

Architecture Fault Modeling and Analysis
with the Error Model Annex, Version 2

Peter Feiler
John Hudak
Julien Delange
David P. Gluch

June 2016

SPECIAL REPORT
CMU/SEI-2016-TR-009

Software Solutions Division

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

http://www.sei.cmu.edu

http://www.sei.cmu.edu

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a
federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the
SEI Administrative Agent
AFLCMC/PZM
20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for in-
ternal use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0003594

mailto:permission@sei.cmu.edu

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY i

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table of Contents

Executive Summary viii

Abstract x

1 Introduction 1
1.1 Background 1
1.2 Virtual System Integration and Architecture Fault Modeling 2
1.3 Language Concepts in EMV2 4

1.3.1 Fault Propagation Across the System 5
1.3.2 Fault and Recovery Behavior of Components 6
1.3.3 Compositional Abstraction of Fault Models 7

1.4 Terms and Concepts 8
1.5 Reader’s Guide 11

2 Error Model Libraries and Subclause Annotations 13
2.1 Error Model Library 13

2.1.1 Role of an Error Model Library 13
2.1.2 Using the Error Model Library 13

2.2 Error Model Subclause 14
2.2.1 Role of an Error Model Subclause 14
2.2.2 Using the Error Model Subclause 14

3 Error Types and Common Type Ontology 16
3.1 Error Types and Type Sets 16

3.1.1 Role of Error Types and Type Sets 16
3.1.2 Using Error Types and Type Sets 17
3.1.3 Observations 18

3.2 Reusable Error Type Libraries and Aliases 19
3.2.1 Role of Error Type Libraries and Aliases 19
3.2.2 Using Error Type Libraries and Aliases 19
3.2.3 Observations 20

3.3 Type Products and Type Hierarchy 21
3.3.1 Roles of Type Products and Type Hierarchies 21
3.3.2 Using Type Products and Type Hierarchies 21
3.3.3 Observations 22

3.4 An Ontology of Common Error Propagation Types 22
3.4.1 Role of the Ontology of Error Types 22
3.4.2 Service-Related Errors 23
3.4.3 Value-Related Errors 24
3.4.4 Timing-Related Errors 26
3.4.5 Replication-Related Errors 27
3.4.6 Concurrency-Related Errors 28
3.4.7 Authorization- and Authentication-Related Errors 28
3.4.8 Using the Ontology as an Error Type Library Named ErrorLibrary 29

4 Error Sources and Their Impact 30
4.1 Error Propagation Paths 30

4.1.1 Role of Error Propagation Paths 30
4.1.2 Using Error Propagation Paths 30
4.1.3 Observations 32

4.2 Outgoing and Incoming Error Propagation Specification 32

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ii

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4.2.1 Role of Outgoing and Incoming Error Propagation Declarations 32
4.2.2 Using Outgoing and Incoming Error Propagations 33
4.2.3 Observations 34

4.3 Error Sources, Sinks, and Pass-Through 35
4.3.1 Role of Error Source, Error Path, and Error Sink Declarations 35
4.3.2 Using Error Source, Error Path, and Error Sink Declarations 35
4.3.3 Observations 37

4.4 Fault Propagation Contracts and Unhandled Faults 39
4.4.1 Role of Error Containment Declarations 39
4.4.2 Using Error Containment Declarations 39
4.4.3 Observations on Propagation Guarantees and Assumptions 40

4.5 Error Sources Resulting in Hazards 41
4.6 Understanding the Fault Impact 43
4.7 Identifying Unhandled Faults 43

5 Component Error Behavior 46
5.1 Reusable Error Behavior State Machines 46

5.1.1 Role of Error Behavior States, Events, and Transitions 46
5.1.2 Using Error Behavior State-Machine Declarations 47
5.1.3 Predefined Set of Error Behavior State Machines 48
5.1.4 Typed Error Behavior State Machines 49
5.1.5 Observations 51

5.2 Component-Specific Error Behavior Specification 51
5.2.1 Role of Component-Specific Error Behavior Specifications 51
5.2.2 Using Component-Specific Error Behavior Specifications 52
5.2.3 Observations 53

5.3 Error Response and Fault Tolerance 54
5.3.1 Role of Error Detection, Transition, and Propagation Conditions and Recovery

or Repair Events 54
5.3.2 Using Error Detection, Transition, and Propagation Conditions and Recovery

or Repair Events 55
5.3.3 Observations 56

6 Compositional Abstraction of Error Behavior 57
6.1 Composite Error Behavior Specification 57

6.1.1 Role of Composite Error Behavior Specification 57
6.1.2 Using Composite Error Behavior Specifications 58
6.1.3 Observations 59

7 Use of Properties in Architecture Fault Models 60
7.1 Property Associations on Error Model Elements 60
7.2 Determining a Property Value 62
7.3 User-Defined Error Model Properties 63
7.4 Predeclared EMV2 Properties 63

7.4.1 Occurrence Distribution 63
7.4.2 Exposure Period 65
7.4.3 Propagation Time Delay 65
7.4.4 Duration Distribution 65
7.4.5 Transient Failure Ratio 65
7.4.6 Recovery Failure Ratio 65
7.4.7 State Kind 65
7.4.8 Detection Mechanism 66
7.4.9 Fault Kind 66
7.4.10 Persistence 66
7.4.11 Severity and Likelihood 66

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iii

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

7.4.12 Hazards 67
7.4.13 Description 69

8 Advanced Topics in EMV2 70
8.1 Error Model Subclauses and Inheritance 70
8.2 Error Models and Feature Groups 72
8.3 User-Defined Propagation Points and Paths 73

8.3.1 Role of User-Defined Propagation Points and Propagation Paths 73
8.3.2 Using User-Defined Propagation Points and Propagation Paths 74
8.3.3 Observations 74

8.4 Error Type Mappings and Equivalence 74
8.4.1 Role of Type Mapping Sets and Error Type Equivalence 75
8.4.2 Using Type Mapping Sets and Error Type Equivalence 75
8.4.3 Observations 76

8.5 Type Transformations and Connection Error Behavior 77
8.5.1 Role of Type Transformation Sets and Connection Error Behavior 77
8.5.2 Using Type Transformation Sets and Connection Error Behavior 78
8.5.3 Observations 79

8.6 Mapping Between Operational Modes and Failure Modes 80
8.6.1 Role of Mapping Between Error Behavior States and Modes 80
8.6.2 Using the Mapping Between Error Behavior States and Modes 81
8.6.3 Observations 83
8.6.4 The Composite GPS Error Model 84

9 Architecture Fault Model Examples 86
9.1 A Dual-Redundant Flight Guidance System with Operational Modes 86

9.1.1 Error Behavior of FGS Components 87
9.1.2 Composite Error Behavior of the FGS 89

9.2 Error Propagations Through Networks and Protocols 91
9.3 An Error Propagation and Mitigation Contract for a Dual-Channel Network 94
9.4 A Reconfigurable Triple-Redundant System 96

10 EMV2 Syntax Rules 102
10.1 Error Model Library 102
10.2 Error Type Library, Error Type, Type Set, and Alias 102
10.3 Type Mapping Set and Type Transformation Set 103
10.4 Error Behavior State Machine 103
10.5 Error Model Subclause 105
10.6 Error Propagation Section 105
10.7 Component Error Behavior Section 106
10.8 Composite Error Behavior Section 106
10.9 Connection Error Behavior Section 107
10.10 User-Defined Propagation Point and Path 107

References 108

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY iv

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Figures

Figure 1: Virtual Integration and Incremental Verification and Validation 3

Figure 2: Architecture Fault Model 4

Figure 3: Error Propagation Between Components 6

Figure 4: Component Error Behavior 7

Figure 5: Composite Error Behavior and Its Abstraction 7

Figure 6: Error Model Library 14

Figure 7: Example of an Error Model Subclause 15

Figure 8: User-Defined Error Types 17

Figure 9: Use of Type Sets in Error Propagations 18

Figure 10: Error Type Library 19

Figure 11: Error Type Library of Aliases Only 20

Figure 12: Use of Type Product 21

Figure 13: Error Type as a Subtype in a Type Hierarchy 21

Figure 14: Hierarchy of Service-Related Error Types 24

Figure 15: Hierarchy of Value-Related Error Types 25

Figure 16: Aliases for Value-Related Error Types 25

Figure 17: Hierarchy for Timing-Related Error Types 26

Figure 18: Aliases for Timing-Related Error Types 27

Figure 19: Hierarchy for Replication Error Types 28

Figure 20: Aliases for Replication Error Types 28

Figure 21: Hierarchy of Concurrency Error Types 28

Figure 22: Predeclared Error Types in ErrorLibrary 29

Figure 23: Examples of Error Propagation Declarations for a Software Component 34

Figure 24: Examples of Error Propagation Declarations for Hardware Components 34

Figure 25: A Sensor with an Error Source and an Error Path 36

Figure 26: Example of an Error Sink Declaration 37

Figure 27: Example of an Error Source on All Outgoing Propagation Points 37

Figure 28: Fault Model Specification of a System Interface as Contracts, Assumptions, and Flows 39

Figure 29: Example Error Containment Declaration 40

Figure 30: Matching Rules for Outgoing and Incoming Error Propagations 40

Figure 31: Hazard Specification 42

Figure 32: Sample FHA Report 42

Figure 33: Example of a Fault Impact Report 43

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY v

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 34: Error Propagations Between Subsystems 44

Figure 35: Updated Specification of Error Propagations 44

Figure 36: Mismatch Between Error Propagation Specifications 45

Figure 37: Reusable Declaration for an Error Behavior State Machine 47

Figure 38: Example Model of an Error Behavior State Machine 49

Figure 39: Untyped Specification for an Error Behavior Model 50

Figure 40: Error Behavior State Machine with Error Types 50

Figure 41: Example of a Component-Specific Error Behavior Declaration 53

Figure 42: Representation of the DegradedRecovery Error Behavior State Machine 54

Figure 43: Example with Error Detection and Redundancy Logic Declarations 56

Figure 44: Flight Guidance System Fault Model at Two Levels of Abstraction 57

Figure 45: Composite Error Behavior Specification 58

Figure 46: Property Associations in an Error Model Library 61

Figure 47: Property Association to an Error Model Element with an Error Type 61

Figure 48: Subcomponent-Specific Property Association 62

Figure 49: Definition of an EMV2 Property 63

Figure 50: Example Specification of Occurrence Distribution 64

Figure 51: Example Use of a Likelihood Property Association 67

Figure 52: Addition of Port and Error Propagation 72

Figure 53: Override of an Error Propagation Specification 72

Figure 54: Error Propagations on Feature Group Elements 73

Figure 55: User-Defined Propagation Points and Propagation Path 73

Figure 56: User-Defined Propagation Point 74

Figure 57: Definition of a Type Mapping Set 75

Figure 58: Use of Type Mapping in an Error Path 76

Figure 59: Example of Equivalence Mappings 76

Figure 60: Declaration of Error Type Library Equivalence 76

Figure 61: Contributing Error Propagation in Connections 78

Figure 62: Defining a Type Transformation Set 79

Figure 63: Connection Error Behavior Specification 79

Figure 64: Operational Modes and Failure Modes 80

Figure 65: Superimposed Error Behavior States 81

Figure 66: Example of Mapping Error Behavior States onto Modes 81

Figure 67: GPS Operational Modes and Abstracted Error Model 82

Figure 68: Composite State Diagram of Operational and Failure Mode 83

Figure 69: Detectable Error Behavior of a Component 84

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vi

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 70: GPS Composite Error Model Specification 85

Figure 71: Overview of the FGS 86

Figure 72: Reusable Two-State Error Behavior 87

Figure 73: Two-State Error Behavior of the FG Subsystem 87

Figure 74: Two-State Error Model for FG and AP 88

Figure 75: Reusable Three-State Error Behavior Model 88

Figure 76: Three-State Error Model for AC 89

Figure 77: The GPSErrorModelLibrary Package 90

Figure 78: Three-State Error Model for FGS 91

Figure 79: Impact of Electrical Power Loss 91

Figure 80: Error Propagation in a Multilayered Network 92

Figure 81: Network and Protocol Binding Specification 92

Figure 82: Network Fault Model Specification 93

Figure 83: Fault Model Specification for the DP 93

Figure 84: Fault Model Specification for the CRC 93

Figure 85: Errors Related to the SAFEbus 94

Figure 86: Error Propagation Related to Components Using the SAFEbus 95

Figure 87: Triple-Redundant Error Behavior State Machine 97

Figure 88: Subsystem Fault Model with Error Paths and Voting Logic 98

Figure 89: Reconfigurable Triple-Redundant System Model 100

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY vii

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

List of Tables

Table 1: Propagation Paths Between Software Components 31

Table 2: Propagation Paths Between Hardware Components 31

Table 3: Propagation Paths Based on Bindings 31

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY viii

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Executive Summary

Safety-critical software-reliant systems must manage component failures and previously unidenti-
fied conditions of anomalous interaction among components as hazards that affect a system’s
safety, reliability, and security so that the potential effects of residual hazards on the system oper-
ation are reduced to an acceptable risk. Standards and recommended practices for safety-critical
systems—such as DO-178B/C, SAE ARP4754A, and SAE ARP4761 in the aerospace industry—
outline methods such as Functional Hazard Assessment, Failure Mode and Effect Analysis, Fault
Tree Analysis, and availability and reliability prediction via reliability block diagrams. Security-
related practices are typically addressed through separate guidance.

This report provides guidance on the use of the Error Model Annex, Version 2 (EMV2), notation
[SAE 2015], a revision of the SAE AS-5506/1 Error Model standard for architecture fault model-
ing and analysis [SAE 2006]. EMV2 augments architecture models expressed in the Architecture
Analysis & Design Language (AADL) with fault information to characterize anomalous condi-
tions. Automated safety, reliability, and security analyses from the same annotated architecture
model ensure consistency across analysis results.

The report introduces EMV2 concepts for architecture fault modeling of systems consisting of
components in the context of an operational environment in terms of three levels of abstraction:

 focus on fault sources in a system and their impact on other components or the operational
environment through propagation

 focus on a system or component fault model to identify faults and their occurrences within a
system (component), their manifestation as failure, the effect of incoming propagations, con-
ditions for outgoing propagation, and the ability of the system (component) to recover or be
repaired

 focus on relating the fault model of system components to the abstracted fault model of the
system

This layered abstraction allows for scalable compositional analysis.

In addition, EMV2 introduces the concept of error types to characterize exceptional conditions
and their propagation. EMV2 includes a set of predefined error types as a starting point for sys-
tematic identification of different types of fault propagations, providing an error propagation on-
tology. Users can adapt and extend this ontology to specific domains.

EMV2 allows users to specify which system components are expected to detect, report, and man-
age anomalous conditions and their propagation and reflect the effects of recovery and repair ac-
tions taken by the system on the error behavior state. The implementation of health monitoring
and fault management functionality of the system is modeled in the AADL core model. In other
words, EMV2 expresses anomalous behavior of systems independent of whether and how it is ac-
tually managed by the system.

The report includes a discussion of several example models:

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY ix

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 a Global Positioning System with a focus on the interaction between operational and failure
modes

 a dual-redundant flight guidance system to show consistency between an abstracted architec-
ture fault model and its composite model for a fault-tolerant system

 an example of abstractly specifying a fault behavior interface for a network protocol stack

 an example of specifying an abstract fault model for a dual-channel avionics network to en-
sure correct and consistent use

 a triple-redundant system that has both physical and logical redundancy

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY x

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Abstract

Safety-critical software-reliant systems must manage component failures and conditions of anom-
alous interaction among components as hazards that affect a system’s safety, reliability, and secu-
rity so the potential effects of hazards on system operation are reduced to an acceptable risk.
Standards and recommended practices for safety-critical systems outline methods for analysis, but
security-related practices are typically addressed through separate guidance. This report provides
guidance on using the Error Model Annex, Version 2 (EMV2), notation for architecture fault
modeling and analysis, which supports automated safety, reliability, and security analyses from
the same annotated architecture model to ensure consistency across analysis results. EMV2 aug-
ments architecture models expressed in the Architecture Analysis & Design Language with fault
information to characterize anomalous conditions. The report introduces concepts for architecture
fault modeling of systems in an operational environment at three levels of abstraction. In addition,
EMV2 introduces the concept of error types to characterize exceptional conditions and their prop-
agation. Finally, EMV2 allows users to specify which system components are expected to detect,
report, and manage anomalous conditions and their propagation and to reflect the effects of recov-
ery and repair actions as error behavior states. The report includes several example models.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 1

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1 Introduction

This report provides a guide to architecture fault modeling using the SAE International Architec-
ture Analysis & Design Language (AADL) [SAE 2012] and the Error Model Annex, Version 2
(EMV2), standard [SAE 2015]. The resulting models are the basis for various forms of safety and
dependability analysis. A separate report discusses how architecture fault models support the
ARP4761 safety analysis practice, illustrated with a wheel braking system [Delange 2014].

1.1 Background

Development efforts for safety-critical software-reliant systems must manage component failures
and previously unidentified conditions of anomalous interaction among components as hazards
that affect reliability, safety, and security so that the potential effects of residual hazards on the
system operation are reduced to an acceptable risk. Reliability focuses on providing continued op-
eration despite failures. Safety focuses on unsafe conditions due to failures, malfunctions, or un-
expected interactions between system components and the environment that result in catastrophic
consequences for human life, health, property, or the environment. Security focuses on the protec-
tion of systems from accidental or malicious access, use, modification, destruction, or disclosure.

Standards and guidance documents for safety-critical systems—such as DO-178B/C, SAE
ARP4754, and SAE ARP4761 in the aerospace industry—outline recommended practices such as
Functional Hazard Assessment (FHA), Preliminary System Safety Assessment (PSSA), full Sys-
tem Safety Assessment (SSA), and Common Cause Failure Analysis. Other methods include Fail-
ure Modes and Effect Analysis (FMEA) and its variant Failure Mode, Effects, and Criticality
Analysis; Fault Tree Analysis (FTA); availability and reliability prediction via reliability block
diagrams and stochastic Petri net or Markov models; and architectural designs such as using sys-
tem partitioning as a protection scheme for fault isolation and containment (DO-178B/C and
ARINC-653).

These methods are labor intensive and, therefore, are often applied once in the life of a system.
For example, when a development team performs an FHA, they record only hazards that result in
catastrophic failure. Later when performing an FMEA, experts explore failure modes and one or
two levels of effects. Due to the large effort involved, tradeoffs between alternative designs are
often not examined using an FMEA. Consistency between FHA, FMEA, FTA, and other analyses
is typically maintained by inspection of documents that capture the results of these analyses, an-
other time-consuming and fallible activity. Alternatively, by generating safety analysis representa-
tions, such as fault trees, from AADL models annotated with EMV2, we ensure that architectural
changes are consistently propagated and reflected in analysis reports when repeated. This ap-
proach maintains consistency across analyses beyond safety to include performance, security, and
other objectives.

While these practices typically focus on safety and reliability, the underlying concepts of hazards
and their propagation can also be used to identify security concerns that potentially result in intru-
sion and violation of information confidentiality. Partitioned architecture designs have been pro-
moted as a key to Multiple Independent Levels of Security/Safety (MILS) [Rushby 1981], which
is reflected in the Common Criteria for Information Technology Security Evaluation [ISO 2005].

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 2

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

As safety-critical systems have become more software reliant, they have also experienced major
cost increases. Software systems can make up more than 75% of the system cost, and as much as
70% of that is the cost of rework due to errors introduced in requirements and architecture design
but not discovered until system integration [NIST 2002]. Several root causes with system-wide
impact have emerged, as evident from the increased fault leakage from requirements and architec-
ture design into system integration and later into the system life cycle [Feiler 2010]. This fault
leakage is due to mismatched assumptions in the interfaces among software components, between
software components, and between the hardware platform and the physical system, in particular
with respect to nonfunctional properties. Root causes of mismatched assumptions among system
components include the following:

 base type and abstract data type representations, including inconsistent use of measurement
units and value ranges

 real-time processing of time-sensitive data streams and the impact of latency jitter, mis-
matched streaming rates, and dropped or corrupted data elements on continuous control sys-
tem behavior and discrete system state interaction

 synchronizing and coordinating redundant processing streams, in particular detection and re-
covery logic for anomalous system behavior such as Byzantine failure behavior

 interactions between state-based systems with replicated, mirrored, and coordinated state ma-
chines representing operational and failure modes (mode confusion)

 impact of state vs. state change communication under faulty transfer conditions, and the use
of sampled processing to communicate events, leading to possible loss of events (inconsistent
state)

 performance impact of resource management due to mismatched resource demand and capac-
ity and unmanaged shared resource usage

 virtualization of resources, such as partitioned architectures, resulting in potential incon-
sistency of logical and physical redundancy and affecting reliability and availability

 virtualization of time, resulting in temporal inconsistencies and potential loss of information

1.2 Virtual System Integration and Architecture Fault Modeling

The SAE AADL standard provides a notation for specifying the architecture of software-reliant
systems [Feiler 2012, SAE 2012]. It introduces component concepts that are specific to the archi-
tectures of software systems:

 packages, data components, subprograms, subprogram groups, and system and abstract com-
ponents to specify a functional or software design architecture

 processes and threads with port connections, remote service calls, and shared data access to
specify the runtime architecture of a software system

 processors, virtual processors, memory, buses, virtual buses, and their interconnections via
bus access to specify a hardware platform

 devices, buses, and systems with both logical and physical connections to specify interactions
with the physical system

Well-defined execution semantics, communication timing semantics, and standardized extensions
allow for qualitative and quantitative analyses of multiple quality attributes of a multitier system

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 3

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

architecture from the same architecture model. Furthermore, they can be analyzed incrementally
as the architecture hierarchy is refined and evolved. The aerospace industry’s System Architecture
Virtual Integration (SAVI) initiative has demonstrated the value of virtual integration and predic-
tive analysis of architecture models for discovering system-level issues early in the development
process, thus reducing the cost of major rework [Redman 2010]. These results led to an approach
to system quality certification and improvement that combines predictive analysis based on virtual
integration with increased formalization of requirements, increased use of static analysis such as
model checking, and assurance cases to manage evidence that the system design and implementa-
tion have met functional and operational quality requirements [Feiler 2013]. Figure 1 illustrates
this approach.

Figure 1: Virtual Integration and Incremental Verification and Validation

One standardized extension, the AADL Error Model Annex standard [SAE 2006], supports archi-
tecture fault modeling by enabling annotation of an architecture model with fault occurrence and
resulting failure and fault propagation behavior to address dependability concerns in safety-criti-
cal systems. A development team can leverage potential fault propagation paths already repre-
sented in AADL models to generate representations for safety analysis (see Figure 2). The results
allow engineers to use an automated safety analysis process by supporting qualitative and quanti-
tative analysis of system reliability, availability, safety, security, and survivability. The process
can also include determining compliance of the system to the specified fault-tolerance strategies.
The effectiveness of this approach has been demonstrated on safety assessments of satellite sys-
tems [Hecht 2011]. EMV2 has recently been used to demonstrate the automation of the different
safety analysis activities that are part of the SAE ARP4761 standard for conducting safety assess-
ments in civil airborne systems and equipment. This case study is the subject of a separate report
[Delange 2014].

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 4

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 2: Architecture Fault Model

We have revised the Error Model Annex standard based on users’ experience with the original an-
nex in industrial pilot projects to improve the set of concepts and intended semantics for modeling
the fault occurrence, propagation, and management behavior of a system. EMV2 is the subject of
this report [SAE 2015].

1.3 Language Concepts in EMV2

We use the word error in the names of several EMV2 concepts to distinguish them from similar
concepts in the AADL core language and other annexes. For example, within EMV2 an error
event represents the occurrence of an anomalous condition, while event in the AADL core lan-
guage represents a Boolean signal communicated through event ports. In Section 1.4, we relate
the EMV2 concepts to terms and concepts commonly used by the safety, reliability, and dependa-
bility communities.

EMV2 supports architecture fault modeling at three levels of abstraction, each of which uses spe-
cific language concepts defined later in this section:

 focus on fault propagation across the system: propagation of faults and their impact between
the system and its operational environment and between subsystems within a system. This
level allows for safety analysis in the form of hazard identification and fault impact analysis.

 focus on fault and recovery behavior of components: identification of faults and their occur-
rences, their manifestation in the component as failure modes, the effect of incoming propa-
gations on failure modes, the propagation of failure modes and incoming propagations as
outgoing propagation, and the ability of the component to detect and recover or repair. This
level allows for probabilistic reliability and availability analysis.

 focus on compositional abstraction of fault models: relate the fault model of system compo-
nents to the abstracted fault model of the system. This level allows for scalable compositional
fault analysis.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 5

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In addition, EMV2 introduces the concept of error type to characterize faults, failures, and propa-
gations. EMV2 includes a set of predefined error types as a starting point for systematic identifi-
cation of different types of fault propagations—providing an error propagation ontology. Users
can adapt and extend this ontology to specific domains.

1.3.1 Fault Propagation Across the System

The first level of abstraction focuses on fault propagation between subsystems and within the en-
vironment. The specification of fault propagation in EMV2 corresponds to the Fault Propagation
and Transformation Calculus (FPTC) [Paige 2009]. The following concepts are used to annotate
system components:

 Error propagation and containment are associated with interaction points (ports, data and bus
access, remote service calls, deployment binding points) to other components and specify the
different types of effect, such as bad value or no service, that a component failure or incoming
propagation can have on other components. They can also specify that a component is ex-
pected not to propagate certain types of effects. Outgoing and incoming propagation and con-
tainment specifications act as contracts between interacting components; they are guarantees
and assumptions that must be verified.

 Error types characterize the different types of errors being propagated (e.g., a value error or
timing error) or different types of error events (e.g., a component being overheated, cracked,
or stuck).

 Error sources identify components as sources of error propagation; that is, they specify when
a component’s internal failure results in a propagation.

 Error paths and sinks specify how components respond to incoming propagations. They de-
scribe whether a particular error propagation is passed on to other components in the same
form, propagated to other components as a different error type, or contained by the compo-
nent.

 Propagation paths are determined by the logical and physical connectivity in the architecture,
the deployment of software on hardware, and user-defined propagation paths not recorded in
the AADL core model.

 Probability properties are associated with the occurrence of error propagations, sources,
paths, and sinks.

Figure 3 illustrates error types associated with outgoing and incoming ports to indicate error prop-
agations, shown as rectangles of different colors. The propagation path between components fol-
lows the port connection between Components A and B. Component A is a source of a specific
type of error caused by a specific type of failure in Component A (shown as a colored oval). Com-
ponent A also passes on incoming errors from its in port to its out port.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 6

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 3: Error Propagation Between Components

1.3.2 Fault and Recovery Behavior of Components

The component fault and recovery behavior specification of EMV2 characterizes the possible
fault occurrences and resulting failure modes of the component as a whole. A specification for
component error behavior describes the occurrence and handling of error events and incoming
propagation in different failure modes, handling of redundant input to tolerate failures in external
components, and restrictions that failure modes place on operational modes. The following con-
cepts are used to annotate system components:

 three types of error behavior events:

 error event: represents the occurrence (activation) of a fault within a component

 recover event: reflects actions taken by the system to recover from a failure

 repair event: reflects repair or replacement of the failed component by an external agent

 probability properties associated with the occurrence of these events

 error behavior state in an error behavior state machine: represents the fact that a component
is operational or is in a failure state (failure mode)

 error behavior transition with trigger conditions: specifies how error, recover, and repair
events of the component as well as incoming error propagations from external components
change the error behavior state of the component

 outgoing propagation condition: specifies that certain error behavior states, incoming error
propagations, or combinations result in a particular outgoing error propagation

 detection condition: specifies whether a particular component is expected to detect and handle
error behavior states and propagations, represented by an event in the AADL core model

 mode mapping: specifies how an error behavior state (failure mode) can restrict a set of oper-
ational modes in the AADL core model

Figure 4 shows a component with an error event representing failures within the component and
two error behavior states: Operational and Failed. The event causes a transition from Operational
to Failed, and the Failed state is observable by others in the form of an error propagation.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 7

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 4: Component Error Behavior

1.3.3 Compositional Abstraction of Fault Models

The compositional abstraction of fault models in EMV2 provides a composite error behavior state
specification of a system in terms of the error behavior states of its subsystems. This specification
defines the conditions under which a component is in a particular error behavior state expressed in
terms of the error behavior states of its parts. This specification reflects redundancy in the parts to
achieve fault tolerance and corresponds to the logic in fault trees. It must be consistent with the
abstract error behavior specifications of the interacting parts.

Figure 5 shows a composite flight guidance system (FGS) with its implementation by several sub-
components, each with its own specification for component error behavior. The figure also shows
the FGS with component error behavior that represents an abstraction of its implementation. A
composite state declaration specifies that FGS is in the Failed state if a component of either flight
guidance–autopilot pair fails or if the actuator fails.

Figure 5: Composite Error Behavior and Its Abstraction

Note: FG = flight guidance component, AP = autopilot component, AC = actuator.

In this report, we discuss an approach to architecture fault modeling that supports safety analysis
practices in an architecture-centric manner and does so for both the system architecture and the
(embedded) software system architecture. Architecture-centric design and development has value
because requirements, including safety requirements, can be specified in an architecture model
that describes both the system in its operational context and its composition in terms of subsys-
tems. This approach allows an architecture specification or design to be validated at each level of
architectural abstraction for completeness, consistency, and correctness and to be verified against
its requirements specification or higher level design specification. The refinement of an architec-
ture specification at each level propagates derived requirements down the architecture hierarchy.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 8

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1.4 Terms and Concepts

In EMV2 we always use the keyword error to characterize concepts, for example, error event, er-
ror behavior state, and error propagation. In this section, we relate EMV2 language concepts to
terms defined in Systems and Software Engineering—Vocabulary, a common vocabulary for all
systems and software engineering work established by the International Organization for Stand-
ardization, the International Electrotechnical Commission, and the Institute of Electrical and Elec-
tronics Engineers [ISO 2010]. This will help the reader understand how to appropriately use the
EMV2 language constructs.

Error is defined as

1. a human action that produces an incorrect result, such as software containing a fault. 2.
an incorrect step, process, or data definition. 3. an incorrect result. 4. the difference between
a computed, observed, or measured value or condition and the true, specified, or theoreti-
cally correct value or condition

cf. failure, defect

EXAMPLE omission or misinterpretation of user requirements in a software specification,
incorrect translation, or omission of a requirement in the design specification. [ISO 2010]

The definition of error encompasses mistakes by humans (the effect of a failure by the human),
defects in a process that can lead to defects in a design or operational system, the effect of incor-
rect system behavior, and a characterization of anomalous behavior as an indication of a failure.

In EMV2 we consistently use the term error as a keyword to avoid confusion with similar con-
structs in the AADL core language or other annexes, such as event vs. error behavior event or
state vs. error behavior state. See also defects, failures, and effects.

Defect is defined as “a generic term that can refer to either a fault (cause) or a failure (effect)”
[ISO 2010]. See also fault and failure.

Fault is defined as

1. a manifestation of an error in software. 2. an incorrect step, process, or data definition in
a computer program. 3. a defect in a hardware device or component. Syn: bug

NOTE: A fault, if encountered, may cause a failure. [ISO 2010]

The definition of fault includes one of the definitions for error. It also is defined in terms of de-
fect, which in turn includes a definition in terms of fault. It also is the effect of human or process
errors.

In EMV2 we represent fault types as error types. An EMV2 property lets us distinguish between
design faults and operational faults. In a fault propagation specification, the presence of a fault in
a component is expressed as an error source with the appropriate error type. In a component fault
and recovery behavior specification, it is expressed as an error event with an error type, where an
instance of that error event represents the activation of the fault (see failure).

Failure is defined as

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 9

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

1. termination of the ability of a product to perform a required function or its inability to
perform within previously specified limits; 2. an event in which a system or system compo-
nent does not perform a required function within specified limits. [ISO 2010]

The definition of failure encompasses the event of a fault activation and the manifestation of the
fault activation in the component. The manifestation can be a malfunction, such as loss of service
or anomalous behavior. See also failure mode.

In EMV2 we represent failures as error sources in fault propagation specifications and as error
events in component fault and recovery behavior specifications. The manifestation of the failure is
represented by an error behavior state. A transition specification describes how error behavior
events change the error behavior state. See also failure.

Failure mode is defined as “the physical or functional manifestation of a failure” [ISO 2010]. Ac-
cording to the definition, a failure mode is associated with a physical or logical component.

In EMV2 we represent failure modes as error behavior states. Error behavior states are specified
as part of error behavior state machines. Error behavior states can have error types to characterize
different types of failure modes. Different types of faults are mapped to the respective type of fail-
ure mode through a transition specification. See also failure.

Failure mode and effect analysis (FMEA) is defined as

[Technique] an analytical procedure in which each potential failure mode in every compo-
nent of a product is analyzed to determine its effect on the reliability of that component and,
by itself or in combination with other possible failure modes, on the reliability of the product
or system and on the required function of the component; or the examination of a product (at
the system and/or lower levels) for all ways that a failure may occur. For each potential fail-
ure, an estimate is made of its effect on the total system and of its impact. In addition, a re-
view is undertaken of the action planned to minimize the probability of failure and to
minimize its effects. [ISO 2010]

Although the Vocabulary refers to “effects,” it does not define the term [ISO 2010]. In the context
of the FMEA definition, an effect refers to the failure mode. The effect of a failure is its propaga-
tion to other components and their responses to this propagation. Failure propagation is also re-
ferred to as fault propagation. The outgoing propagation can be due to a component failure or due
to an incoming propagation. From the receiver’s perspective, there is no difference, but from a di-
agnostic perspective, it is useful to identify the source.

In EMV2 we represent the propagation of failure modes and incoming effects as outgoing error
propagations. Components can be the source of an outgoing propagation, they can be the sink of
an incoming propagation, or they can pass on incoming propagations as outgoing propagations of
the same or a different type. Conditions for outgoing propagations provide traceability to the
cause, such as a failure (an error behavior state) triggered by an error event. An incoming propa-
gation may affect the failure mode, or it may be passed on while the component is not in a failure
mode. The probability of occurrence is associated with error behavior events, error sources, error
behavior states, and error propagations to support stochastic analysis. The logic conditions also
reflect fault tolerance strategies such as redundancy.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 10

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Hazard is defined as

1. an intrinsic property or condition that has the potential to cause harm or damage. 2. a
source of potential harm or a situation with a potential for harm in terms of human injury,
damage to health, property, or the environment, or some combination of these. [ISO 2010]

The definition of hazard has its root in safety engineering. It refers to both the effect and the
source of a failure. Failures that result in loss of service are hazards that affect reliability. From a
safety perspective, even minor failures must be considered hazards because combinations of them
can have catastrophic effects [Leveson 2012]. The definition of hazard focuses on effects of fail-
ures in terms of injury and damage; that is, failures represent safety hazards. We include security
hazards under the concept of hazard.

In EMV2 we represent hazards by a multivalued property that can be associated with the error
source, error behavior state, and error propagation to support both definitions of hazard.

Security is defined as “the protection of system items from accidental or malicious access, use,
modification, destruction, or disclosure” [ISO 2010]. The definition of security includes acci-
dental malicious indication of anomalous behavior either from outside a system or by unauthor-
ized crossing of a system’s internal boundaries—typically in a manner that takes advantage of
faults. The term system item covers information as well as physical components.

Threat is defined as

1. a state of the system or system environment which can lead to adverse effect in one or
more given risk dimensions. 2. a condition or situation unfavorable to the project, a negative
set of circumstances, a negative set of events, a risk that will have a negative impact on a
project objective if it occurs, or a possibility for negative changes. [ISO 2010]

The definition of hazard focuses on the effects of failures in terms of injury and damage; that is,
failures represent safety hazards. In EMV2, we include security hazards under the concept of haz-
ard, and threats are one class of security hazards.

Fault tolerance is defined as

1. the ability of a system or component to continue normal operation despite the presence of
hardware or software faults. 2. the number of faults a system or component can withstand
before normal operation is impaired. 3. pertaining to the study of errors, faults, and failures,
and of methods for enabling systems to continue normal operation in the presence of faults.

The definition of fault tolerance focuses on the presence of hardware and software faults. Fault
tolerance includes fault detection, fault isolation, and fault recovery. Fault recovery elements in-
clude fault containment, fault masking, fault repair, and fault correction. Fault avoidance focuses
on not introducing faults or eliminating them before the system goes into operation.

Error tolerance is defined as “the ability of a system or component to continue normal operation
despite the presence of erroneous inputs” [ISO 2010]. The definition of error tolerance focuses on
propagated errors.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 11

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

In EMV2 tolerance of both faults and errors is supported by transition and outgoing propagation
conditions that refer to error behavior states and incoming propagations. Expectations on fault tol-
erance through redundancy is expressed through appropriate logic in the transition and outgoing
propagation conditions. Expected detection of faults by the system is specified by error detection
declarations as well as recover and repair events. These specifications provide traceability into the
fault tolerance architecture of the system.

For mechanical components, the error behavior specified by EMV2 can reflect both fault occur-
rences in the physical components due to operational use and latent design faults that are triggered
during operation. For physical systems, long design cycles are assumed to reduce design errors to
a minimum over time. For software, however, all fault occurrences result from design and coding
errors, and we cannot make zero-defect assumptions for software. EMV2 allows users to charac-
terize error events as representing design errors and operational errors to help them distinguish
and respond to each type appropriately.

1.5 Reader’s Guide

Section 2 introduces the concepts of error model libraries and error model subclauses. An error
model library contains reusable elements, such as error types and type sets, error behavior state
machines, type mapping sets, and type transformation sets. An error model subclause contains
component-specific error model annotations, such as error propagations and error flows, and com-
ponent-specific error behavior in terms of error behavior events, error behavior states and transi-
tions, and composite error behavior. The error model subclause models the error behavior of a
component in terms of the error behavior of its subcomponents.

Section 3 introduces the concepts of error types and type sets, their organization into error librar-
ies, their extension and adaptation to specific application domains through aliases, and the con-
cepts of type products and type hierarchies to represent interaction between error types. This
section also introduces the reader to an ontology of error propagation types that is a good starting
point for fault modeling. The section concludes with a discussion of type mappings and the ability
to specify type equivalence of independently developed error type libraries.

Section 4 focuses on fault propagation across the system and its impact. It introduces the concepts
of error propagation points and outgoing and incoming error propagation specifications. It also
introduces the concepts of error sources, error sinks, and error paths, which allow users to ab-
stractly specify how a system component deals with errors. The error propagation path determines
what components are affected by an outgoing propagation from a component. Finally, the concept
of error containment, combined with error propagation, specifies the fault model assumptions and
contracts that a component makes about its interactions with other components.

Section 5 covers specification of component fault behavior. It introduces the concepts of error
events, states, and transitions. Reusable error behavior state machines ease the job of defining
such behavior. Recover and repair events, as well as outgoing propagation conditions and error
detection conditions, support the specification of fault tolerance strategies.

Section 6 focuses on compositional abstraction of error behavior. It explains how to specify the
abstracted behavior of a system in terms of the error behavior states of its components.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 12

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Section 7 discusses the use of properties with error model elements as well as their definition by
users. It also provides a summary of properties that have been predeclared as part of the EMV2
standard.

Section 8 presents advanced topics in EMV2. They include the concept of inheritance of error
model specifications between component types and implementations as well as through the com-
ponent extension hierarchy. This section also covers error model specifications for feature groups,
user-defined propagation points and paths, error type mappings and type equivalence, type trans-
formations and their use in specification of connection error behavior, and the mapping between
operational modes and failure modes, which are also known as error behavior states.

Section 9 discusses several example models. They include a Global Positioning System (GPS)
system with a focus on the interaction between operational and failure modes, a dual-redundant
flight guidance system to show the consistency between an abstracted architecture fault model and
its composite model for a fault-tolerant system, an abstract specification of a fault behavior inter-
face for a network protocol stack, an abstract specification of a fault model for a dual-channel avi-
onics network to ensure correct and consistent use, and a triple-redundant system that has both
physical and logical redundancy.

Section 10 provides the EMV2 syntax rules.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 13

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

2 Error Model Libraries and Subclause Annotations

EMV2 supports architecture fault modeling and analysis through the annotation of architecture
models expressed in AADL with

 reusable error model libraries

 component-specific error behavior annotations through error model subclauses

This section explains how to use libraries and subclauses.

2.1 Error Model Library

2.1.1 Role of an Error Model Library

The error model library provides reusable collections of error type and type set definitions, as well
as mapping and transformation rules between error types. For example, users can map an incom-
ing error propagation type, such as an out-of-range value, into an outgoing error propagation type,
such as a missing value. In addition, an error model library can contain reusable specifications for
error behavior state machines that consist of error events, states, and transitions. EMV2 includes a
library of predefined error types.

2.1.2 Using the Error Model Library

An error model library is defined in an AADL package. An AADL package can contain only one
error model library—a restriction of the AADL core language. However, the package can contain
other declarations. Within the package, use an AADL annex library clause, which identifies the
annex as EMV2. Refer to the library using the package name.

An error model library consists of zero or one error type library (error types) declaration, zero or
more error behavior state-machine (error behavior) declarations, zero or more type mappings
declarations, and zero or more type transformations declarations, in that order. The full syntax
rule for error model libraries can be found in Section 10.1.

An example error model library specification is illustrated in Figure 6. It shows the definition of
several error types, a type set, and an error behavior state machine with one error event (Fail), two
states (Operational and Failed), and one transition (from Operational to Failed when the Fail error
event occurs).

package MyErrorLib
public
annex EMV2 {**
error types
 PowerFailure: type;
 TransientPowerLoss: type;
 PowerErrors: type set { PowerFailure, TransientPowerLoss };
 SensorFailure: type;
 NoService: type;
 BadData: type;
 NoData: type;
 MissingCmd: type;
 end types;

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 14

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

error behavior TwoState
events
 Fail: error event;
states
 Operational: initial state;
 Failed: state;
transitions
 Failure: Operational -[Fail]-> Failed;
end behavior;
 **};
end MyErrorLib;

Figure 6: Error Model Library

2.2 Error Model Subclause

2.2.1 Role of an Error Model Subclause

An error model subclause provides component-specific fault model specifications by annotating
component type, component implementation, and feature group type declarations. These specifi-
cations support the three levels of abstraction discussed in Section 1.3. They do so by utilizing er-
ror type libraries and error behavior state machines that are defined in error model libraries.

Supporting the error propagation specification, the error model subclause lets us specify incoming
and outgoing error propagations and containments, as well as error sources, paths, and sinks.

Supporting the error behavior specification for components, the error model subclause lets us
identify the error behavior state machine applicable to the component. It supports the introduction
of component-specific error events, error behavior transition conditions in terms of error events,
incoming propagations to the component, conditions under which propagations to other compo-
nents occur, and whether the component will detect a failure represented by an error behavior
state or incoming propagation. It also lets us specify how error behavior states affect the opera-
tional modes of the component.

Supporting the behavior specification for composite components, the error model subclause lets
us specify how each abstract error behavior state of a component relates to the error behavior
states of its parts.

Finally, the error model subclause allows us to associate property values with any element defined
within the error model subclause. This can be done using properties defined in the EMV2 Annex
standard or properties defined by users.

2.2.2 Using the Error Model Subclause

A component-specific error behavior specification is defined by an AADL annex subclause iden-
tifying the annex as EMV2. The subclause is declared in a component type, component implemen-
tation, or feature group type. An error model subclause consists of

 a use types declaration (see Section 3.2)

 a use type equivalence declaration (see Section 8.4)

 a use mappings declaration (see Section 8.4)

 a use behavior declaration (see Section 5.2)

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 15

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 an error propagations section (see Section 3)

 a component error behavior section (see Section 5)

 a composite error behavior section (see Section 6)

 a connection error section (see Section 8.4)

 a user-defined propagation paths section (see Section 8.2)

 a properties section (see Section 7)

The subclause elements must be declared in the above order, but all of these elements are op-
tional.

The use types declaration lists the error type libraries whose content becomes accessible to the
subclause without having to qualify references with the error type library name.

The use mappings clause specifies the type mappings to be used in error paths when no target
type is specified.

The use behavior declaration identifies the error behavior state machine to be used for the com-
ponent. The subclause has separate sections for error propagations, component error behavior, and
composite error behavior. The identified error behavior state machine applies to all of these sec-
tions.

An example subclause is shown in Figure 7. The full syntax rule for the error model subclause is
shown in Section 10.5.

package Devices
public
device PowerSupply
features
 PowerOutlet: provides bus access;
annex EMV2 {**
 use types MyErrorLib;
 use behavior MyErrorLib::TwoState;
error propagations
 PowerOutlet: out propagation {PowerFailure};
end propagations;
**};
end PowerSupply;
end Devices;

Figure 7: Example of an Error Model Subclause

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 16

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3 Error Types and Common Type Ontology

EMV2 provides the concept of error type to characterize the types of errors to be propagated, the
type of activated fault represented by an error event, and the type of failure mode represented by
an error behavior state.

Error types can be grouped into type sets. A reference to the type set represents that collection of
types. Type sets can act as constraints regarding types. For example, a type set associated with an
incoming error propagation declaration indicates the set of acceptable incoming error types.

Error types and type sets are defined in reusable error type libraries that can be imported into an
error model subclause. Users can import several type sets into the same error model subclause and
use mapping rules to explain the relationship between them.

Error types can be combined into type products to indicate that a failure or propagation is charac-
terized by both types at the same time. For example, a sent message may be late and contain an
out-of-range value.

Finally, error types can also be placed into a type hierarchy. Error types from the same hierarchy
cannot be combined in a type product as they are not expected to occur in combination. For exam-
ple, a message cannot be late and early at the same time.

We proceed by describing the use of these concepts and introducing a common set of reusable er-
ror types as an error propagation ontology.

3.1 Error Types and Type Sets

3.1.1 Role of Error Types and Type Sets

An error type is a categorical label that is used to characterize the type of error in error propaga-
tion, error containment, error flow, error event, and error behavior state declarations. This label is
also used to characterize conditions for state transition, outgoing error propagation, and detection
declarations. Users do this by specifying a set of error types as part of their declarations.

For an error propagation or containment declaration, the type set indicates the collection of error
types that potentially are or are not propagated through an error propagation point, such as a port.
An instance of an error propagation is represented by a type instance, which is an instance of one
of the elements listed in the type set. An error propagation instance of an element in a type set can
be thought of as a type token that is propagated through the system.

For error events, an error type set specifies a collection of possible fault occurrences. For exam-
ple, instead of defining 15 different error events, one for each kind of error that can occur in a
component, we can specify a single error event and indicate the various error types as a type set
annotation to the error event declaration (see Section 5.1.4). An occurrence of an error event is
represented by an instance of one of the type set elements.

Similarly, instead of introducing 15 error behavior states to match the 15 types of error events, we
can specify a single Failure or Malfunction state that is annotated with a type set of error types

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 17

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

that characterize the different kinds of failures or malfunctions that can occur for a component. In
other words, the state Failure can be viewed as having substates, as many as one for each element
in the type set represented by Failure. Each substate can hold an instance of one or more type set
elements that represent the substate.

3.1.2 Using Error Types and Type Sets

Error types and type sets are defined in error type libraries (see Section 3.2). The syntax rules for
error type libraries, error types, and type sets are shown in Section 10.2.

An error type declaration defines a new error type. The error type declaration consists of the de-
fining name for the error type followed by a colon and the keyword type. Every error type defini-
tion within an error type library must have a unique name.

A type set can be specified in two ways: by specifying the elements of a type set explicitly in dif-
ferent contexts or by declaring a named type set and then referring to the type set by name.

1. A type set specification is a comma-separated list of one or more error type and type set
names enclosed by curly brackets. The elements of a type set are expected to be unique error
types.

2. A named type set declaration defines the name, followed by a colon and the keywords type
set, and a type set specification listing the elements of the set. Users then refer to the named
type set in different error propagation declarations instead of specifying multiple error types
repeatedly.

An element of a type set specification can refer to a named type set, which then includes all the
elements of the referenced type set in this type set. This effectively allows users to add elements
to an existing type set or to specify unions of type sets.

Figure 8 shows the declaration of three error types related to valves and two type sets. The type
set ValveError represents a collection of error types related to a valve. Error types can be added to
a type set, resulting in a new named type set, as illustrated by MoreValveError in Figure 8. Multi-
ple error type sets can be combined in a defining error type set declaration or in a type set specifi-
cation. The resulting type set is a union of the elements of the referenced type sets as well as
additional error types listed as elements. This allows users to define aggregations of type sets. For
example, in Figure 8 SystemErrors is an aggregation of the type sets HydraulicErrors and Electri-
calErrors.

package MyValveErrorLib
public
annex EMV2 {**
error types
error types
 StuckOpen: type;
 StuckClosed: type;
 ValveLeak: type;
 ValveError: type set {StuckOpen, StuckClosed};
 MoreValveError: type set {ValveError, ValveLeak};
end types;
**};
end MyValveErrorLib;

Figure 8: User-Defined Error Types

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 18

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Type set specifications are used to annotate error propagations, error flows, error behavior states,
and error events with acceptable sets or error types. Figure 9 illustrates the use of a type set speci-
fication in error propagation declarations. This error model subclause imports the types from
MyValveErrorLib with the use types keywords. The out propagation ValveFlow specifies a type
set composed of the error types StuckOpen and StuckClosed. The out propagation ValveFlow2
shows a type set specification that references the named type set ValveError. The out propagation
ValveFlow3 shows a type set specification that is the union of the named type set ValveError and
the error type ValveLeak.

annex EMV2 {**
use types MyValveErrorLib;
error propagations
 ValveFlow: out propagation {StuckOpen, StuckClosed};
 ValveFlow2: out propagation {ValveError};
 ValveFlow3: out propagation {ValveError, ValveLeak};
end propagations;
**};

Figure 9: Use of Type Sets in Error Propagations

A type constraint is used in transition, outgoing error propagation condition, and detection condi-
tion declarations to indicate the condition that the referenced error propagation point must satisfy.
A type constraint consists of a type set specification or the specification {NoError}, where NoEr-
ror is a keyword. If the type constraint is a type set specification, the error propagation point must
have an error propagation instance of one of the types listed in the type set specification. If the
type constraint specifies {NoError}, no error propagation instance must be present at the error
propagation point. This allows us to specify conditions for a transition if one incoming error prop-
agation point has a propagated type instance and another error propagation point is error free, for
example, InFlow1{ValveLeak} and InFlow2{NoError}.

A type instance declaration is used to specify a resulting error type: the target error type of an er-
ror path, the resulting error type of the target state in a transition declaration, or the resulting prop-
agated error type in an outgoing propagation declaration. Users do this by enclosing the error type
in curly brackets.

3.1.3 Observations

Users can introduce different sets of error types for different types of components. This allows
them to use error type names that are meaningful in the context of the component. Users can then
place these sets of error types in separate error type libraries—for example, if the set will be found
in different packages—or they can place a different type set in the same error type library.

Users may introduce one set of error types to be used with error events to reflect a particular acti-
vated fault, such as Overheated; a separate set of error types to be used with error behavior states
to reflect the resulting failure mode, such as DegradedOperation; and a third set of error types to
be used with error propagations to represent the resulting effect on other components, such as
SlowService.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 19

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.2 Reusable Error Type Libraries and Aliases

Error types and error type sets can be organized into error type libraries for use in error model
subclauses. Names of error types and type sets can be adapted with context-specific names by us-
ing alias declarations. In this section, we describe the definition (error types) and use (use types)
of error type libraries and illustrate the use of aliases (renames).

3.2.1 Role of Error Type Libraries and Aliases

Error type libraries provide reusable sets of error types and type set definitions. Error model li-
braries can be defined as extensions of existing error type libraries. They allow users to add error
types to an existing error type library and make the extended collection of error types and type
sets available under a new error type library name.

The error types and type sets of multiple error type libraries can be made accessible to an error
model subclause using the use types keywords. They allow users to refer to error types and
named type sets without qualifying them with the error type library name.

Users can define aliases for existing error type and type set definitions using renames. These ali-
ases are equivalent to the original error type or type set. An alias may provide a more meaningful
name in a particular context while at the same time reflecting the fact that it represents the same
type as the original. For example, a user may define an error type NoService, which in the context
of a power supply may be referred to by the alias NoPower.

3.2.2 Using Error Type Libraries and Aliases

An error type library is declared within the error types section of an error model library, which is
terminated by the keywords end types. It consists of a list of error type, type set, error type alias,
and type set alias declarations in any order, followed by an optional properties section as shown
in Figure 10. All error type definitions, type set definitions, and alias definitions must have unique
names within the error type library. The syntax rules for error type libraries are shown in Section
10.2.

package MyExtendedValveErrorLib
public
annex EMV2 {**
error types extends MyValveErrorLib with
 SlowOpen: type;
 SlowClose: type;
 DrippingValve renames type ValveLeak;
 AllValveError: type set {MoreValveError, SlowOpen, SlowClose};
properties
 EMV2::Description => “Lubrication issue” applies to SlowOpen, SlowClose;
end types;
**};
end MyExtendedValveErrorLib;

Figure 10: Error Type Library

The properties section of the error type library allows us to associate property values with ele-
ments of the error type library. Figure 10 shows an example of a Description property applied to
the error types SlowOpen and SlowClose. For more on property associations in EMV2, see Sec-
tion 7.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 20

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

An error model library can contain only one error type library. An error type library is referred to
by the name used for the error model library, that is, the name of the package containing the error
model library (see Section 2.1.2).

An error type library can be declared as an extension of another error type library by specifying
the library to be extended using the extends clause (see Figure 10). This extension will include all
error type, type sets, and aliases of the original error type library in the name space of the newly
defined error type library. Both the locally declared error types, type sets, and aliases as well as
those of the library being extended are considered part of the error type library. The local defini-
tions must not conflict with those of the library being extended.

Users can introduce an alias for an existing error type or type set that may be more meaningful in
different contexts using the keywords renames type or renames type set. The example in Figure
10 shows the declaration of DrippingValve as an alias for ValveLeak.

An error type library can also be declared to use error types from other libraries with the use
types clause. In this case, the error types, type sets, and aliases can be referenced in local error
type, type set, and alias declarations, but they are not included in the name space. For example,
users can define aliases for an error type of the predeclared error type library, but only the aliases
are available to subclauses whose use types refer to this error type library. Figure 11 shows a set
of alias declarations for error types from MyValveErrorLib plus a type set for the newly named
error types. When referring to WaterValveErrorLib in a use types clause, only the local names are
available.

package WaterValveErrorLib public
annex EMV2 {**
error types
 use types MyValveErrorLib;
 DrippingValve renames type ValveLeak;
 RustedShut renames type StuckShut;
 RustedOpen renames type StuckOpen;
 WaterValveError: type set {DrippingValve, RustedShut, RustedOpen};
end types;
**};
end WaterValveErrorLib;

Figure 11: Error Type Library of Aliases Only

In an error model subclause, users can use the use types declaration to specify that the error type,
type set, and alias definitions in a list of error type libraries become accessible. Two different er-
ror type libraries may be listed that have an error type, type set, or alias definition with the same
name. In this case, the conflicting names must be qualified when they are referenced. Qualify a
reference to an error type, type set, or alias by preceding the name with the error type library name
followed by a double colon (“::”).

3.2.3 Observations

Typically, users will define their own error types when characterizing the different kinds of faults
that can exist in a component. However, users may reuse the predeclared error type library in
EMV2. In this case, users might want to use alias declarations for the original names to associate
context-specific labels to these types.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 21

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

When error types, type sets, and aliases are made accessible within an error model subclause us-
ing use types, their names do not conflict with the names of items defined in the subclause, such
as events and transitions.

3.3 Type Products and Type Hierarchy

The EMV2 type system allows users to define type instances as error type products to represent
the fact that a single error occurrence is characterized by two or more error types. Users can also
place error types into a type hierarchy by declaring an error type to be a subtype of another error
type. In this section, we describe how to use these two concepts.

3.3.1 Roles of Type Products and Type Hierarchies

The role of a type product is to characterize an instance of an error propagation by a combination
of error types. For example, an outgoing message on a port can be characterized as an out-of-
range value and late. Similarly, we may specify that a transition occurs only under the condition
that a message is both out of range and late.

The role of a type hierarchy is to indicate that certain error types cannot occur simultaneously as
part of the same instance; that is, they cannot be elements of the same type product. For example,
a message cannot be both late and early. In a type hierarchy, a super type acts as a type set con-
sisting of its subtypes. In other words, when a type with subtypes is referenced as a type set ele-
ment, all subtypes are considered to be part of the type set.

3.3.2 Using Type Products and Type Hierarchies

A type product is specified by listing error types separated by an asterisk (*). The elements of a
type product must be from different type hierarchies. The syntax rules for error types and type
products are shown in Section 10.2.

Type products can be used as elements of type sets and type constraints. Figure 12 illustrates the
use of a type product in the type set of an outgoing error propagation. The type set specifies that
the message can be late, that its value can be out of range, and that the message can be both late
and out of range.

Message: out propagation {OutOfRange, LateDelivery, OutOfRange*LateDelivery};
Figure 12: Use of Type Product

Users can place error types into a type hierarchy when they define the error type by declaring it as
an extension of another error type using the keyword extends. The textual syntax is shown in Fig-
ure 13. Here, EarlyDelivery and LateDelivery are two subtypes of TimingError, indicating that
they cannot occur at the same time for a particular type instance.

TimingError: type;
EarlyDelivery: type extends TimingError;
LateDelivery: type extends TimingError;

Figure 13: Error Type as a Subtype in a Type Hierarchy

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 22

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

An error type that is a subtype can itself have subtypes. An error type cannot be a subtype of more
than one error type. This constraint is enforced syntactically.

When an error type with subtypes is listed as an element of a type set or type constraint, all of its
subtypes are considered part of the type set.

When an error type with subtypes is listed as an element of a type product, any of its subtypes ef-
fectively are combined with the other elements of the type product. If two or more type product
elements are error types with subtypes, the result is effectively all possible combinations of the
subtypes.

In defining a type set, users can list two different subtypes from the same type hierarchy as ele-
ments, but one cannot be the subtype of the other. For example, if types A, B, and C are subtypes
of type Z, and type C has subtypes D and F, users can list subtypes of type Z (e.g., A and F), but
they cannot list both of those subtypes and a type that either of them extends (i.e., C cannot be in-
cluded in the new set since F extends C).

3.3.3 Observations

Users may initially define error types as independent types and place them in a type set. They may
later determine which error types cannot be associated with an error event or error propagation at
the same time and place them into the same type hierarchy.

Each type hierarchy has a single root type. Multiple type hierarchies can be defined in the same
error type library. A type hierarchy defined in one error type library can be extended by defining
types as subtypes even when those definitions are declared in another error type library.

3.4 An Ontology of Common Error Propagation Types

In this section, we introduce a set of error types that has been predefined in EMV2. It is available
as an error type library named ErrorLibrary. It represents an ontology of common error types to
characterize error propagations. This ontology draws on previous work [Bondavalli 1990, Powell
1992, Walter 2003].

3.4.1 Role of the Ontology of Error Types

Components can fail in a number of different ways and affect other components. While the num-
ber of error types characterizing an error event or an error source may be large and specific to the
component, the effects on other components can be characterized by a smaller number of error
types. The error type ontology focuses on how error types are propagated. Users can define librar-
ies of error types to characterize the different domain-specific ways that components can fail and
associate those with error events.

For example, the effect of a sensor failure is that it sends an incorrect reading (value error), it
misses a reading (item omission), or it does not provide any readings (service omission). These
three types of effects may be caused by a number of different factors, such as overheating, radia-
tion, low power, or a material defect. These are domain- and component-specific, user-defined er-
ror types.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 23

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

For software components that operate in fault containers (such as a process with a runtime-en-
forced address space protection or a partition with both space and time enforcement), the error
propagation is limited to propagation paths along explicit interaction channels (such as port con-
nections, shared data access, and subprogram service calls) and execution platform bindings. Fault
containers allow us to map a large number of software component faults into a limited number of
propagation types and propagation paths. For example, a divide by zero in an arithmetic expres-
sion or a deadline miss by a periodic thread might manifest itself as an omission of output that the
recipient of this output can observe. Within a fault container, a software error such as buffer over-
flow or incorrect use of pointers can potentially corrupt other code or data.

Error types are defined by viewing components as providers of a service that consists of a se-
quence of service items. The categories of error types include errors related to service, value, tim-
ing, and redundancy and concurrency. Furthermore, within each category the error types may
characterize the service as a whole, the sequence of service items, or an individual service item.
The Error Model Annex standard [SAE 2015] includes a formal specification of each error type.

3.4.2 Service-Related Errors

Service errors (ServiceError) represent errors related to the number of delivered service items. We
distinguish between omission errors, which represent service items not delivered, and commission
errors, which represent delivery of service items that were not expected.

The error types for individual service items as subtypes of ServiceError are

 ItemOmission: the omission of a single service item, such as a lost message

 ItemCommission: provision of an item when not expected, such as a spurious message

The error types for a sequence of service items are

 SequenceOmission: a number of missing service items, such as missed sensor readings

 BoundedOmissionInterval: a minimum number of service items between item omissions,
such as missed sensor readings

 TransientServiceOmission: a limited sequence of item omissions, such as a temporary
power outage

 EarlyServiceTermination: omission of all service items partway into the service provi-
sion, such as a power failure

 LateServiceStart: initial service items not provided, such as difficulty in starting a genera-
tor to provide power

 SequenceCommission: a limited sequence of item commissions with the following subtypes:

 TransientServiceCommission: a limited sequence of extra service items, such as extra
alarm messages

 LateServiceTermination: additional service items after the expected termination of ser-
vice, such as warning messages about an overheated engine after the engine stops

 EarlyServiceStart: extra service items provided before the expected service start, such as
engine sensor readings before engine start

The error types for the service as a whole are

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 24

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 ServiceOmission: failure to provide a service when expected, such as no power due to a
blown transformer

 ServiceCommission: provision of service when not expected, such as inadvertent charge on an
inactive power line

These errors have been placed into a type hierarchy, as shown in Figure 14.

Figure 14: Hierarchy of Service-Related Error Types

3.4.3 Value-Related Errors

Value-related errors deal with the value domain of a service. We distinguish between value errors
of individual service items (ItemValueError), value errors that relate to a sequence of service
items (SequenceValueError), and value errors related to the service as a whole (ServiceValueEr-
ror). They form the type set ValueRelatedError.

Each of the three types is the root of a separate type hierarchy. The hierarchy allows us to use er-
ror types in combination. For example, we can specify that a BoundedValueChange error is Out-
OfRange.

ItemValueError consists of

 DetectableValueError: a value error that is detectable from the value itself. An example of a
detectable value error is an out-of-range value.

 UndetectableValueError: a value error that cannot be recognized based on available infor-
mation. An example of an undetectable value error is a rounding error of a value within range.

DetectableValueError has the following subtypes:

 OutOfRange: a value that is outside a specified range, with two subtypes BelowRange and
AboveRange

 OutOfBounds: a value error of a multidimensional state variable. For example, in a control
system, the control state variable may be within range in each dimension but outside the con-
trollable space.

SequenceValueError consists of

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 25

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 BoundedValueChange: a difference between two consecutive values greater than a specified
limit. For example, in a control system, set-point values may be expected to change by less
than a specified value.

 StuckValue: a value that remains the same for a number of consecutive service items

 OutOfOrder: values in the sequence that are not in the correct order

ServiceValueError consists of

 OutOfCalibration: a value error in which all values are off by some value. For example, in a
control system, an incorrect calibration value may cause all controller output values to be in-
correct.

The type hierarchies for value-related errors are shown graphically in Figure 15. The top-level er-
ror types are grouped into the type set ValueRelatedError (not shown). Note that both sequence
and service value errors imply item value errors.

Figure 15: Hierarchy of Value-Related Error Types

Figure 16 shows a predeclared set of aliases for value errors.

-- Common aliases for value related errors
ValueError renames type ItemValueError; -- legacy
SequenceError renames type SequenceValueError; -- legacy

IncorrectValue renames type ItemValueError;
ValueCorruption renames type ItemValueError;
BadValue renames type ItemValueError;

SubtleValueError renames type UndetectableValueError;
BenignValueError renames type DetectableValueError;
BenignValueCorruption renames type DetectableValueError;
SubtleValueCorruption renames type UndetectableValueError;

Figure 16: Aliases for Value-Related Error Types

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 26

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

3.4.4 Timing-Related Errors

Timing-related errors deal with the time domain of a service. We distinguish between timing er-
rors of individual service items (ItemTimingError), timing errors related to a sequence of service
items (SequenceTimingError or its alias, RateError), and timing errors related to the service as a
whole (ServiceTimingError). They form the type set TimingRelatedError.

Each error type is the root of a separate type hierarchy, allowing us to combine them because they
occur independently. For example, we can specify that a service that started late may execute at
the wrong rate. Item-timing errors characterize the departure or arrival time of individual items.
Sequence-timing errors focus on the timing interval, or the rate, between items. Service-timing
errors reflect the fact that the service as a whole may be time-shifted, but the rate and times of in-
dividual items are acceptable.

ItemTimingError consists of

 EarlyDelivery: delivery of a service item before an expected time range, such as a sensor
reading arriving before the previous reading has been sampled for processing

 LateDelivery: delivery of a service item after an expected time range, such as a sensor reading
arriving after the beginning of the next frame

SequenceTimingError, with the alias RateError, consists of

 HighRate: The inter-arrival time of all service items is less than the expected inter-arrival
time. For example, a sender sends periodic messages every 25 ms, while the receiver pro-
cesses the messages as they arrive and takes an average of 26 ms to complete processing.

 LowRate: The inter-arrival time of all service items is greater than the expected inter-arrival
time.

 RateJitter: Service items are delivered at a rate that varies from the expected rate by more
than an acceptable tolerance.

ServiceTimingError, with the alias ServiceTimeShift, represents errors where a service delivers all
service items time shifted by a time constant. It consists of the two subtypes DelayedService and
EarlyService.

The type hierarchies for timing-related errors are shown graphically in Figure 17. The top-level
error types are grouped into the type set TimingRelatedError (not shown).

Figure 17: Hierarchy for Timing-Related Error Types

Figure 18 shows a predeclared set of aliases for timing errors.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 27

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

TimingError renames type ItemTimingError; -- legacy
RateError renames type SequenceTimingError; -- legacy
EarlyData renames type HighRate;
LateData renames type LowRate;
ServiceTimeShift renames type ServiceTimingError;

Figure 18: Aliases for Timing-Related Error Types

3.4.5 Replication-Related Errors

Replication-related errors (ReplicationError) deal with replicates of a service item. Replicate ser-
vice items may be delivered to one recipient, such as a fault-tolerance voter mechanism, or to
multiple recipients, such as separate processing channels. Replicate service items may result from
an inconsistent fan-out from a single source, or they may result from an independent error occur-
ring to individual replicates, such as multiple sensors reading the same physical entity or an error
in one of the replicate processing channels.

ReplicationError consists of

 AsymmetricReplicatesError: At least one of the replicates is different from the others.

 SymmetricReplicatesError: All replicates have the same error. For example, the error was in-
troduced before the service item was replicated.

We distinguish between the following asymmetric replicates errors:

 AsymmetricValue, with the alias InconsistentValue: The value of at least one replicated ser-
vice item differs from the other replicates.

 AsymmetricExactValue: The values of replicated service items are expected to be exactly
the same.

 AsymmetricApproximateValue: The values of replicated service items cannot differ by
more than a threshold.

 AsymmetricOmission, with the alias InconsistentOmission: At least one replicated service en-
counters omission.
 AsymmetricItemOmission: At least one of the replicates is missing (encounters an

ItemOmission).
 AsymmetricServiceOmission: At least one of the replicates is missing (encounters a Ser-

viceOmission).

 AsymmetricTiming, with the alias InconsistentTiming: At least one of the replicated service
items is delivered outside the expected time interval.

The type hierarchy for replication errors is shown graphically in Figure 19. Note that for Symmet-
ricReplicationError, the subtypes SymmetricValue, SymmetricTiming, and SymmetricOmission
are not shown.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 28

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 19: Hierarchy for Replication Error Types

A predeclared set of aliases for replication errors is shown in Figure 20.

InconsistentValue renames type AsymmetricValue;
InconsistentTiming renames type AsymmetricTiming;
InconsistentOmission renames type AsymmetricOmission;
InconsistentItemOmission renames type AsymmetricItemOmission;
InconsistentServiceOmission renames type AsymmetricServiceOmission;
AsymmetricTransmissive renames type AsymmetricValue;

Figure 20: Aliases for Replication Error Types

3.4.6 Concurrency-Related Errors

Concurrency-related errors (ConcurrencyError) address issues when concurrently executing tasks
access shared resources. We distinguish between race conditions (RaceCondition) in the form of
ReadWriteRace and WriteWriteRace and mutual exclusion errors (MutExError) in the form of
Deadlock and Starvation. Figure 21 shows the concurrency error type hierarchy graphically.

Figure 21: Hierarchy of Concurrency Error Types

3.4.7 Authorization- and Authentication-Related Errors

We have introduced two security-specific error type hierarchies so that EMV2 can be used to
characterize security-related hazards (vulnerabilities). These error types complement the error
types previously described.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 29

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Authorization-related errors (AuthorizationError) are related to access control. Authorization er-
rors consist of privilege enforcement errors and privilege administration errors. Examples of au-
thorization errors include ambient authority errors, privilege escalation errors, confused deputy
errors, privilege separation errors, privilege bracketing errors, compartmentalization errors, least
privilege errors, privilege granting errors, and privilege revocation errors.

Authentication-related errors (AuthenticationError) are related to authentication of services (roles,
agents), information, and resources.

3.4.8 Using the Ontology as an Error Type Library Named ErrorLibrary

EMV2 provides a common set of error types as a standard error type library called ErrorLibrary
(see Figure 22, which shows its inclusion in the Open Source AADL Tool Environment [OSATE]
tool set). This error type library must be named in the use types declaration of a subclause so that
the types will be accessible without qualification.

Figure 22: Predeclared Error Types in ErrorLibrary

This ontology is a good starting point for identifying the first-level effect as a propagated error type.
Users can define component-specific aliases for the predefined error types and extend the type hi-
erarchy of existing libraries by defining an error type library extension (see Section 3.2).

Users are not required to use the predefined ontology of error types. In particular, when defining
error types to characterize various component-specific faults, users may define the error types in-
dependently. Users will then use state-transition declarations to specify the resulting error behavior
states and outgoing propagation condition declarations to specify the resulting effect on other com-
ponents in terms of error propagations.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 30

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4 Error Sources and Their Impact

This section introduces the concepts for error propagation specifications: error propagation path,
error propagation, and error flow. Error propagation paths are determined by the connections be-
tween the components and by binding of components to other components within the AADL core
model. Examples of bindings include binding of software to hardware and binding of elements of
a functional architecture to a system architecture. In addition, users can introduce propagation
paths that are not explicitly represented in the AADL core model. Error propagation between
components occurs through error propagation points, such as the ports through which compo-
nents interact, sources and targets of bindings, and user-defined propagation points. Propagation
paths indicate which components receive propagated errors. Error flows represent abstractions de-
claring a component as a source or sink of error propagations or declaring how a component
passes incoming error propagations on as outgoing propagations.

These concepts allow us to identify error sources as hazards and to understand their impact on
other system components and on the operational environment of the system. Error propagation
and error flow specifications can be used early in the development process and support early
safety analysis activities such as FHA and FMEA. In addition, the concepts of error source, error
path, and error sink align with the concepts found in the FPTC [Paige 2009].

4.1 Error Propagation Paths

4.1.1 Role of Error Propagation Paths

Error propagation paths indicate which components will receive outgoing error propagations. Er-
ror propagation paths are already defined in the AADL core model of a system. Connection decla-
rations specify how interaction points of different components are interconnected; all port and
access connections represent potential propagation paths. Similarly, an AADL core model may
include binding specifications between components; they represent propagation paths between
binding points of components. Finally, propagation paths may exist between components that are
not explicitly represented in the AADL core model. Modelers can specify such paths in the prop-
agation paths section of the error model subclause (see Section 8.2).

When a component failure results in an instance of an outgoing error propagation, its type in-
stance is propagated along all error propagation paths whose source is the outgoing propagation
point. The recipient component then responds to the incoming type instance according to its error
flow specifications or according to its component error behavior specification, consistent with the
error flow specification.

4.1.2 Using Error Propagation Paths

Error propagation paths between interaction points of software components are summarized in
Table 1.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 31

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Table 1: Propagation Paths Between Software Components

Propagation occurs from Propagation is received by

Thread, device, thread group, process, system, shared
data component, or abstract component via outgoing
port connection

Thread, device, thread group, system, shared data
component, or abstract component via incoming port
connection

Thread, device, thread group, process, system, or ab-
stract component via directional data access connec-
tion or bidirectional connections with write access

Shared data component via access connection

Shared data component via access connection Thread, device, thread group, process, system, or ab-
stract component via directional data access connec-
tion or bidirectional connections with read access

Subprogram caller via access connection or call bind-
ing

Called subprogram and vice versa to reflect return from
a call

Subcomponent within a process Every other subcomponent within a process when
there is no component interface and address space en-
forcement within that process

Error propagation paths between interaction points of hardware components are summarized in
Table 2.

Table 2: Propagation Paths Between Hardware Components

Propagation occurs from Propagation is received by

Device, memory, processor, system, or abstract com-
ponent via directional bus access connection or bidi-
rectional connections with write access

Bus or abstract component via bus access connection

Bus or abstract component via bus access connection Device, memory, processor, system, or abstract com-
ponent via directional bus access connection or bidi-
rectional connections with write access

Table 3 summarizes error propagation paths based on bindings between hardware components as
shared resources and the software components bound to them. It also summarizes bindings be-
tween a functional architecture and a system architecture.

Table 3: Propagation Paths Based on Bindings

Propagation occurs from Propagation is received by

Processor and virtual processor based on Actual_Pro-
cessor_Binding

Every thread, thread group, process, and virtual pro-
cessor bound to the processor—and vice versa

Memory based on Actual_Memory_Binding Every data component, thread, thread group, process,
and port bound to the memory component—and vice
versa

Bus, virtual bus, processor, device, and system based
on Actual_Connection_Binding

Every connection and virtual bus bound to the compo-
nent providing the transfer between the sender and re-
ceiver of a connection—and vice versa

System component based on Actual_Function_Binding Every functional component bound to the system com-
ponent—and vice versa

Connections themselves can be error sources, or they can propagate to or be affected by propaga-
tions from components that the connection is bound to. In other words, the error propagation to

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 32

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

the connection destination is affected by the error propagation from the connection source as well
as the connection error source and propagations from connection binding. Section 8.5 discusses
how the resulting error type on the connection destination is determined.

4.1.3 Observations

Software errors may lead to error propagation between subprograms and threads within the same
process, or the same partition in a partitioned architecture, if there is no address space enforce-
ment that ensures a subprogram or thread accesses other components only via its interaction
points. In such a case, it is valuable to specify error propagations at the thread level to document
thread-level expectations for incoming and outgoing interaction points, since no runtime guaran-
tees can be made about fault containment within a process or partition.

When a shared resource, such as a processor, is an error source, it can affect all components
bound to the resource. A shared resource with an incoming error propagation named in an error
path results in an outgoing propagation to all components bound to the resource.

The outgoing error propagation from a component binding point to a connection affects the error
propagation from the connection source to the connection destination. Error type transformation
rules specify the resulting error type when an outgoing error propagation of a connection source is
combined with an outgoing error propagation from the component performing the connection
transfer (see Section 8.4).

4.2 Outgoing and Incoming Error Propagation Specification

Error propagation occurs between outgoing and incoming error propagation points of different
components. In this section, we describe the role of incoming and outgoing error propagation dec-
larations and how they are used.

4.2.1 Role of Outgoing and Incoming Error Propagation Declarations

An error propagation declaration identifies the error propagation point and specifies the type of
error being propagated. Outgoing error propagation declarations specify the types of errors being
propagated out of a component, while incoming error propagation declarations specify errors ex-
pected to be propagated into a component. Any time an error propagation occurs, one or more er-
ror types are specified for the instance in the error propagation declaration.

Error propagation points are

 the interaction points of components, declared as features of a component type. They include
the different types of ports, data access, bus access, subprogram access, and subprogram
group access features, and their aggregation into feature groups.

 binding points that reflect the deployment binding of software components to hardware com-
ponents. Binding points are identified in the error propagation declaration by keywords.

 user-defined propagation points that are not present in the AADL core model. They allow the
user to represent the impact of a component on other components or the environment without
explicitly represented interaction points. An example is heat exposure of one processor to a
physically close processor without the processor being connected. See Section 8.2 for details
on user-defined propagation points.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 33

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The outgoing propagation declarations act as guarantees and the incoming error propagation dec-
larations act as assumptions. When an outgoing propagation is connected to an incoming propaga-
tion through a propagation path, the error types are compared to ensure that outgoing error types
are handled by the incoming error propagation declaration. Section 4.4 elaborates on the compari-
son rules for these error propagation guarantees and assumptions.

4.2.2 Using Outgoing and Incoming Error Propagations

Outgoing and incoming error propagations are declared in the error propagations section of the
error model subclause. The declaration consists of a reference to an interaction point, a user-de-
fined propagation point, or a keyword to identify a binding point. It is followed by a colon and the
keyword in or out to identify the direction of the propagation. The error propagation declaration
ends with a specification of one or more error types being propagated, enclosed in curly brackets.
The syntax rules for error propagations are shown in Section 10.6.

An error propagation can be referenced by the name used to identify its error propagation point.
Examples of such references can be found in the declaration of error sources, paths, and sinks (see
Section 4.3.2).

Binding points are identified by the following keywords:

 processor: processor binding point for a software component or virtual processor, expressed
by Actual_Processor_Binding property

 memory: memory binding point for a software component, expressed by Actual_Memory_
Binding property

 connection: hardware binding point for a connection or virtual bus, expressed by Actual_
Connection_Binding property

 binding: system binding point for a component in a functional architecture, expressed by Ac-
tual_Function_Binding property

 bindings: binding point for the target component of a binding through which all bound com-
ponents can be reached

Figure 23 shows several examples of error propagation declarations for a software component.
The process MyApp has an incoming error propagation for sensorData with the error type Bad-
Data and a similar outgoing error propagation declaration for actuatorCmd. The process also has
an incoming error propagation (keyword processor with error type NoService) for errors propa-
gated from the processor that MyApp is bound to. Finally, MyApp has an outgoing propagation
declaration that associates an error type with one of the ports in the feature group monitorControl.

process MyApp
features
 sensorData: in data port;
 actuatorCmd: out data port;
 monitorControl: feature group Control;
annex EMV2 {**
 use types MyErrorLib;
 error propagations
 sensorData: in propagation {BadData};
 actuatorCmd: out propagation {MissingCmd};
 -- incoming error propagation from processor binding

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 34

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 processor: in propagation {NoService};
 -- propagation on a feature group element
 monitorControl.reset: in propagation {NoService};
 end propagations;
**};
end MyApp;

feature group Control
features
 reset: in event port;
 shutdown: in event port;
end Control;

Figure 23: Examples of Error Propagation Declarations for a Software Component

Figure 24 shows error propagation declarations for hardware components. In the processor PC,
the outgoing error propagation declaration uses the keyword bindings. This declaration corre-
sponds to the incoming processor error propagation in MyApp. We also have an incoming error
propagation on the bus access feature to CANbus. Since access connections can end directly with
a bus, we must be able to identify this access interaction point on the bus and error propagation
from the bus. As shown in the example, the keyword access is used for that purpose.

processor PC
features
 deviceBus: requires bus access CANbus;
annex EMV2 {**
 use types MyErrorLib;
 error propagations
 -- outgoing error propagation from processor binding
 bindings: out propagation {NoService};
 deviceBus: in propagation {NoService};
 end propagations;
**};
end PC;

bus CANbus
annex EMV2{**
 use types MyErrorLib;
 error propagations
 -- outgoing error propagation on access connections
 access: out propagation {NoService};
 end propagations;
**};
end CANbus;

Figure 24: Examples of Error Propagation Declarations for Hardware Components

4.2.3 Observations

For each incoming error propagation point, there can be only one incoming error propagation dec-
laration, and for each outgoing error propagation point, there can be only one outgoing error prop-
agation declaration. However, the declaration can list multiple error types for the same error
propagation point to indicate that any of the specified error types may be propagated.

Some features—such as port, access, and abstract features—may be bidirectional, that is, both in-
coming and outgoing. In this case, separate error propagation declarations are used to specify the
incoming error types and the outgoing error types.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 35

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

If the error propagation point is a feature group, propagated error types can be specified for each
element of the feature group. This is accomplished by specifying a path starting with the feature
group name, followed by one dot-separated element name (or multiple element names for nested
feature groups). For example, actuatorInterface.cmdset.cmd: out propagation {Miss-
ingCmd};

Error propagation specifications have two purposes:

1. to identify error sources and potential hazards. In this case, they specify outgoing error prop-
agations together with error source declarations on the functional system architecture. This
specification allows users to assess functional hazards (see Section 4.4).

2. to specify both outgoing and incoming error propagations, as well as corresponding error
source declarations, with error paths and sinks for system components of concern. This spec-
ification helps users understand the impact of faults on other system components (see Sec-
tion 4.6). Such specifications also establish contracts and assumptions between system
components with respect to propagated and contained error types (see Section 4.4), which
allows us to identify unhandled faults (see Section 4.7). This process is then repeated as the
architecture model of a system is refined by decomposing system components.

4.3 Error Sources, Sinks, and Pass-Through

System components can be viewed as sources of errors that are propagated to other components,
as sinks of propagated errors, or as passing propagated errors they receive on to other compo-
nents. EMV2 supports the declaration of three forms of error flow: error source, error path, and
error sink.

4.3.1 Role of Error Source, Error Path, and Error Sink Declarations

An error source identifies a component as the source of an outgoing error propagation, or compo-
nent failure, whose effect on other components is represented by the identified error propagation.
An error source specification may also indicate the failure source within the component, some-
times referred to as the failure mode.

An error path indicates that an incoming error propagation results in an outgoing error propaga-
tion. The error type of outgoing error propagation can be the same as the incoming error propaga-
tion—that is, the component passes the same error type to other components—or it can be a
different type. For example, a component may recognize an incoming out-of-range value and send
no value to the outgoing port.

An error sink indicates that a component is able to mask an incoming error propagation; that is,
the error does not result in any outgoing propagation to other components. For example, a compo-
nent may recognize an out-of-range value for a sensor reading and use previous values to send an
approximation value.

4.3.2 Using Error Source, Error Path, and Error Sink Declarations

Error sources, paths, and sinks are declared in the error propagations section of the error model
subclause. They are placed after the error propagation declarations, separated by the flows key-
word. The syntax rules for error propagations and error flows are shown in Section 10.6.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 36

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

An error source declaration consists of a name that identifies it and a reference to an outgoing er-
ror propagation point (or all). Optionally, the error source declaration may also have one or more
error type constraints and a when or an if statement. The outgoing error propagation is referenced
by the error propagation point identifier used in the error propagation declaration.

The error type constraint specifies a subset of error types in the error propagation for which the
component is the source, by listing error types inside curly brackets (see Section 3.1). If the con-
straint is absent, all error types in the error propagation declaration apply.

The optional when statement allows the user to indicate a component failure that causes the error
propagation. This component failure can be identified by an error type or an error behavior state,
or simply characterized by a textual description. This component failure specification represents
the failure mode in a fault impact analysis or FMEA.

The optional if statement allows the user to include a text statement describing the fault condition.

An example of an error source declaration is shown in Figure 25. A sensor provides sensor read-
ings through its SensorReading port. Its outgoing error propagation specification indicates that the
reading could be BadData or NoData. The error source declaration specifies that the sensor is the
source of the error type BadData. The specified error type must be one of the error types specified
in the error propagation.

The error source declaration also specifies that the sensor propagates bad data when it encounters
a failure of type SensorFailure. Figure 25 shows how to provide a component failure description
as text instead of using an error type.

device Sensor
features
 SensorReading: out data port;
 PowerSource: requires bus access;
annex EMV2 {**
 use types MyErrorLib;
 error propagations
 SensorReading: out propagation {BadData, NoData};
 PowerSource: in propagation {PowerFailure};
 flows
 ErrorSource: error source SensorReading {BadData} when {SensorFailure} if "Op-
erating in autoland mode";
-- ErrorSource: error source SensorReading {BadData} when "Transient Sensor Read-
ing Failure";
 ErrorPath: error path PowerSource->SensorReading {NoData};
end propagations;
**};
end sensor;

Figure 25: A Sensor with an Error Source and an Error Path

An error path declaration consists of a name that identifies the error path declaration; an incoming
error propagation point as the source, followed by “->”; and an outgoing error propagation refer-
ence as the target.

 The incoming error propagation point can have an optional error type constraint that indicates
the subset of error types from the incoming error propagation declaration. This type constraint
is expressed as a type set using curly brackets. For example, {NoData}.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 37

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 The outgoing error propagation reference may be followed by an instance of an error type
specified in curly brackets to indicate the specific error type being propagated. For example,
{NoData}.

An error path declaration specifies that any error propagation instance matching one of the types
specified in the type constraint is mapped into the type instance specified on the right-hand side.

If the error type constraint is absent, then any error type specified in the incoming error propaga-
tion is accepted as an incoming error propagation instance.

If the resulting type instance specification is absent, then the error type of the incoming instance
becomes the error type of the outgoing instance. Those error types must still be contained in the
type set specified for the outgoing error propagation.

The example in Figure 25 shows an error path specification that applies to all incoming error
types for the error propagation point PowerSource. The result is an outgoing error propagation of
type NoData.

An error sink declaration consists of a name that identifies it and a reference to an incoming error
propagation point, as shown in Figure 26. The reference is optionally followed by an error type
constraint, and it may refer to all incoming propagation points by using the declaration all. The
constraint indicates that the error sink declaration applies to a subset of the error types specified in
the referenced error propagation declaration.

 ErrorSink: error sink SensorReading {BadData};
Figure 26: Example of an Error Sink Declaration

4.3.3 Observations

If a component has multiple outgoing error propagation points, all of them may be affected by a
component failure. In this case, the user can declare an error source and use the keyword all in-
stead of a specific error propagation reference, as shown in Figure 27.

 ErrorSource: error source all{BadData} when {SensorFailure};
Figure 27: Example of an Error Source on All Outgoing Propagation Points

The keyword all can also be used in error path and error sink declarations. For error path declara-
tions, all can be used instead of a specific incoming error propagation reference; this keyword in-
dicates that any incoming error propagation matching the error type constraints, if specified,
results in an outgoing error propagation. If all is also declared instead of the outgoing error propa-
gation reference, then all outgoing propagations are affected by any incoming error propagation.
If a specific error propagation is referenced as incoming and all is used as outgoing, then an in-
stance of the specified error propagation is passed on through all outgoing error propagations, ei-
ther with the incoming type instance or with the specified type instance.

An incoming error propagation can be referenced by both an error sink and an error path. In this
case, the component is the sink for one error type and passes on a different error type. For exam-
ple, a component may be a sink for BadData and pass on NoData.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 38

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

A component can even be an error sink and an error path for an incoming error propagation of the
same type. This represents situations where the component acts as a sink in some circumstances
and passes on errors in others. For example, a component may handle BadData while fully opera-
tional, but pass on BadData if in a degraded error behavior state. The error propagation and error
flow declarations specify the fact that both forms of error flow exist. We can associate a probabil-
ity value with each to indicate an occurrence distribution between the two. The component error
behavior specification will elaborate the specifics of how the component handles incoming error
propagations; for example, the handling method is conditional based on the error behavior state
(see Section 5).

An outgoing error propagation can be specified as both an error source and the target of an error
path. This means that an error of a specified type is propagated by the internal failure of a compo-
nent (error source) or by passing on an incoming error propagation (error path). For example,
computational errors in a component may produce bad values, or bad values in the incoming data
may cause the component to output bad values.

A component can be the error source and error sink for an error propagation of the same error
type. For example, a component may recognize an out-of-range value and mask it by calculating
an approximate value. The computation of correct input may be erroneous and introduce a data
value error.

Note that if no error flows are specified, the fault impact analysis assumes a pessimistic flow. In
this case, the component is the error source for all outgoing error propagations. Furthermore,
every incoming error propagation is passed on through all outgoing error propagation points.

Users may use error flow declarations in conjunction with error propagation declarations in sev-
eral ways:

 The user may initially focus on error propagations for which the component is the source. The
user may specify several error types that are propagated through an error propagation point.

 The user may initially focus on the functional interface with other components—that is, the
communication through ports—and later add bindings as propagation points.

 The user may identify a subset of the propagated error types as an error source.

 The user may further characterize the error source with a Severity property to mark different
error propagation types of an error propagation or error source.

Declarations of error propagations and flows allow the user to record error types that may result in
hazards. Users may elaborate this initial architecture fault model with incoming error propaga-
tions, error paths, and error sinks, leading to an understanding of fault impact on other system
components.

Users may map the fault model of a functional architecture to a system architecture. This mapping
helps designers understand the impact of a system component failure on system functions and
vice versa. Users may further refine the architecture fault models by specifying component error
behavior. Such a specification must be consistent with the specification of error propagations and
flows in order to maintain validity of early safety analysis results and analysis results of the re-
fined model. For more details, see AADL Fault Modeling and Analysis Within an ARP4761 Safety
Assessment [Delange 2014].

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 39

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

4.4 Fault Propagation Contracts and Unhandled Faults

In Section 4.2, we introduced outgoing and incoming error propagation declarations to specify
types of propagated errors. In this section, we introduce error containment declarations that allow
us to specify error types that are not propagated. The combination of explicitly specified error
propagations and containments supports a contract model between components and allows users
to identify unhandled faults.

4.4.1 Role of Error Containment Declarations

Error containment declarations on outgoing error propagation points indicate that certain error
types are not propagated out but contained within the component. Error containment declarations
on incoming error propagation points indicate that certain error types are not expected to be re-
ceived.

Because EMV2 supports the declaration of both error types being propagated and error types be-
ing contained, we can check for completeness of error propagation specifications. In this case, if
certain propagation specification types are not specified, they are not misinterpreted as absent
propagations (error containment). Instead, they are identified as incomplete specification—the
user may not have specified that error type.

Figure 28 illustrates a fault model specification for a system interface expressed as a collection of
contracts and assumptions about outgoing and incoming error propagation points. It shows an ex-
pected incoming propagation of type OutOfRange, which will be transformed into an outgoing
propagation of type NoData, while ensuring that no outgoing OutOfRange error is propagated.
The textual specification is shown in Figure 29.

Figure 28: Fault Model Specification of a System Interface as Contracts, Assumptions, and Flows

4.4.2 Using Error Containment Declarations

Outgoing and incoming error containments are declared in the error propagations section of the
error model subclause. An error containment declaration specifies the set of error types expected
to be contained. Error containment declarations differ from error propagation declarations by the
addition of the keyword not after the colon. The syntax rules for error containment declarations
are shown in Section 10.6.

Figure 29 shows an example of an error containment declaration for the feature actuatorCmd. It
declares that the component expects to filter incoming out-of-range values and not propagate them
through the actuatorCmd feature. The error path specification OORHandling indicates that the
component will handle the error type by not sending data.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 40

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

error propagations
 sensorData: in propagation {OutOfRange};
 actuatorCmd: out propagation {NoData};
 actuatorCmd: not out propagation {OutOfRange};
flows
 OORHandling: error path sensorData{OutOfRange} -> actuatorCmd{NoData};
end propagations;

Figure 29: Example Error Containment Declaration

4.4.3 Observations on Propagation Guarantees and Assumptions

Outgoing error propagation and containment declarations specify the guarantees that a component
makes about the propagation of various error types to components that interact with it. Incoming
error propagations and containment declarations specify the assumptions that a component makes
about propagations of various error types that it receives from other components.

Error propagation paths identify the source and target of interacting components. This relationship
allows us to ensure that the propagation guarantees of components that are the source of propaga-
tion paths to another component meet the assumptions that component makes about incoming
propagations. This is similar to checking the data types of connected data ports and event data
ports. The rules for checking guarantees against assumptions are illustrated in Figure 30.

Figure 30: Matching Rules for Outgoing and Incoming Error Propagations

Outgoing error types must be contained in the incoming error type sets. Containment means that
the outgoing set of error types must be smaller than the incoming set of error types. An outgoing
set of contained error types must include any declared incoming error containment types, thereby
clearly indicating that if an incoming error type is declared as contained, it will not be propagated.
However, outgoing contained error types need not be specified as incoming contained error types.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 41

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Incoming not propagated error types must not contain outgoing error propagation types. Unspeci-
fied error propagations on incoming propagation points that receive outgoing error propagations
are considered unhandled faults.

An outgoing not propagated error type can be contained in the error types of an incoming error
propagation. In this case, even though the component does not expect them, it is robust to incom-
ing error propagations of the specified type. For example, the implementation of a sending com-
ponent may propagate an out-of-range error due to a coding error despite a specification
indicating that it contains out-of-range errors, but the receiving component is prepared to deal
with this compliance violation.

For type hierarchies, the outgoing error type must be a subtype of the incoming error type. For ex-
ample, an outgoing error type EarlyDelivery is acceptable to the recipient if its error propagation
specification indicates TimingError, since EarlyDelivery is a subtype of TimingError. However,
an outgoing error type TimingError is not acceptable if the incoming error type constraint is Ear-
lyDelivery.

Users can check error type matching rules on the declarative model when both ends of a connec-
tion declaration have an EMV2 annotation with an error propagations section. Although it is de-
sirable, users do not have to declare EMV2 annotations at every level of the component hierarchy.
For example, users may specify an EMV2 annotation for devices, but not for the system that con-
tains the device. The device may be connected to a thread within a process in another system. If
the thread has an EMV2 annotation, we check for consistency between the device and the thread
error propagation and containment specifications. If the system that contains the process with the
thread has an EMV2 annotation, we also check for consistency between the thread and system-
level error propagation and containment specifications.

4.5 Error Sources Resulting in Hazards

A technique known as Functional Hazard Assessment (FHA)—not to be confused with Fault Haz-
ard Analysis (see the Federal Aviation Administration System Safety Handbook [FAA 2010]) —is
defined as part of SAE ARP4761 [SAE 1996]. FHA is a systematic examination of systems and
subsystem functions to identify and classify the failure conditions of those functions according to
their severity.

This process is supported by error propagation and error source specifications of the system or
subsystems of interest. Users can annotate these specifications with properties relevant to the pro-
duction of FHA reports.

EMV2 includes a set of properties that are defined in a property set called EMV2. One such prop-
erty is Hazards. It allows modelers to provide descriptive hazard information within the model.
See Section 7.4 for details on predeclared properties in EMV2.

The property values are associated with error sources and outgoing error propagations of compo-
nents and can be specific to a particular error type. Section 7.1 explains how to associate proper-
ties with error model elements.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 42

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 31 illustrates an example hazard specification. The Hazards property is associated with the
error behavior state that is the error source. Such hazard specifications are characterized with se-
verity and criticality.

device PositionSensor
features
 PositionReading: out data port;
flows
 f1: flow source PositionReading {Latency => 2 ms .. 3 ms;};
annex EMV2 {**
use types ErrorLibrary;
use behavior ErrorModelLibrary::Simple;
error propagations
 PositionReading: out propagation {ServiceOmission, ItemOmission, ValueError};
flows
 ef1: error source PositionReading when Failed;
end propagations;
properties
 EMV2::Hazards =>
 ([crossreference => "1.1.1";
 failure => "Loss of sensor readings";
 phases => ("all");
 severity => 1;
 likelihood => C;
 description => "No position readings due to sensor failure";
 comment => "Becomes major hazard, if no redundant sensor";
])
 applies to ef1.ServiceOmission;
**};
end PositionSensor;

Figure 31: Hazard Specification

The set of hazards to be reported is determined as follows:

 Each component instance in a system instance model that has an EMV2 subclause with an er-
ror propagations section is a candidate for hazard specifications. If the section contains error
flow specifications, then every error source is a candidate if it has a hazard property. Other-
wise, every outgoing error propagation is a candidate if the hazard property identifies it as a
hazard.

 If the error source has a when clause, then the specified error behavior state, and optionally
its error type, can be the hazard source. The hazard property is associated with the state by
identifying the error source, followed by the state, in the applies to clause. The hazard prop-
erty can also be associated with a specific error type of the state. Alternatively, the when
clause can specify a type set. In this case, each type in the type set can be identified as a haz-
ard, and the error source acts as the first level of failure effect.

Figure 32 shows a sample FHA report generated from an AADL model annotated with EMV2.

Figure 32: Sample FHA Report

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 43

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

For a full discussion of FHA modeling with AADL and EMV2, see AADL Fault Modeling and
Analysis [Delange 2014].

4.6 Understanding the Fault Impact

Fault impact analysis utilizes error sources, paths, and sinks to identify error flow from incoming
to outgoing error propagations and error propagation paths along connections and bindings; this
analysis generates error propagation traces from error sources through the system to error sinks. It
can do so for a system where all components are operational or where one or more components
are already in a nonworking state. Propagation traces begin at components with error source dec-
larations. The origin of an error source declaration becomes the failure mode, and the outgoing
propagation is the first-level effect. Every outgoing error propagation represents another level of
effect in the fault impact analysis. An example snippet of a trace report is shown in Figure 33.

Figure 33: Example of a Fault Impact Report

The fault impact analysis takes into account error propagation paths within the system’s software,
hardware, and physical components; binding propagation paths; and user-defined propagation
paths. As it traces instances of error types through the propagation path graph, it may transform
some error types into different error types based on the error path specifications, type mapping,
and type transformation rules. Furthermore, if an incoming error type has subtypes and a compo-
nent is sensitive to the subtypes, the analysis generates a separate propagation trace for each sub-
type.

For a full discussion of fault impact analysis, particularly FMEA, see AADL Fault Modeling and
Analysis [Delange 2014].

4.7 Identifying Unhandled Faults

In the following example, we illustrate how a consistency check on error propagation types can
identify mismatched assumptions in an architecture design. The example is representative of an
actual occurrence in an aircraft system. Typically, a PSSA is performed early in the development
process; since it is a manual process, it is often performed only once. During this activity, partici-
pants consider major hazards and their impact on a system.

In our example, an embedded GPS/inertial navigation system (EGI) provides airspeed data to a
flight management system. Failure of the EGI results in a service omission by not providing air-
speed data when it is expected. This is shown as a propagation of error type NoData from the EGI
to the flight management system (FMS) in Figure 34. Note that users can define aliases for the
predeclared error types that are more meaningful to the domain of the component. Modelers can
also extend an existing type hierarchy and introduce new error type hierarchies.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 44

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 34: Error Propagations Between Subsystems

The EMV2 specification for the FMS shows that it recognizes a NoData propagation from the EGI.
The specification also shows that the FMS is intended to operate as “fail silent” in that it either
operates without functional failure, such as Stall, or it goes into fail stop, shown as NoService.

In our scenario, an engineer responsible for the EGI performs a lab test, encounters transmission
of corrupted airspeed data, and identifies the root in the EGI hardware. One of two boards, which
are positioned back to back with tight tolerances, is slightly out of spec. During a vibration test,
the boards touched, causing transient corruption of the airspeed data being transmitted to the
FMS. Under normal circumstances, the engineer assumes that such a case has been addressed in
the PSSA or SSA. The engineer records the identified error and error propagation in the EMV2
specification for the EGI but takes no other action. The change of the specification is shown in
Figure 35.

Figure 35: Updated Specification of Error Propagations

This specification is virtually integrated with the FMS specification as part of a routine virtual in-
tegration and analysis activity. EMV2 specifies consistency rules regarding outgoing and incom-
ing propagated error types along error propagation paths (see Section 4.4.3). The enforcement of

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 45

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

this consistency rule by a tool identifies the mismatch between propagation assumptions and guar-
antees, and the tool reports it as an unhandled propagation, as shown in Figure 36.

Figure 36: Mismatch Between Error Propagation Specifications

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 46

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5 Component Error Behavior

This section introduces the concepts necessary to characterize the abstract error behavior of a
component. A component error behavior specification represents the anomalous behavior of an
AADL component using a state machine. Faults in a system are manifested as errors within the
system or propagated to the system, and these errors can lead to failure, defined as behavior that
does not comply with the intended service). A component error behavior specification is useful in
representing component faults, the handling (or lack of handling) of faults, and the propagation of
faults as errors. Component error behavior specifications can be used throughout a project life cy-
cle, by developing them early in the life cycle and refining those models as the project progresses.

As a system architecture is refined one layer at a time, component error behavior specifications
can be associated with subsystems. These error behavior specifications can then be related to the
error behavior specification of the enclosing system to support compositional safety analysis (see
Section 6).

EMV2 provides reusable error behavior state-machine declarations in error model libraries and
component-specific error behavior declarations in error model subclauses. Component-specific
error behavior declarations augment error behavior state-machine declarations with component-
specific information, such as component-specific error behavior events, impact of incoming error
propagations on the error behavior of the component, conditions under which component error be-
havior propagates errors, the intent for the system to detect certain errors, and the effect of error
recovery or repair on the error behavior state of the system.

5.1 Reusable Error Behavior State Machines

An error behavior state machine defines a set of error behavior states and transitions, as well as
error behavior events that can trigger the transitions. In this section, we describe the role and us-
age of each of these concepts, a library of predefined error behavior state machines, and the use of
error types in error behavior state-machine declarations.

5.1.1 Role of Error Behavior States, Events, and Transitions

Error behavior states represent working states and failure modes. A working state indicates that
the component is operational, while a nonworking state indicates that the component is erroneous
(has malfunctioned or lost its function). A component can have one or more working states and
one or more nonworking states.

An error behavior transition specifies a transition from a source state to a target state if a transition
condition is satisfied. Transition conditions are the occurrence of error behavior events or incom-
ing error propagations. Note that incoming error propagations are specific to components; thus,
they can be specified as transition triggers only in component-specific error behavior declarations
(see Section 5.2).

EMV2 supports the concept of a branching transition, which is a transition with multiple target
states. Once a branching transition is triggered, the target state is determined according to a speci-
fied probability. Branching transitions allow users to specify that once an error has occurred, it

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 47

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

will result in a transient or persistent failure state without requiring users to introduce an interme-
diate error behavior state or separate error events for error occurrences with transient or persistent
failure effects.

EMV2 distinguishes between three kinds of error behavior events: error events, recover events,
and repair events. Error events represent fault activation within a component and result in a state
transition to an error behavior state that represents the resulting failure mode in an outgoing error
propagation. Recover events represent recovery from a nonworking state to a working state. They
are used to model recovery from transient errors. Repair events represent repair action of longer
duration, whose completion results in a transition back to a working state.

Separately declared error, recover, and repair events are considered to occur independently. Sim-
ultaneously occurring events may be handled in nondeterministic order. For example, users may
declare one error event to represent the occurrence of out-of-range values and another error event
to represent late delivery of data.

Users can also associate occurrence probabilities with error behavior events. An occurrence prob-
ability is declared in the properties section of the error behavior state machine, in which case it
applies to all uses of the state machine. Component type-specific values can be declared as part of
the component error behavior declaration in the error model subclause specified for a component
type or component implementation. In this case, the value applies to all instances (subcompo-
nents) of the classifier.

5.1.2 Using Error Behavior State-Machine Declarations

Figure 37 illustrates the declaration of an error behavior state machine in an error model library.
The state machine is named PermanentTransientFailure. You can refer to the error behavior state
machine in an error model subclause by qualifying it with the error model library name or the
name of the package that contains the error model library.

package ExampleErrorLibrary
public
annex EMV2 {**
error behavior PermanentTransientFailure
events
 Failure: error event;
 Recovery: recover event;
states
 Operational: initial state;
 FailedTransient: state;
 FailedPermanent: state;
transitions
 FailTransition: Operational-[Failure]->
 (FailedTransient with 0.9, FailedPermanent with others);
 RecoveryTransition: FailedTransient-[Recovery]->Operational;
properties
 StateKind => Working applies to Operational;
 StateKind => NonWorking applies to FailedTransient, FailedPermanent;
end behavior;
**};
end ExampleErrorLibrary;

Figure 37: Reusable Declaration for an Error Behavior State Machine

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 48

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The error behavior state machine consists of three error behavior states: Operational, FailedTran-
sient, and FailedPermanent. Figure 37 shows that the Operational state is tagged as Working by
the StateKind property; the other two states are tagged as NonWorking. Tagging with the State-
Kind property is optional.

An error behavior state machine can include one or more error events, recover events, or repair
events. The example shows two error behavior events: an error event called Failure and a recover
event called Recovery.

An error behavior transition specifies a transition from a source state to a target state when a trig-
ger condition is met. The source state can be a specific state, possibly annotated with an error type
constraint (see Section 5.1.4) or the keyword all to indicate that it represents a transition out of
any error behavior state. The target state can be a specific error behavior state, possibly with a
specific error type or the keywords same state to indicate that the state machine remains in the
source state. The transition trigger can be one or more error behavior events or error propagations.
Logical operators or, and, ormore, and orless are available to express the trigger condition for
more than one trigger with a precedence ordering of ormore/orless over and over or. The latter
two operators have the following syntax:

integer <operator> (trigger reference (, trigger reference)*)

The Failure event triggers a transition out of the Operational state. This transition is shown as a
branching transition; FailTransient is the target state with a probability of 0.9, and FailPermanent
is an alternative state with the remaining probability of 0.1. The sum of branch probabilities is ex-
pected to be 1.0. The Recover event triggers a transition out of the FailTransient state back to the
Operational state.

5.1.3 Predefined Set of Error Behavior State Machines

The EMV2 standard includes several predeclared error behavior state machines. They are defined
in the error model library ErrorLibrary, which also contains the predeclared error types. All pre-
declared error behavior state machines include an Operational state and a Failure error event. Us-
ers can associate a probability of occurrence with the Failure error event for a specific component
through a property in the error model subclause. The following error behavior state machines are
included:

 The FailStop error behavior state machine represents the error behavior of components whose
failure occurrence (Failure error event) results in the FailStop error behavior state without re-
covery back to Operational. The effect of the FailStop on other components can be an out-
going propagation of service omission, which will be specified in the component-specific
declaration of error behavior.

 The DegradedFailStop error behavior state machine represents the error behavior of compo-
nents whose first failure occurrence (Failure error event) results in the Degraded error behav-
ior state and whose second Failure error event results in the FailStop error behavior state.
There is no recovery included in the state-machine specification.

 The FailAndRecover error behavior state machine represents the error behavior of compo-
nents that have a failure (Fail state) and are able to recover to full operation. The recovery is

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 49

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

modeled by a Recovery recover event. Users can associate a probability of occurrence with
the error and recover events.

 The DegradedRecovery error behavior state machine represents the error behavior of compo-
nents that operate in degraded mode after one failure (Degraded state), are able to recover
from Degraded to Operational, and enter the FailStop state if a failure occurs while in the
Degraded state. The recovery is modeled by a Recovery recover event. Users can associate a
probability of occurrence with the error and recover events.

 The PermanentTransientFailure error behavior state machine represents the error behavior of
components that have transient (FailedTransient state) and permanent failures (FailedPerma-
nent state). Users can specify component-specific values for the proportion of transient fail-
ures through the EMV2::TransientFailureRatio property associated with the transition. Figure
37 shows this error behavior state machine, but with a specific value of 0.9 supplied for the
branch to the FailedTransient state instead of a reference to EMV2::TransientFailureRatio.
Users can also specify component-specific values for the occurrence probability of recovery
to transition back to Operational.

 The FailRecoveryFailure error behavior state machine represents the error behavior of com-
ponents that have a failure (Failed state) and with specified probability are able to recover to
full operation. This recovery may fail and result in the FailStop state. Users can specify com-
ponent-specific values for the proportion of recoveries that fail through the EMV2::Recovery-
FailureRatio property.

5.1.4 Typed Error Behavior State Machines

Error types can be associated with error events and error behavior states in the same way they are
used on error propagations. This allows users to specify error behavior in a more compact form.
The error types act as typed tokens on the state machine.

Figure 38 graphically shows an error behavior state machine with one operational state and three
NonWorking states, one for each type of failure (BadValueState, NoValueState, and LateValue-
State). Transition to each of those nonworking states is triggered by a separate error event (shown
as associated with the transition by a dashed arrow). Note that the names of these events and re-
sulting states are chosen to indicate the type of error that results in the transitions shown.

Figure 38: Example Model of an Error Behavior State Machine

The textual specification for the error behavior state machine is shown in Figure 39.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 50

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

package UntypedExampleLibrary
public
annex EMV2 {**
error behavior UntypedStateMachine
events
 BadValueEvent: error event;
 NoValueEvent: error event;
 LateValueEvent: error event;
states
 Operational: initial state;
 BadValueState: state;
 NoValueState: state;
 LateValueState: state;
transitions
 BadValueTransition: Operational-[BadValueEvent]->BadValueState;
 NoValueTransition: Operational -[NoValueEvent]-> NoValueState;
 LateTransition: Operational-[LateValueEvent]->LateValueState;
end behavior;
**};
end UntypedExampleLibrary;

Figure 39: Untyped Specification for an Error Behavior Model

Figure 40 shows the same error behavior state machine, using error types on error events and error
behavior states. Three error types are grouped into a type set called MyTypes. In the error behavior
state-machine declaration, use types indicates the desire to reference a type in the error type li-
brary. A reference to the type set MyTypes is associated with the error event FailEvent. This indi-
cates that error events of any of the three types may occur. Similarly, MyTypes is associated with
the error behavior state FailedState. This indicates that any of the three types in the type set are
acceptable. The transition FailTransition refers to the error event as a trigger and the target state
FailedState without identifying an error type. This means that the error type of the error event in-
stance becomes the error type of the error behavior state.

package TypedExampleLibrary
public
annex EMV2 {**
error types
 NoValue: type;
 BadValue: type;
 LateValue: type;
 MyTypes: type set { NoValue, BadValue, LateValue };
end types;

error behavior TypedStateMachine
use types TypedExampleLibrary;
events
 FailEvent: error event { MyTypes };
states
 Operational: initial state;
 FailedState: state { MyTypes };
transitions
 FailTransition: Operational -[FailEvent]-> FailedState;
end behavior;
**};
end TypedExampleLibrary;

Figure 40: Error Behavior State Machine with Error Types

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 51

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.1.5 Observations

Typically you will define only a small number of reusable error behavior state machines.

An error behavior state machine may consist of only error behavior states, or it may include error
behavior events and transitions that are triggered by the error behavior events.

You can specify the error event with a particular error type as trigger. This error type must be one
of the error types specified in the error event declaration. You can also specify a particular error
type for the target error behavior state. For example, you can specify that several error types of
error events or several different error events result in a transition to an error behavior state with a
particular error type.

You will refine these reusable error behavior state machines with component-specific information
in error model subclause declarations, as described in the next section.

5.2 Component-Specific Error Behavior Specification

In this section, we describe how to specify component-specific fault behavior. In the next section,
we describe how to specify fault detection and recovery behavior for specific components.

5.2.1 Role of Component-Specific Error Behavior Specifications

Component-specific error behavior declarations are associated with component types and imple-
mentations through the error model subclause. The declaration identifies the error behavior state
machine to be used and refined.

You add component-specific error behavior events to reflect fault occurrences that are specific to
the component. For example, a sensor may produce a bad sensor reading. You then add transitions
as appropriate to indicate that such an error behavior event results in a change of error behavior
state.

You also specify conditions under which the component is an error source. That is, you specify
whether an error behavior state results in the component propagating an outgoing error.

You can also specify how the component responds to incoming error propagations. You do so in
two ways. First, you specify whether an incoming error propagation affects the component’s error
behavior state. This is not always the case. For example, an incoming value error may just be
passed on without changing the error behavior state of the component.

Second, you can specify in more detail than in the error path declaration how the component re-
sponds to an incoming error propagation (detailed in Section 4.3). A component may respond to
an incoming error propagation differently depending on its error behavior state. For example, a
component may be able to mask an incoming value error propagation while in an operational state
but pass it on as a missing data item when in a degraded error behavior state.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 52

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.2.2 Using Component-Specific Error Behavior Specifications

The component-specific error behavior declaration utilizes the use types and use behavior decla-
rations in the error model subclause (see Section 2.2). The component-specific error behavior dec-
laration itself uses the keywords component error behavior and ends with end component. It
consists of

 a use transformations declaration to indicate the type transformation sets to be used when
the resulting types are not explicitly declared (see Section 8.5)

 a set of component-specific error behavior event declarations beginning with the keyword

events

 a set of component-specific transition declarations beginning with the keyword transitions

 a set of outgoing error propagation condition declarations beginning with the keyword propa-

gations

 a set of error detection declarations beginning with the keyword detections, which indicates
that the component is expected to detect the specified error state or condition (see Section
5.2.3)

 a mode mappings declaration to specify how error behavior states (failure modes) relate to
operational modes in the AADL core model (see Section 8.6)

Error behavior event declarations use the same syntax as error behavior state-machine declara-
tions. They represent errors that are specific to the component type for which the error model sub-
clause is declared.

Error behavior transition declarations use the same syntax as error behavior state-machine decla-
rations. In this case, you can refer to incoming error propagations in addition to error behavior
events as transition triggers. This allows you to indicate that an incoming error propagation affects
the component behavior in succeeding executions by reflecting it in a transition to a different error
behavior state.

Outgoing error propagation condition declarations use a syntax similar to transitions; see Figure
41 for an example. The declaration consists of a source error behavior state, possibly annotated
with an error type constraint or the keyword all, followed by a possibly empty condition involving
error behavior events or incoming error propagations within the symbols –[]->, followed by an
outgoing error propagation reference and optionally an error type or NoError. The keyword all
can be used instead of an outgoing error propagation to indicate that the condition applies to all
outgoing error propagations. An outgoing error propagation declaration with an empty condition
indicates that the source error behavior state results in the specified outgoing propagation of the
specified type. The example includes an outgoing error propagation condition to represent the fact
that a flight controller in the FailStop state will result in service omission.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 53

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

system FlightController
features
 CurrentAirSpeed: in data port;
 NewAirSpeed: out data port;
annex EMV2 {**
 use types ErrorLibrary;
 use behavior ErrorLibrary::FailStop;

 error propagations
 CurrentAirSpeed: in propagation {BadValue};
 NewAirSpeed: out propagation {BadValue, ServiceOmission};
 end propagations;

 component error behavior
 events
 IncorrectComputation: error event;
 propagations
 Transient: Operational -[IncorrectComputation
 or CurrentAirSpeed {BadValue}]-> NewAirSpeed {BadValue};
 Failed: FailStop -[]-> NewAirSpeed {ServiceOmission};
 end component;
**};
end FlightController;

Figure 41: Example of a Component-Specific Error Behavior Declaration

You can specify that incoming error propagations are passed on as outgoing error propagations
only when the component is in a particular error behavior state by specifying the state and the ap-
propriate incoming error propagation(s) as a condition. You can also specify that an incoming er-
ror is not propagated by specifying NoError (or all) for the outgoing error propagation point.

Finally, you can specify propagation of a transient error event, an error event that does not change
the error behavior state. The example in Figure 41 shows an error event representing an incorrect
computation. This error occurs occasionally as specified by an occurrence probability, but it does
not affect succeeding computations. Therefore, it only propagates a BadValue at the time the error
event occurs.

5.2.3 Observations

When error type constraints are specified in transitions and outgoing error propagation conditions,
these constraints must be consistent with error types specified as part of the referenced element.
For example, in Figure 41 the error type associated with the reference to the incoming error prop-
agation CurrentAirSpeed must be contained in the set of error types specified in the error propaga-
tion declaration. Similarly, the error type specified for NewAirSpeed in the outgoing error
propagation condition declaration must be contained in the set of error types specified in the error
propagation declaration.

The error model subclause of a component may consist of error propagation and flow declarations
as well as component error behavior declarations. These declarations are expected to be consistent
with each other. For example, if an error sink has been declared for an incoming error propaga-
tion, then the component error behavior specification cannot declare an outgoing error propaga-
tion as a result of this incoming error propagation.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 54

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

5.3 Error Response and Fault Tolerance

In this section, we present the use of EMV2 in modeling the fault response by the application sys-
tems. The resulting model contains the expectations on the fault management component of a
safety-critical system. This includes identifying the component responsible for detecting a failure
condition, specifying assumptions about the use of redundancy to provide fault tolerance, and
specifying the impact of an actual system recovery on the error behavior state of the system.

5.3.1 Role of Error Detection, Transition, and Propagation Conditions and
Recovery or Repair Events

In Section 5.1.3, we introduced a set of predeclared error behavior state machines. Some of these
state machines represent the error behavior of a component with respect to errors as well as recov-
ery or repair action. Figure 42 presents one of the predeclared error behavior state machines (De-
gradedRecovery) from the ErrorModel error model library. This state machine includes both
failure behavior and recovery behavior. A single Failure event results in a Degraded state. With a
user-specified occurrence probability, the component recovers to the Operational state. A second
Failure event results in the FailStop state, from which there is no recovery.

Figure 42: Representation of the DegradedRecovery Error Behavior State Machine

You can use the predeclared FailRecoveryFailure error behavior state machine to represent the
fact that a recovery action itself may fail. If it is necessary to represent the duration of a recovery
action, you can associate the EMV2::DurationDistribution property with a recover event to indi-
cate how long the recovery takes without introducing an intermediate error behavior state. You
can also define a new error behavior state machine that has an explicit InRecovery error behavior
state.

When declaring a recover or repair event, you can identify a model element in the AADL core
model that represents the recovery action. Use a when clause that lists one or more mode transi-
tions, ports, or internal events.

The component-specific error behavior declaration supports error detection declarations (see Sec-
tion 5.2). This declaration allows you to specify that a component is expected to detect the speci-
fied error state or condition. This component might not be the one with the failure but a
component that receives the error propagation due to the failure. As part of the error detection
declaration, you specify an internal event or a port together with an error code through which the
detected failure is reported.

Finally, the logical expression of error behavior transitions and outgoing error propagation condi-
tions allows you to specify redundancy assumptions about the fault management. For example, a
component may receive sensor readings from two different sensors. You can specify that failure

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 55

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

to receive readings from one sensor may result in degraded operation with less precise control,
while failure to receive readings from both sensors results in the inability to provide service.

5.3.2 Using Error Detection, Transition, and Propagation Conditions and
Recovery or Repair Events

Error detection declarations have a syntax similar to outgoing error propagation condition declara-
tions (see Section 5.2.2). The declaration consists of a source error behavior state, possibly anno-
tated with an error type constraint or the keyword all; followed by a possibly empty condition
involving error behavior events, incoming error propagations, or outgoing error propagations of
subcomponents within the symbols -[]->; followed by an outgoing port reference or an internal
event reference with an optional error code.

Figure 43 illustrates the use of error detection declarations and logical conditions to express re-
dundancy assumptions. The example is a flight controller that gets airspeed information from two
sources. The first transition declaration specifies that the system enters the Degraded error state if
one airspeed input is absent (or). The second transition declaration indicates that the system enters
FailStop from any error behavior state if both airspeed inputs are absent (and). The declarations
for the outgoing error propagation condition indicate that in Degraded approximate values are de-
livered, while in FailStop all output is omitted. Finally, the error detection declarations indicate
that the flight controller is expected to detect failure of one or both airspeed sources to provide
data and report it with the appropriate error code. In the example, we assume that an error type li-
brary called FCErrorLibrary defines the error type ApproximateValue.

system DualSensorFlightController
features
 CurrentAirSpeed1: in data port;
 CurrentAirSpeed2: in data port;
 NewAirSpeed: out data port;
 Status: out data port;
annex EMV2 {**
 use types ErrorLibrary, FCErrorLibrary;
 use behavior ErrorLibrary::DegradedFailstop;

 error propagations
 CurrentAirSpeed1: in propagation {ServiceOmission};
 CurrentAirSpeed2: in propagation {ServiceOmission};
 NewAirSpeed: out propagation {ServiceOmission};
 end propagations;

 component error behavior
 transitions
 SingleFailure: Operational -[CurrentAirSpeed1{ServiceOmission}
 or CurrentAirSpeed2{ServiceOmission}]-> Degraded;
 DualFailure: all -[CurrentAirSpeed1{ServiceOmission}
 and CurrentAirSpeed2{ServiceOmission}]-> FailStop;
 propagations
 LowPrecision: Degraded -[]-> NewAirSpeed {ApproximateValue};
 Failed: FailStop -[]-> NewAirSpeed {ServiceOmission};
 detections
 ReportLowPrecision: all -[CurrentAirSpeed1{ServiceOmission}
 or CurrentAirSpeed2{ServiceOmission}]-> Status(LowPrecisionCode);
 ReportNoSensors: all -[CurrentAirSpeed1{ServiceOmission}
 and CurrentAirSpeed2{ServiceOmission}]-> Status(NoSensorCode);
 end component;

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 56

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

**};
end DualSensorFlightController;

Figure 43: Example with Error Detection and Redundancy Logic Declarations

5.3.3 Observations

The combination of error detection declarations and specification of conditions for the occurrence
of recover events in terms of AADL modes, events on ports, or internal events links the error be-
havior specified through EMV2 with the implementation of fault management in the actual sys-
tem as represented by the AADL core model. In addition, the condition logic represents
assumptions made about a redundancy policy used by the fault management mechanisms in the
actual system. Results from safety analysis, including reliability and availability analysis, use
these assumptions. Thus, those results are valid only if the system meets these assumptions. In
other words, we must ensure that the fault management implementation reflected in the AADL
model is consistent with the EMV2 annotations.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 57

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

6 Compositional Abstraction of Error Behavior

EMV2 supports the specification of error behavior for a system or component as a black-box ab-
straction. It does so through error propagation (Section 3) and error behavior (Section 5) specifi-
cations for a system or a system component. This abstraction is used in determining the
architecture fault model of a system in terms of the fault model of its components.

In this section, we introduce the composite error behavior specification to define the condition for
a system error behavior state expressed in terms of the error behavior states of its subcomponents.
This allows the user to specify the intended relationship of externally visible system error behav-
ior to the error behavior of its parts. Such a specification must be consistent with the combined
error behavior of the connected subcomponents. A tool that checks these consistencies can also
derive the composite error behavior specification or error flow specification in the black-box ab-
straction from the flow through the connected subcomponents.

Figure 44 illustrates an abstraction of error behavior. A flight guidance system (FGS) is shown on
the left-hand side as a black-box abstraction with its abstracted error behavior and propagation
specification. It has an operational state and a Failed state. On the right-hand side, the realization
of the FGS is shown in terms of its parts: a flight guidance (FG) component, an auto pilot (AP)
component, and an actuator (AC) component. FG and AP are replicated for redundancy. Each
component has its own abstracted error propagation and behavior specification.

In addition, incoming error propagations to FGS must be consistent with those components of
FGS that receive its input; that is, they accept the same set of error types. Similarly, the outgoing
propagations of any component interacting with other components through the interface of the en-
closing system must be consistent with the outgoing error propagation specification of FGS. In
other words, the FGS propagation specification must cover the error types declared by all compo-
nents connected to the outgoing error propagation point.

Figure 44: Flight Guidance System Fault Model at Two Levels of Abstraction

6.1 Composite Error Behavior Specification

6.1.1 Role of Composite Error Behavior Specification

A composite error behavior specification explicitly records the relationship between the error be-
havior states of a system and the error behavior states of its parts. A composite error behavior
specification expresses the abstracted error behavior states of the composite component as a logi-
cal condition in terms of its subcomponent error behavior states. For example, an operational error

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 58

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

behavior state may reflect the fact that a component with redundant subcomponents can continue
to be operational even though one of its parts has failed.

The composite error behavior specification reflects the fault tree logic based on the error behavior
states of the subcomponents. The composite error behavior can be used to generate an FTA as an
AADL component [Delange 2014].

The composite error behavior specification also allows us to derive reliability models, such as
mean time to failure, of a system or subsystem in terms of its subcomponent probabilistic error
behavior. The probability of FGS being in the Failed state is determined by a combination of the
probability of the subcomponents being in the Failed state according to the logic expression of the
composite error behavior state specification. This specification is equivalent to a reliability block
diagram [Delange 2014].

6.1.2 Using Composite Error Behavior Specifications

Composite error behavior specifications are declared in the composite error behavior section of
an error model subclause. As the composite error behavior specifies the error behavior state from
the subcomponents’ states, it should be declared in a subclause associated with a component in-
stance. The composite error behavior section consists of a list of composite state declarations. An
individual composite state declaration defines the error behavior state of the component in terms
of a condition on subcomponent error behavior states. The condition is enclosed within the brack-
ets of the symbol []->, followed by the error behavior state name and an optional type instance of
the state for which the condition is defined. The condition itself is a logical expression using and,
or, ormore, and orless operators. The syntax rules for composite state declarations are shown in
Section 10.8.

The composite state condition can also reference an incoming error propagation to the component
for which the composite state is defined. In this case, the reference to the error propagation is pre-
ceded by the keyword in and followed by a type constraint, which includes NoError to indicate
that no incoming propagation is expected. This allows us to reflect the impact of an external fail-
ure on the operational state of the component.

Figure 45 shows the composite error behavior specification for the example in Figure 44. It takes
into account that each FG–AP pair is an element in a dual-redundant configuration such that it is
sufficient for only one pair to be operational in order for FGS to stay operational. The example
shows the condition under which FGS is in the Failed state and in the Operational state. The or-
more operator is true if one or more of the listed elements are true.

composite error behavior
states
 [1 ormore(FG1.Failed, AP1.Failed) and
 1 ormore(FG2.Failed, AP2.Failed) or AC.Failed]-> Failed;

 [(FG1.Operational and AP1.Operational) or
 (FG2.Operational and AP2.Operational) and AC.Operational]-> Operational;
end composite;

Figure 45: Composite Error Behavior Specification

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 59

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The error behavior state for the component (declared to the right of the arrow) must be one of the
states listed in the error behavior state machine identified by the use behavior declaration earlier
in the error model subclause. The error behavior states in the condition (between the square brack-
ets) must exist in the error behavior state machine associated with the subcomponent (declared in
the error model subclause of the component type or implementation associated with the subcom-
ponent). The condition can also include a reference to an incoming error propagation, indicated by
the keyword in, and it must exist as an incoming error propagation of the component for which
the composite state condition is declared.

The error behavior state of a subcomponent can have an error type associated with it. The refer-
ence to the subcomponent’s error behavior state may include a type set, which indicates that any
error type in the type set is considered a match and will evaluate to true.

The error behavior state of the composite component may also be typed. In this case, the compo-
site component state on the right-hand side is followed by a type instance declaration of an error
type in curly brackets. An example of a composite behavior specification with error types can be
found in Figure 79 in Section 9.1.2.

6.1.3 Observations

The ormore and orless operators provide a convenient way of specifying m out of n redundancy
strategies as well as processing chains that require all steps to be operational.

A composite error behavior specification may be explicitly declared by a safety analyst to reflect a
particular fault tree for analysis. In the FGS example, the composite state condition shown in Fig-
ure 45 indicates that one of the FG–AP pairs is sufficient to maintain the Operational state. This
becomes the requirement specification for the system implementation to meet because it reflects
the assumptions made about redundancy that the implementation must meet.

In Section 9.1, we elaborate the FGS specification with component error behavior for each FGS
subcomponent. The component error behavior must refer to the same error behavior states identi-
fied in the composite state condition. Furthermore, the component error behavior of the AC sub-
component includes conditions on error behavior state transitions and outgoing propagations that
reflect the intended redundancy strategy. These conditions must be consistent with the conditions
for the composite state. In our example, the condition must reflect the fact that input from one of
the two AP components is sufficient for AC to operate correctly by specifying that AP1 and AP2
must fail for FGS to fail.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 60

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

7 Use of Properties in Architecture Fault Models

Properties can be associated with error model elements—such as error events, error propagations,
and error behavior states—to annotate them with additional information. EMV2 provides a set of
predeclared properties in a property set named EMV2. In addition, users can define their own
properties for error model elements, as they can for AADL core model elements. In this section,
we explain how property associations are declared and how users can define properties that apply
to error model elements, and we summarize the set of predeclared properties.

7.1 Property Associations on Error Model Elements

Property values can be associated with the following named elements in the error model: error
types, type sets, error propagations, error sources, error paths, error sinks, error events, recover
events, repair events, error behavior states, transitions, outgoing propagation conditions, error de-
tections, composite states, user-defined propagation points, and paths.

A property association looks like a contained property association in the AADL core model. It
specifies the property name, a single value or a list of values of the appropriate property type, and
an applies to clause. The applies to clause identifies one or more elements. Each element is iden-
tified by a containment path.

A containment path consists of a sequence of one or more EMV2 identifiers separated by dots. If
the error model element resides in a subcomponent, then the containment path has two parts. The
first part identifies the subcomponent by a sequence of identifiers separated by dots (standard
AADL containment path syntax). The second part consists of the @ sign and a sequence of one or
more dot-separated identifiers of error model elements.

An error model can have a type set as part of its definition; for example, an incoming propagation
is associated with the NoValue and BadValue error types. If an element in the error model is
typed, then a different property value can be associated with each error type or type set specific to
the element. This is done by naming the error model element, followed by a dot and the error type
or type set name. For example, if we declare an error event e to represent TimingError, then we
can associate a different occurrence distribution for an error event instance of type EarlyDelivery
and of type LateDelivery. In this case, the applies to clause of each property association refers to
ev.EarlyDelivery and ev.LateDelivery.

Property associations for elements in the error model must be declared in properties sections
within an error model library or an error model subclause. Error model libraries have a properties
section in the error type library (see Section 10.2) and in each error behavior state machine (see
Section 10.4). Error model subclauses have a single properties section at the end of the sub-
clause.

For property associations in an error type library, the containment path consists of an error type or
a type set. Figure 46 shows two different Persistence property values associated with different er-
ror types.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 61

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

For property associations in an error behavior state machine, the containment path can include an
error event, recover event, repair event, error behavior state, or transition. For error events and er-
ror behavior states, the second element in the path may be an error type or a type set. Figure 46
shows an OccurrenceDistribution property value associated with the error event Failure.

annex EMV2 {**
error types
 NoValue : type ;
 BadValue : type ;
 LateValue : type ;
 NoService : type ;
properties
 EMV2::Persistence => Transient applies to BadValue, LateValue, NoValue;
 EMV2::Persistence => Permanent applies to NoService;
end types ;

error behavior Simple
events
 Failure : error event;
states
 Operational : initial state;
 Failed : state;
transitions
 BadValueTransition : Operational -[Failure]-> Failed;
properties
 EMV2::OccurrenceDistribution =>
 [ProbabilityValue => 0.1 ; Distribution => Fixed;] applies to Failure;
end behavior ;
**};

Figure 46: Property Associations in an Error Model Library

For property associations in error model subclauses, the containment path may identify an error
model element of the component that contains the subclause, or it may identify an error model el-
ement for a subcomponent. An error model element is identified by its defining identifier, option-
ally followed by an error type or a type set.

Figure 47 shows the property association Likelihood for an error source (ef1) of error type Ser-
viceOmission. The property Likelihood is declared in the property set EMV2, and the label Remote
is defined in the property set ARP4761.

device PositionSensor
 features
 PositionReading : out data port;
 annex EMV2 {**
 use types ErrorLibrary;
 error propagations
 PositionReading : out propagation {ServiceOmission};
 flows
 ef1 : error source PositionReading {ServiceOmission};
 end propagations;
 properties
 EMV2::likelihood => ARP4761::Remote applies to ef1.ServiceOmission;
 **};
end PositionSensor;

Figure 47: Property Association to an Error Model Element with an Error Type

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 62

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 48 shows a property association in the properties section of an error model subclause in a
system implementation. The system implementation has a subcomponent named Actuator2. The
containment path identifies an error source ef2 of type ServiceOmission in this subcomponent.
The @ is used instead of a dot to separate the core model portion of the containment path from the
error model element portion.

EMV2::likelihood => ARP4761::Remote applies to Actuator2@ef2.ServiceOmission;
Figure 48: Subcomponent-Specific Property Association

Note that the containment path may identify a component further down the component hierarchy
by naming a sequence of subcomponent identifiers.

7.2 Determining a Property Value

For property associations of error model elements, the following inheritance rules apply. We ex-
plain them in terms of retrieving a property value for a specific error model element, which we
call the error model element of interest.

Containment paths of a property association may include a sequence of subcomponent identifiers
showing that the property is associated with a component down the component hierarchy. The
property association highest in the component hierarchy referencing the same error model element
applies to the element. This is the same as for AADL core model property associations.

An error model element of interest is contained in a component of interest. This is the component
with the error model element of interest or an enclosing component whose property association
containment path identifies the component of interest in its subcomponent sequence.

The property value may be retrieved for an error model element of interest without a specific error
type:

 First, look for a property association that identifies the error model element in the properties
section of the error model subclause of the component of interest.

 If not found and the error model element is defined in an error behavior state machine (error
event, recover event, repair event, error behavior state, or transition), look for a property asso-
ciation for the element of interest in the state-machine properties section.

 If not found and the error model element is defined in the error type library (error type or type
set), look for a property association in the properties section of the error type library that de-
fines the error type of interest.

The property value may be retrieved for an error model element of interest with a specific error
type. These elements are error event, error behavior state, error propagation, and error source,
path, and sink:

 First, look for a property association that identifies the error model element and the error type
of interest in the properties section of the error model subclause of the component of interest.

 If not found, look for a property association that identifies the closest error (super) type that
has the type of interest as a subtype, or a type set that contains the error type.

 If not found, look for a property association that identifies the error model element without an
error type or type set.

mailto:Actuator2@ef2.ServiceOmission

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 63

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 If not found and the error model element is defined in an error behavior state machine, look
for a property association in the state-machine properties section. Again, first look for a
property association that identifies the error type of interest. If not found, look for a property
association of the closest error (super) type that has the type as a subtype, a type set that con-
tains the type, and finally the element itself.

 If not found, look for a property association in the error type library that identifies the error
type of interest. If not found, look for a property association of an error type that has the type
as a subtype or a type set that contains the type.

7.3 User-Defined Error Model Properties

Users can define properties that apply to error model elements by using the property declaration
structure of the AADL core language standard. In the applies to clause, the user identifies EMV2
meta-model elements that can have this property association. The meta-model element name is
prefixed with the Error Model Annex name EMV2, as shown in Figure 49.

property set MyErrorProperties is

SelectTypes: type enumeration (midvalue, averagevalue);

SignalSelectionMethod: MyErrorProperties::SelectTypes applies to
({EMV2}**error detection);
end MyErrorProperties;

Figure 49: Definition of an EMV2 Property

Users can refer to the following meta-model elements for EMV2: error type, type set, error types
(super class of error type and type set), error propagation, error source, error sink, error path, error
flow (super class of error source, sink, and path), error behavior state machine, error behavior
state, error behavior transition, error event, recover event, repair event, error behavior event (super
class of error recover and repair events), outgoing propagation condition, error detection, compo-
site state, connection error source, propagation path, and propagation point.

7.4 Predeclared EMV2 Properties

The properties described here are defined in the property set EMV2.

In addition, the property sets ARP4761 and MILSTD885 define properties and constants that are
specific to these standards (see Section 7.4.11 and AADL Fault Modeling [Delange 2014] for fur-
ther details). These property sets are provided in the OSATE tool.

7.4.1 Occurrence Distribution

The OccurrenceDistribution property is associated with error events, states, propagations, and
flows. It represents the probability that an internal error event or external error propagation will
occur. The property is a record with different fields used to identify a distribution function and
capture parameters to characterize the occurrence.

Safety and reliability analyses use different metrics and methods to describe the occurrence proba-
bility as a distribution function. The field Distribution specifies the distribution function that char-
acterizes the occurrence probability:

 Fixed represents a fixed distribution and takes a single parameter OccurrenceRate.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 64

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Poisson represents the number of occurrences per time interval and takes a single parameter
OccurrenceRate.

 Exponential represents an exponential distribution of occurrences and takes a single parame-
ter OccurrenceRate.

 Normal or Gauss represents a distribution with an explicitly specified MeanValue and Stand-
ardDeviation.

 Weibull represents a shaped distribution with a ShapeParameter and a ScaleParameter.

 Binominal represents a discrete distribution with a SuccessCount, a SampleCount, and a
Probability parameter.

Figure 50 shows an example of assigning values to the OccurrenceDistribution property. The
value is a record of values (shown as []) specifying the distribution function and the relevant pa-
rameters.

EMV2::OccurrenceDistribution => [OccurrenceRate => 1.0e-5;
 Distribution => Poisson;] applies to PowerLoss;

Figure 50: Example Specification of Occurrence Distribution

The OccurrenceDistribution property can be associated with error propagations, error sources, er-
ror paths, error sinks, error events, recover events, repair events, error behavior states, error types,
type sets of an error event, error behavior states, and error propagations. If an error type has error
subtypes, then OccurrenceDistribution represents the occurrence probability for any of the sub-
types.

An occurrence distribution property value can be associated with an error source to indicate the
probability that an error of any of the specified types will occur. It can also be associated with a
specific error type of an error source to indicate the probability that an error of a specific error
type will occur.

An occurrence distribution property value can be associated with an error sink or a specific error
type of a flow sink. This indicates the probability that an incoming error propagation is not passed
on.

An occurrence distribution property value can be associated with an error path or a specific error
type of an error path. This indicates the probability that an incoming error propagation is passed
through or transformed as an outgoing error propagation.

The occurrence distribution property value of an outgoing error propagation is determined by the
probability that the component is the error source and by the probability that an incoming error
propagation is passed through or transformed into an outgoing error propagation.

The occurrence distribution property value of an incoming error propagation is determined by the
error probability of the outgoing error propagations along all error propagation paths with the er-
ror propagation point as the destination.

When applied to error behavior events—including error events, recover events, and repair
events—the property specifies a probability according to a specified distribution based on the er-
ror behavior events that are expected to occur. This property can be specific to an error type.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 65

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

When applied to a recover event, the OccurrenceDistribution property specifies the probability
with which recovery is initiated.

When applied to a repair event, the OccurrenceDistribution property specifies when a repair is in-
itiated. The value of this property takes into account the role of a “repair asset,” or the resources
required to perform such a repair. The actual value may be a computed value (compute) to ac-
count for the availability of the repair asset.

7.4.2 Exposure Period

The ExposurePeriod property specifies the scaling factor that is applied to the OccurrenceRate in
the OccurrenceDistribution property. The units of the occurrence rate and the exposure period
must be consistent. For example, the occurrence rate may be specified as failures per hour, and the
exposure period is a flight with a maximum duration of 12 hours, resulting in a failure rate per
flight.

This property can be attached to error behavior events, error propagations, error flows, error be-
havior states, error types, and type sets.

7.4.3 Propagation Time Delay

A PropagationTimeDelay property indicates the delay in propagating an error as a distribution
over a time interval. It can be associated with a connection in the AADL core model or a user-de-
fined propagation point connection declared in EMV2. The PropagationTimeDelay property is a
record with a Duration field that specifies a time range and a Distribution field that specifies the
distribution function.

7.4.4 Duration Distribution

The DurationDistribution property specifies a time range to reflect the duration as a distribution
over the time range. This property can be attached to repair or recover events to indicate their du-
ration, once they begin. When applied to a recover event, it represents the duration of the recov-
ery; when applied to a repair event, it represents the duration of the repair. The Duration-
Distribution property is a record with a Duration field that specifies a time range and a Distribu-
tion field that specifies the distribution function.

7.4.5 Transient Failure Ratio

The TransientFailureRatio property is used to determine the proportion of a failure transition that
results in a transient failure state. It can be attached to error behavior transitions.

7.4.6 Recovery Failure Ratio

The RecoveryFailureRatio property is used to determine the proportion of recovery transitions
that result in recovery failure. It can be attached to error behavior transitions.

7.4.7 State Kind

The StateKind property specifies whether an error behavior state is considered to be a working
state or a nonworking state. A component can have multiple error behavior states that are tagged

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 66

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

as working states or nonworking states. This allows analysis tools to assess working and non-
working states.

Note that typing of error behavior states plays a similar role. We may define an Operational and a
Nonworking state, where the Nonworking state has an error type set that represents a collection of
substates.

7.4.8 Detection Mechanism

The DetectionMechanism property allows users to specify the detection mechanism used to detect
an error as a string value. Users can also associate the property with an error detection declaration.
This property provides traceability to an implementation mechanism in the AADL core model or
source code that implements the detection of the specified error type.

7.4.9 Fault Kind

The FaultKind property allows the user to specify whether an error source—the occurrence of a
fault activation or a propagation—is due to a design fault or an operational fault. Design faults are
faults that could be eliminated at design time, but if present result in an error. Operational faults
are faults that inherently occur during operation and should be detected and managed during oper-
ation.

The FaultKind property can be associated with error events, propagations, sources, types, and
type sets. This property allows us to reflect design faults in the architecture fault model and ad-
dress whether the architecture assumes zero design defects or whether it is tolerant of residual de-
sign errors.

7.4.10 Persistence

The Persistence property allows the user to specify whether an error is permanent, transient, or a
singleton. A permanent error typically requires a repair action to the component with the fault oc-
currence. A transient error has a limited duration and typically requires a recovery action. In a
discrete event system, a transient error may persist over several discrete events; for example, a
corrupted message may be sent over multiple periods. A singleton error occurs in the context of a
single discrete event. For example, a divide-by-zero error may be specific to a computation on a
particular input.

The Persistence property can be associated with error types, type sets, error behavior states, error
events, and error propagations. This property allows us to consider the distinction between persis-
tent and transient fault behavior as observed in error propagations early in development before
elaborating the error behavior of individual components.

7.4.11 Severity and Likelihood

The Severity property value indicates the severity of a hazard ranging from 1 (high) to 5 (low).
MIL-STD 882D suggests these descriptive labels as property constants to be used as property val-
ues: Catastrophic, Critical, Marginal, and Negligible. ARP4761 defines these descriptive labels
as property constants to be used as property values: Catastrophic, Hazardous, Major, Minor, and
NoEffect.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 67

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

A Likelihood property value indicates the likelihood with which a hazard occurs. Likelihood is ex-
pressed in terms of levels ranging from 1 (high) to 5 (low) or descriptive labels A through E. Each
level typically has an associated probability of occurrence (p) threshold.

MIL-STD 882D suggests the following likelihood levels for probability of occurrence over the
life of an item:

 Frequent: p > 10−1

 Probable: 10−1 > p > 10−2

 Occasional: 10−2 > p > 10−3

 Remote: 10−3 > p > 10−6

 Improbable: p < 10−6

These labels are defined as property constants and included in the property set MILSTD882.

ARP4761 identifies the following descriptive labels, also used by the Joint Aviation Authorities
and the FAA, for probability of occurrence per operational hour:

 Probable: p > 10−5

 Remote: 10−5 > p > 10−7

 ExtremelyRemote: 10−7 < p > 10−9

 ExtremelyImprobable: p < 10−9

These labels are defined as property constants and included in the property set ARP4761.

These properties can be associated with error types, type sets, error behavior states, error sources,
error propagations, and error events. An example is shown in Figure 51.

EMV2::Likelihood => ARP4761::ExtremelyRemote applies to Failed;
Figure 51: Example Use of a Likelihood Property Association

Note that Likelihood and Severity are also fields in the Hazards property (see Section 7.4.12). The
value in the Hazards specification overrides the value in the stand-alone property.

7.4.12 Hazards

EMV2 provides three variants of the Hazards property defined in the property sets EMV2,
ARP4761, and MILSTD882.

The EMV2::Hazards property accepts a list of records with the following record fields:

 Crossreference: string value for a cross-reference into an external document

 HazardTitle: short descriptive phrase for the hazard

 Description: string value providing a textual description of the hazard

 Failure: system deviation resulting in a failure effect

 FailureEffect: description of the effect of a failure (mode)

 Phases: a list of string values to identify the operational phase (mode) in which the hazard is
relevant

 Environment: string value to describe the operational environment in which the hazard is rele-
vant

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 68

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Mishap: description of event (or series of events) resulting in unintentional death or other un-
planned impacts (MIL-STD 882)

 FailureCondition: string value description of the event (or series of events) resulting in unin-
tentional death or other unplanned impacts (ARP4761)

 Risk: string value to textually describe the potential risk of the hazard

 Severity: hazard-specific severity level with the same values as the Severity property in Sec-
tion 7.4.11

 Likelihood: hazard-specific likelihood level with the same values as the Likelihood property
in Section 7.4.11

 Probability: a real value for the probability in the range of 0.0 to 1.0

 TargetSeverity: the acceptable (target) level of risk expressed as severity

 TargetLikelihood: the acceptable (target) level of risk expressed as a likelihood (probability)

 DevelopmentAssuranceLevel: level of rigor in development assurance (ARP4761)

 VerificationMethod: string value describing the verification method used

 SafetyReport: string value describing an analysis or assessment of system hazards

 Comment: string value containing additional comments about the hazard

The MILSTD882::Hazards property accepts a list of records with the following record fields:

 Crossreference: string value for a cross-reference into an external document

 HazardTitle: short descriptive phrase for the hazard

 Description: string value providing a textual description of the hazard

 Failure: system deviation resulting in a failure effect

 FailureEffect: description of the effect of a failure (mode)

 Phases: a list of string values to identify the operational phase (mode) in which the hazard is
relevant

 Environment: string value to describe the operational environment in which the hazard is rele-
vant

 Mishap: description of event (or series of events) resulting in unintentional death or other un-
planned impacts (MIL-STD 882)

 Risk: string value to textually describe the potential risk of the hazard

 SeverityLevel: hazard-specific severity level with MIL-STD 882-specific labels (see Section
7.4.11)

 SeverityCategory: severity level expressed as a value from 1 to 4

 QualitativeProbability: MIL-STD 882-specific likelihood labels (see Section 7.4.11)

 ProbabilityLevel: labels A through E

 QuantitativeProbability: a real value for the probability in the range of 0.0 to 1.0

 TargetSeverityLevel: target severity level using MIL-STD 882-specific labels

 TargetProbabilityLevel: the acceptable (target) level of risk expressed by MIL-STD 882-spe-
cific likelihood (qualitative probability) labels

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 69

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 VerificationMethod: string value describing the verification method used

 SafetyReport: string value describing an analysis or assessment of system hazards

 Comment: string value to textually describe additional comments about the hazard

The ARP4761::Hazards property accepts a list of records with the following record fields:

 Crossreference: string value for a cross-reference into an external document

 HazardTitle: short descriptive phrase for the hazard

 Description: string value providing a textual description of the hazard

 Failure: system deviation resulting in a failure effect

 FailureEffect: description of the effect of a failure (mode)

 Phases: a list of string values to identify the operational phase (mode) in which the hazard is
relevant

 Environment: string value to describe the operational environment in which the hazard is rele-
vant

 Mishap: description of event (or series of events) resulting in unintentional death or other un-
planned impacts (MIL-STD 882)

 FailureCondition: string value description of the event (or series of events) resulting in unin-
tentional death or other unplanned impacts (ARP4761)

 Risk: string value to textually describe the potential risk of the hazard

 FailureConditionClassification: hazard-specific severity level with ARP4761-specific labels
(see Section 7.4.11)

 QualitativeProbability: ARP4761-specific likelihood labels (see Section 7.4.11)

 QuantitativeProbability: a real value for the probability in the range of 0.0 to 1.0

 QualitativeProbabilityObjective: target severity level using ARP4761-specific labels

 QuantitativeProbabilityObjective: target qualitative probability in the range 0.0 to 1.0

 DevelopmentAssuranceLevel: level of rigor in development assurance (ARP4761)

 VerificationMethod: string value describing the verification method used

 SafetyReport: string value describing an analysis or assessment of system hazards

 Comment: string value containing additional comments about the hazard

All variants of the Hazards property can be associated with error types, type sets, error behavior
states, error sources, error propagations, and error events.

7.4.13 Description

The Description property has a string value and allows the user to attach descriptive information
with error model elements. This property can be associated with any error model element.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 70

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8 Advanced Topics in EMV2

This section discusses several topics for advanced users of EMV2:

 designating inheritance of error model declarations in error model subclauses between com-
ponent types and component implementations or extensions of component types and imple-
mentations

 using error model declarations with feature groups and feature group types

 defining propagation points and paths that are not present in the AADL core model

 using type transformation sets to specify connection error behavior

 specifying a mapping between operational modes in the AADL core model and error behavior
states (failure modes) in the error model

For a full discussion of consistency rules between different aspects of the error model specifica-
tion and the AADL core model, the reader is referred to the companion report [Delange 2014].

8.1 Error Model Subclauses and Inheritance

Error model subclauses can be declared in component types and component implementations.
This means that the fault model specifications declared in these subclauses apply to all component
instances that reference the classifier with the subclause.

EMV2 follows the inheritance rules of the core model standard. For example, if the error model
subclause of a component type declares incoming and outgoing error propagations, then these er-
ror propagations are inherited by any component implementation of that component type, even if
those component implementations do not have error model subclauses. The same applies to com-
ponent types that are extensions of other component types and component implementations that
are extensions of component implementations.

A component type or implementation that inherits error model elements from others can add new
error model elements or override inherited error model elements by declaring them, using the
same name, in its error model subclause. By overriding an inherited error model element, we can
change its specification. For example, we can change the set of error types for an outgoing error
propagation.

An error model element that is added must have a defining name that differs from the inherited
elements. For an error model element to be overridden, the declaration must have the same name
as the inherited element.

The following override rules apply to error model elements that are inherited, effectively replac-
ing the original declaration:

 Use types clause: replaces the set of type libraries, that is, the set of types made accessible
without qualification

 Use type equivalence clause: replaces the type equivalence mapping reference. Note that this
declaration may be inherited from the enclosing component instance.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 71

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Use behavior clause: no replacement allowed. The referenced error behavior state machine
must be the same

 Error propagation: changes the type set associated with the error propagation point named
by the error propagation

 Error containment: changes the type set associated with the error propagation point named
by the error propagation

 Error source, sink, and path: changes the flow type, such as changing a sink to a path;
changes the source and its type set; changes the target and its type instance; or changes the
component’s internal cause of an error source (when clause). This includes adding a type set
or type instance when there was none previously, or specifying the source or target without
type set or type instance when there was one previously.

 Error events: changes the type set or sets associated with an error event, including addition
or removal. Note that error events declared in an error model subclause can override error
events declared as part of an error behavior state machine that is made accessible through use
behavior.

 Transition: changes the condition, the originating state or its type set, and the resulting state
or its type instance. Note that transitions declared in an error model subclause can override
transitions declared as part of an error behavior state machine that is made accessible through
use behavior.

 Outgoing propagation conditions: changes the condition, the originating state or its type set,
and the outgoing propagation point or its type instance

 Error detection: changes the condition, the originating state or its type set, and the resulting
event or its error code

 Composite error behavior state: changes the condition, the composite state, or its type in-
stance

 Mode mapping: changes the set of modes for the specified error behavior state and type set

Figure 52 shows an example in which a user has added a new incoming event port command to
the extended device type and the corresponding incoming error propagation to its error model
subclause. The extended device inherits the error model subclause from its parent, with the error
source on PositionReading, and defines an incoming propagation on the command data port.

device PositionSensor
features
 PositionReading: out data port;
flows
 f1: flow source PositionReading {
 Latency => 2 ms .. 3 ms;
 };
annex EMV2 {**
 use types ErrorLibrary;
 use behavior ErrorModelLibrary::Simple;
 error propagations
 PositionReading: out propagation {ServiceOmission};
 flows
 ef1:error source PositionReading {ServiceOmission} when Failed;

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 72

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

end propagations;
**};
end PositionSensor;

device SecurePositionSensor extends PositionSensor
features
 command: in event data port;
annex EMV2 {**
 use types ErrorLibrary;
 error propagations
 command: in propagation {ServiceOmission};
 end propagations;
**};
end SecurePositionSensor;

Figure 52: Addition of Port and Error Propagation

Figure 53 shows an example in which the error model subclause of the device type extension
changes (and overrides) the type set of the outgoing error propagation PositionReading to Service-
Omission and ValueError. It also adds the error source ef2 to specify the additional error type as
an error source and the causing fault.

device PositionSensorOverride extends PositionSensor
 annex EMV2 {**
 use types ErrorLibrary;
 error propagations
 PositionReading: out propagation {ServiceOmission, ValueError};
 flows
 ef2: error source PositionReading {ValueError} when {BadValue};
 end propagations;
 **};
end PositionSensorOverride;

Figure 53: Override of an Error Propagation Specification

8.2 Error Models and Feature Groups

Users can associate error propagations with elements of a feature group type by declaring them in
an error model subclause in the feature group type. These error propagations apply to all contexts
in which a feature group with this type is declared. In other words, the error types being propa-
gated are independent of the use context.

If users want to associate error propagation types with elements of feature groups in the context of
a component with that feature group, they can do so by identifying the feature group and the ele-
ment of interest in the error propagation declaration of the component error model subclause. See
Figure 54 for an example.

feature group fgt
features
 inport1: in event port;
 inport2: in event port;
end fgt;

system receiver
features

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 73

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 infg: feature group fgt;
annex EMV2 {**
 use types ErrorLibrary;
 error propagations
 infg.inport1: in propagation {ServiceOmission};
 infg.inport2: in propagation {ValueError};
 end propagations;
**};
end receiver;

Figure 54: Error Propagations on Feature Group Elements

8.3 User-Defined Propagation Points and Paths

In this section, we introduce the concept of user-defined propagation points and propagation paths
that do not rely on elements from the core AADL.

8.3.1 Role of User-Defined Propagation Points and Propagation Paths

Error propagations occur through error propagation points that are declared in the AADL core
model, such as the external interfaces (e.g., features) and binding points. For an architecture fault
model, sometimes it is desirable to specify that two components can affect each other although no
explicit connection has been specified in the AADL core model. For example, two processors
may be physically located close to each other but are not connected via any bus. If one processor
overheats, it can affect the other processor by corrupting its memory and through other related
physical limitations. Figure 55 illustrates this user-defined propagation path.

Figure 55: User-Defined Propagation Points and Propagation Path

The user-defined propagation point allows users to associate an error propagation point with a
component for the purpose of specifying a possible error propagation path that the user knows ex-
ists. Such user-defined propagation points can then be referenced in error propagation and error
containment declarations to interaction points and binding points in the AADL core model.

A second use of user-defined propagation points is to model observable misbehavior of a system
that is not communicated through an interaction point. For example, a failed brake may not be
communicated through a feature, but users can observe that the car does not slow down.

These user-defined error propagation points can be connected to other user-defined error propaga-
tion points to specify propagation paths. These connections are declared the same way as port
connections, namely, through propagation point connection declarations.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 74

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8.3.2 Using User-Defined Propagation Points and Propagation Paths

Users can define a propagation point in the propagation paths section of an error model sub-
clause. It consists of the keywords propagation paths, a number of propagation point declara-
tions, followed by a number of propagation point connection declarations, and ending with end
paths;.

A propagation point declaration consists of a defining identifier, followed by a colon and the key-
words propagation point. A propagation point connection declaration consists of a defining iden-
tifier, followed by a source propagation point, an arrow, and a destination propagation point. The
propagation point may be a subcomponent (identified by the subcomponent name, a dot, and the
propagation point name) or the component containing the connection declaration (identified by
the propagation point name).

In Figure 56, a user has declared a heat propagation point on the processor pc and, within a sys-
tem containing two instances of these processors, a propagation path.

processor pc
annex EMV2{**
propagation paths
 HeatDissipation: propagation point;
end paths;
**};
end pc;

-- within a system containing two instances of processor pc
annex EMV2{**
propagation paths
 HeatPropagation: pc1.HeatDissipation -> pc2.HeatDissipation;
end paths;
**};

Figure 56: User-Defined Propagation Point

8.3.3 Observations

Propagation points are nondirectional; they can represent outgoing and incoming error propaga-
tions.

User-defined propagation points are useful when the system being modeled includes mechanical
components, such as the brakes on a wheel. Using propagation points, we can represent the poten-
tial impact a component can have, for example, in the form of a hazard. In effect, we use propaga-
tion points to expose a component error behavior state (failure) to its operational environment if
no explicit interaction is specified in the AADL core model.

8.4 Error Type Mappings and Equivalence

In this section, we introduce the concept of a type mapping set and its use to define equivalence
between independently developed error type libraries. Type mappings help map error type librar-
ies developed by different users in which types and type set names could be inconsistent but se-
mantically equivalent: the mapping rules reunify them.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 75

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8.4.1 Role of Type Mapping Sets and Error Type Equivalence

An error type is mapped into a different error type in two contexts: in error flow paths and when
defining equivalence between independently developed error type libraries.

Error path declarations indicate how incoming error propagations are mapped into outgoing error
propagations of the same or different error types (see Section 4.1). Users may encounter the same
mapping from a set of incoming error types to specific outgoing error types in different parts of
the architecture fault model specification. Instead of declaring multiple error paths for different
error types, users can define reusable sets of mapping rules between source and target error types
as type mapping sets. The rules of a type mapping set specify how an error type or a type product
matching a type set constraint is mapped into another type instance. A type mapping set can be
associated with error flow paths.

In large projects, different teams may independently develop architecture fault model specifica-
tions for different subsystems. In the process, they may define error type libraries independently.
When these subsystem models are virtually integrated, the EMV2 consistency checker compares
the error types of outgoing propagations from one subsystem defined in terms of one error type
library with those of incoming propagations of the second subsystem defined in terms of a second
error type library (see Section 4.4). In doing so, it will not recognize them as matching error types
unless an equivalence mapping is provided between the error types defined in each error type li-
brary. A type equivalence specification that utilizes type mapping sets allows users to indicate an
equivalence relationship between the elements of two error type libraries.

8.4.2 Using Type Mapping Sets and Error Type Equivalence

A type mapping set is defined in an error model library. It consists of the keywords type map-
pings and a defining name, a specification of error type libraries being made accessible (use
types), and a set of type mapping rules, ending with the keywords end mappings. There may be
multiple type sets in a single library. However, the defining name must not conflict with any other
type mapping sets, type transformation sets, or error behavior state machines defined in the same
error model library. The syntax rules for error type mapping sets are shown in Section 10.3.

A type mapping rule consists of a source type set and a resulting single error type or type product
in curly brackets as the target. Type mapping rules for a type mapping set are expected to result in
unambiguous mappings; only one mapping rule should apply to a given error type, type set, or
type product.

The example type mapping set shown in Figure 57 defines a mapping of all timing and value er-
rors, including their type products, into an item omission. It also shows mapping of omission er-
rors. This is a typical mapping in a fault-tolerant system with fail-silent behavior.

type mappings FailSilent
use types ErrorLibrary;
{ValueError, TimingError, ValueError*TimingError } -> {ItemOmission};
{ItemOmission} -> {ItemOmission};
{ServiceOmission} -> {ServiceOmission};
end mappings;

Figure 57: Definition of a Type Mapping Set

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 76

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Type mapping sets can be used to determine the target error type in error path declarations if they
are not specified explicitly. This is done by identifying the type mapping set using use mappings
at the beginning of the error model subclause, as shown in Figure 58. In this case, the type map-
ping set is expected to cover the error types of the error path source type constraint or referenced
source error propagation, and the resulting error types must be contained in the type set of the out-
going error propagation.

use mappings MyMappingLib::FailSilent;
Figure 58: Use of Type Mapping in an Error Path

Type equivalence between error types and type products in different error type libraries can be
specified using type mapping sets. To do this, we need to define the type mapping set. In this
case, both error type libraries may be listed in the use types clause. If some type names exist in
both error type libraries, users must qualify them when referencing the types in a type mapping
rule. Figure 59 illustrates a set of equivalence mappings using qualified type references instead of
the use types clause.

type mappings MyLibYourLibMapping
-- MyErrorLib to YourErrLib
{MyValveErrorLib::StuckOpen} -> {YourValveErrorLib::StuckOpenValve};
{MyValveErrorLib::StuckClosed} -> {YourValveErrorLib::StuckClosedValve};
{MyValveErrorLib::ValveLeak} -> {YourValveErrorLib::LeakingValve};
-- YourErrorLib to MyErrLib
{YourValveErrorLib::StuckOpenValve} -> {MyValveErrorLib::StuckOpen};
{YourValveErrorLib::StuckClosedValve} -> {MyValveErrorLib::StuckClosed};
{YourValveErrorLib::LeakingValve} -> {MyValveErrorLib::ValveLeak};
end mappings;

Figure 59: Example of Equivalence Mappings

We use the type mapping set to define the type equivalences within an error model subclause. The
declaration consists of the keywords use type equivalence followed by a reference to the type
mapping set, qualified by the error model library containing the type mapping set definition. It ap-
plies to all subcomponents recursively, unless a separate type equivalence declaration is associ-
ated with the classifier of a subcomponent.

annex EMV2 {**
use type equivalence MyMappingLib::MyLibYourLibMapping;
-- other declarations
**};

Figure 60: Declaration of Error Type Library Equivalence

8.4.3 Observations

We recommend that users always qualify the types when using type mapping rules to specify
equivalence, as illustrated in Figure 59. The qualification clearly documents which types from
which library get mapped into types of another library. In particular, it avoids any name issue
when using two libraries containing types with the same name.

Type mapping rules specify a mapping in one direction. If the interaction between two subsystems
is bidirectional, users will want to define mapping rules in both directions. They can do so in the
same type mapping set.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 77

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Note that type mappings used on error paths specify how one error type results in a different error
type, while type mappings in an equivalence declaration specify that the two error types represent
the same kind of error. That is, type mappings in equivalence declarations are aliases of each
other.

8.5 Type Transformations and Connection Error Behavior

In this section, we introduce the concept of the type transformation set and its use in defining con-
nection error behavior as well as in determining the target error type in error behavior transitions
and outgoing error propagation conditions.

8.5.1 Role of Type Transformation Sets and Connection Error Behavior

In several contexts, a resulting error type is determined from an originating error type and a con-
tributing error type. For example, for a connection we might have a propagated error type from
the sender and a contributing error type from the transport mechanism (the bus or virtual bus that
the connection is bound to), which may result in a different incoming error type encountered by
the receiver. Similarly, for a transition we might have an originating state with a type instance and
contributing type instances from the transition condition triggers, such as an error event or incom-
ing error propagation, resulting in a target state with a different type instance. Finally, for error
propagation conditions we might have an originating state with a type instance and contributing
type instances from the condition triggers, such as an error event or incoming error propagation,
resulting in an outgoing propagation with a different type instance.

Type transformation sets allow users to specify reusable sets of transformation rules between
source, contributor, and target error types. The rules of a type transformation set specify how an
error type or a type product matching a source type set constraint, in combination with an error
type or a type product matching a contributor type set constraint, is mapped into a target type in-
stance.

Connections represent the logical flow of information between components as well as an error
propagation path (see Section 4.1). The transfer of information along connections is performed by
physical buses, virtual buses, or both. The transfer mechanism may contribute error propagations
to the data being transferred; for example, data may get corrupted, messages may get lost, or their
delivery may get delayed. These errors will result in incoming propagated error types for the re-
ceiver that differ from the outgoing propagated types of the sender. This is shown graphically in
Figure 61.

Connections themselves can also be error sources. This is the case when the information being
sent and the information being received do not match. The mismatch may be in the base type of
the data representation, such as a signed versus an unsigned 16-bit integer; in the user-defined ap-
plication data type, such as a temperature sensor reading versus an air pressure sensor reading; or
in the measurement unit used to represent the values, such as temperature in Celsius versus Fahr-
enheit. If these design errors are not eliminated, they can result in errors or failures during opera-
tion.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 78

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Figure 61: Contributing Error Propagation in Connections

A connection error behavior specification allows users to represent the connection itself as an er-
ror source, such as when the sender and receiver have an interface mismatch. It also allows users
to specify how incoming error propagations from the hardware, such as a network bus, affect the
incoming error types of the receiver through the use of a type transformation set.

8.5.2 Using Type Transformation Sets and Connection Error Behavior

A type transformation set is defined in an error model library. It consists of the keywords type
transformations and a defining name, a specification of error type libraries being made accessi-
ble (use types), and a set of type transformation rules, ending with the keywords end transfor-
mations. The defining name must not conflict with any other type mapping sets, type
transformation set, or error behavior state machines defined in the same error model library.

A type transformation rule specifies a source type set, a contributor type set, and a resulting error
type or type product instance. Type transformation rules in a type transformation set are expected
to result in unambiguous transformations. The specific source and contributor error type or type
product instances, if matched by more than one rule, must result in the same type instance.

The syntax rules for error type transformation sets and rules are shown in Section 10.3.

The example type transformation set shown in Figure 62 defines transformations for data commu-
nication, where the transport mechanism contributes timing, value corruption, message loss, and
lack of service. The first two rules show how an error-free source is affected by the contributors
LateDelivery and ValueCorruption. The third rule illustrates how a source error type (ValueError)
when combined with LateDelivery results in a type product. The last two rules show how to spec-
ify transformations, whose result is determined only by the contributor or only by the sender.

type transformations DataXfer
 use types ErrorLibrary, CommunicationErrors;
 {NoError} –[{LateDelivery}]-> {LateDelivery};
 {NoError} –[{ValueCorruption}]-> {ValueError};
 {ValueError} –[{LateDelivery}]-> {ValueError*LateDelivery};

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 79

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 all -[{LostMessage}]-> {NoData};
 {NoData} -[]-> {NoData};
end transformations;

Figure 62: Defining a Type Transformation Set

A type transformation set can be associated with transitions, outgoing propagation conditions, and
connection error behavior. For transitions and outgoing propagation conditions, this is done by
identifying the type transformation set with a use transformations declaration (shown in Figure
63) in the error behavior state machine or in the component error behavior declaration. The use
transformations declaration in the component error behavior overrides that in the error behavior
state machine.

Connection error behavior is specified in the connection error section of an error model sub-
clause (see Section 2.2). It consists of an optional use transformations declaration and a list of
zero or more connection error source declarations. A connection error source declaration con-
sists of a defining identifier, a connection identifier or all following the keywords error source,
and an optional type set as the effect type. As with error source declarations for components, users
can optionally specify the original fault and condition (see Section 4.3). All indicates that all con-
nections within a component implementation for which the error model subclause applies are po-
tential error sources. The syntax rules for connection error behavior are shown in Section 10.9.

An example declaration is shown in Figure 63. The original fault is indicated by the when as an
incorrect value and the condition by if as a unit mismatch.

connection error
 use transformations MyMappingLib::DataXfer;
 UnitMismatch: error source sensorconn {ValueError} when {IncorrectValue} if
“Unit Mismatch”;
end connection;

Figure 63: Connection Error Behavior Specification

8.5.3 Observations

When a type transformation set is used on transitions or outgoing propagation conditions, multiple
contributor type instances may be encountered. For example, the transition trigger condition may
hold if two incoming error propagations have type instances. In this case, the type transformation
rules are applied for the first instance first. The result becomes the new source, and the second
contributor determines the final result type instance.

EMV2 defines default rules for determining the result error type if no explicit target type instance
and no type transformation set are specified to be used. These rules are as follows:

 For connections, the resulting type instance is the type product of the error types from the
source and the error type from the binding (the contributor). If both the source and the con-
tributor are the same type, it becomes the result type. If one of them is NoError, then the re-
sult type is that of the source or the binding.

 For transitions, the resulting type instance is the type product of the error types from the
source and the error type from the contributor. If both the source and the contributor are the
same type, it becomes the result type. If one of them has no error type associated, then the re-
sult type is that of the other.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 80

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8.6 Mapping Between Operational Modes and Failure Modes

This section discusses an abstract way of specifying restrictions that error behavior states (from
EMV2) can place on operational modes (from the AADL core) of a system.

8.6.1 Role of Mapping Between Error Behavior States and Modes

A component can have operational modes represented in the AADL core model. Error behavior
states represent failure modes and can place restrictions on which operational modes can be active
and which mode transitions can be initiated when the component is in a particular error behavior
state. Mode transitions can be initiated only between modes that are supported in a given error be-
havior state. When a transition occurs between error behavior states and the new error behavior
state does not support the current mode, then a forced mode transition occurs out of the current
mode.

Figure 64 shows a GPS system on the left that consists of two sensors and a processing unit. It can
operate in high precision mode (HiP) using two sensors and low precision mode (LoP) using one
sensor, or it can be turned off (Off). Color coding shows that in LoP mode Sensor 1 and Pro-
cessing are active (green background), in HiP mode both sensors and Processing are active (pur-
ple outlines), and in Off mode none of the components are active. The user of the component can
initiate a change in operational mode by command, shown as an incoming event that triggers the
appropriate mode transition. As the figure shows, the user can command from Off to LoP to HiP
and vice versa.

Figure 64: Operational Modes and Failure Modes

The right side of Figure 64 shows the abstracted error model of the GPS system. It shows that a
sensor failure event causes a transition into the Degraded state. A successful reset attempt of the
failed sensor can result in a transition back to Operational. A second sensor failure or a pro-
cessing unit failure causes a transition into FailStop. Externally observable effects are error propa-
gations of the types ValueError and ItemOmission or ServiceOmission.

The role of an error behavior state in mode mapping is to specify a set of constraints on modes
imposed by error behavior states. The mapping specification superimposes the error behavior
states onto the mode state machine, as shown in Figure 65. It shows that when the component is in
the Operational error behavior state, the user can command the component to switch between all
three operational modes. When it is in the Degraded error behavior state, only LoP and Off are

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 81

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

available, and in FailStop only Off is available. It also shows that if the GPS is in HiP mode and a
sensor fails—that is, it transitions from Operational to Degraded—there is a forced transition
from HiP to LoP (shown as a dashed arrow). Similarly, a transition to FailStop can force a mode
transition.

Figure 65: Superimposed Error Behavior States

8.6.2 Using the Mapping Between Error Behavior States and Modes

Mappings between error behavior states and modes are specified in the mode mappings section
of a component error behavior specification. Each mode mapping specifies which modes are sup-
ported by a given error behavior state. Figure 66 specifies a mapping of error behavior states onto
modes.

mode mappings
 Operational in modes (HiP, LoP, Off);
 Degraded in modes (LoP, Off);
 FailStop in modes (Off);
end component;

Figure 66: Example of Mapping Error Behavior States onto Modes

This mode mapping specification is shown in the context of the GPS example model in Figure 67.
In this model, we specified the operational modes as part of the GPS component type specifica-
tion to indicate that users of the GPS are aware of the modes and can control them by command.
The commands are represented as event ports that affect mode transitions. The mode transitions
are defined to enforce the mode transition ordering from Off to LoP to HiP. Location information
is available on the outgoing LocationPosition data port as a periodic data stream.

The error model subclause includes an error propagation specification for the LocationPosition
output and a component error behavior specification. This abstracted error behavior includes error
events to represent the failure of a sensor and the processing units within the GPS system with an
occurrence probability. A descriptive annotation on the error events indicates what condition, in
one of the subcomponents, triggers the event.

system GPS
features
-- each user command is represented by a separate event port
 RequestOff : in event port;
 RequestLoP : in event port;
 RequestHiP : in event port;
-- GPS output signal stream

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 82

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 LocationPosition : out data port;
-- sensor fail status
 SensorFailStatus : out event data port;
-- input command to reset the GPS
 ResetSensor1 : in event port;
 ResetSensor2 : in event port;
modes
 Off : initial mode;
 LoP : mode; -- low precision operation using one sensor
 HiP : mode; -- hi precision operation
 TurnOffFromLoP : LoP -[RequestOff]-> Off;
 TurnOffFromHiP : HiP -[RequestOff]-> Off;
 TurnOnLoP : Off -[RequestLoP]-> LoP;
 TurnonHiP : Off -[RequestHiP]-> HiP;
 SwitchToHiP : LoP -[RequestHiP]-> HiP;
 SwitchToLoP : HiP -[RequestLoP]-> LoP;
annex EMV2 {**
use types ErrorLibrary;
use behavior GPSEMLibrary::DegradedSM;
error propagations
 LocationPosition : out propagation {ServiceOmission};
end propagations;
component error behavior
events
 Sensor1Failed : error event;
 Sensor2Failed : error event;
 ProcessingFailed: error event;
transitions
 Operational -[Sensor1Failed or Sensor2Failed]-> Degraded;
 Operational -[ProcessingFailed]-> FailStop;
 Degraded -[Sensor1Failed or Sensor2Failed
 or ProcessingFailed]-> FailStop;
detections
 all -[Sensor1Failed{ServiceOmission}]-> SensorFailStatus!(1);
 all -[Sensor2Failed{ServiceOmission}]-> SensorFailStatus!(2);
mode mappings
 Operational in modes (HiP, LoP, Off);
 Degraded in modes (LoP, Off);
 FailStop in modes (Off);
end component;
properties
 EMV2::Description => "sensor1.sensorData{ServiceOmission}"
 applies to Sensor1Failed;
EMV2::Description => "sensor2.sensorData{ServiceOmission}"
 applies to Sensor2Failed;
EMV2::Description => "processing.locationPosition{ServiceOmission}"
 applies to ProcessingFailed;
EMV2::OccurrenceDistribution =>
 [ProbabilityValue => 0.005; Distribution => Poisson;]
 applies to ProcessingFailed;
EMV2::OccurrenceDistribution =>
 [ProbabilityValue => 0.012; Distribution => Poisson;]
 applies to Sensor1Failed, Sensor2Failed;
**};
end GPS;

Figure 67: GPS Operational Modes and Abstracted Error Model

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 83

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

8.6.3 Observations

From the mapping of error behavior states to modes, we derive a combined component behavior
state machine, shown in Figure 68. When the component is in HiP mode and a SensorXFailed er-
ror event causes a transition into the Degraded error behavior state, it results in a forced mode
transition to the LoP mode (shown as a dashed arrow). Such a forced mode transition is specified
in the AADL core model as an emergency mode transition that is performed immediately, while a
planned mode transition is performed when a set of active components reaches a specified syn-
chronization point, typically the hyper-period. While the component is in the Degraded error be-
havior state, the user-initiated mode transitions are limited to those between mode states that are
part of the Degraded error behavior state. This means that a user cannot transition to HiP. Simi-
larly, a second sensor failure (SensorYFailed) or a ProcessingFailed error event forces a mode
transition to the Off mode.

Figure 68: Composite State Diagram of Operational and Failure Mode

In effect, we have a half matrix of mode states and error behavior states. The solid arrows show
mode transitions that are initiated by events. Dashed-line arrows show transitions to a different
mode that are forced by the occurrence of an error event. Dash-dot arrows indicate transitions be-
tween substates of a given mode state; this mapping records the fact that an error behavior transi-
tion has occurred without changing the operational mode state. The double-dot-dash arrow
indicates a recover event transition from Degraded LoP to Operational LoP. The resulting state
machine can then be analyzed through model checking, such as by exporting it into a model
checker like AltaRica [LaBRI 2015].

Figure 69 shows which error behavior changes produce error propagations that can be observed
from outside the component. When the component is operating in HiP mode, the Degraded error
behavior state propagates a value error, which may be detectable if it is out of range, and the Fail-
Stop error state propagates a detectable omission error. When the component is operating in LoP
mode, no error is perceived by another component when the component transitions to Degraded.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 84

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Only a forced transition to Off results in a detectable omission error propagation. When the com-
ponent is in Off mode, no output is expected; thus, an omission propagation is not perceived as an
error.

Figure 69: Detectable Error Behavior of a Component

Note that a component may not have an Off mode or may not have an explicit mode specification.
In this case, a Failed error behavior state can be mapped into an in mode declaration with an
empty list. This declaration indicates that the component is inactive; that is, the enclosing compo-
nent’s mode must not include the failed component.

8.6.4 The Composite GPS Error Model

The GPS system implementation can be annotated with an error model specification

 by specifying the interaction with actual system behavior to represent the recovery attempt by
resetting the failing sensor

 by specifying the abstracted error behavior states of GPS in Figure 67 in terms of the error be-
havior states of its parts (the sensors and the processing unit)

Figure 70 shows the GPS implementation declaration with two sensor instances and the pro-
cessing instance. Each is declared to be active in a mode-specific manner. In LoP mode, the Pro-
cessing component and the Sensor1 component are active.

system implementation GPS.impl
subcomponents
 sensor1: device sensor in modes (LoP,HiP);
 sensor2: device sensor in modes (HiP);
 processing: device GPSprocessing in modes (LoP, HiP);
connections
 sconn1: port sensor1.sensedData -> processing.sensor1input;
 sconn2: port sensor2.sensedData -> processing.sensor2input;
 pconn: port processing.locationPosition -> locationPosition;
 resetconnS1: port ResetSensor1 -> sensor1.reset;
 resetconnS2: port ResetSensor2 -> sensor2.reset;
annex EMV2 {**
use behavior GPSEMLibrary::DegradedSM;
component error behavior
events
 Recovered: recover event;
transitions
 Degraded -[Recovered]-> Operational;
end component;
composite error behavior
states

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 85

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 [sensor1.Operational and sensor2.Operational
 and processing.Operational]-> Operational;
 [(sensor1.FailStop and sensor2.Operational and processing.Operational)
 or (sensor1.Operational and sensor2.FailStop and processing.Operational)
]-> Degraded;
 [(sensor1.FailStop and sensor2.FailStop)
 or processing.FailStop]-> FailStop;
end composite;
properties
 EMV2::Description => "Sensor Reset Successful" applies to Recovered;
 **};
end GPS.impl;

Figure 70: GPS Composite Error Model Specification

The error model subclause for the implementation includes a specification that a sensor failure is
detected and triggers a reset of the sensor. If the reset is successful, it results in a recover event,
which puts the error behavior back to Operational. The error model subclause also includes a
composite error behavior state specification that indicates which combination of sensor and pro-
cessing unit failures results in Degraded or FailStop.

Note that the composite state declarations reflect and elaborate on the composite state machine of
Figure 68. They also imply a particular input processing logic, as discussed in Section 6.1.3.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 86

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

9 Architecture Fault Model Examples

The following sections illustrate the use of EMV2 for architecture fault modeling with four exam-
ples:

1. a dual-redundant flight guidance system with two operational modes, showing the use of
component and composite error behavior specifications

2. a multilayered network protocols architecture

3. a dual-channel network system

4. a logical and physical triple-redundant system

9.1 A Dual-Redundant Flight Guidance System with Operational Modes

This example illustrates modeling of a dual-redundant system from three perspectives:

1. error modeling for a system with two operational modes

2. differences in the component error model specification and the composite error model speci-
fication

3. the relationship between the error model specification and the actual behavior specification
of the redundancy logic

The example is a dual-redundant flight guidance system (FGS) that consists of a flight guidance
(FG) component, an autopilot (AP) component, and an actuator subsystem (AC). The FG and AP
are dual-redundant pairs. The system is illustrated in Figure 71 and is the same as the one dis-
cussed in Section 6.

Figure 71: Overview of the FGS

The FGS operates in two modes:

 critical mode, requiring both redundant pairs to be in working condition

 noncritical mode, when only one pair must be in working condition

We represent the error behavior of the system using three state machines:

 a two-state error behavior state machine that reflects an error-free and a Failed state for the
FG and AP components

 a three-state error behavior state machine that distinguishes between a noncritical and a criti-
cal operational mode for the AC component

 a three-state error behavior state machine that distinguishes between a failure in the noncriti-
cal mode and a failure in the critical mode for the FGS

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 87

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

9.1.1 Error Behavior of FGS Components

We use a simple error behavior state machine with an Operational working state and a Failed
nonworking state. An error event named Failure triggers a transition from Operational to Failed.
The definition of this state machine is shown in Figure 72.

error behavior Simple
events
 Failure : error event;
states
 Operational : initial state;
 Failed : state;
transitions
 FailureTransition : Operational -[Failure]-> Failed;
end behavior ;

Figure 72: Reusable Two-State Error Behavior

This error behavior state machine is associated with the FG component, the AP component, and
the AC component. The Failed state reflects the fact that the component itself failed. For the FG,
we add a condition for the outgoing propagation in terms of the component Failed state. For the
AP, we specify an outgoing propagation condition in terms of the Failed state and in terms of an
incoming NoValue propagation when the component is error free.

Figure 73: Two-State Error Behavior of the FG Subsystem

In the FG component, this state machine is utilized to characterize the failure of FG itself (see use
behavior declarations in Figure 74). The state machine is augmented in FG with a specification
that the Failed state results in an error propagation of type NoValue. For AP, we specify that both
an AP failure and an incoming propagation of NoValue—reflecting the failure of FG—result in an
out propagation of NoValue.

system FG
features
 InPort: in data port;
 OutPort: out data port;
annex emv2 {**
use types ErrorModelLibrary;
use behavior ErrorModelLibrary::Simple;
error propagations
 OutPort: out propagation {NoValue};
end propagations;
component error behavior
propagations
 Failed-[]->OutPort{NoValue};
end component;
**};
end FG;

system AP

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 88

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

features
 InPort: in data port;
 OutPort: out data port;
annex emv2 {**
use types ErrorModelLibrary;
use behavior ErrorModelLibrary::Simple;
error propagations
 InPort: in propagation {NoValue};
 OutPort: out propagation {NoValue};
end propagations;
component error behavior
propagations
 Failed -[]->OutPort(NoValue);
 Operational -[InPort{NoValue}]-> OutPort{NoValue};
end component;
**};
end AP;

Figure 74: Two-State Error Model for FG and AP

For the AC component, the component error behavior specification is slightly more complex.
Here we use a three-state error model: Failed to represent the failure state of AC, and Operation-
alNonCritical and OperationalCritical to represent two working states that mirror the two opera-
tional modes. The three-state error behavior model is shown in Figure 75.

error behavior ThreeErrorStates
events
 SingleNoValueEvent: error event;
 DualNoValueEvent: error event;
 SelfFailure: error event;
states
 Operational: initial state;
 OperationalNonCritical: state;
 OperationalCritical: state;
 Failed: state;
transitions
 SingleNoValueTransition: Operational-[SingleNoValueEvent]->OperationalCriti-
cal;
 DualNoValueTransition: Operational -[DualNoValueEvent]-> OperationalNonCriti-
cal;
 FailureTransition:Operational-[SelfFailure]->Failed;
 end behavior;

Figure 75: Reusable Three-State Error Behavior Model

Figure 76 shows the AC system declaration with the three-state error behavior model. Within the
error model declarations, the two working states are synchronized with the operational modes
NonCritical and Critical through a mode mapping declaration. The two working error behavior
states allow us to specify outgoing propagation conditions that are sensitive to the operational
modes. The operational modes are declared as inherited from the FGS using the requires modes
declaration, since the FGS manages operational mode transitions based on user commands (see
Section 9.1.2).

We specify the outgoing propagation NoValue in the state OperationalNonCritical if both inputs
to AC receive NoValue. NoValue is propagated in the state OperationalCritical if one of the in-
puts to AC is missing. The failure of AC itself, when AC is in the error behavior state Failed, re-
sults in a NoValue out propagation.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 89

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

system AC
features
 FromAP1Port: in data port;
 FromAP2Port: in data port;
 OutPort: out data port;
requires modes
 Critical: mode;
 NonCritical: initial mode;
annex emv2 {**
use types ErrorModelLibrary;
use behavior ErrorModelLibrary::ThreeErrorStates;
error propagations
 FromAP1Port: in propagation {NoValue};
 FromAP2Port: in propagation {NoValue};
 OutPort: out propagation {NoValue};
end propagations;
component error behavior
propagations
 Failed-[]->OutPort{NoValue};
 OperationalNonCritical -[FromAP1Port{NoValue} and FromAP2Port{NoValue}]->
 OutPort{NoValue};
 OperationalCritical -[FromAP1Port{NoValue} or FromAP2Port{NoValue}]->
 OutPort{NoValue};
mode mappings
 OperationalNonCritical in modes (noncritical);
 OperationalCritical in modes (critical);
 end component;
properties
 EMV2::StateKind => Working applies to OperationalNonCritical,
 OperationalCritical;
 EMV2::StateKind => NonWorking applies to Failed;
**};
end AC;

Figure 76: Three-State Error Model for AC

9.1.2 Composite Error Behavior of the FGS

We define the composite error behavior for the FGS as a three-state behavior reflecting failure in
non-critical mode (NonCriticalModeFailure) and critical mode (CriticalModeFailure) as two sep-
arate error behavior states. Figure 77 shows the GPSErrorModelLibrary package with the three-
state error behavior declarations.

package GPSErrorModelLibrary
public

annex EMV2{**
error behavior ThreeState
events
 failure: error event;
 NonCriticalModeFail: error event;
 CriticalModeFail: error event;
states
 Operational: initial state;
 NonCriticalModeFailure: state;
 CriticalModeFailure: state;
transitions
 CriticalFailureTransition: Operational-[CriticalModeFail]-> CriticalModeFail-
ure;
 NonCriticalFailureTransition: Operational -[NonCriticalModeFail]->

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 90

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 NonCriticalModeFailureb
end behavior;
**};
end GPSErrorModelLibrary;

Figure 77: The GPSErrorModelLibrary Package

FGS is considered to be in the state CriticalModeFailure when it cannot continue to operate in
Critical operational mode. That is, AC has failed or at least one component in one redundant FG–
AP pair has failed; thus, the system has one failure. FGS is considered to be in the state NonCriti-
calModeFailure when it cannot continue to operate in NonCritical operational mode. That is, a
system failure occurs when the AC has failed or at least one element in both redundant FG–AP
pairs has failed. Figure 78 shows these conditions expressed as composite error behavior state
declarations in the error model subclause of the FGS implementation.

system FGS
features
 inport: in data port;
 outport: out data port;
 goCritical: in event port;
 goNonCritical: in event port;
 externalPower: requires bus access PowerSupply;
modes
 Critical: mode;
 NonCritical: initial mode;
 transCritical: NonCritical -[goCritical]-> Critical;
 transNonCritical: Critical -[goNonCritical]-> NonCritical;
annex emv2 {**
use types ErrorModelLibrary;
use behavior ErrorModelLibrary::ThreeState;
error propagations
 inport: in propagation {NoValue};
 outport: out propagation {NoValue};
 externalPower: in propagation {NoPower};
end propagations;
**};
end FGS;

system implementation FGS.threestate
subcomponents
 AP1: system AP;
 AP2: system AP;
 FG1: system FG;
 FG2: system FG;
 AC: system AC;
connections
 FGStoFG1: port inport -> FG1.inport;
 FGStoFG2: port inport -> FG2.inport;
 FG1toAP1: port FG1.outport -> AP1.inport;
 FG2toAP2: port FG1.outport -> AP2.inport;
 AP1toAC: port AP1.outport -> AC.FromAP1Port;
 AP2toAC: port AP2.outport -> AC.FromAP2Port;
 ACtoFGS: port AC.outport -> outport;
annex emv2 {**
 use types ErrorModelLibrary;
 use behavior GPSErrorModelLibrary::ThreeState;
composite error behavior
states
 [AP1.Operational and AP2.Operational and FG1.Operational

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 91

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 and FG2.Operational and AC.OperationalCritical
 and in externalPower{NoError}]->Operational;

 [((AP1.Operational and AP2.Operational) or
 (FG1.Operational and FG2.Operational)) and AC.OperationalNonCritical
 and in externalPower{NoError}]->Operational;

 [AC.Failed or (1 ormore (FG1.Failed, AP1.Failed) and
 1 ormore (FG2.Failed, AP2.Failed))
 or in externalPower{NoPower}]-> NonCriticalModeFailure;

 [1 ormore (AC.Failed, AC.OperationalNonCritical, AP1.Failed,
 FG1.Failed, AP1.Failed, FG2.Failed)
 or in externalPower{NoPower}]->CriticalModeFailure;
end composite;
**};
end FGS.threestate;

Figure 78: Three-State Error Model for FGS

The composite state logic can be interpreted using a reliability block diagram (RBD) to determine
the probability of an FGS failure in critical or noncritical mode. This probability is derived from
the probability of each subcomponent being in its Failed state. For more on reliability analysis by
RBD or Markov chain analysis, see AADL Fault Modeling and Analysis [Delange 2014].

When operating in critical mode, the FGS has a replicated FG–AP pair of components. This al-
lows us to consider errors of type ReplicationError, including asymmetric value, timing, and
omission errors. If we consider one of the replicated FG–AP sequences to have an omission error
(NoValue), and AC is operating in critical mode, then it effectively encounters an Asymmetric-
Omission error.

Figure 79: Impact of Electrical Power Loss

The availability of FGS may be affected by the resources it needs to operate. In Figure 79, we
show that FGS depends on electrical power. Any incoming ServiceOmission of power causes FGS
to enter a Failed state. A single power supply affects all subcomponents, and FGS cannot operate
without power. This is specified in the composite state condition and will be reflected in the RDB
or Markov chain analysis.

9.2 Error Propagations Through Networks and Protocols

In this section, we illustrate how to model an error propagation through a multilayered protocol
stack. Figure 80 shows a sender communicating with a receiver. The sender and receiver are
bound to different processors, and the connection is bound to a cyclic redundancy check (CRC)

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 92

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

protocol, which in turn is bound to a delivery protocol (DP), which finally is bound to network
hardware. The sender may occasionally send data with value errors.

Figure 80: Error Propagation in a Multilayered Network

For the connection, we use type transformations to indicate how error propagations from the net-
work and the protocols affect the error types being received. The virtual buses, which are used to
represent protocols, have two binding points: one to represent their binding to the next lower level
and one to represent the binding of higher level protocols or the connections to them.

The AADL model for this system, including binding and type transformation specification, is
shown in Figure 81.

system implementation MySystem.basic
subcomponents
 Sender: system Sender;
 Receiver: system Receiver;
 PC1: processor PC;
 PC2: processor PC;
 Network: bus Network;
 DP: virtual bus DP;
 CRC: virtual bus CRC;
connections
 dataxfer: port Sender.output -> Receiver.input;
properties
 Actual_Processor_Binding => (reference(PC1)) applies to Sender;
 Actual_Processor_Binding => (reference(PC2)) applies to Receiver;
 Actual_Connection_Binding => (reference(CRC)) applies to dataxfer;
 Actual_Connection_Binding => (reference(DP)) applies to CRC;
 Actual_Connection_Binding => (reference(Network)) applies to DP;
annex EMV2 {**
connection error
 use transformations CommunicationErrors::DataXfer;
end connection;
**};
end MySystem.basic;

Figure 81: Network and Protocol Binding Specification

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 93

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

The processors are interconnected by network hardware (Network) with a basic transport protocol.
This network hardware is the potential source of dropped packets (LostMessage) and data corrup-
tion (ValueCorruption). The Network fault model specification is shown Figure 82.

bus Network
annex EMV2 {**
use types ErrorLibrary, CommunicationErrors;
error propagations
 bindings: out propagation {LostMessage, ValueCorruption};
flows
 HWFault: error source bindings {LostMessage, ValueCorruption};
end propagations;
**};
end Network;

Figure 82: Network Fault Model Specification

On top of the network hardware, we have a DP that ensures delivery of messages by retransmit-
ting them if necessary. This is indicated by specifying DP as an error sink for incoming LostMes-
sage errors from the network. ValueCorruption errors are passed through to the next layer. Due to
transmit retries, DP is a potential source for timing errors in the form of LateDelivery. The DP
fault model specification is shown in Figure 83.

virtual bus DP
annex EMV2 {**
use types ErrorLibrary, CommunicationErrors;
error propagations
 bindings: out propagation {LateDelivery, ValueCorruption};
 connection: in propagation {LostMessage, ValueCorruption};
flows
 RetryTiming: error source bindings {LateDelivery};
 MaskLoss: error sink connection {LostMessage};
 PassCorruption: error path connection {ValueCorruption} -> bindings;
end propagations;
**};
end DP;

Figure 83: Fault Model Specification for the DP

The next protocol layer is a CRC protocol; its role is to detect data corruption and map it into a
LostMessage. The CRC passes through any late delivery to the application. The CRC fault model
specification is shown in Figure 84.

virtual bus CRC
annex EMV2 {**
use types ErrorLibrary, CommunicationErrors;
error propagations
 bindings: out propagation {LateDelivery, LostMessage};
 connection: in propagation {LateDelivery, ValueCorruption};
flows
 DetectCorruption: error path connection {ValueCorruption}
 -> bindings {LostMessage};
 PassTiming: error path connection {LateDelivery} -> bindings;
end propagations;
**};
end CRC;

Figure 84: Fault Model Specification for the CRC

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 94

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

Initially the receiver specification may have included only those error types propagated by the
sender. The unhandled fault checker will then identify the timing errors and item omissions as not
expected by the receiver, and the appropriate corrective action can be taken.

9.3 An Error Propagation and Mitigation Contract for a Dual-Channel
Network

Some networks, such as the SAFEbusTM avionics network by Honeywell, support dual-channel
application operation. In these networks, a pair of sending hosts sends data to their respective re-
ceivers, such as the FG–AP pairs in the FGS example of the previous section. We will use EMV2
to annotate SAFEbus with a fault model that treats the SAFEbus as a black-box abstraction with a
fault model. The objective of this fault model is to capture the assumptions and guarantees that
SAFEbus makes to the application channel pair.

SAFEbus uses two hardware channels to deal with hardware failures in a physical channel by de-
tecting asymmetric failure and data corruption and mapping them into symmetric omission to the
receiving host pair. Figure 85 shows the specification of SAFEbus as an AADL bus annotated
with an EMV2 specification. In this abstraction, it consists of two virtual channels, one for each
application channel connection. Note that in an implementation model, each virtual bus is then
mapped as a replicated communication across two lower level virtual buses that are bound to two
of the four hardware channels. The lines marked with “2x” in Figure 85 indicate a pair of bus ac-
cess connections coming from the application host hardware, which can be represented as a fea-
ture group. The black arrow entering the black rectangle in Figure 85 shows the binding point
from the application connection binding. In this example, we will specify both incoming and out-
going error propagations through the binding point.

Figure 85: Errors Related to the SAFEbus

Note that we do not show error propagations coming from lower layers of the SAFEbus protocol
of hardware here, but we describe such a representation in the network example of the previous
section.

The error model for SAFEbus specifies that SAFEbus can be an error source, but that any error
introduced by SAFEbus manifests itself only as SymmetricItemOmission for the receiver pair. The
SAFEbus protocol will detect error sources whose originating faults are asymmetric value corrup-
tion or loss and map them into item omissions on both channels. We also specify that we do not
expect SAFEbus to propagate asymmetric value errors or asymmetric item omissions (shown as

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 95

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

green boxes with dashed outlines in Figure 85). This is due to the SAFEbus internal voting logic,
which detects asymmetric errors introduced by a SAFEbus internal failure. As a side effect,
SAFEbus will act as a gatekeeper for asymmetric value and asymmetric omission errors on behalf
of the application channel pair. In other words, SAFEbus maps asymmetric value and omission
error propagations from the sending application pair into symmetric item omission (shown as a
dot-dash arrow and specified as an error path in Figure 85).

This SAFEbus fault model interface specification allows us to validate whether an application
uses SAFEbus in a way that does not result in mismatched assumptions. We will illustrate three
such assumptions.

The first assumption is that SAFEbus will always be used at full dual-channel operation. For ex-
ample, the FGS as a dual-redundant system may have a critical operational mode and a noncritical
operational mode. In critical mode, it operates both channels, while in noncritical mode it may op-
erate a single channel with the second channel in standby to free resources for other services.
However, when FGS operates in noncritical mode, the effect of the SAFEbus gatekeeping func-
tion is that it will not deliver any data. Because operating the FG–AP pairs as standby appears to
SAFEbus as an inconsistent omission error, the SAFEbus fault-tolerance logic maps this mode
into a symmetric omission, as illustrated in Figure 86. The EMV2 consistency checker detects this
mode as a mismatch in contract and assumption (see also Section 4.4).

Figure 86: Error Propagation Related to Components Using the SAFEbus

The second assumption is that SAFEbus includes functionality to deal with a babbling host. A
host may send messages when it is not supposed to. The architecture fault model expresses this
error type as ItemCommission. After we enhance the SAFEbus specification by indicating that it is
the error sink for such incoming error types, the EMV2 consistency checker can determine that a
babbling host will not impact the rest of the system.

The third assumption is that although SAFEbus acts as a gatekeeper for asymmetric value and
asymmetric omission errors, it will not deal with incoming symmetric value or symmetric omis-
sion errors, but passes them through. Thus, if the receiving host pair does not expect incoming
symmetric value errors (shown as green/dashed incoming error propagation in Figure 86), we
must ensure that the sending pair does not send symmetric value errors. We can accomplish this
by performing a backward-tracing impact analysis. It must ensure that no single source of data
corruption error will replicate to the two sending hosts.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 96

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

9.4 A Reconfigurable Triple-Redundant System

This section presents an example high-level specification of a reconfigurable system with redun-
dant subsystems. This system begins operation with three redundant copies of a subsystem operat-
ing and a fourth spare subsystem that is initially powered down. The working subsystems do a
cross-vote to detect and isolate failures. When a failure of a subsystem is detected, the fourth sub-
system can be powered up and used to replace it. The overall system is considered operational as
long as at least two of the powered-up subsystems are error free and no more than one subsystem
has failed unsafely (is active and produces errors that must be masked).

For this example, we assume that a subsystem includes self-checking algorithms, so it can detect
and fail-stop many but not all of its own failures. The error model declares two types of faults,
one that can be successfully detected and still permit a subsystem to fail-stop (No_Data) and an-
other that produces a subsystem failure that either cannot be self-checked or that prohibits a sub-
system from fail-stopping (Bad_Data).

We also assume that a subsystem can be dynamically powered up or powered down by a mode
switch during operation. Fault rates (e.g., as determined by MIL-HDBK-217F) are significantly
different for powered versus unpowered equipment. Mode-specific property values permit differ-
ent occurrence rates to be specified depending on whether a subsystem is powered or unpowered.
The powered and unpowered modes do not have to be represented as separate error behavior
states, as we did in the version of this example included in the Error Model Annex, Version 1.

A subsystem is initially in the Operational error behavior state. A failed system can exist in one
of two error behavior states, Fail_Stopped if self-checking has worked or Fail_Unknown if it has
not. A system in the Fail_Unknown state is assumed to exhibit arbitrarily bad behavior; for exam-
ple, it remains active and sends misleading data, and it cannot be powered down at a mode switch.
Figure 87 shows the three-state error behavior model.

The error event Self_Checked_Fault represents a fault occurrence detected by self-checking, caus-
ing a transition to Fail_Stopped. The error event Uncovered_Fault represents an undetected fault
occurrence, causing a transition to Fail_Unknown. It is assumed that once a subsystem is in the
Fail_Stopped state, it will stay in Fail_Stopped upon subsequent error events. It is assumed that
when the subsystem is in the Fail_Unknown state, it transitions to the Fail_Stopped state if a sub-
sequent Self_Checked_Fault event occurs.

package TripleErrorModel

public
annex EMV2 {**
error behavior Example
use types TripleErrorTypes;
events
-- both events will have mode-specific occurrence values for
-- powered,unpowered
 Self_Checked_Fault: error event;
 Uncovered_Fault: error event;
states
 Operational: initial state;
 Fail_Stopped: state;
 Fail_Unknown: state;
transitions

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 97

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 SelfFail: Operational -[Self_Checked_Fault]-> Fail_Stopped;
 UFailSFault: Fail_Unknown -[Self_Checked_Fault]-> Fail_Stopped;
 SFailSFault: Fail_Stopped -[Self_Checked_Fault]-> same state;
 UncoveredFail: Operational -[Uncovered_Fault]-> Fail_Unknown;
 UFailUFault: Fail_Unknown -[Uncovered_Fault]-> same state;
 SFailUFault: Fail_Stopped -[Uncovered_Fault]-> same state;
end behavior;
**};
end TripleErrorModel;

Figure 87: Triple-Redundant Error Behavior State Machine

Next, we specify error propagation behavior of a component as perceived by other components
using the error propagations section. The propagations No_Data and Bad_Data represent differ-
ent classes of errors propagated from a failed subsystem. No_Data means it is visible to the re-
ceiver that the failed subsystem has fail-stopped. Bad_Data means the receiver gets erroneous and
misleading data from the failed subsystem, and the receiver must determine the correct value us-
ing other redundant sources of data and detect the failure. The error flow declarations indicate that
the component can be the source of propagations, pass the propagations on, or act as an error sink
by detecting and masking propagations. The conditions under which the component will mask (er-
ror sink) or pass on (error path) an incoming propagation will be specified in the component error
behavior specification. The fault model with error paths and voting logic is shown in Figure 88.

package LargeExample
public
with TripleErrorModel, TripleErrorTypes,EMV2;

system Subsystem
features
 A: in data port;
 B: in data port;
 O: out data port;
 A_Failed: out event port;
 B_Failed: out event port;
modes
 Powered: initial mode;
 Unpowered: mode;
annex EMV2 {**
use types TripleErrorTypes;
error propagations
 A: in propagation {Data_Fault};
 B: in propagation {Data_Fault};
 O: out propagation {Data_Fault};
flows
 es: error source O{Data_Fault};
 ep1: error path A -> O{Bad_Data};
 ep2: error path B-> O{Bad_Data};
 es2: error sink A;
 es3: error sink B;
end propagations;
component error behavior
propagations
 Fail_Unknown -[]-> O{Bad_Data};
 Fail_Stopped -[]-> O{No_Data};
-- these conditions represent the Guard_In declaration in the EM V1 Example
 Operational -[B{Data_Fault} or A{Data_Fault}]-> O{noerror};
 Operational -[A{Data_Fault} and B{Data_Fault}]-> O{Bad_Data};
detections

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 98

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 Operational -[1 ormore(A{No_Data},A{Bad_Data})]-> A_Failed!;
 Operational -[1 ormore(B{No_Data},B{Bad_Data})]-> B_Failed!;
end component;
properties
 EMV2::OccurrenceDistribution =>
 [ProbabilityValue => 1.0e-4; Distribution => poisson;]
 in modes (Powered),
 [ProbabilityValue => 1.0e-5; Distribution => poisson;]
 in modes (Unpowered) applies to Self_Checked_Fault;
 EMV2::OccurrenceDistribution =>
 [ProbabilityValue => 0.05e-4; Distribution => poisson;]
 in modes (Powered),
 [ProbabilityValue => 0.05e-5; Distribution => poisson;]
 in modes (Unpowered) applies to Uncovered_Fault;
 EMV2::OccurrenceDistribution =>
 [ProbabilityValue => 1.0e-4; Distribution => fixed;]
 applies to O.Bad_Data;
**};
end Subsystem;

Figure 88: Subsystem Fault Model with Error Paths and Voting Logic

The component error behavior section specifies the details of the component error behavior of
the subsystem. The conditions for outgoing error propagations are declared to propagate a particu-
lar error type on an outgoing error propagation point (port) based on a given error behavior state.
While a subsystem is in the Fail_Stopped state, it sporadically propagates No_Data errors. While
a subsystem is in the Fail_Unknown state, it sporadically propagates Bad_Data errors according
to the OccurrenceDistribution property specified for Bad_Data while remaining in the Fail_Un-
known state.

The error behavior declaration also specifies a default set of Poisson occurrence rates for each
kind of error event. Uncovered faults are 20 times less likely than covered ones, with self-testing
coverage at approximately 95%. Faults in unpowered subsystems occur at 1/10 the rate of faults
in powered ones.

An active subsystem produces one output stream (declared as an out port O) and receives the out-
puts of the two other active subsystems (declared as in ports A and B). Each subsystem votes its
own result with that of its sibling subsystems to detect and isolate failures. When a failure in a sib-
ling subsystem is detected and isolated, an event will be raised. This is specified by the detections
clause.

The detections clause of the subsystem places requirements on the voting protocols that are to be
realized in the final physical system. The behavior of the actual physical subsystem must be veri-
fied against this specification. These specifications of nominal behavior are written assuming that
this subsystem is error free. Typically they only name error behavior states of other components.
An erroneous subcomponent by definition no longer obeys its nominal specification; in particular,
an erroneous subsystem may not exhibit the specified voting behaviors. The voting behaviors of
other error-free subsystems will determine how the overall system responds to errors in a given
subsystem.

The voting (comparison) protocol must be able to detect No_Data, such as by the absence of a
fresh value on the incoming port, and Bad_Data, such as by comparison of incoming values. A
subsystem votes by comparing three values, its two inputs and its own internal result. Among the

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 99

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

three values being voted, if two agree and one persistently disagrees, then the one that persistently
disagrees is assumed to have failed.

If a subsystem believes it has failed, then it does not raise an event; it simply attempts to fail-stop
and relies on the other two subsystems to detect this. Thus, each subsystem has only two outgoing
events, one for each of the other subsystems that it monitors, and does not have a third outgoing
event to signal a self-check failure.

An actual physical subsystem would likely make a decision only after seeing persistent disagree-
ment—for example, n miscompares out of m consecutive values—in order to be robust to transi-
ent faults and errors. Transient fault events and transient error behavior states could be included in
an error model, but this example models only permanent faults and failures.

In this model, any incoming error propagation from the two other subsystems is conservatively
assumed to place a subcomponent in an unknown error behavior state. This is declared by the out-
going propagation condition, resulting in the outgoing error type Bad_Data. For example, if a sib-
ling subsystem has visibly fail-stopped, and the internal result disagrees with the value received
from the only other operating subsystem, then the model assumes worst-case behavior. An actual
subsystem might attempt to continue operating or might attempt to fail-stop, but these are both
modeled in this specification as unsafe failures of that subsystem.

The difficulty in modeling this protocol lies in deciding what assumptions to make about its be-
havior when one of the subsystems is in a Failed_Unknown error behavior state and propagating
Bad_Data errors. This specification assumes that an error-free subsystem will detect Bad_Data, if
at least one of the other subsystems is error free. In an actual system, a Byzantine error may occur,
which is to say that a subsystem in a Failed_Unknown state may send error-free data to one sib-
ling subsystem (which detects no errors) and erroneous data to the second sibling subsystem
(which detects an error). The two error-free subsystems do not have a consensus on whether a
failure has occurred. We will return to this issue in a few paragraphs.

The reconfigurable system, as shown in Figure 89, consists of four subsystems and four modes of
operation. In each mode of operation, three of the four subsystems are active. The mode names in
this example have the form Sxyz, where x, y, and z denote the subsystems that are active in that
mode.

system Dependable_System
end Dependable_System;

system implementation Dependable_System.Notional
subcomponents
 S1: system Subsystem in modes (S123, S124, S134);
 S2: system Subsystem in modes (S123, S234, S124);
 S3: system Subsystem in modes (S123, S134, S234);
 S4: system Subsystem in modes (S124, S134, S234);
connections
 c1: port S2.O -> S1.A in modes (S123);
 c2: port S3.O -> S1.B in modes (S123);
 c3: port S1.O -> S2.A in modes (S123);
 c4: port S3.O -> S2.B in modes (S123);
 c5: port S1.O -> S3.A in modes (S123);
 c6: port S2.O -> S3.B in modes (S123);

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 100

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 c11: port S2.O -> S4.A in modes (S234);
 c12: port S3.O -> S4.B in modes (S234);
 c13: port S4.O -> S2.A in modes (S234);
 c14: port S3.O -> S2.B in modes (S234);
 c15: port S4.O -> S3.A in modes (S234);
 c16: port S2.O -> S3.B in modes (S234);

 c21: port S4.O -> S1.A in modes (S134);
 c22: port S3.O -> S1.B in modes (S134);
 c23: port S1.O -> S4.A in modes (S134);
 c24: port S3.O -> S4.B in modes (S134);
 c25: port S1.O -> S3.A in modes (S134);
 c26: port S4.O -> S3.B in modes (S134);

 c31: port S2.O -> S1.A in modes (S124);
 c32: port S4.O -> S1.B in modes (S124);
 c33: port S1.O -> S2.A in modes (S124);
 c34: port S4.O -> S2.B in modes (S124);
 c35: port S1.O -> S4.A in modes (S124);
 c36: port S2.O -> S4.B in modes (S124);
modes
 S123: initial mode;
 S234: mode; S134: mode; S124: mode;
 T1_4: S123 -[S2.A_Failed, S3.A_Failed]-> S234;
 T2_4: S123 -[S1.A_Failed, S3.B_Failed]-> S134;
 T3_4: S123 -[S1.B_Failed, S2.B_Failed]-> S124;
annex EMV2 {**
 use behavior TripleErrorModel::Example;
 composite error behavior
 states
 [2 ormore(S1.Operational,S2.Operational,S3.Operational,S4.Operational) and
 1 orless(S1.Fail_Unknown, S2.Fail_Unknown, S3.Fail_Unknown, S4.Fail_Un-
known)]-> Operational;
-- original model did not have a specification for Fail_Stopped state
 [3 ormore(S1.Fail_Stopped,S2.Fail_Stopped,S3.Fail_Stopped,S4.Fail_Stopped)
]-> Fail_Stopped;
-- we do not have others as catchall
 [others]-> Fail_Unknown;
 end composite;
**};
annex behavior_specification {**
transitions
 T1_4: S123 -[S2.A_Failed and S3.A_Failed]-> S234;
 T2_4: S123 -[S1.A_Failed and S3.B_Failed]-> S134;
 T3_4: S123 -[S1.B_Failed and S2.B_Failed]-> S124;
**} ;
end Dependable_System.Notional;

Figure 89: Reconfigurable Triple-Redundant System Model

In each mode of operation, the three subsystems that are supposed to be powered up and active
are cross-connected. Each subsystem listens to both of the other active subsystems on different
input ports, and its output is connected to both of the other active subsystems.

Subsystems that detect failures also raise events. These events are routed to a monitoring compo-
nent and trigger a mode transition. An actual physical system might implement this, for example,

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 101

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

by having each processor vote on the incoming error connections and enter a mode switch consen-
sus protocol only when the two events specified for the current mode of operation occur within a
maximum time separation.

The mode transition specification shows that a false transition might occur if one of the two sub-
systems has failed in an unknown state and falsely raises an event. This event can take an error-
free subsystem offline and leave a failed subsystem online. It does not necessarily lead to immedi-
ate failure in the initial mode of operation, since the newly powered-up subsystem together with
the remaining error-free subsystem can mask errors from the failed subsystem. However, it makes
suboptimal use of redundant resources by wasting an error-free subsystem. The system is now
only one fault away from unsafe system failure.

To give an example illustrating the previous two paragraphs, if both S1 and S3 are Operational
and request a mode transition, then that transition will occur. If both S1 and S3 have failed bab-
bling (are in a Fail_Unknown error behavior state and propagate Bad_Data) and request a mode
transition, then that transition will occur. The former case is a correct and desired behavior; the
latter case is an incorrect and undesired behavior that nevertheless occurs because both S1 and S3
have simultaneously failed babbling and simultaneously erroneously requested a mode change.

As noted earlier, it is also possible that a mode transition would be lost if a Byzantine error occurs
and only one of the error-free subsystems detects that subsystem failure. This event would be
taken into consideration if the modeling and analysis tool considered all possible subsets of conse-
quence in error propagation transitions, in particular the case where a Bad_Data error propagated
to one Operational subsystem but not the other. Again, this does not necessarily lead to immedi-
ate failure because the two error-free subsystems can mask the errors of the failed one, but it
makes suboptimal use of the available resources by failing to bring the available spare online. The
system is now only one fault away from unsafe system failure.

The error behavior state of the system as a whole is defined as a function of the error behavior
states of the subsystems. The system is considered to be operating acceptably when at least two
subsystems are active and error free and no more than one subsystem has failed unsafely.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 102

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

10 EMV2 Syntax Rules

The syntax rules use the following symbols:

 [] to represent an optional construct

 | to separate alternatives

 ()* to represent zero or more elements

 ()+ to represent one or more elements

 () to group syntax elements

 -- to indicate an explanatory annotation

10.1 Error Model Library

-- placed directly in a package
error_model_library ::=
 annex EMV2 none;
 |
 annex EMV2 {**
 [error_type_library_definition]
 (error_behavior_state_machine_definition)*
 (type_mapping_set_definition)*
 (type_transformation_set_definition)*
 **};

10.2 Error Type Library, Error Type, Type Set, and Alias

error_type_library_definition ::=
 error types
 [use types error_type_library (, error_type_library)* ;]
 [extends error_type_library with]
 (error_type_definition | error_type_alias_definition
 type_set_definition | type_set_alias_definition
)+
 [properties (contained_property_association)+]
end types;

error_type_library ::=
 package_name -- package containing the error type library

error_type_definition ::=
 defining_identifier : type [extends error_type] ;

error_type_alias_definition ::=
 defining_identifier renames type error_type;

error_type ::=
 [error_type_library::]error_type_identifier |
 [error_type_library::]error_type_alias_identifier

type_set_definition ::=
 defining_identifier : type set { type_set_element (, type_set_element)* } ;

error_type_set_alias_definition ::=

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 103

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 defining_identifier renames type set type_set ;

type_set ::=
 [error_type_library::]type_set_identifier |
 [error_type_library::]type_set_alias_identifier

type_set_element ::=
 error_type | type_set | type_product

type_product ::=
 error_type_reference (* error_type_reference)+

type_set_constructor ::=
 { type_set_element (, type_set_element)* }

type_set_constraint ::=
 type_set_constructor | {NoError}

type_instance ::=
 { error_type | type_product }

10.3 Type Mapping Set and Type Transformation Set

type_mapping_set ::=
 type mappings defining_identifier
 [use types error_type_library (, error_type_library)* ;]
 (type_mapping_rule)+
 end mappings;

type_mapping_rule ::=
 source_type_set -> target_type_instance ;

type_transformation_set ::=
 type transformations defining_identifier
 [use types error_type_library (, error_type_library)* ;]
 (type_transformation_rule)+
 end transformations;

type_transformation_rule ::=
(source_type_set_constraint | all)
 –[[contributor_type_set_constraint]]-> target_type_instance;

type_mapping_set ::=
 [package_name::]type_mapping_set_identifier

type_transformation_set ::=
 [package_name::]type_transformation_set_identifier

10.4 Error Behavior State Machine

error_behavior_state_machine_definition ::=
 error behavior defining_state_machine_identifier
 [use types error_type_library (, error_type_library)* ;]
 [use transformations type_transformation_set ;]
 [events (error_event | recover_event | repair_event)+]
 [states (error_state)+]
 [transitions (transition | branching_transition)+]
 [properties (contained_property_association)+]
 end behavior ;

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 104

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

error_behavior_state_machine ::=
 [package_name::]error_behavior_state_machine_identifier

error_event ::=
 defining_identifier : error event [type_set]
 [if “error_event_condition”];

recover_event ::=
 defining_identifier : recover event
 [when initiator_reference (, initiator_reference)*] ;

initiator_reference ::=
 mode_transition_reference | event_port_reference | self_event_reference

repair_event ::=
 defining_identifier : repair event
 [when initiator_reference (, initiator_reference)*] ;

error_state ::=
 defining_identifier : [initial] state [type_set] ;

transition ::=
 [defining_identifier :]
 transition_source –[error_condition]-> transition_target ;

branching_transition ::=
 [defining_identifier :]
 source_state –[error_condition]-> (transition_branches);

source_state ::=
 all | (error_state_identifier [type_set]

transition_target ::=
 error_state_identifier [type_instance]
 | same state

transition_branches ::=
 transition_target with branch_probability
 (, transition_target with branch_probability)*

branch_probability ::=
 fixed_probability_value | others

fixed_probability_value ::=
 real_literal | [package_identifier::]real_property_constant_identifier

error_condition ::=
 condition_trigger | (error_condition)
 | error_condition and error_condition
 | error_condition or error_condition
 | numeric_literal ormore (condition_trigger (, condition_trigger)+)
 | numeric_literal orless (condition_trigger (, condition_trigger)+)

condition_trigger ::=
 error_behavior_event_identifier [type_set]
 | [in] incoming_error_propagation_point [type_set_constraint]
 | subcomponent_identifier . outgoing_error_propagation_point
 [type_set_constraint]

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 105

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

10.5 Error Model Subclause

-- placed in a component type, component implementation, or feature group type
error_model_subclause ::=
 annex EMV2 none;
 |
 annex EMV2 {**
 [use types error_type_library (, error_type_library)* ;]
 [use type equivalence type_mapping_set_reference ;]
 [use behavior error_behavior_state_machine_reference ;]
 [error_propagation_section]
 [component_error_behavior_section]
 [composite_error_behavior_section]
 [connection_error_behavior_section]
 [user_defined_point_path_section]
 [properties (contained_property_association)+]
**} [in_modes];

10.6 Error Propagation Section

error_propagation_section ::=
 error propagations
 [error_propagation | error_containment]+
 [flows (error_source | error_sink | error_path)+]
 end propagations;

error_propagation ::=
 error_propagation_point : (in | out) propagation type_set ;

error_containment ::=
 error_propagation_point : not (in | out) propagation type_set ;

error_propagation_point ::=
 feature_reference | binding_reference | propagation_point_identifier

feature_reference ::=
 (feature_group_identifier .)* feature_identifier
 | access

binding_reference ::=
 processor | memory | connection | binding | bindings

error_source ::=
 defining_identifier : error source
 (outgoing_error_propagation_point | all) [effect_type_set]
 [when fault_source] [if fault_condition] ;

error_sink ::=
 defining_identifier : error sink
 (incoming_error_propagation_point | all) [type_set] ;

error_path ::=
 defining_identifier : error path
 (incoming_error_propagation_point | all) [type_set] ->
 (outgoing_error_propagation_point | all)
 [target_type_instance ;

fault_source ::=

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 106

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 error_behavior_state [type_set] | type_set | “description”

fault_condition ::= string_literal;

Note: fault_condition will be a constraint expression once the Constraint Annex has
become available.

10.7 Component Error Behavior Section

component_error_behavior_section ::=
 component error behavior
 [use transformations type_transformation_set ;]
 [events (error_event | recover_event | repair_event)+]
 [transitions (transition | branching_transition)+]
 [propagations (outgoing_propagation)+]
 [detections (error_detection)+]
 [mode mappings (error_state_to_mode_mapping)+]
 end component;

outgoing_propagation ::=
 [defining_identifier :]
 (source_state | all) -[[error_condition]]-> propagation_target ;

propagation_target ::=
 (error_propagation_point | all) [target_type_instance | {noerror}]

error_detection ::=
 [defining_identifier :]
 (source_state | all) -[[error_condition]]-> error_detection_effect ;

error_detection_effect ::=
 (port_identifier | internal_event_reference) ! [(error_code_value)]

internal_event_reference ::=
 event_or_event_data_source_identifier

error_code_value ::=
 integer_literal | enumeration_identifier | property_constant_term

error_state_to_mode_mapping ::=
 error_state_identifier [type_instance] in modes (mode_name (, mode_name)*);

10.8 Composite Error Behavior Section

composite_error_behavior ::=
 composite error behavior
 states { composite_error_state }+
 end composite;

composite_error_state ::=
 [defining_identifier :]
 [(subcomponent_state_expression | others)]-> composite_state_identifier
 [target_type_instance] ;

composite_state_expression ::=
 state_element | (composite_state_expression)
 | composite_state_expression and composite_state_expression

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 107

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

 | composite_state_expression or composite_state_expression
 | numeric_literal ormore (state_element (, state_element)+)
 | numeric_literal orless (state_element (, state_element)+)

state_element ::=
 subcomponent_error_state [type_set]
 | in error_propagation_point [type_set_constraint]

subcomponent_error_state ::=
 (subcomponent_identifier .)+ error_state_identifier

10.9 Connection Error Behavior Section

connections_error_behavior_section ::=
connection error
 [use transformations type_transformation_set ;]
 (connection_error_source)*
end connection;

connection_error_source ::=
 defining_identifier :
 error source (connection_identifier | all)
 [effect_type_set]
 [when (fault_source_type_set | “description”)]]
 [if fault_condition] ;;

10.10 User-Defined Propagation Point and Path

user_defined_point_path_section ::=
propagation paths
 (propagation_point)*
(connections
 (propagation_point_connection)*)?
end paths ;

propagation_point ::=
 defining_identifier : propagation point ;

propagation_point_connection ::=
 defining_identifier :
 source_user_defined_error_propagation_point ->
 target_user_defined_error_propagation_point ;

user_defined_propagation_point ::=
 { subcomponent_identifier . }+ propagation_point_identifier

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 108

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

References

URLs are valid as of the publication date of this document.

[Bondavalli 1990]
Bondavalli, A. & Simoncini, L. Failure Classification with Respect to Detection, Specification
and Design for Dependability (First Year Report). Esprit Project N°3092. PDCS: Predictably De-
pendable Computing Systems. 1990.

[Delange 2014]
Delange, Julien; Gluch, David; Feiler, Peter; & Hudak, John. AADL Fault Modeling and Analysis
Within an ARP4761 Safety Assessment. CMU/SEI-2014-TR-020. Software Engineering Institute,
Carnegie Mellon University. 2014. http://resources.sei.cmu.edu/library/asset-view.cfm?as-
setid=311884

[FAA 2010]
Federal Aviation Administration. System Safety Handbook. FAA. Dec 2010.
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_hand-
book/

[Feiler 2010]
Feiler, Peter H. Challenges in Validating Safety-Critical Embedded Systems. SAE International
Journal of Aerospace. Volume 3. Issue 1. 2010. 109–116.
https://www.sae.org/technical/papers/2009-01-3284

[Feiler 2012]
Feiler, P. H. & Gluch, D. Model-Based Engineering with AADL. SEI Series on Software Engi-
neering. Addison-Wesley. 2012.

[Feiler 2013]
Feiler, P. H.; Goodenough, J. B.; Gurfinkel, A.; Weinstock, C. B.; & Wrage, L. Four Pillars for
Improving the Quality of Safety-Critical Software-Reliant Systems. White paper. Software Engi-
neering Institute, Carnegie Mellon University. 2013. http://www.sei.cmu.edu/library/ab-
stracts/whitepapers/FourPillarsSWReliability.cfm

[Hecht 2011]
Hecht, Myron; Lam, Alexander; & Vogl, Chris. A Tool Set for Integrated Software and Hardware
Dependability Analysis Using the Architecture Analysis and Design Language (AADL) and Error
Model Annex. Pages 361–366. In Proceedings of the 16th IEEE International Conference on En-
gineering of Complex Computer Systems. April 2011.

[ISO 2005]
International Organization for Standardization, International Electrotechnical Commission, and
Institute of Electrical and Electronics Engineers. ISO/IEC/IEEE 15408:2005 Common Criteria for
Information Technology Security Evaluation. Version 3.1, Revision 4. 2005.

http://resources.sei.cmu.edu/library/asset-view.cfm?as-setid=311884
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setid=311884
http://resources.sei.cmu.edu/library/asset-view.cfm?as-setid=311884
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_hand-book/
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_hand-book/
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_hand-book/
https://www.sae.org/technical/papers/2009-01-3284
http://www.sei.cmu.edu/library/ab-stracts/whitepapers/FourPillarsSWReliability.cfm
http://www.sei.cmu.edu/library/ab-stracts/whitepapers/FourPillarsSWReliability.cfm
http://www.sei.cmu.edu/library/ab-stracts/whitepapers/FourPillarsSWReliability.cfm

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 109

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[ISO 2010]
International Organization for Standardization, International Electrotechnical Commission, and
Institute of Electrical and Electronics Engineers. ISO/IEC/IEEE 24765:2010 Systems and Soft-
ware Engineering—Vocabulary. December 2010. http://www.iso.org/iso/catalogue_de-
tail.htm?csnumber=50518

[LaBRI 2015]
LaBRI. AltaRica Checker, Version 1.5. 2015.

[Leveson 2012]
Leveson, Nancy G. Engineering a Safer World: System Thinking Applied to Safety. MIT Press.
2012.

[NIST 2002]
National Institute of Standards and Technology. The Economic Impacts of Inadequate Infrastruc-
ture for Software Testing. NIST Planning Report 02-3. NIST. May 2002.

[Paige 2009]
Paige, Richard F.; Rose, Louis M.; Ge, Xiaocheng; Kolovos, Dimitrios S.; & Brooke, Phillip J.
FPTC: Automated Safety Analysis for Domain-Specific Languages. In Models in Software Engi-
neering. Chaudron, Michel R. [editor]. Lecture Notes in Computer Science. Volume 5421. Pages
229–242. Springer-Verlag. 2009.

[Powell 1992]
Powell, D. Failure Mode Assumptions and Assumption Coverage. Pages 386–395. In Proceedings
of the Twenty-Second International Symposium on Fault-Tolerant Computing. IEEE Computer
Society Press. 1992.

[Redman 2010]
Redman, David; Ward, Donald; Chilenski, John; & Pollari, Greg. Virtual Integration for Im-
proved System Design. Pages 57–64. First Analytic Virtual Integration of Cyber-Physical Systems
Workshop. In conjunction with the IEEE Real-Time Systems Symposium (RTSS), San Diego,
CA. Nov. 2010. http://www.andrew.cmu.edu/user/dionisio/avicps2010-proceedings/proceed-
ings.pdf

[Rushby 1981]
Rushby, John. Design and Verification of Secure Systems. Pages 12–21. In Proceedings of the 8th
ACM Symposium on Operating System Principles. ACM. 1981.

[SAE 1996]
SAE International. ARP4761: Guidelines and Methods for Conducting the Safety Assessment Pro-
cess on Civil Airborne Systems and Equipment. SAE. 1996.

[SAE 2006]
SAE International. Architecture Analysis & Design Language (AADL) Annex Volume 1: AADL
Meta Model & XML Interchange Format Annex, Error Model Annex, Programming Language
Annex. Standards Document AS5506/1. SAE. 2006.

http://www.iso.org/iso/catalogue_de-tail.htm?csnumber=50518
http://www.iso.org/iso/catalogue_de-tail.htm?csnumber=50518
http://www.iso.org/iso/catalogue_de-tail.htm?csnumber=50518
http://www.andrew.cmu.edu/user/dionisio/avicps2010-proceedings/proceed-ings.pdf
http://www.andrew.cmu.edu/user/dionisio/avicps2010-proceedings/proceed-ings.pdf
http://www.andrew.cmu.edu/user/dionisio/avicps2010-proceedings/proceed-ings.pdf

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY 110

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

[SAE 2012]
SAE International. Architecture Analysis & Design Language (AADL). Standards Document
AS5506B. Sep. 2012. Originally issued in 2004.

[SAE 2015]
SAE International. Architecture Analysis & Design Language (AADL) Annex Volume 1: Annex A:
ARINC653 Annex, Annex C: Code Generation Annex, Annex E: Error Model Annex. Standards
Document AS5506/1A. Sep. 2015. Originally issued in 2006.

[Walter 2003]
Walter, C. & Suri, N. The Customizable Fault/Error Model for Dependable Distributed Systems.
Theoretical Computer Science. Volume 290. 2003. 1223–1251.

CMU/SEI-2016-TR-009 | SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY

Distribution Statement A: Approved for Public Release; Distribution is Unlimited

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

June 2016

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Architecture Fault Modeling and Analysis with the Error Model Annex, Version 2

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Peter Feiler , John Hudak, Julien Delange, and David P. Gluch

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2016-TR-009

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom
Enterprise Acquisition Division
20 Schilling Circle
Building 1305
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Safety-critical software-reliant systems must manage component failures and conditions of anomalous interaction among components as
hazards that affect a system’s safety, reliability, and security so the potential effects of hazards on system operation are reduced to an
acceptable risk. Standards and recommended practices for safety-critical systems outline methods for analysis, but security-related
practices are typically addressed through separate guidance. This report provides guidance on using the Error Model Annex, Version 2
(EMV2), notation for architecture fault modeling and analysis, which supports automated safety, reliability, and security analyses from
the same annotated architecture model to ensure consistency across analysis results. EMV2 augments architecture models expressed
in the Architecture Analysis & Design Language with fault information to characterize anomalous conditions. The report introduces con-
cepts for architecture fault modeling of systems in an operational environment at three levels of abstraction. In addition, EMV2 intro-
duces the concept of error types to characterize exceptional conditions and their propagation. Finally, EMV2 allows users to specify
which system components are expected to detect, report, and manage anomalous conditions and their propagation and to reflect the
effects of recovery and repair actions as error behavior states. The report includes several example models.

14. SUBJECT TERMS

AADL, architecture modeling, fault modeling, safety analysis, safety-critical systems, security,
software-reliant systems

15. NUMBER OF PAGES

123

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Executive Summary
	Abstract
	1 Introduction
	2 Error Model Libraries and Subclause Annotations
	3 Error Types and Common Type Ontology
	4 Error Sources and Their Impact
	5 Component Error Behavior
	6 Compositional Abstraction of Error Behavior
	7 Use of Properties in Architecture Fault Models
	8 Advanced Topics in EMV2
	9 Architecture Fault Model Examples
	10 EMV2 Syntax Rules
	References

