

Segment-Fixed Priority Scheduling for
Self-Suspending Real-Time Tasks

Junsung Kim, Department of Electrical and Computer Engineering, Carnegie Mellon University
Björn Andersson, Software Engineering Institute, Carnegie Mellon University
Dionisio de Niz, Software Engineering Institute, Carnegie Mellon University
Ragunathan (Raj) Rajkumar, Department of Electrical and Computer Engineering, Carnegie Mellon

University
Jian-Jia Chen, Department of Informatics, TU Dortmund University, Germany

Wen-Hung Huang, Department of Informatics, TU Dortmund University, Germany

Geoffrey Nelissen, CISTER Research Center, Polytechnic Institute of Porto, Portugal

August 2016

TECHNICAL NOTE
CMU/SEI-2016-TR-002

Critical Systems Capabilities/Software Solutions Division

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://www.sei.cmu.edu

http://www.sei.cmu.edu

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center. This material has been approved for public release and
unlimited distribution. Carnegie Mellon© is registered in the U.S. Patent and Trademark Office by Carnegie
Mellon University. DM-0000406

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table of Contents

Acknowledgments ... iv

Executive Summary ... v

1 Introduction ... 1
1.1 Contributions .. 2
1.2 Organization ... 3

2 System Model and Assumptions .. 4
2.1 Application of a Multi-Segment Self-Suspending Real-Time Task Model 5

3 Fixed Priority Scheduling for Self-Suspending Tasks .. 6
3.1 One Self-Suspending Task and One Non-Suspending Task .. 6
3.2 One Self-Suspending Task and Many Periodic Tasks .. 9
3.3 Many Self-Suspending Tasks ... 14

4 Segment-Fixed Priority Scheduling .. 16
4.1 Schedulability analysis and optimal configuration with MILP .. 16
4.2 Fast Deadline and Phase Assignment using Heuristics ... 18

5 Related Work ... 21

6 Conclusion .. 23

Appendix A. Rewriting to almost MILP .. 24

Appendix B. Rewriting to MILP ... 27

References .. 29

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Figures

Figure 1: Modern SoC architecture. .. 1

Figure 2: A multi-segment self-suspending real-time task model. .. 5

Figure 3: The illustration of Equation (1) to find the response time of ࣎૛. .. 7

Figure 4: ࡾ૛ in the case of ࡯૚, ૚ < ,૚࡯ ૛ ∧ ,૚ࡳ ૚ ≤ ૛࡯ < ૚. ... 9ࡸ

Figure 5: An exemplary taskset, where the worst case phasing between ࣎૛ and ࣎૚ is different
from the one between ࣎૜ and ࣎૚. .. 9

Figure 6: Scheduling ࣎૚: ((૚, ૚, ૚), ૞) and ࣎૛: ((૛, ૞, ૛), ૚૙) with rate monotonic scheduling. 14

Figure 7: Scheduling ࣎૚: ((૚, ૚, ૚), ૞) and ࣎૛: ((૛, ૞, ૛), ૚૙) with segment-fixed priority
scheduling. ... 15

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Tables

Table 1: Overview of related work per research problem ... 2

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Acknowledgments

This material is based upon work funded and supported by the Department of Defense under Con-
tract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. This material has been
approved for public release and unlimited distribution. Carnegie Mellon© is registered in the U.S.
Patent and Trademark Office by Carnegie Mellon University. DM-0000406

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Executive Summary

Recent trends in System-on-a-Chip show that an increasing number of special-purpose processors
are being added to improve the efficiency of common operations. Unfortunately, the use of these
processors may introduce suspension delays incurred by communication, synchronization, and ex-
ternal I/O operations. When these processors are used in real-time systems, conventional sched-
ulability analyses incorporate these delays in the worst-case execution/response time, hence sig-
nificantly reducing the schedulable utilization.

This report describes schedulability analyses and proposes segment-fixed priority scheduling for
self-suspending tasks. We model the tasks as segments of execution separated by suspensions. We
start from providing response-time analyses for self-suspending tasks under Rate Monotonic
Scheduling (RMS). While RMS is shown to not be optimal, it can be used effectively in some
special cases that we have identified. We then derive a utilization bound for the cases as a func-
tion of the ratio of the suspension duration to the period of the tasks. For general cases, we de-
velop a segment-fixed priority scheduling scheme. Our scheme assigns individual segments dif-
ferent priorities and phase offsets that are used for phase enforcement to control the unexpected
self-suspending nature.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1 Introduction

Recent trends in System-on-a-Chip (SoC) show that an increasing number of special-purpose
processors in these systems are added to improve the efficiency of frequently-used operations [5].
For example, NVIDIA offers a CUDA-compatible mobile processor [10] to support demanding
operations on mobile platforms. Figure 1 illustrates a high-level diagram of a modern SoC
composed of various subsystems such as multimedia and modem subsystems. Unfortunately, the
use of such special-purpose processors (a.k.a. hardware accelerators) may introduce suspension
delays that must be taken into account in a schedulability analysis when a task waits for a shared
resource and interacts with an I/O device or communication interface. Offloading complex
computations to hardware accelerators such as Digital Signal Processors (DSPs) or Graphics
Processing Units (GPUs) can cause suspension delays as well. Many conventional real-time
theories [17] have incorporated the delays in the worst-case execution/response time of a task that
suspends itself1. Even though the analyses can guarantee the timeliness of systems, the analysis
results may have significant pessimism. A pessimistic analysis is not desirable in a compute-
intensive system such as a self-driving car that we have recently developed [28]. Such systems
run computation-demanding algorithms ranging from perception [6] to planning [19], [9] on
GPUs in real-time. In this case, if we use traditional schedulability analysis, the potential
utilization improvement due to the use of GPUs is eliminated by the pessimism in the CPU
scheduling.

Figure 1: Modern SoC architecture.

In this paper, we present a new scheme to schedule self-suspending tasks to improve their
schedulable utilization. To derive our new scheme we first study the schedulability of these tasks
under Rate Monotonic Scheduling (RMS) [16] that is widely used in embedded real-time OSes
like OSEK and general-purpose OSes such as Linux. RMS is also known to be the optimal fixed-
priority scheduling policy for non-suspending tasks. Explicitly modeling self-suspending real-
time tasks is desirable to remove the pessimism described above, but it breaks a common
assumption of RMS that tasks do not suspend themselves during run-time, making RMS not

1 To be more precise, the self-suspension durations of tasks that have higher priority than the current task should
also be incorporated.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

directly applicable. Since such self-suspending behaviors can cause unexpected jitters, the critical
scheduling instant and utilization bound test defined and proved in [16] do not always hold for
self-suspending tasks. Therefore, RMS is not an optimal scheduling algorithm for this type of
tasks. In other words, there exist other scheduling algorithms that can schedule tasksets that
cannot be scheduled under RMS.

Research on self-suspending tasks is limited. In [24] the authors proved that the problem of
scheduling self-suspending tasks is NP-hard in the strong sense. There has also been recent work
on scheduling self-suspending tasks for soft real-time systems [15]. Table 1 shows a brief
overview of related research on scheduling self-suspending tasks in hard real-time systems along
with the problems that we will tackle in this paper. Detailed related work can be found in Section
5.

1.1 Contributions2

In this paper, we provide schedulability analyses for self-suspending tasks. We first provide
response-time analyses for the highest-priority self-suspending task and non-suspending tasks
with RMS [16] and identify the conditions when RMS can be used without modifications. We
then derive a utilization bound as a function of the ratio of suspension time to the task period
when RMS is compatible.

Table 1: Overview of related work per research problem

 Assumptions

Problems Uses
enforcement

Deadlines Arrivals Scheduler Work Comments

Schedulability
analysis

No Constrained
deadlines

Periodic FPS [3]

Schedulability
analysis

Yes Implicit
deadlines

Sporadic FPS [14] The lowest priority task can suspend
itself; other tasks cannot.

Schedulability
analysis

No Constrained
deadlines

Periodic FPS This
paper

The highest priority task can
suspend itself; other tasks cannot.

Utilization bound No Implicit
deadlines

Periodic FPS This
paper

The highest priority task can
suspend itself; other tasks cannot.

Schedulability
analysis

Yes Constrained
deadlines

Sporadic SFPS This
paper

Phase and
priority

assignment

Yes Constrained
deadlines

Sporadic SFPS This
paper

Assignment using MILP; it is not
optimal but it is optimal with respect
to the schedulability test used.

Phase and
priority

assignment

Yes Constrained
deadlines

Sporadic SFPS This
paper

Heuristics

2 This paper is an updated version of our previous paper published at RTSS'13 [13] which had errors. The correc-
tions are mainly made in Sections 3.2 and 4.1.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

To improve the schedulability of a taskset that is not compatible with RMS, we propose the
segment-fixed priority scheduling (SFPS) that decomposes self-suspending tasks into multiple
segments assigning them different priorities if needed. We use phase enforcement to prevent
jitters [22], [14].

1.2 Organization

The rest of this paper is organized as follows. In Section 2, we define our self-suspending task
model. Section 3 provides schedulability analyses for self-suspending tasks when a task-fixed
priority scheduling is used. Then, in Section 4, we propose our new scheme segment-fixed
priority scheduling to overcome the drawbacks of task-fixed priority scheduling. Section 5
presents related work. Finally, we conclude our paper and discuss future work in Section 6.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2 System Model and Assumptions

Consider a constrained-deadline sporadic taskset ડ: {߬ଵ, ߬ଶ, … , ߬௡} of multi-stage3 tasks scheduled
on a single processor. A task ߬௜ generates a (potentially infinite) sequence of jobs. The arrival
times of two jobs of task ߬௜ are separated by at least ௜ܶ time units. This is referred to as a sporadic
model. In some cases, we study a periodic model (which is a special case of the sporadic model),
in which the first job of a task ߬௜ can arrive at any time but arrival times of any pair of consecutive
jobs of ߬௜ are separated by exactly ௜ܶ time units.

A task ߬௜ consists of ݏ௜ computing stages (with ݏ௜ ≥ 1) with suspension between consecutive
computing stages and each stage consists of a single segment — see Figure 2. Let ߬௜,௝ denote the ݆௧௛ computing segment of ߬௜. The times at which ߬௜,ଵ becomes ready for execution are the times
when a job of task ߬௜ arrives. For 2 ≤ ݆ ≤ ௜, when ߬௜,௝ିଵ finishes its execution, it suspends itselfݏ

for a time duration that lies in ൣܩ௜,௝ିଵெ௜௡ , ௜,௝ିଵெ௔௫ܩ ൧ and then ߬௜,௝ becomes ready for execution. In

Section 3, we assume ܩ௜,௝ெ௜௡ = ௜,௝ܩ ௜,௝ெ௔௫ and for short-hand notation, letܩ = ௜,௝ெ௜௡ܩ = ௜,௝ெ௔௫. Inܩ

Section 4, we assume ܩ௜,௝ெ௜௡ and ܩ௜,௝ெ௔௫ can take non-negative values such that ܩ௜,௝ெ௜௡ ≤ ௜,௝ெ௔௫ andܩ

let ܩ௜,௝ = .௜,௝ெ௔௫ܩ

For each job, a segment ߬௜,௝ executes for a time duration that lies in ൣ0, ௜,௝൧. The response time ofܥ
a job is the finishing time of ߬௜,௦೔ of the job minus the arrival time of the job. The worst-case

response time of a task ߬௜ (denoted ܴ௜) is the maximum possible value that the response time of a
job of task ߬௜ can take. In Section 3, we assume that ߬௜,௝ always executes for ܥ௜,௝. In Section 4, we
relax this assumption so that the execution time of ߬௜,௝ can vary between 0 and ܥ௜,௝. The deadline

of ߬௜ is denoted ܦ௜. If ∀߬௜ ∈ ડ: ௜ܦ ≤ ௜ܶ then we say that the taskset is a constrained-deadline
taskset. If ∀߬௜ ∈ ડ:ܦ௜ = ௜ܶ then we say that the taskset is an implicit-deadline taskset. We
consider a constrained-deadline sporadic taskset. Our goal is to develop scheduling algorithms
and for each scheduling algorithm, develop a method (schedulability analysis) that computes ܴ௜ or
an upper bound on ܴ௜.
For convenience, we use the following notations: ܥ௜ = ∑௦೔௝ୀଵ ௜ܩ ௜,௝ andܥ = ∑௦೔ିଵ௝ୀଵ ௜ܮ ௜,௝ andܩ =௜ܶ − ܴ௜. We also assume (with no loss of generality) that the tasks in ડ are sorted in non-
decreasing order of ௜ܶ parameters, that is, ଵܶ ≤ ଶܶ ≤ ⋯ ≤ ௡ܶ. We assume that all computing
segments are preemptable with insignificant cost. We also assume that the cost of state transitions
between computing and suspending stages is negligible on a processor.

3 We will use the terms 'segments' and 'stages' interchangeably because there is exactly one segment per stage.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 2: A multi-segment self-suspending real-time task model.

2.1 Application of a Multi-Segment Self-Suspending Real-Time Task
Model

A task leveraging GPU can be modeled using a multi-segment self-suspending real-time task
model. For example, a planning algorithm for autonomous driving can benefit from using GPU by
calculating numerous potential paths in parallel [19]. The motion planning algorithm receives its
inputs such as the current vehicle status, the road map data, and a list of obstacles that are static or
dynamic. The preprocessing for motion planning (߬௣௟௔௡,ଵ) occurs on CPU, and the processed data

are transferred to the GPU to generate the best trajectory. While the algorithm runs on the GPU
 the CPU will let other algorithms run. Once the best trajectory is found, the output is ,(௣௟௔௡,ଵܩ)
extrapolated (߬௣௟௔௡,ଶ) to be used by an embedded controller. This happens repeatedly every ௣ܶ௟௔௡
units of time, and this algorithm can be represented as ߬௣௟௔௡: ,௣௟௔௡,ଵܥ)) ,௣௟௔௡,ଵܩ ,(௣௟௔௡,ଶܥ ௣ܶ௟௔௡).

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3 Fixed Priority Scheduling for Self-Suspending Tasks

In this section we investigate the schedulability of tasksets composed of periodic self-suspending
tasks under RMS. We first consider a simple taskset composed of one self-suspending task and
one non-suspending task4. Under the assumption that the self-suspending task is the highest
priority task, we provide a response-time test and derive a utilization bound with rate-monotonic
policy. We then look at the case of having ݊ self-suspending tasks. To simplify our discussion, we
assume a constant gap ܩ௜,௝ = ௜,௝ெ௜௡ܩ = ௜,௝ units ofܥ ௜,௝ெ௔௫ and a segment ߬௜,௝ that always runs forܩ

time.

3.1 One Self-Suspending Task and One Non-Suspending Task

Consider a taskset Γଵ௦ଵ௡ with one self-suspending task and one non-suspending sporadic task. Let ߬ଵ௦௦ denote the self-suspending task, and ߬ଶ is the non-suspending task. We assume that the self-
suspending task has the highest priority. Then, the following properties are satisfied.

Theorem 1: For ߁ଵ௦ଵ௡, a critical instant happens when ߬ଶ arrives at the same time as one of the
segments of ߬ଵ௦௦.
Proof. A critical instant for ߬ଶ is when the response time of ߬ଶ is maximized. Since ߬ଶ is a non-
suspending task, a processor will be busy during the execution of ߬ଶ including preemptions
incurred by ߬ଵ௦௦. Let ܴଶଵ denote the response-time of the first job of ߬ଶ. We assume that the first
job of ߬ଵ௦௦ arrives at the time origin, and ߶ଶ denotes the release time offset of ߬ଶ to the time
origin. We limit the range of ߶ଶ between 0 to ଵܶ because ߬ଵ௦௦ is periodic and the time origin can
be transformed to any of the time instant when a job of ߬ଵ௦௦ is released. For ease of notation, we
define ܥ௜,଴ = 0 and ܩ௜,଴ = 0. Let ݊థమ denote the largest integer in ൛݊|߶ଶ − ∑௡௜ୀ଴ ൫ܥଵ,௜ + ଵ,௜൯ܩ ≥0	and	݊ ∈ ℤ଴ൟ. Then, ܴଶଵ can be found by solving the following equation.

 ܴଶଵ = ∑௦భ௜ୀଵ ඄ோమభାథమି∑೔షభೕసబ ൫஼భ,ೕାீభ,ೕ൯భ் ඈ ଵ,௜ܥ − ∑௡ഝమ௜ୀ଴ ଵ,௜ܥ
 						−min ൬ܥଵ,௡ഝమାଵ, ߶ଶ − ∑௡ഝమ௝ୀ଴ ൫ܥଵ,௝ + ଵ,௝൯൰ܩ + ଶ (1)ܥ

Equation (1) calculates the length of busy-period while ߬ଶ is being executed from time ߶ଶ to ߶ଶ +ܴଶଵ. We do not start from the time origin because the processor could be idle while ߬ଵ௦௦ suspends
itself. That is why we subtract the executions of ߬ଵ௦௦ from the time origin to ߶ଶ, where the first ݊థమ segments of ߬ଵ௦௦ are executed intact and the ൫݊థమ + 1൯௧௛ segment may or may not fully run

before ߬ଶ arrives.

4 'Periodic tasks' are interchangeably used with 'non-suspending tasks' in this paper.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 3: The illustration of Equation (1) to find the response time of ߬ଶ.

The solution will be the first intersection of a 45∘ line (the left-hand side of Equation (1)) and a
step function (the right-hand side of Equation (1)) as illustrated in Figure 3. Although the solution
cannot be obtained easily because there are two unknowns with one equation, we can find a useful
property of the equation. With respect to ߶ଶ, the term that subtracts in Equation (1) is minimized

only when ߶ଶ − ∑௡ഝమ௝ୀ଴ ൫ܥଵ,௝ + ଵ,ଵܥ ,ଵ,௝൯ is 0. Therefore, ߶ଶ can be selected from 0ܩ + ଵ,ଵ, ∑ଶ௝ୀଵܩ ൫ܥଵ,௝ + ଵ,௝൯, …, or ∑௦భିଵ௝ୀଵܩ ൫ܥଵ,௝ + ଵ segments. Those values are alignedݏ ଵ,௝൯ when ߬ଵ௦௦ hasܩ

with the release time of each segment of ߬ଵ௦௦. Then, let Φଶ denote a set of possible values of ߶ଶ
as described above.

With the given ߶ଶ, ܴଶଵ can be found from the equation. Let ܴଶଵ(߶) denote the value of the
response-time of ߬ଶ according to ߶. maxథ∈஍మܴଶଵ(߶) is the worst-case response time of ߬ଶ because

going through all elements from Φଶ gives all the possible values of the response-time of ߬ଶ.
Therefore, for Γଵ௦ଵ௡, a critical scheduling instant happens when ߬ଶ arrives at the same time as one
of the segments of ߬ଵ௦௦. ∎	
From Theorem 1, we can derive the following corollary.

Corollary 1: For ߁ଵ௦ଵ௡, the worst-case response time of ߬ଶ is given as ܴଶ = ,(߶)థ∈ఃమܴଶݔܽ݉
where ߔଶ is a set that has each segment release offset of the first job of ߬ଵ௦௦ and ܴଶ(߶) returns the
response time of ߬ଶ under the given release offset ߶.

Proof. It follows from the proof of Theorem 1. ∎

The following lemma is useful because the worst-case phasing can be obtained by just checking
the given task parameters.

Lemma 1: Consider a taskset having a self-suspending task with two segments ߬ଵ௦௦: ,ଵ,ଵܥ)) ,ଵ,ଵܩ ,(ଵ,ଶܥ ଵܶ) and a non-suspending task ߬ଶ: ,ଶܥ) ଶܶ). Then, the taskset is compatible

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

with RMS if ܥଵ,ଵ ≥ ଵ,ଶܥ ଵ,ଶ andܥ + ଵܮ ≥ ଵ,ଵܥ + ଵ,ଵ, where ଵܶܩ = ଵ,ଵܥ + ଵ,ଵܩ + ଵ,ଶܥ + ଵ because ߬ଵ௦௦ is the highest priority task. In other words, the critical scheduling instant for the given tasksetܮ
happens when ߬ଵ௦௦ and ߬ଶ arrive at the same time.

Proof. Theorem 1 states that we can use either 0 or ܥଵ,ଵ + .ଵ,ଵ as ߶ for ߬ଶ for this particular caseܩ

Therefore, Equation (1) becomes equivalent to the following: ܴଶ(߶) = ඄ܴଶ(߶) + ߶ଵܶ ඈ ଵ,ଵܥ + ඄ܴଶ(߶) + ߶ − ଵ,ଵܥ − ଵ,ଵଵܶܩ ඈ ଵ,ଶܥ − ඄߶ܶଵඈ ଵ,ଵܥ − ඄߶ − ଵ,ଵܥ − ଵ,ଵଵܶܩ ඈ +ଵ,ଶܥ ଶܥ

where ߶ is a release offset of ߬ଶ to ߬ଵ௦௦. Since we assume that ߬ଵ௦௦ is released at the time origin, ߶

could be either 0 or ܥଵ,ଵ + ଵ,ଵ. When ߶ is 0, both ቒథ்భቓܩ ଵ,ଵ and ቒథି஼భ,భିீభ,భభ்ܥ ቓ ଵ,ଶ become 0ܥ

because 0 ≤ ߶ < ଵܶ. Similarly, if ߶ is ܥଵ,ଵ + ଵ,ଵ, ቒథି஼భ,భିீభ,భభ்ܩ ቓ ଵ,ଶ becomes 0. Then, we have theܥ

following two equations:

 ܴଶ(߶ଶ,ଵ) = ቒோమ(థమ,భ)భ் ቓ ଵ,ଵܥ + ቒோమ(థమ,భ)ି஼భ,భିீభ,భభ் ቓ ଵ,ଶܥ + ଶ (2)ܥ

 ܴଶ(߶ଶ,ଶ) = ቀቒோమ(థమ,మ)ା஼భ,భାீభ,భభ் ቓ − 1ቁܥଵ,ଵ + ቒோమ(థమ,మ)భ் ቓ ଵ,ଶܥ + ଶ (3)ܥ

where ߶ଶ,ଵ = 0 and ߶ଶ,ଶ = ଵ,ଵܥ + .ଵ,ଵܩ

We want to identify conditions where ܴଶ(߶ଶ,ଵ) ≥ ܴଶ(߶ଶ,ଶ) is always satisfied. Let ݂(ݔ) =ቒ ௫்భቓ ଵ,ଵܥ + ቒ௫ି஼భ,భିீభ,భభ் ቓ ଵ,ଶܥ + ݔ)݂ ଶ. Then, the right hand side of Equation (3) isܥ + ଵ,ଵܥ + (ଵ,ଵܩ (ݔ)݂ ଵ,ଵ. If we can find conditions that always satisfyܥ− − ݔ)݂ + ଵ,ଵܥ + (ଵ,ଵܩ + ଵ,ଵܥ ≥ 0, RMS can

be used without any modification for the given taskset. Then, we can have the following:

(ݔ)݂ − ݔ)݂ + ଵ,ଵܥ + (ଵ,ଵܩ + ଵ,ଵܥ = ቀ1 + ቒ ௫்భቓ − ቒ௫ା஼భ,భାீభ,భభ் ቓቁ ଵ,ଵܥ − ቀቒ ௫்భቓ − ቒ௫ି஼భ,భିீభ,భభ் ቓቁܥଵ,ଶ

 = ቀ1 + ቒ ௫்భቓ − ቒ௫ା஼భ,భାீభ,భభ் ቓቁܥଵ,ଵ − ቀ1 + ቒ ௫்భቓ − ቒ௫ା஼భ,మା௅భభ் ቓቁ ଵ,ଶ (4)ܥ

 If ܥଵ,ଵ ≥ ଵ,ଶܥ ଵ,ଶ andܥ + ଵܮ ≥ ଵ,ଵܥ + ଵ,ଵ, Equation (4) is always non-negative. This proves theܩ

lemma. 	 ∎

Since Lemma 1 shows the property only when ܥଵ,ଵ ≥ -ଵ,ଶ, it would be useful to find RMSܥ
compatible tasksets that having a self-suspending task satisfying ܥଵ,ଵ < .ଵ,ଶܥ

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

(a) ߶ = 0 (b) ߶ = ଵ,ଵܥ + ଵ,ଵܩ

Figure 4: ܴଶ in the case of ൫ܥଵ,ଵ < ଵ,ଶ൯ܥ ∧ ൫ܩଵ,ଵ ≤ ଶܥ < .ଵ൯ܮ
Lemma 2: Consider a taskset having a self-suspending task with two segments ߬ଵ௦௦: ,ଵ,ଵܥ)) ,ଵ,ଵܩ ,(ଵ,ଶܥ ଵܶ) and a non-suspending task ߬ଶ: ,ଶܥ) ଶܶ). Then, the taskset is compatible
with RMS if ܥଵ,ଵ < ଵ,ଵܩ ଵ,ଶ andܥ ≤ ଶܥ < .ଵܮ

Proof. When ܩଵ,ଵ ≤ ଶܥ < ଵ, the task ߬ଶ will be preempted more when ߬ଶ is aligned with the firstܮ

segment of ߬ଵ௦௦. The task ߬ଶ will be preempted by both segments of ߬ଵ௦௦, but ߬ଶ will be preempted
only once if it is aligned with the second segment as illustrated in Figure 4. ∎

Figure 5: An exemplary taskset, where the worst case phasing between ߬ଶ and ߬ଵ is different from the
one between ߬ଷ and ߬ଵ.

3.2 One Self-Suspending Task and Many Periodic Tasks

Although we extend the results described in the previous section to understand a case when there
are one self-suspending task and many non-suspending tasks, finding a critical scheduling instant
is not trivial. Consider a taskset Γ that is composed of three tasks: ߬ଵ: ,ߝ1,2)) 2),5), ߬ଶ: ,ߝ) 5 + ,(ߝ
and ߬ଷ: ,ߝ3) 5 + The worst-case response time of ߬ଶ occurs when ߬ଶ is released with the .(ߝ2
second segment of ߬ଵ; however, this is not the case for ߬ଷ. Instead, the worst-case phasing occurs
when ߬ଷ is aligned with the first segment of ߬ଵ as depicted in Figure 5. Therefore, we can claim
the following proposition.

Proposition 1: Consider a taskset ߁ଵ௦ that has one self-suspending task and ݊ − 1 non-
suspending tasks. Let ߬ଵ௦௦ denote the self-suspending task, and ߬௜ a non-suspending task when 1 < ݅ ≤ ݊. We assume that the self-suspending task has the highest priority. If ݅ < ݆, ߬௜ has a
higher priority than ௝߬. We let ߶௜∗ denote the phasing of ߬௜ and ߬ଵ௦௦ that causes the worst-case
response time of ߬௜. Then, ߶௜∗ may not be the same as ߶௝∗ when ݅ < ݆.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

We assume that the first job of ߬ଵ௦௦ arrives at the time origin. Let Φଵ௦௦ denote a set of arrival
times, where each arrival time is a time instant when a segment of the first job of ߬ଵ௦௦ is released.
In other words, Φଵ௦௦ = {0, ൫ܥଵ,ଵ + …,ଵ,ଵ൯ܩ , ∑௦భିଵ௝ୀଵ ൫ܥଵ,௝ + :ଵ,௝൯}. We also define a function ܴ௜(߶ሬԦ௜) that returns the response time of ߬௜, where ߶ሬԦ௜ܩ (߶ଶ,߶ଷ, … ,߶௜) is a (݅ − 1)-dimensional
vector for ݅ ≥ 2. Each element of ߶ሬԦ௜ is an arrival offset to the arrival of ߬ଵ௦௦ of a non-suspending
task ௝߬, ∀݆ ∈ {݆|݆ ∈ ℤାand1 < ݆ ≤ ݅}. The actual value of each element is one of the elements in

Algorithm 1: CPU-Execution-Before-Arrival(Γ, ݅, ߶పሬሬሬԦ)
Input: Γଵ௦: a taskset including a self-suspending task and n−1 non-suspending tasks, i: a task index, ߶పሬሬሬԦ = (߶ଶ,߶ଷ,… ,߶௜): an offset vector

Output: Amount of CPU execution before ߶௜ from jobs of tasks that have higher priority than τi

1: Ω ≔ {݊|߶௜ − ∑ ൫ܥଵ,௦ + ଵ,௦൯ܩ ≥ 0௡௦ୀ଴ and ݊ ∈ ℤ଴}

2: ݊థ೔ ≔ 	௡∈ஐ݊ݔܽ݉
3: ⊳ Define an array of idle times between 0 and ߶௜
4: for ݈ = 0 to ݊థ೔ do

[݈]݈݁݀ܫ :5 ≔ ଵ,௟ܩ
థ೔݊ൣ݈݁݀ܫ :6 + 1൧ ≔ max	(0,߶௜ − ∑ ൫ܥଵ,௝ + ଵ,௝൯௡ഝ೔௝ୀ଴ܥ − (ଵ,௡ഝ೔ାଵܥ
7: ⊳ Consider the execution times of non-suspending tasks.

8: for ݈ = do ݅	݋ݐ	2

9: if ߶௟ < 	߶௜ then

10: ⊳ Let m be an integer satisfying ߶௟ = 	∑ ଵ,௝ܥ) + ଵ,௝)௠௝ୀ଴ܩ

௟ܧ :11 ≔ ௟ܥ
12: for ݌ = థ೔݊	݋ݐ	݉ + 1	do

[݌]݈݁݀ܫ :13 ≔ [݌]݈݁݀ܫ − ௟ܧ
14: if Idle[p] < 0 then

௟ܧ :15 ≔ [݌]݈݁݀ܫ and [݌]݈݁݀ܫ− ≔ 0

16: else

17: break

18: return ߶௜ − ∑ ௡ഝ೔ାଵ௝ୀ଴[݆]݈݁݀ܫ

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Φଵ௦௦. When ݅ > 2, the actual value of ܴ௜(߶ሬԦ௜) can be obtained by solving the following equation
that is extended from Equation (1). ܴ௜(߶ሬԦ௜) = ௜ܥ + ∑௦భ௝ୀଵ ඄ோ೔(థሬሬሬԦ೔)ାథ೔ି∑ೕషభೖసబ ൫஼భ,ೖାீభ,ೖ൯భ் ඈ ଵ,௝ܥ + ∑௜ିଵ௝ୀଶ ඄ோ೔(థሬሬሬԦ೔)ାథ೔ିథೕ்ೕ ඈܥ௝ − ௜(߶ሬԦ௜) (5)ܧ

where ܧ௜(߶ሬԦ௜) is CPU execution time incurred by tasks that have higher priority than ߬௜ between
the time origin and the time when ߬௜ arrives. ܧ௜(߶ሬԦ௜) can be found using Algorithm 1. For ease of
notation, we use ܥ௜,଴ = 0 and ܩ௜,଴ = 0. Equation (5) is similar to Equation (1) except that it

considers more non-suspending tasks. ܧ௜(߶ሬԦ௜) of the right-hand side of Equation (5) comes from
the fact that the tasks that have higher priority than ߬௜ can have different release offsets. The
solution of Equation (5) can be obtained using Algorithm 2. By going through all possible
combinations of ߶ሬԦ௜, we can find the worst-case response time ܴ௜ of ߬௜. If ܴ௜ ≤ ௜, ߬௜ isܦ
schedulable.

Although we can find the schedulability of Γଵ௦, the exponential complexity of the given algorithm
is not desirable. Lemmas 1 and 2 give useful intuitions in this case, where a critical scheduling
instant for a taskset can be identified by looking at task parameters. If the critical instant is when
all the tasks arrive at the same time, the traditional fixed priority scheduling properties can be
applied. In other words, the lemmas can help us with easily classifying a taskset with a self-
suspending task into a category that RMS can be used without any modification.

Algorithm 2: Response-Time(Γ, ݅, ߶పሬሬሬԦ)
Input: Γଵ௦: a taskset including a self-suspending task and ݊ − 1 non-suspending tasks, ݅: a task index, ߶పሬሬሬԦ = (߶ଶ, ߶ଷ,…߶௜): an offset vector

Output: The response time of ߬௜ under ߶పሬሬሬԦ
1: ⊳ Calculate the initial condition for ߬௜.
௜൫߶పሬሬሬԦ൯ܧ :2 ≔ CPU-Execution-Before-Arrival(Γ, ݅, ߶పሬሬሬԦ)
3: ௜ܹ଴ ≔ ∑ ଵ,௝௦భ୨ୀଵܥ + ∑ ௝௜௝ୀଶܥ

4: ݈ ≔ 0

5: while ௜ܹ௟ାଵ ≠ ௜ܹ௟ do

6: ⊳ From Equation (5)

7: ௜ܹ௟ାଵ ≔ ௜ܥ + ∑ ඄ௐ೔೗ାథ೔ି∑ ൫஼భ,ೖାீభ,ೖ൯	ೕషభೖసబ்భ ඈ௦భ௝ୀଵ ଵ,௝ܥ + ∑ ඄ௐ೔೗ାథ೔ିథೕ்ೕ ඈ ௝ܥ − ௜൫థഢሬሬሬሬԦ൯௜ିଵ௝ୀଶܧ

8: ݈ ≔ ݈ + 1

9: return ௜ܹ௟

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In this section, we assume that (1) a taskset Γଵ௦ has only one self-suspending task that has the
highest priority, (2) self-suspending times between computing stages are fixed, and (3) execution
time of each computing segment is same as the worst-case execution time. Therefore, the self-
suspending behavior of task ߬ଵ can be modeled as sporadic events with minimum inter-arrival
time. That is, if the ݆௧௛ computation segment of task ߬ଵ starts its execution at time ݐ, the earliest
time for this computation segment to be executed again in the next job of task ߬ଵ is at least ݐ + ߬ଵ.
Therefore, we can conclude the following lemma:

Lemma 3: For a taskset ߁ଵ௦ with (1) one self-suspending task as the highest-priority task, (2)
fixed self-suspending time, and (3) the actual execution time of the self-suspending task always
equal to the worst-case execution time, a constrained-deadline task ߬௞ can be feasibly scheduled
by the fixed-priority scheduling strategy if ܥଵ + ଵܩ ≤ ଵ and ∃0ܦ < ݐ ≤ ,௞ܦ ௞ܥ + ∑௞ିଵ௜ୀଵ ቒ ௧்೔ቓ ௜ܥ ≤ 2	for	ݐ ≤ ݇ ≤ ݊. (6)

Proof. The condition ܥଵ + ଵܩ ≤ -ଵ is to ensure the feasibility of ߬ଵ. The assumption that the selfܦ
suspension always has fixed suspending time leads to the condition that the minimum inter-arrival
time of each computation segment of ߬ଵ is ଵܶ. Therefore, we can treat each of them as a sporadic
task with period ଵܶ. Moreover, since all of them have the same period ଵܶ, we can further merge
them as a single task with execution time ܥଵ and period ଵܶ. Therefore, we can use the time-
demand analysis in Equation (6) for testing the schedulablity of task ߬௞. ∎

That is, in the taskset Γଵ௦, self-suspension does increase the difficulty of performing schedulability
analysis as compared to performing schedulability analysis of ordinary sporadic tasks. We have
the following corollary.

Corollary 2: Suppose that ߛ = ீభ்భ (is given with 0 ≤ ߛ ≤ 1). For a taskset ߁ଵ௦ with implicit

deadlines and ଵܶ ≤ ଶܶ ≤ ⋯ ≤ ௡ܶ, ߁ଵ௦ is schedulable by RMS if ܥଵ + ଵܩ ≤ ଵܶ and the total

utilization of the taskset is less than or equal to ݊ ቀ2భ೙ − 1ቁ, where ݊ is the number of tasks in ߁ଵ௦.
With the above corollary, we can further build the utilization bound based on the factor ߛ = ீభ்భ. If ܩଵ is close from ଵܶ, ܥଵ cannot be large with respect to ଵܶ because ܥଵ + ଵܵ ≤ ଵܶ. If ߛ is large, to
ensure the feasibility of task ߬ଵ, the available execution time of task ߬ଵ is also limited.

Corollary 3: For a taskset ߁ଵ௦ with implicit deadlines and ଵܶ ≤ ଶܶ ≤ ⋯ ≤ ௡ܶ, ߁ଵ௦ is schedulable
by RMS if ଵܷ ≤ 1 − ௜ୀଵ௡ߎ and ߛ (௜ܷ + 1) ≤ 2, where ݊ is the number of tasks in ߁ଵ௦.
Proof. This comes from Lemma 3 to satisfy ܥଵ + ଵܩ ≤ ଵܶ and Equation (6). Since the test in
Equation (6) is identical to the case with ݊ sporadic tasks with given utilization ଵܷ, ܷଶ,… ,ܷ௡, we
can use the hyperbolic bound Π௜ୀଵ௡ (௜ܷ + 1) ≤ 2 from [2]. ∎

We can then derive the following theorem.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Theorem 2: Suppose that ߛ = ீభ்భ (is given with 0 ≤ ߛ ≤ 1). For a taskset ߁ଵ௦ with implicit

deadlines and ଵܶ ≤ ଶܶ ≤ ⋯ ≤ ௡ܶ, ߁ଵ௦ is schedulable by RMS if ଵܷ ≤ 1 − and ߛ

 ∑௡௜ୀଵ ௜ܷ ≤ ൮݊ ቀ2భ೙ − 1ቁ 		ߛ		݂݅	 < 		2		 −		2భ೙	(1 − (ߛ + (݊ − 1)ቆቀ ଶଶିఊቁ భ೙షభ − 1ቇ 	݁ݏ݅ݓݎℎ݁ݐ݋	 (7)

Proof. For the rest of the proof, we explain how to obtain the utilization bound in Equation (7).
Our objective is to find the infimum ∑௡௜ୀଵ ௜ܷ such that ଵܷ ≤ 1 − and Π௜ୀଵ௡ ߛ (௜ܷ + 1) > 2. There

are two cases: (1) If 2భ೙ − 1 < 1 − then by following the analysis of the Liu and Layland bound ,ߛ

[16], the utilization bound is ∑௡௜ୀଵ ௜ܷ = ݊ ቀ2భ೙ − 1ቁ with ଵܷ = ቀ2భ೙ − 1ቁ < 1 − If 2భ೙ (2) .ߛ − 1 ≥1 − the the infimum ∑௡௜ୀଵ ,ߛ ௜ܷ is a solution with ଵܷ = 1 − Together with the fact that the .ߛ

geometric mean ඥΠ௜ୀଶ௡ (௜ܷ + 1)೙షభ is no more than the arithmetic mean
∑೙೔సమ (௎೔ାଵ)௡ିଵ = ∑೙೔సమ௎೔௡ିଵ + 1,

we have

					2 <ෑ௡௜ୀଵ (௜ܷ + 1) = (2 − ෑ௡௜ୀଶ(ߛ (௜ܷ + 1)
									≤ (2 − (ߛ ቆ∑௡௜ୀଶ ௜ܷ݊ − 1 + 1ቇ௡ିଵ

⇒ ଵܷ +෍௡௜ୀଶ ௜ܷ > (1 − (ߛ + (݊ − 1)ቌ൬ 22 − ൰ߛ ଵ௡ିଵ − 1ቍ

By considering the above two cases, we reach the conclusion. ∎

It is also important to emphasize that the actual utilization bound is min ቄ1 − ,ߛ ݊ ቀ2భ೙ − 1ቁቅ
instead of the bound in Equation (7) if ଵܷ + ߛ ≤ 1 is not listed in the testing condition. The bound 1 − .is due to the constraint of the maximum utilization of the self-suspending task ߬ଵ ߛ

The analysis in this section can only be applied when the self-suspension patterns are defined with
fixed segmentations and with controlled suspension lengths. If a self-suspension interval can be
shorter than the specified length, the analysis in Lemma 3 cannot be applied. Some jitter terms
have to be considered. It is also not difficult to see that the utilization bounds in Equation (7) can
still be improved by adopting more precise analysis than that in Lemma 3. For the target case with
one self-suspending task at the highest-priority level, we can convert this task into a generalized
multi-frame task [1]. Then, the schedulability analysis can be done directly by using the test
proposed by Takada and Sakamura [26]. The generalized utilization-based schedulability test
framework developed by Chen, Huang, and Liu [4] can be easily applied to improve the
schedulability used in Equation (7) by generating ݊ different utilization-based schedulability tests
based on the pseudo-polynomial-time test in [26].

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The assumption that the actual execution time should be always the same as the worst-case
execution time for the self-suspending task is only for being self-contained and the simplicity of
presentation. Such an assumption can be easily removed because the analysis in Lemma 3 anyway
merges all the computation segments, and hence in the proof of Theorem 2.

3.3 Many Self-Suspending Tasks

We now consider a taskset that has many self-suspending tasks. In the previous section, we have
shown that finding the worst-case response times of lower-priority non-suspending tasks is not
trivial because all results from all the possible phases need to be compared against each other
except for some special cases that we have identified. Therefore, having many self-suspending
tasks makes the scheduling problem intractable. In addition, the conventional fixed priority
scheduling such as RMS does not account for a different timing requirement per segment. For
example, if there is a relatively long suspension time between two segments of a lower priority
task and the completion time of the second segment is close enough to its deadline, the task may
not easily meet its deadline.

Consider a taskset that is composed of two self-suspending tasks: ߬ଵ: ((1,1,1),5) and ߬ଶ: ((2,5,2),10). The executions of ߬ଵ and ߬ଶ with RMS are illustrated in Figure 6. The boxes filled
with horizontal lines represent ߬ଵ, and the boxes filled with diagonal lines represent ߬ଶ. The
release of each job is also depicted below the time axis to show the different phasing behaviors.
By extending Proposition 1, we can understand that we need to consider four different phases.
The case when ߬ଵ,ଵ and ߬ଶ,ଵ arrive at the same time is depicted in Figure 6 (a). The case when ߬ଵ,ଶ
and ߬ଶ,ଵ arrive at the same time is illustrated in Figure 6 (b), where ߬ଵ,ଵ and ߬ଶ,ଶ are also released
at the same time at time 10. The case when ߬ଵ,ଶ and ߬ଶ,ଶ are released together cannot exist for

Figure 6. Since ߬ଵ has the shortest period, it has the highest priority. As shown in Figure 6,
regardless of different phases, ߬ଶ always misses its deadline. This happens because the
conventional fixed priority scheduling does not consider the suspension time between segments.
For example, ߬ଶ has only 5 units of time to execute for 4 units of time due to 5 units of suspension
time.

One possible way of resolving this issue is to assign a segment that requires a faster execution a
higher priority. Figure 7 illustrates the execution behaviors of ߬ଵ and ߬ଶ when ߬ଶ,ଵ has the highest
priority, ߬ଵ,ଵ and ߬ଵ,ଶ are assigned the priorities in the middle, and ߬ଶ,ଶ is assigned the lowest

priority. As shown in Figure 7, ߬ଶ meets its deadline, and the given taskset is schedulable with the
proposed scheduling method.

(a) (b)

Figure 6: Scheduling ߬ଵ: ((1,1,1),5) and ߬ଶ: ((2,5,2),10) with rate monotonic scheduling.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

(a) (b)

Figure 7: Scheduling ߬ଵ: ((1,1,1),5) and ߬ଶ: ((2,5,2),10) with segment-fixed priority scheduling.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4 Segment-Fixed Priority Scheduling

We propose the segment-fixed priority scheduling, where we decompose a sporadic self-
suspending task into multiple segments and assign them different priorities. In this section, we
also relax the assumption of a constant gap that was made in Section 3 so that ܩ௜,௝ெ௜௡ ≤ ௜,௝ெ௔௫ isܩ

allowed. In other words, the suspension time can vary during run-time, but it is bounded.
Although this is a more realistic assumption, varying suspension time easily makes the analysis
intractable. We have shown that different phases among tasks need to be considered, so the
varying suspension time gives myriads of different phase differences. This ends up being hard-to-
predict jitters in tasks. This issue can be avoided by leveraging a phase enforcement scheme [22],
[14], which guarantees that a computing segment of a self-suspending task ߬௜ arrives after an
offset of ߶௜ time units from the arrival of a job of the task. Hence, a segment does not arrive
before its enforced phase time. We also allow the execution time of ߬௜,௝ can vary between 0 and ܥ௜,௝. We first provide an non-optimal method to determine phases and priorities to support

segment-fixed priority scheduling; it is optimal with respect to the schedulability test used though.

4.1 Schedulability analysis and optimal configuration with MILP

In this section, we will initially assume that priorities and phases (߶) are given. We will construct
a Mixed-Integer Linear Program (MILP) such that if this MILP is feasible then the taskset is
schedulable. This gives us a sufficient schedulability test. We will then use this MILP to obtain a
configuration of priorities and ߶. In MILP expressions, we let {x..y} denote the set of integers ≥ x
and ≤ y. And we let s.t. mean such that.

We will consider tasks where each task has multiple segments and we let ݏ௜ denote the number of
segments of task ߬௜. Since the first segment of a task arrives when a job is released, the phase of
this segment is zero. So we only need to specify ݏ௜ − 1 offsets for task ߬௜. Consequently, the
release time of the ݏ௧௛ segment of task ߬௜ is denoted by ߶௜,௦ିଵ. Let ݉ܽ݋݅ݎ݌ݔ denote the number

of priority levels available. If we do not specify this explicitly, we assume that ݉ܽ݋݅ݎ݌ݔ =∑௡௜ୀଵ .௜ because this is enough for making it possible for each segment to have its unique priorityݏ
We assume that if we do not specify the domain of a variable then its domain is non-negative real
number. Let ܴ௜,௦ denote the response time of the ݏ௧௛ segment of task ߬௜ (the response time is

counted from the arrival time of the job – not the arrival time of the segment of the job). Let ܴܷܤ௜,௦ denote an upper bound on ܴ௜,௦. Let ݕ௜,௦,௣ = 1 indicate that the ݏ௧௛ segment of ߬௜ is
assigned priority level ݌; otherwise ݕ௜,௦,௣ = 0. Let ݔ௜,௦,௝,௦ᇱᇱ = 1 indicate that the priority of the ݏ′′௧௛ segment of task ௝߬ is greater than or equal to the priority of the ݏ௧௛ segment of task ߬௜;
otherwise ݔ௜,௦,௝,௦ᇱᇱ = 0.

For convenience, let us introduce:

 ∀τ௜ ∈ 	Γ: ߶௜,଴ = 0 (8)

Monotonicity of offsets gives us:

 ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ௜ݏ − 1}:߶௜,௦ିଵ ≤ ߶௜,௦	 (9)	

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Since a segment of a task has exactly one priority level:

 ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . :{௜ݏ ∑௠௔௫௣௥௜௢௣ୀଵ ௜,௦,௣ݕ = 1 (10)

We require that the taskset is schedulable. The last segment must finish by its deadline and all
other segments must finish at a time so that there is enough time until the next segment of the
same task arrives. Hence:

 ∀τ௜ ∈ 	Γ: ݏ∀) ∈ {1. . ௜ݏ − 1}: ௜,௦ܤܷܴ + ௜,௦ܩ ≤ ߶௜,௦) ∧ ௜,௦೔ܤܷܴ) ≤ ௜) (11)ܦ

The fact that ݔ௜,௦,௝,௦ᇱᇱ indicates priority relationship gives us: ∀τ௜ ∈ 	Γ, ∀τ௝ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ′ᇱݏ∀ ∈ ൛1. . ,௝ൟݏ ݌∀ ∈ {1. ᇱ݌∀ ,{݋݅ݎ݌ݔܽ݉. ∈ {1. .s	{݋݅ݎ݌ݔܽ݉. t. (݆ ≠ ݅) ∧ ݌) ≤ ௜,௦,௣ݕ)) :(ᇱ݌ = 1) ∧ ௝,௦ᇱᇱ,௣ᇱݕ) = 1)) ⇒ ௜,௦,௝,௦ᇱᇱݔ) = 1) (12)

We can now express an upper bound on the response times as follows:

 ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . :{௜ݏ ௜,௦ܤܷܴ = ߶௜,௦ିଵ + 	௜,௦ݓ (13)		 ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ௜,௦ݓ:{௜ݏ = ௜,௦ܥ + ∑தೕ∈	Γ∧௝ஷ௜ 	௜,௦,௝ܫ (14)	
where ܫ௜,௦,௝ is an upper bound on the interference that ߬௜,௦ suffers from ௝߬.
In normal response-time calculations, one computes the interference on ߬௜ from all higher-priority
tasks. In our model, however, a task ௝߬ can have multiple segments so that some of the segments
of ௝߬ have higher priority than the ݏ௧௛ segment of task ߬௜ and other segments of ௝߬ have lower

priority than the ݏ௧௛ segment of task ߬௜. For this reason, when we compute the interference that a
given segment of ߬௜ suffers from, we compute it based on all other segments from all other tasks
and add up all terms. Some of these segments of other tasks will have lower priority than the
segment of task ߬௜; these will have zero terms. That is, in some terms ܫ௜,௦,௝ may be zero.

We would like to compute ܫ௜,௦,௝. One can note that this is constituted of two types of execution (i)
carry-in execution and (ii) non-carry-in execution. The former is execution of a segment of ௝߬ that
delays the segment ߬௜,௦ and this execution comes from a segment of ௝߬ that arrives before the
segment ߬௜,௦ arrives. The latter is execution of a segment of ௝߬ that delays the segment ߬௜,௦ and this
execution comes from segment(s) of ௝߬ that arrive not before the segment ߬௜,௦ arrives. In order to

discuss carry-in and non-carry-in execution, let us define the function prec(ݏ′, ݆) as follows: if ݏ′ =1 then prec(ݏ′, ݆) = ,′ݏ)௝ else precݏ ݆) = ′ݏ − 1. Intutively, the function prec(ݏ′, ݆) finds the
segment that precedes segment ݏ′ of task ௝߬.
Consider those segments of task ௝߬ that arrive after ߬௜,௦ arrives. Among those, consider the one
with the earliest arrival let and let ݏ′ be its segment index of task ௝߬. Hence: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ	s. t. ݆ ≠ ௜,௦,௝ܫ :݅ = max௦ᇱ∈{ଵ..௦ೕ}(ܿ݁ݔ݁ܫܥ௜,௦,௝௦ᇱ + ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥܰ) (15)

Carry-in from task ௝߬ can only happen from a single segment of task ௝߬ and only if this segment

has priority that is higher or the same. Hence:

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥ :݅ = ௝,୮୰ୣୡ(௦ᇲ,୨)ܥ ⋅ ௜,௦,୨,୮୰ୣୡ(௦ᇲ,୨) (15b)ݔ

Let ܰܿ݁ݔ݁ܫܥ௜,௦,௝௦ᇱ denote the interference of task ௝߬ on ݏ௧௛ segment of task ߬௜ for the case that s’ is
as mentioned above. ܰܿ݁ݔ݁ܫܥ௜,௦,௝௦ᇱ can be expressed as a sum of terms where each term is of a
segment of task ௝߬. Hence: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥܰ :݅ = ∑௦ᇱᇱ∈{ଵ..௦ೕ} ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ (16)

Each of these terms can be expressed by counting the number of jobs of segment ݏ′′ of task ௝߬ that

impacts the response time of a job of segment ݏ of task ߬௜ for the case that s’ is as mentioned
above. Hence: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ᇱݏ∀ ∈ ൛1. . ,௝ൟݏ ᇱᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ :݅ = ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ ⋅ ௝,௦ᇱᇱܥ ⋅ ௜,௦,௝,௦ᇱᇱ (17)ݔ

Considering that the ݏ′′௧௛ segment of ௝߬ may arrive at or later than the time that segment ݏ of task ߬௜ arrives gives us: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ ൛1. . .s	௝ൟݏ t. (݆ ≠ ݅) ∧ ′′ݏ) ≥ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ :(′ݏ = ඄௪೔,ೞି(థೕ,ೞᇲᇲషభିథೕ,ೞᇲషభ)்ೕ ඈ (18)

Considering that the ݏ′′௧௛ segment of ௝߬ may arrive before the time that segment ݏ of task ߬௜
arrives gives us: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ {1. . .s	௝}ݏ t. (݆ ≠ ݅) ∧ ≥′′ݏ) ′ݏ − ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ :(1 = ඄௪೔,ೞି(்ೕି(థೕ,ೞᇲషభିథೕ,ೞᇲᇲషభ))்ೕ ඈ (19)

If values of ߶ and ݕ are given, then determining feasibility of these constraints is equivalent to
determining if the taskset is schedulable. If ߶ and ݕ are not given, then determining feasibility of
these constraints is equivalent to determining if there exists a configuration of ߶ and priorities that
makes the taskset schedulable. These constraints are not MILP expressions but they can be
rewritten to MILP expressions (a problem for which many tools are available). We have rewritten
them to MILP (see Appendix 6 and B) and used Gurobi (a state-of-the-art MILP solver) to create
a tool for exact schedulability analysis and optimal configuration of ߶ and priorities.

4.2 Fast Deadline and Phase Assignment using Heuristics

Although the optimal priorities and phases can be obtained using the above-mentioned method,
the execution time of the algorithm tends to grow rapidly with the number of tasks and segments.
To overcome this, we propose four heuristics in this subsection. The high-level ideas are (1)
taking into account only available CPU time for a task after subtracting suspension time from its

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

deadline, (2) distributing its slack to each segment based on computation demands, (3) assigning a
segment a deadline with a phase, and (4) scheduling each segment using Deadline-Monotonic
Scheduling (DMS). The four heuristics are about how to distribute the slack of a self-suspending
task to assign a segment a deadline, hence assigning the segment a priority.

To effectively show how the algorithms work, we introduce a few new notations. Since we want
to assign intermediate segment-level deadlines to determine the priorities of task segments, we let ܦ௜,௝ denote the segment-level deadline of ߬௜,௝ relative to its release time that is represented as ߶௜,௝ିଵ. Then, we define a segment density ߥ௜,௝ as the ratio of the worst-case execution time of the

task segment to the task period. We also define ௝்ܷ ௢௧ as ∑௡௜ୀଵ ஼೔,ೕ்೔ , which is the total utilization of

the ݆௧௛ segments of all tasks. We use these terms to define the following heuristics.

 ED (Equal Density): Assign ߬௜,௝ a segment deadline so that all segment densities for ߬௜ are

same. In other words, there is a certain value ߥ௜,௝ = ஼೔,భ஽೔,భ = ஼೔,మ஽೔,మ = ⋯ = ஼೔,ೞ೔஽೔,ೞ೔.

Algorithm 3: ED(Γ)

Input: Γ: a set of	݊ self-suspending tasks

Output: Δ: a set of segment level relative deadlines

Output: Φ: a set of segment-level phase offsets

1: for ݅ = do	݊	݋ݐ	1

2: ⊳ Calculate the actual amount of CPU time for ߬௜ with the suspension-time consideration.

௜ܦ :3 ≔ ௜ܦ − ௜ܩ
4: ߶௜,଴ ≔ 0

5: Δ := 

6: Φ := 

7: for ݆ = ௜ݏ	݋ݐ	1 − 1	do

8: ⊳ Assign ߬௜,௝	ܦ௜,௝ so that ∀݆, ஼೔,ೕ஽೔,ೕ is all the same.

௜,௝ܦ :9 ≔ 	 ஼೔,ೕ	஽೔஼೔ , ߶௜,௝ ≔ ߶௜,௝ିଵ + ௜,௝ܦ + ௜,௝ܩ
10: Δ ≔ Δ		൛ܦ௜,௝ൟ,Φ ≔ Φ		{߶௜,௝}
௜,௦೔ܦ :11 ≔ ௜ܦ + ௜ܩ − ߶௜,௦೔ିଵ, Δ ≔ Δ		{	ܦ௜,௦೔	}
12: return Δ and Φ

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 MTD (Minimize Total Density): Assign ߬௜,௝ a segment deadline so that the total density for ߬௜ is minimized. That is to find ܦ௜,௝s that minimize ∑௦೔௝ୀଵ ஼೔,ೕ஽೔,ೕ.
 ES (Equal Slack): Assign ߬௜,௝ a segment deadline so that ܦ௜,ଵ − ௜,ଵܥ = ௜,ଶܦ − ௜,ଶܥ = ⋯ ௜,௦೔ܦ= − .௜,௦೔ is satisfiedܥ

 PS (Proportional Slack): Assign ߬௜,௝ a segment deadline so that ∀݆ ∈ {݆|1 ≤ ݆ < ,௜ݏ ݆ ∈ℤା},ܦ௜,௝ − :௜,௝ܥ ௜,௝ାଵܦ − :௜,௝ାଵܥ : ௜ܷ,௝: ௜ܷ,௝ାଵ is satisfied.

Outputs of the heuristics are a set of segment deadlines that will determine priorities of task
segments under DMS policy. The shorter the relative deadline is, the higher the priority is. The
release phases are determined based on the segment deadline. For example, if ߬௜,௝ is assigned a
segment deadline ܦ௜,௝, the release phase for ߬௜,௝ାଵ is ߶௜,௝ିଵ + ௜,௝ܦ + ௜,௝. One of the heuristicܩ

implementations are presented in an algorithmic format in Algorithm 3 that has ܱ(∑௡௜ୀଵ (௜ݏ
complexity.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5 Related Work

Previous work related to task-fixed priority scheduling with suspension includes [8], [24], [3],
[25], and [14]. Ridouard, et al. [24],[25] proved that the problem of scheduling real-time tasks
with self-suspension is NP-Hard in the strong sense. In [8], the authors presented a comparison
between two multi-processor priority inheritance protocol (MPCP and MSRP) where tasks could
suspend waiting for a remote lock. In this work the authors highlighted the different approaches to
deal with this suspension. In MPCP, a task waiting for a global lock was allowed to suspend,
allowing lower-priority tasks to run, and a period-enforcement was used to avoid jitter [23]. In
MSRP, on the other hand, a busy wait was used and no lower-priority tasks were allowed to run.
In our work, we also use a period enforcement mechanism to avoid jitter in the suspension, but
each segment (e.g. before and after the suspension) is given a different priority according to
different schemes of segment deadline assignments. In [3], the authors analyzed the execution of
tasks with segments running in a local processors and segments running on remote co-processors
that could be seen as a suspension in the local processor. In this case the authors bounded the
suspension with a minimum and maximum and provided a recurrence equation to find the worst-
case interference that a task could suffer from higher-priority ones with a number of these
segments. In contrast, in our work we provide a schedulability bound for tasksets with only the
highest-priority task with suspensions while using a generalized task model with suspensions
where each segment is assigned its own priority. The period enforcement of offsets allows us to
provide improved schedulability.

In [14], the authors analyzed the fixed-priority scheduling of tasks with self-suspension.
Specifically, the authors characterized the critical instant of self-suspending task under the
influence of non-suspending sporadic tasks and developed a response time test. They also
provided two execution control policies that transformed the interference of high-priority
suspending tasks into that similar to non-suspending ones to be able to use their response-time test
with these tasks. In contrast, we develop a schedulability bound for a taskset where the higher-
priority is a self-suspending task and develop a response-time test for suspending tasks where
each segment can be assigned different priorities and release enforcement.

The schedulability of self-suspending tasks has also been studied for soft real-time guarantees,
both for a model where the suspension is caused by a GPU and the GPU is treated as a shared
resource [7] and for a general model where the actual cause of suspension is not specified [15].

In [27], the author presented a schedulability analysis for tasks with offsets. These offsets were
used to synchronize the release of groups of tasks that synchronized within the group (known as
transactions). In [20], the authors extended this work to allow offsets and deadlines to go beyond
periods improving the schedulable utilization. The efficiency of the response time analysis in this
model was then further improved in [18]. These papers have some similarities with the use of
offsets between segments in tasks in our model; however, we start with suspension intervals that
separate task segments from where we derive intermediate deadlines that in turn allows us to
assign per-segment fixed priorities.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In [21], the authors developed another schedulability analysis for tasks with offsets. However, in
this case, the analysis assumes EDF scheduling and the results cannot be applicable to fixed-
priority tasks.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6 Conclusion

We have provided schedulability analyses and proposed a new method called segment-fixed
priority scheduling for self-suspending tasks. We have identified a condition that allows us to
leverage the conventional task-fixed priority scheduling such as Rate-Monotonic Scheduling
(RMS); however, the condition is narrow, and RMS is shown to not be the optimal scheduler in
many cases for self-suspending tasks. This is mainly caused by (1) reduced available CPU time
due to self-suspension and (2) unknown suspension time during run-time. In order to improve
performance, we utilize segment-level priority assignment and phase enforcement. To determine
the priority and phase per task segment, we have proposed the MILP-based method and four
heuristics. The heuristics could also be complementary to the MILP-based method because they
do not require significant CPU time to get the results. For example, one of the proposed heuristics
has ܱ(∑௡௜ୀଵ ௜) complexity. A quick check can be done by using heuristics, and the MILP-basedݏ
method can be used if needed. This technique can also be used on a real system [11], [12] so that
special-purpose processors can be used in a predictable and analyzable way.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix A. Rewriting to almost MILP

Note that among the constraints in Section 4.1, some constraints are non-linear (Equation
Error! Reference source not found. uses logical operators; Equation (15) uses the max-function;
Equation (17) uses quadratic expressions; Equation (18) and Equation (19) use the ceiling
function) and hence this formulation is not a MILP. We can rewrite them though. It can be seen
that the implication in Equation Error! Reference source not found. can be rewritten as: ∀τ௜ ∈ 	Γ, ∀τ௝ ∈ 	Γ, ݏ∀ ∈ {1,2,… , ,{௜ݏ ′′ݏ∀ ∈ {1. . ,{௝ݏ ݌∀ ∈ {1. . ᇱᇱ݌∀ ,{݋݅ݎ݌ݔܽ݉ ∈ {1. .s	{݋݅ݎ݌ݔܽ݉. t. (݆ ≠ ݅) ∧ ݌) ≤ ௜,௦,௣ݕ :(′݌ + ௝,௦ᇱᇱ,௣ᇱݕ − ௜,௦,௝,௦ᇱᇱݔ ≤ 1 (20)

Equation (15) can be rewritten as: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ	s. t. ݆ ≠ ݅:∑௦ᇱ∈{ଵ,ଶ,…,௦ೕ} decisionmax୧,ୱ,୨ୱᇱ = 1 (21) ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ݅: (decisionmax୧,ୱ,୨ୱᇱ = 1) ⇒ ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥ) + ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥܰ ≥ ௜,௦,௝) (22) ∀τ௜ܫ ∈ τ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ′ݏ∀ ∈ {1, . . ݆		that		such		௝}ݏ ≠ ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥ :݅ + ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥܰ ≤ ௜,௦,௝ (23)ܫ

where decisionmax୧,ୱ,୨ୱᇱ ∈ {0,1}.

Equation (17) can be rewritten as: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ᇱݏ∀ ∈ ൛1. . ,௝ൟݏ ᇱᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝,௦ᇱᇱݔ) :݅ = 0) ⇒ ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ) = 0) (24) ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ᇱݏ∀ ∈ ൛1. . ,௝ൟݏ ᇱᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝,௦ᇱᇱݔ) :݅ = 1) ⇒ ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ) = ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ ⋅ ௝,௦ᇱᇱ) (25)ܥ

Consider the constraint: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ {1. . .௝} sݏ t. (݆ ≠ ݅) ∧ ′′ݏ) ≥ ௜,௦ݓ :(′ݏ − (߶௝,௦ᇱᇱିଵ − ߶௝,௦ᇱିଵ) ≤ ௝ܶ ⋅ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ (26)

It can be seen that (18) and (26) are different. It can be seen, however, that replacing Equation
(18) with Equation (26) does not impact feasibility.

Consider the constraint: ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1,2,… , ,{௜ݏ ∀τ௝ ∈ Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ {1. . .௝} sݏ t. (݆ ≠ ݅) ∧ ′′ݏ) ≤ ′ݏ − 1):
௜,௦ݓ − (߶௝,௦ᇱᇱିଵ − ߶௝,௦ᇱିଵ) ≤ ௝ܶ ⋅ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ + ௝ܶ (27)

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

It can be seen that (19) and (27) are different. It can be seen, however, that replacing Equation
(19) with Equation (27) does not impact feasibility.

Hence, determining feasibility of Equation (8), (9), (10), (11), (20), (13), (14), (21), (22), (23),
(15b),(16), (24), (25), (26), (27) is equivalent to an exact schedulability test.

This set of constraints is still not an MILP formulation, but it can be rewritten to an MILP
formulation using standard techniques — see Appendix B.

Let us now define four problems:

PROB1: Assuming T,D,C,G values are given and assuming that that ݕ and ߶ values are given,
find an assignment of values to variables that satisfies the constraints Equation (8), (9), (10), (11),
(20), (13), (14), (21), (22), (23), (15b),(16), (24), (25), (26), (27)

PROB2: Assuming T,D,C,G values are given and assuming that ݕ values are given, find an
assignment of values to variables that satisfies the constraints Equation (8), (9), (10), (11), (20), (13), (14), (21), (22), (23), (15b), (16), (24), (25), (26), (27)

PROB3: Assuming T,D,C,G values are given and assuming that ߶ values are given, find an
assignment of values to variables that satisfies the constraints Equation (8), (9), (10), (11), (20), (13), (14), (21), (22), (23), (15b), (16), (24), (25), (26), (27)

PROB4: Assuming T,D,C,G values are given, find an assignment of values to variables that
satisfies the constraints Equation (8), (9), (10), (11), (20), (13), (14), (21), (22), (23), (15b), (16)
, (24), (25), (26), (27)

It can be seen that solving PROB1 is an exact schedulability test. The other ones
(PROB2,PROB3,PROB4) are configuration algorithms that find ߶ and/or priority assignment so
that deadlines are met if such an assignment exist. We have developed a tool that performs these
calculations using Gurobi—a state of the art MILP solver.

Note that if we want to perform schedulability analysis, we can determine feasibility of PROB1 in
a manner similar to response time calculations as follows and this can be performed with low
time-complexity. A lower bound on ݓ௜,௦ is ܥ௜,௦ (using Equation (14)) and this lower bound on ݓ௜,௦ can be used to obtain a lower bound on ݆݊ݏܾ݋௜,௦,௝,௦ᇱᇱ௦ᇱ (using Equation (18) and Equation (19))
which in turn gives us a lower bound on ܰ݉ݎ݁ݐܿ݁ݔ݁ܫܥ௜,௦,௝,௦ᇱᇱ௦ᇱ (using Equation (17)) which in turn
gives us a lower bound on ܰܿ݁ݔ݁ܫܥ௜,௦,௝௦ᇱ (using Equation (16)) which in turn gives us a lower
bound on ܫ௜,௦,௝ (using Equation (15)) which in turns gives us a new lower bound on ݓ௜,௦ (using
Equation (14)). If this new lower bound of ݓ௜,௦ is equal to the previous lower bound on ݓ௜,௦ then
stop; otherwise repeat this procedure to obtain a new lower bound on ݓ௜,௦.
Keep iterating like this for all tasks and for all segments. If we get convergence, then use these
values in Equation (14) to get upper bounds on response times (using Equation (13)) and then
plug it in to Equation (11); if Equation (11) is satisfied then PROB1 is feasible for this taskset. If
we have convergence but Equation (11) is not satisfied, then PROB1 is not feasible for this
taskset. If there is one task with a segment for which we do not have convergence and during one
of these iterations, this lower bound on ݓ௜,௦ exceeds ܦ௜ then PROB1 is not feasible for this

taskset. It can be seen that for each iteration, a new segment is included and hence the time-

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

complexity of this approach for determining feasibility of PROB1 is pseudo-polynomial. Hence,
this procedure is a schedulability test with pseudo-polynomial time-complexity.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Appendix B. Rewriting to MILP

Note that among the constraints in Section 4.1, some constraints are non-linear. Appendix A
provides rewriting of these constraints so that the resulting constraints are almost a MILP
formulation. In this appendix, we will take the final step and rewrite it to a MILP formulation.
When doing this rewriting, we let ܺܣܯܦ be defined as ܺܣܯܦ = max௜ୀଵ௡ ௜. Then, our MILPܦ
formulation is as follows:

Constraints ∀τ௜ ∈ 	Γ: ߶௜,଴ = 0 ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ௜ݏ − 1}:߶௜,௦ିଵ − ߶௜,௦ ≤ 0

∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . :{௜ݏ ෍௠௔௫௣௥௜௢
௣ୀଵ ௜,௦,௣ݕ = 1

∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ௜ݏ − 1}: ܴ௜,௦ − ߶௜,௦ ≤ ௜,௦ ∀τ௜ܩ− ∈ 	Γ: ܴ௜,௦೔ ≤ ௜ ∀τ௜ܦ ∈ 	Γ, ∀τ௝ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ′′ݏ∀ ∈ {1. . ,{௝ݏ ݌∀ ∈ {1. . ᇱ݌∀ ,{݋݅ݎ݌ݔܽ݉ ∈ {1. . .s	{݋݅ݎ݌ݔܽ݉ t. (݆ ≠ ݅) ∧ ݌) ≤ :(ᇱ݌ ௜,௦,௣ݕ + ௝,௦ᇱᇱ,௣ᇱݕ − ௜,௦,௝,௦ᇱᇱݔ ≤ 1 ∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . :{௜ݏ ܴ௜,௦ − ߶௜,௦ିଵ − ௜,௦ݓ = 0 ∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ௜,௦ݓ:{௜ݏ + ෍தೕ∈Γ∧௝ஷ௜ (௜,௦,௝ܫ−) = ௜,௦ܥ
∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γs. t. ݆ ≠ ݅: ෍௦ᇱ∈{ଵ,ଶ,…,௦ೕ} decisionmax୧,ୱ,୨ୱᇱ = 1

∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ᇱݏ∀ ∈ ൛1. . .௝ൟsݏ t. ݆ ≠ ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥ :݅ + ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥܰ − ௜,௦,௝ܫ ≤ 0 ∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝ܫ :݅ − ௜,௦,௝௦ᇲܿ݁ݔ݁ܫܥ − ௜,௦,௝௦ᇲܿ݁ݔ݁ܫܥܰ + ܺܣܯܦ ⋅ decisionmax୧,ୱ,୨ୱᇱ ≤ DMAX ∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥ :݅ − ௝,୮୰ୣୡ(௦ᇲ,୨)ܥ ⋅ ௜,௦,୨,୮୰ୣୡ(௦ᇲ,୨)ݔ = 0 ∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ݅:

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

௜,௦,௝௦ᇱܿ݁ݔ݁ܫܥܰ + ෍௦ᇱᇱ∈{ଵ..௦ೕ} ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ−)) = 0

∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ᇱݏ∀ ∈ ൛1. . ,௝ൟݏ ᇱᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ :݅ − ܺܣܯܦ ⋅ ௜,௦,௝,௦ᇱᇱݔ ≤ 0 ∀τ௜ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ᇱݏ∀ ∈ ൛1. . ,௝ൟݏ ᇱᇱݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ :݅ − ௝,௦ᇱᇱܥ ⋅ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ + ܺܣܯܦ ⋅ ௜,௦,௝,௦ᇱᇱݔ ≤ τ௜∀ ܺܣܯܦ ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ ൛1. . .s	௝ൟݏ t. ݆ ≠ ௜,௦,௝,௦ᇱᇱ௦ᇱ݉ݎ݁ݐܿ݁ݔ݁ܫܥܰ :݅ − ௝,௦ᇱᇱܥ ⋅ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ − ܺܣܯܦ ⋅ ௜,௦,௝,௦ᇱᇱݔ ≥ τ௜∀ ܺܣܯܦ− ∈ Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ {1. . .௝}sݏ t. (݆ ≠ ݅) ∧ ′′ݏ) ≥ :(′ݏ
௝ܶ ⋅ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ + ߶௝,௦ᇱᇱିଵ − ߶௝,௦ᇱିଵ − ௜,௦ݓ ≥ 0 ∀τ௜ ∈ 	Γ, ݏ∀ ∈ {1. . ,{௜ݏ ∀τ௝ ∈ 	Γ, ′ݏ∀ ∈ {1. . ,{௝ݏ ′′ݏ∀ ∈ {1. . .s	௝}ݏ t. (݆ ≠ ݅) ∧ ′′ݏ) ≤ ′ݏ − 1):

 ௝ܶ ⋅ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ + ߶௝,௦ᇱᇱିଵ − ߶௝,௦ᇱିଵ − ௜,௦ݓ ≥ − ௝ܶ
Domains ݕ௜,௦,௣ ∈ {0,1} ݔ௜,௦,௝,௦ᇱᇱ ∈ {0,1} decisionmax୧,ୱ,୨ୱᇱ ௜,௦,௝,௦ᇱᇱ௦ᇱݏܾ݋݆݊ {0,1} ∋ is a non-negative integer.

Other symbols are non-negative real numbers.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

References

URLs are valid as of the publication date of this document.

[1] S. Baruah, D. Chen, S. Gorinsky, and A. Mok. Generalized multiframe tasks. Real-Time
Systems, 17(1):5–22, 1999.

[2] E. Bini, G. C Buttazzo, and Giuseppe M Buttazzo. Rate monotonic analysis: The hyperbolic
bound. Computers, IEEE Transactions on, 52(7):933–942, 2003.

[3] K. Bletsas and N.C. Audsley. Extended analysis with reduced pessimism for systems with
limited parallelism. In RTCSA, 2005.

[4] J.-J. Chen, W.-H. Huang, and C. Liu. k2U: A general framework from k-point effective
schedulability analysis to utilization-based tests. arXiv preprint arXiv:1501.07084, 2015.

[5] Y.-K. Chen and S.Y. Kung. Trend and Challenge on System-on-a-Chip Designs. Journal of
Signal Processing Systems, 53, 2008.

[6] H. Cho et al. Vision-based 3D bicycle tracking using deformable part model and interacting
multiple model filter. In ICRA, 2011.

[7] G. A. Elliott and J. H. Anderson. Globally scheduled real-time multiprocessor systems with
GPUs. Real-Time Systems, 48(1), 2012.

[8] P. Gai et al. A comparison of MPCP and MSRP when sharing resources in the Janus multiple-
processor on a chip platform. In RTAS, 2003.

[9] T. Gu and J. Dolan. On-road motion planning for autonomous vehicles. Intelligent Robotics
and Applications, 2012.

[10] Tegra X1, http://www.nvidia.com/object/tegra-x1-processor.html.

[11] J. Kim et al. SAFER: System-level Architecture for Failure Evasion in Real-time
Applications. In RTSS, 2012.

[12] J. Kim et al. Parallel Scheduling for Cyber-Physical Systems: Analysis and Case Study on a
Self-Driving Car. In ICCPS, 2013.

[13] J. Kim, B. Andersson, D. de Niz, and R. Rajkumar. Segment-fixed priority scheduling for
self-suspending real-time tasks. In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th,
pages 246–257. IEEE, 2013.

[14] K. Lakshmanan and R. Rajkumar. Scheduling self-suspending real-time tasks with rate-
monotonic priorities. In RTAS, 2010.

[15] C. Liu and J.H. Anderson. An O(m) analysis technique for supporting real-time self-
suspending task systems. In RTSS, 2012.

http://www.nvidia.com/object/tegra-x1-processor.html

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[16] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM, 20(1), 1973.

[17] Jane W.S. Liu. Real-time systems. Prentice Hall, 2000.

[18] J. Mäki-Turja and M. Nolin. Efficient response-time analysis for tasks with offsets. In
RTAS, 2004.

[19] M. McNaughton et al. Motion planning for autonomous driving with a conformal
spatiotemporal lattice. In ICRA, 2011.

[20] J. C. Palencia and M. González Harbour. Schedulability analysis for tasks with static and
dynamic offsets. In RTSS, 1998.

[21] R. Pellizzoni and G. Lipari. Feasibility analysis of real-time periodic tasks with offsets.
Real-Time Systems, 30(1-2), 2005.

[22] R. Rajkumar. Dealing with suspending periodic tasks. IBM Thomas J. Watson Research
Center, 1991.

[23] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheritance Approach.
Kluwer Academic Publishers, 1991.

[24] F. Ridouard et al. Negative results for scheduling independent hard real-time tasks with self-
suspensions. In RTSS, 2004.

[25] F. Ridouard et al. Some results on scheduling tasks with self-suspensions. J. Embedded
Comput., 2(3,4), December 2006.

[26] H. Takada and K. Sakamura. Schedulability of generalized multiframe task sets under static
priority assignment. In Real-Time Computing Systems and Applications, 1997. Proceedings.,
Fourth International Workshop on, pages 80–86. IEEE, 1997.

[27] K. Tindell. Adding time-offsets to schedulability analysis. University of York, Department
of Computer Science, 1994.

[28] J. Wei, J. Snider, J. Kim, J. Dolan, R. Rajkumar, and B. Litkouhi. Towards a viable
autonomous driving research platform. In IV, 2013.

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

January, 2016

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Junsung Kim, Department of Electrical and Computer Engineering, Carnegie Mellon University

Björn Andersson, Software Engineering Institute, Carnegie Mellon University

Dionisio de Niz, Software Engineering Institute, Carnegie Mellon University

Ragunathan (Raj) Rajkumar, Department of Electrical and Computer Engineering, Carnegie Mellon University

Jian-Jia Chen, Department of Informatics, TU Dortmund University, Germany

Wen-Hung Huang, Department of Informatics, TU Dortmund University, Germany

Geoffrey Nelissen, CISTER Research Center, Polytechnic Institute of Porto, Portugal

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2016-TR-002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom
Enterprise Acquisition Division
20 Schilling Circle
Building 1305
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Recent trends in System-on-a-Chip show that an increasing number of special-purpose processors are being added to improve the effi-
ciency of common operations. Unfortunately, the use of these processors may introduce suspension delays incurred by communication,
synchronization, and external I/O operations. When these processors are used in real-time systems, conventional schedulability anal-
yses incorporate these delays in the worst-case execution/response time, hence significantly reducing the schedulable utilization.

This report provides schedulability analyses and propose segment-fixed priority scheduling for self-suspending tasks. We model the
tasks as segments of execution separated by suspensions. We start from providing response-time analyses for self-suspending tasks
under Rate Monotonic Scheduling (RMS). While RMS is shown to not be optimal, it can be used effectively in some special cases that
we have identified. We then derive a utilization bound for the cases as a function of the ratio of the suspension duration to the period of
the tasks. For general cases, we develop a segment-fixed priority scheduling scheme. Our scheme assigns individual segments different
priorities and phase offsets that are used for phase enforcement to control the unexpected self-suspending nature.

14. SUBJECT TERMS

System-on-a-Chip, scheduling, segment-fixed priority

15. NUMBER OF PAGES

30

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

CMU/SEI-2016-TR-002 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

	Acknowledgments
	Executive Summary
	1 Introduction
	2 System Model and Assumptions
	3 Fixed Priority Scheduling for Self-Suspending Tasks
	4 Segment-Fixed Priority Scheduling
	5 Related Work
	6 Conclusion
	Appendix A. Rewriting to almost MILP
	Appendix B. Rewriting to MILP
	References

