratio of the worst-case execution time of the 

task segment to the task period. We also define ௝்ܷ ௢௧ as ∑௡௜ୀଵ ஼೔,ೕ்೔ , which is the total utilization of 

the ݆௧௛ segments of all tasks. We use these terms to define the following heuristics. 

 ED (Equal Density): Assign ߬௜,௝ a segment deadline so that all segment densities for ߬௜ are 

same. In other words, there is a certain value ߥ௜,௝ = ஼೔,భ஽೔,భ = ஼೔,మ஽೔,మ = ⋯ = ஼೔,ೞ೔஽೔,ೞ೔.  

Algorithm 3: ED(Γ) 

Input: Γ: a set of	݊ self-suspending tasks 

Output: Δ: a set of segment level relative deadlines 

Output: Φ: a set of segment-level phase offsets 

1: for ݅ =  do	݊	݋ݐ	1

2: ⊳ Calculate the actual amount of CPU time for ߬௜ with the suspension-time consideration. 

௜ܦ :3 ≔ ௜ܦ −  ௜ܩ
4:  ߶௜,଴ ≔ 0 

5: Δ :=   

6: Φ :=   

7: for ݆ = ௜ݏ	݋ݐ	1 − 1	do 

8:  ⊳ Assign ߬௜,௝	ܦ௜,௝ so that ∀݆, ஼೔,ೕ஽೔,ೕ is all the same. 

௜,௝ܦ  :9 ≔ 	 ஼೔,ೕ	஽೔஼೔ , ߶௜,௝ ≔ ߶௜,௝ିଵ + ௜,௝ܦ +  ௜,௝ܩ
10:  Δ ≔ Δ		൛ܦ௜,௝ൟ,Φ ≔ Φ		{߶௜,௝} 
௜,௦೔ܦ :11 ≔ ௜ܦ + ௜ܩ − ߶௜,௦೔ିଵ, Δ ≔ Δ		{	ܦ௜,௦೔	} 
12: return Δ and Φ 
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 MTD (Minimize Total Density): Assign ߬௜,௝ a segment deadline so that the total density for ߬௜ is minimized. That is to find ܦ௜,௝s that minimize ∑௦೔௝ୀଵ ஼೔,ೕ஽೔,ೕ.  
 ES (Equal Slack): Assign ߬௜,௝ a segment deadline so that ܦ௜,ଵ − ௜,ଵܥ = ௜,ଶܦ − ௜,ଶܥ = ⋯ ௜,௦೔ܦ= −   .௜,௦೔ is satisfiedܥ

 PS (Proportional Slack): Assign ߬௜,௝ a segment deadline so that ∀݆ ∈ {݆|1 ≤ ݆ < ,௜ݏ ݆ ∈ℤା},ܦ௜,௝ − :௜,௝ܥ ௜,௝ାଵܦ − :௜,௝ାଵܥ : ௜ܷ,௝: ௜ܷ,௝ାଵ is satisfied.  

Outputs of the heuristics are a set of segment deadlines that will determine priorities of task 
segments under DMS policy. The shorter the relative deadline is, the higher the priority is. The 
release phases are determined based on the segment deadline. For example, if ߬௜,௝ is assigned a 
segment deadline ܦ௜,௝, the release phase for ߬௜,௝ାଵ is ߶௜,௝ିଵ + ௜,௝ܦ +  ௜,௝. One of the heuristicܩ

implementations are presented in an algorithmic format in Algorithm 3 that has ܱ(∑௡௜ୀଵ  (௜ݏ
complexity. 
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5 Related Work 

Previous work related to task-fixed priority scheduling with suspension includes [8], [24], [3], 
[25], and [14]. Ridouard, et al. [24],[25] proved that the problem of scheduling real-time tasks 
with self-suspension is NP-Hard in the strong sense. In [8], the authors presented a comparison 
between two multi-processor priority inheritance protocol (MPCP and MSRP) where tasks could 
suspend waiting for a remote lock. In this work the authors highlighted the different approaches to 
deal with this suspension. In MPCP, a task waiting for a global lock was allowed to suspend, 
allowing lower-priority tasks to run, and a period-enforcement was used to avoid jitter [23]. In 
MSRP, on the other hand, a busy wait was used and no lower-priority tasks were allowed to run. 
In our work, we also use a period enforcement mechanism to avoid jitter in the suspension, but 
each segment (e.g. before and after the suspension) is given a different priority according to 
different schemes of segment deadline assignments. In [3], the authors analyzed the execution of 
tasks with segments running in a local processors and segments running on remote co-processors 
that could be seen as a suspension in the local processor. In this case the authors bounded the 
suspension with a minimum and maximum and provided a recurrence equation to find the worst-
case interference that a task could suffer from higher-priority ones with a number of these 
segments. In contrast, in our work we provide a schedulability bound for tasksets with only the 
highest-priority task with suspensions while using a generalized task model with suspensions 
where each segment is assigned its own priority. The period enforcement of offsets allows us to 
provide improved schedulability. 

In [14], the authors analyzed the fixed-priority scheduling of tasks with self-suspension. 
Specifically, the authors characterized the critical instant of self-suspending task under the 
influence of non-suspending sporadic tasks and developed a response time test. They also 
provided two execution control policies that transformed the interference of high-priority 
suspending tasks into that similar to non-suspending ones to be able to use their response-time test 
with these tasks. In contrast, we develop a schedulability bound for a taskset where the higher-
priority is a self-suspending task and develop a response-time test for suspending tasks where 
each segment can be assigned different priorities and release enforcement. 

The schedulability of self-suspending tasks has also been studied for soft real-time guarantees, 
both for a model where the suspension is caused by a GPU and the GPU is treated as a shared 
resource [7] and for a general model where the actual cause of suspension is not specified [15]. 

In [27], the author presented a schedulability analysis for tasks with offsets. These offsets were 
used to synchronize the release of groups of tasks that synchronized within the group (known as 
transactions). In [20], the authors extended this work to allow offsets and deadlines to go beyond 
periods improving the schedulable utilization. The efficiency of the response time analysis in this 
model was then further improved in [18]. These papers have some similarities with the use of 
offsets between segments in tasks in our model; however, we start with suspension intervals that 
separate task segments from where we derive intermediate deadlines that in turn allows us to 
assign per-segment fixed priorities. 
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In [21], the authors developed another schedulability analysis for tasks with offsets. However, in 
this case, the analysis assumes EDF scheduling and the results cannot be applicable to fixed-
priority tasks. 



 

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY  23 

Distribution Statement A: Approved for Public Release; Distribution is Unlimited 

6 Conclusion 

We have provided schedulability analyses and proposed a new method called segment-fixed 
priority scheduling for self-suspending tasks. We have identified a condition that allows us to 
leverage the conventional task-fixed priority scheduling such as Rate-Monotonic Scheduling 
(RMS); however, the condition is narrow, and RMS is shown to not be the optimal scheduler in 
many cases for self-suspending tasks. This is mainly caused by (1) reduced available CPU time 
due to self-suspension and (2) unknown suspension time during run-time. In order to improve 
performance, we utilize segment-level priority assignment and phase enforcement. To determine 
the priority and phase per task segment, we have proposed the MILP-based method and four 
heuristics. The heuristics could also be complementary to the MILP-based method because they 
do not require significant CPU time to get the results. For example, one of the proposed heuristics 
has ܱ(∑௡௜ୀଵ  ௜) complexity. A quick check can be done by using heuristics, and the MILP-basedݏ
method can be used if needed. This technique can also be used on a real system [11], [12] so that 
special-purpose processors can be used in a predictable and analyzable way. 
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Appendix A. Rewriting to almost MILP 

Note that among the constraints in Section 4.1, some constraints are non-linear (Equation 
Error! Reference source not found. uses logical operators; Equation (15) uses the max-function; 
Equation (17) uses quadratic expressions; Equation (18) and Equation (19) use the ceiling 
function) and hence this formulation is not a MILP. We can rewrite them though. It can be seen 
that the implication in Equation Error! Reference source not found. can be rewritten as: ∀τ௜ ∈ 	Γ, ∀τ௝ ∈ 	Γ, ݏ∀ ∈ {1,2,… , ,{௜ݏ ′′ݏ∀ ∈ {1. . ,{௝ݏ ݌∀ ∈ {1. . ᇱᇱ݌∀ ,{݋݅ݎ݌ݔܽ݉ ∈ {1. .s	{݋݅ݎ݌ݔܽ݉. t. (݆ ≠ ݅) ∧ ݌) ≤ ௜,௦,௣ݕ :(′݌ + ௝,௦ᇱᇱ,௣ᇱݕ − ௜,௦,௝,௦ᇱᇱݔ ≤ 1 (20) 

Equation (15) can be rewritten as: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ	s. t. ݆ ≠ ݅:∑௦ᇱ∈{ଵ,ଶ,…,௦ೕ} decisionmax୧,ୱ,୨ୱᇱ = 1 (21) ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ݅: (decisionmax୧,ୱ,୨ୱᇱ = 1) ⇒ ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥ) + ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥܰ ≥ ௜,௦,௝) (22) ∀τ௜ܫ ∈ τ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ′ݏ∀ ∈ {1, . . ݆		that		such		௝}ݏ ≠ ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥ :݅ + ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥܰ ≤  ௜,௦,௝ (23)ܫ

where decisionmax୧,ୱ,୨ୱᇱ  ∈ {0,1}. 

Equation (17) can be rewritten as: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ᇱݏ∀ ∈ ൛1. . ,௝ൟݏ ᇱᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝,௦ᇱᇱݔ) :݅ = 0) ⇒ ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ) = 0) (24) ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ᇱݏ∀ ∈ ൛1. . ,௝ൟݏ ᇱᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝,௦ᇱᇱݔ) :݅ = 1) ⇒ ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ) = ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ ⋅  ௝,௦ᇱᇱ) (25)ܥ

Consider the constraint: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ {1. . .௝} sݏ t. (݆ ≠ ݅) ∧ ′′ݏ) ≥ ௜,௦ݓ :(′ݏ − (߶௝,௦ᇱᇱିଵ − ߶௝,௦ᇱିଵ) ≤ ௝ܶ ⋅ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊  (26) 

It can be seen that (18) and (26) are different. It can be seen, however, that replacing Equation 
(18) with Equation (26) does not impact feasibility. 

Consider the constraint:   ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1,2,… , ,{௜ݏ ∀τ௝ ∈ Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ {1. . .௝} sݏ t. (݆ ≠ ݅) ∧ ′′ݏ) ≤ ′ݏ − 1): 
௜,௦ݓ        − (߶௝,௦ᇱᇱିଵ − ߶௝,௦ᇱିଵ) ≤ ௝ܶ ⋅ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ + ௝ܶ (27) 
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It can be seen that (19) and (27) are different. It can be seen, however, that replacing Equation 
(19) with Equation (27) does not impact feasibility. 

Hence, determining feasibility of Equation  (8), (9), (10), (11), (20), (13), (14), (21), (22),  (23), 
(15b),(16), (24), (25), (26), (27) is equivalent to an exact schedulability test. 

This set of constraints is still not an MILP formulation, but it can be rewritten to an MILP 
formulation using standard techniques — see Appendix B. 

Let us now define four problems: 

PROB1: Assuming T,D,C,G values are given and assuming that that ݕ and ߶ values are given, 
find an assignment of values to variables that satisfies the constraints Equation (8), (9), (10), (11), 
(20), (13), (14), (21), (22),  (23), (15b),(16), (24), (25), (26), (27)  

PROB2: Assuming T,D,C,G values are given and assuming that ݕ values are given, find an 
assignment of values to variables that satisfies the constraints Equation (8), (9), (10), (11), (20), (13), (14), (21), (22),  (23), (15b), (16), (24), (25), (26), (27)  

PROB3: Assuming T,D,C,G values are given and assuming that ߶ values are given, find an 
assignment of values to variables that satisfies the constraints Equation (8), (9), (10), (11), (20), (13), (14), (21), (22),  (23), (15b), (16), (24), (25), (26), (27)  

PROB4: Assuming T,D,C,G values are given, find an assignment of values to variables that 
satisfies the constraints Equation (8), (9), (10), (11), (20), (13), (14), (21), (22),  (23), (15b), (16)
, (24), (25), (26), (27)  

It can be seen that solving PROB1 is an exact schedulability test. The other ones 
(PROB2,PROB3,PROB4) are configuration algorithms that find ߶ and/or priority assignment so 
that deadlines are met if such an assignment exist. We have developed a tool that performs these 
calculations using Gurobi—a state of the art MILP solver. 

Note that if we want to perform schedulability analysis, we can determine feasibility of PROB1 in 
a manner similar to response time calculations as follows and this can be performed with low 
time-complexity. A lower bound on ݓ௜,௦ is ܥ௜,௦ (using Equation (14)) and this lower bound on ݓ௜,௦ can be used to obtain a lower bound on ݆݊ݏܾ݋௜,௦,௝,௦ᇱᇱ௦ᇱ  (using Equation (18) and Equation (19)) 
which in turn gives us a lower bound on ܰ݉ݎ݁ݐܿ݁ݔ݁ܫܥ௜,௦,௝,௦ᇱᇱ௦ᇱ  (using Equation (17)) which in turn 
gives us a lower bound on ܰܿ݁ݔ݁ܫܥ௜,௦,௝௦ᇱ  (using Equation (16)) which in turn gives us a lower 
bound on ܫ௜,௦,௝ (using Equation (15)) which in turns gives us a new lower bound on ݓ௜,௦ (using 
Equation (14)). If this new lower bound of ݓ௜,௦ is equal to the previous lower bound on ݓ௜,௦ then 
stop; otherwise repeat this procedure to obtain a new lower bound on ݓ௜,௦.  
Keep iterating like this for all tasks and for all segments. If we get convergence, then use these 
values in Equation (14) to get upper bounds on response times (using Equation (13)) and then 
plug it in to Equation (11); if Equation (11) is satisfied then PROB1 is feasible for this taskset. If 
we have convergence but Equation (11) is not satisfied, then PROB1 is not feasible for this 
taskset. If there is one task with a segment for which we do not have convergence and during one 
of these iterations, this lower bound on ݓ௜,௦ exceeds ܦ௜ then PROB1 is not feasible for this 

taskset. It can be seen that for each iteration, a new segment is included and hence the time-
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complexity of this approach for determining feasibility of PROB1 is pseudo-polynomial. Hence, 
this procedure is a schedulability test with pseudo-polynomial time-complexity. 
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Appendix B. Rewriting to MILP 

Note that among the constraints in Section 4.1, some constraints are non-linear. Appendix A 
provides rewriting of these constraints so that the resulting constraints are almost a MILP 
formulation. In this appendix, we will take the final step and rewrite it to a MILP formulation. 
When doing this rewriting, we let ܺܣܯܦ be defined as ܺܣܯܦ = max௜ୀଵ௡  ௜. Then, our MILPܦ
formulation is as follows: 

Constraints ∀τ௜ ∈ 	Γ: ߶௜,଴ = 0 ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ௜ݏ − 1}:߶௜,௦ିଵ − ߶௜,௦ ≤ 0 

∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . :{௜ݏ ෍௠௔௫௣௥௜௢
௣ୀଵ ௜,௦,௣ݕ = 1 

∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ௜ݏ − 1}: ܴ௜,௦ − ߶௜,௦ ≤ ௜,௦ ∀τ௜ܩ− ∈ 	Γ: ܴ௜,௦೔ ≤ ௜ ∀τ௜ܦ ∈ 	Γ, ∀τ௝ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ′′ݏ∀ ∈ {1. . ,{௝ݏ ݌∀ ∈ {1. . ᇱ݌∀ ,{݋݅ݎ݌ݔܽ݉ ∈ {1. . .s	{݋݅ݎ݌ݔܽ݉ t. (݆ ≠ ݅) ∧ ݌) ≤ :(ᇱ݌ ௜,௦,௣ݕ + ௝,௦ᇱᇱ,௣ᇱݕ − ௜,௦,௝,௦ᇱᇱݔ ≤ 1 ∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . :{௜ݏ ܴ௜,௦ − ߶௜,௦ିଵ − ௜,௦ݓ = 0 ∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ௜,௦ݓ:{௜ݏ + ෍தೕ∈Γ∧௝ஷ௜ (௜,௦,௝ܫ−) =  ௜,௦ܥ
∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γs. t. ݆ ≠ ݅: ෍௦ᇱ∈{ଵ,ଶ,…,௦ೕ} decisionmax୧,ୱ,୨ୱᇱ = 1 

∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ᇱݏ∀ ∈ ൛1. . .௝ൟsݏ t. ݆ ≠ ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥ :݅ + ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥܰ − ௜,௦,௝ܫ ≤ 0 ∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝ܫ :݅ − ௜,௦,௝௦ᇲܿ݁ݔ݁ܫܥ − ௜,௦,௝௦ᇲܿ݁ݔ݁ܫܥܰ + ܺܣܯܦ ⋅ decisionmax୧,ୱ,୨ୱᇱ ≤ DMAX ∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥ :݅ − ௝,୮୰ୣୡ(௦ᇲ,୨)ܥ ⋅ ௜,௦,୨,୮୰ୣୡ(௦ᇲ,୨)ݔ = 0 ∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ݅: 
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௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥܰ + ෍௦ᇱᇱ∈{ଵ..௦ೕ} ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ−) ) = 0 

∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ᇱݏ∀ ∈ ൛1. . ,௝ൟݏ ᇱᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ :݅ − ܺܣܯܦ ⋅ ௜,௦,௝,௦ᇱᇱݔ ≤ 0 ∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ᇱݏ∀ ∈ ൛1. . ,௝ൟݏ ᇱᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ :݅ − ௝,௦ᇱᇱܥ ⋅ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ + ܺܣܯܦ ⋅ ௜,௦,௝,௦ᇱᇱݔ ≤ τ௜∀ ܺܣܯܦ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ :݅ − ௝,௦ᇱᇱܥ ⋅ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ − ܺܣܯܦ ⋅ ௜,௦,௝,௦ᇱᇱݔ ≥ τ௜∀ ܺܣܯܦ− ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ {1. . .௝}sݏ t. (݆ ≠ ݅) ∧ ′′ݏ) ≥  :(′ݏ
௝ܶ ⋅ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ + ߶௝,௦ᇱᇱିଵ − ߶௝,௦ᇱିଵ − ௜,௦ݓ ≥ 0 ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ {1. . .s	௝}ݏ t. (݆ ≠ ݅) ∧ ′′ݏ) ≤ ′ݏ − 1): 

 ௝ܶ ⋅ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ + ߶௝,௦ᇱᇱିଵ − ߶௝,௦ᇱିଵ − ௜,௦ݓ ≥ − ௝ܶ 
Domains ݕ௜,௦,௣ ∈ {0,1} ݔ௜,௦,௝,௦ᇱᇱ ∈ {0,1} decisionmax୧,ୱ,୨ୱᇱ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ {0,1} ∋   is a non-negative integer. 

Other symbols are non-negative real numbers. 
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