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Abstract 

Safety-critical systems, such as those used in the avionics, aerospace, medical, and automotive do-
mains, are becoming more software reliant, and their size has increased enormously. These sys-
tems are becoming more complex, increasing certification costs. As certification is expensive and 
verification activities require significant manpower, this increasing complexity impacts the total 
cost of ownership. While part of the complexity is intrinsic to system functions and requirements, 
another part can be avoided. As software development is moving toward model-based approaches, 
reducing software model size and avoidable complexity would lower certification costs and re-
duce software maintenance efforts. This report defines software complexity, metrics for complex-
ity in models, and the effects of model complexity on levels of effort in the development, 
integration, maintenance, and upgrade costs of a project lifecycle. It focuses on popular code met-
rics for models; their definition, measurement, and implications for development efforts; and tech-
niques that have been used to reduce complexity, such as implementing a complexity 
measurement tool on a modeling tool. This report also presents an analysis tool that can be used to 
identify and measure complexity in a model-based development approach and explains how to ap-
ply the newly defined metrics. 
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1 Introduction 

Safety-critical systems—such as those used in the avionics, aerospace, medical, and automotive 
domains—are becoming extremely software reliant. The size of avionics software has increased 
enormously in the past few decades: as illustrated in Figure 1, the size of military avionics soft-
ware increased from 135 KSLOC (thousand source lines of code) to 24 MSLOC (million source 
lines of code) in less than 40 years [Hagan 2012]. The software used by the Apache helicopter 
grew from 300 KSLOC in Model AH-64A (produced between 1984 and 1997) to over 1.4 
MSLOC in Model AH64-D (produced until 2012) [McGarry 2012]. This trend is also true for 
other domains: automotive systems contain more and more electronic functions and, as space is 
scarce, most of these functions are implemented using software rather than hardware, which also 
facilitates system upgrade and maintenance. Because failure of such systems might have im-
portant consequences, software for safety-critical systems must be designed and certified against 
stringent certification standards [ISO 2011, RTCA 2011a]. 

 

Figure 1: Growth of Avionics Software in KSLOC [Adapted from Hagan 2012] 

An increase of software volume (i.e., number of lines of code [LOC]) implies that more compo-
nents are executed by different computers and connected through networks using specific proto-
cols. This increasing use of software also increases its complexity: interconnected components 
perform various functions, potentially at different criticality levels (e.g., entertainment system vs. 
cruise control), and designers must ensure isolation among these different criticality levels. Ac-
cording to certification standards, a system must be free of any design errors and must be tested 
and validated to demonstrate that a component with low criticality cannot interfere with a compo-
nent of high criticality [ISO 2011, RTCA 2011a]. 

Compliance with these requirements is expensive: related verification activities—such as code re-
view, unit testing, and integration testing—require significant effort in terms of manpower and are 
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tightly dependent on the software size. Reducing software size and complexity would not only 
lower certification costs but also reduce software maintenance effort. 

During the past few years, safety-critical software development has been moving toward model-
based engineering (MBE) approaches, which consist of abstracting software concerns in models 
with specific notation. The objective is to use models like SCADE and SIMULINK to represent 
the software with accurate and convenient semantics that can be edited with a user-friendly inter-
face [ANSYS 2014a, MathWorks 2015]. This representation is then processed to validate and ver-
ify the architecture and ultimately transformed into executable code. A model-based approach 
ensures that system requirements are met and validated and removes the usual defects introduced 
by manual code production. Also, some standards [RTCA 2011a] allow the use of a certified code 
generator such as SCADE, which then waives code certification activities and, thus, reduces sig-
nificantly the cost associated with them. 

In this report, we introduce a method that we developed to identify model complexity and esti-
mate its impact in terms of cost and effort savings. We detail the savings of MBE with a general 
cost-savings model that compares savings between traditional and model-based development pro-
cesses. We define and explain how to measure complexity in software models and present several 
strategies to reduce or eliminate it. Then, we apply this approach with the SCADE modeling lan-
guage and present our tool to compute complexity metrics from SCADE systems [ANSYS 
2014a]. The following sections introduce the key concepts related to model complexity and pre-
sent the outline of this report. 

1.1 Toward a Definition of Software Complexity 

When applied to a system, the term complexity has different dimensions and associated under-
standings. One definition of complexity is based on the “ease of understanding” a software model 
representing a software system design specified by an engineer. Two components of this dimen-
sion are 

 the notation: A clear, unambiguous language with a precise semantics eases the understand-
ing of the model. 

 the user: A well-trained user who is familiar with a notation will take less time to under-
stand and maintain a model. 

Obviously, a model that is easy to understand is also easier to use and maintain, which reduces the 
likelihood that a user will introduce errors when updating it. For that reason, the notation should 
be designed to reduce or mitigate complexity. In addition, tools must be designed so that they 
guide users not familiar with the notation and help them both understand the model and avoid de-
sign mistakes. 

1.2 Distinguishing Essential and Avoidable Complexity 

Evidence shows that software complexity has increased significantly over time not only because 
of the increase in number of functions but also because of a paradigm shift in which more func-
tions are realized using software rather than hardware [Nolte 2009]. This prevalence of software 
usage induces an organic increase of software complexity, a type of complexity required to imple-
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ment all the necessary functions. This is the essential complexity of a system, and it cannot be mit-
igated by any means other than changing the design (removing functions or implementing them in 
hardware instead of in software). 

However, complexity can be also introduced through poor design and implementation techniques. 
For example, too many interfaces on a component or too many nesting levels make software re-
view and analysis difficult. This is the avoidable complexity of a system, and it can be removed by 
refactoring the system and using appropriate design patterns. 

The total software complexity is the sum of the essential and the avoidable complexity. The es-
sential complexity is related to the system functions and cannot be mitigated. On the other hand, 
the avoidable complexity is not necessary and incurs potential rework, refactoring, or re-engineer-
ing efforts. For that reason, it should be avoided as much as possible and as early as possible. 

1.3 Research Questions 

The purpose of this research is to better understand the dimensions of complexity within a model-
based software development paradigm. Specifically, our research questions are as follows: 

1. How can we identify complexity in model-based systems? Is it possible to reuse metrics 
and approaches applied to traditional programming languages, or should we establish new 
metrics specific to model-based notations? 

2. How can we measure complexity and distinguish essential from avoidable complexity? 
How can we detect avoidable complexity? What metrics are effective for doing that? 

3. What is the impact of complexity? How much does it cost to maintain complex software, 
and how much can we save by reducing its complexity? 

4. How can we mitigate software complexity? Can we identify particular modeling elements 
and patterns that incur avoidable complexity? 

1.4 Overview of the Investigative Approach 

In order to achieve our research goals, we undertook several parallel efforts to address the re-
search questions posed in the previous section: 

 Review existing literature on software complexity applied to models and traditional pro-
gramming languages. 

 Understand the use of model-based tools and how they can be used to mitigate software 
complexity. 

 Identify complexity metrics that are indicators of software quality and cost, and implement 
tools that generate complexity metrics in software models. 

 Evaluate the impact of model complexity with respect to phases of the development lifecycle 
(e.g., integration, acceptance, maintenance), and establish a method for determining return 
on investment to estimate potential cost savings when using models. 

 Identify techniques to reduce software complexity in models. 

 Design tools that produce complexity metrics from software models. 
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1.5 Structure of This Report 

Section 1 (this introduction) provides our motivation to study complexity and the essential re-
search questions that we address in this effort. Some background information provides the reader 
with a basis for the work and related areas explored. 

Section 2 (The Impact of Complexity) discusses the impact of model-based development, the 
complexity at the software level, some associated metrics, and the effects of complexity in terms 
of relative levels of effort in the integration, maintenance, and upgrade costs of a project lifecycle. 

Section 3 (Detecting and Avoiding Complexity) focuses on the more popular code metrics; their 
application to software models; their definition, measurement, and implications with respect to 
development efforts; and techniques that have been used to reduce complexity. 

Section 4 (Detecting Complexity – A Practical Example) presents new complexity perspectives 
and associated techniques in the form of a model analysis tool. This tool identifies and measures 
complexity in software models and has been integrated in an existing modeling platform. 

Section 5 (Results and Conclusions) reviews the results of how complexity is introduced in the 
development of a system and how an MBE approach can help mitigate that complexity.  
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2 The Impact of Model-Based Engineering on Software 
Complexity 

Traditional software development techniques that implement solutions in embedded systems, con-
trol systems, integrated modular avionics, and so forth are reaching scalability limits in both cost 
and assurance. In this section, we compare the economics of traditional development to develop-
ment that relies on MBE and extend the argument in favor of MBE to include efforts that reduce 
the complexity of MBE models. 

The volume, complexity, and cost of software development for safety-critical systems—such as in 
avionics, aerospace, defense, medical, or automotive systems— are trending upward. Figure 2 
shows the trend in system size for avionic systems. Software volume, measured by lines of code, 
is on a trend to double every four years. Figure 2 includes software development cost estimates 
using COCOMO II of approximately $300 per line of code (LOC). High costs result from the 
need for highly skilled developers, the level of verification required for certification [DO-178 IG 
2015, Hilderman 2009, RTCA 2011a], and a growing test volume. Although high cost is often at-
tributed to the need for low defect density, it may be more correct to attribute cost to both the 
methods used to produce the software and the requirements for certification of its quality. Data 
from SEI customers suggests development rates of approximately 5 LOC per developer day for 
avionic code (this is only about half the rate used in The Mythical Man-Month [Brooks 1995]), re-
sulting in about 1,000 LOC per year per developer. Assuming a fully burdened rate cost of 
$150,000 per developer, we estimate $150 per LOC using the best methods known but not neces-
sarily satisfying DO-178B/C standards. Although precise values matter very much to developers 
and customers, this range is sufficient to illustrate that (1) the figure contains reasonable estimates 
and (2) development is rapidly approaching a point of unaffordability using current methods. 

 

Figure 2: Increasing Size of Onboard Avionic Software [Reprinted with permission from Redman et al. 
2010] 
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Another aspect of the increasing cost of software is that defect rates, using conventional develop-
ment methods for high-assurance safety-critical systems, are commonly believed to be approxi-
mately 100 defects per MSLOC [Li 1998], or more than a factor of 10 better than leading 
commercial software. The very best in class are perhaps 20 defects per MSLOC. Because 20% of 
defects may be serious and 1% may be fatal, software with even 1 to 5 defects per MSLOC is 
likely to contain at least 1 serious software defect, despite our best efforts with certification. For 
reasons we will discuss, MBE holds the promise [Hagan 2012] of pushing development defects 
consistently down toward the best-in-class numbers by aiding in the development of less complex 
underlying models with fewer defects, more easily discoverable defects, or both. Assuming that 
any added effort or other costs associated with reducing model complexity do not exceed the 
amounts saved by having fewer or easier-to-find defects, reducing complexity should be no worse 
than a break-even proposition in economic terms, with a net gain in quality as gauged by a lower 
number of defects found in the field. 

Advocates of MBE propose that it will reduce manual labor, defects, and unnecessary complexity. 
The Correctness by Construction method relies on principles similar to MBE by validating and 
verifying a system as much as possible early in the design process. Prior work in Correctness by 
Construction on formal modeling and certified construction of code has shown practical promise 
[Barnes 2009], and regulations have been adapted to recognize formal proofs and certified code 
generators for verification [RTCA 2011b]. 

We argue that MBE is more cost-effective [Hagan 2012]—in terms of fewer dollars, shorter 
schedules, or both—and better because it reduces the amount of hand-built code, delivers fewer 
defects and thus higher assurance, and reduces the cost of verification for comparable systems de-
veloped through traditional software techniques. MBE achieves these benefits by reducing the 
complexity visible to the developer with a higher level of abstraction and avoiding unnecessary 
complexity related to code production through automated translation of designs into code. Addi-
tional reductions of complexity in the underlying model should further reduce the remaining cod-
ing and debugging effort during development, decreasing implementation costs accordingly. This 
less-complex MBE representation should also be easier to verify, resulting in reduced verification, 
inspection, and testing efforts and in higher quality in terms of fewer escaped defects. 

2.1 Complexity Reduction 

MBE reduces or hides complexity (such as complexity related to code production and testing ac-
tivities). Reduction may result from improved design using formal notation at a higher level of ab-
straction. At a minimum, however, MBE hides much of the complexity (cyclomatic complexity) 
at the code level within the module. This hidden complexity represents code that need not be built 
by hand but can be machine generated. There is substantial evidence that cyclomatic complexity 
is linearly correlated with product size [Jay 2009, Hopkins 2008], at least within a domain, as il-
lustrated by Figure 3. 
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Figure 3: Cyclomatic Complexity Increases with Size [Reprinted with permission from Maxwell 2008] 

On the other hand, faults tend to increase superlinearly with size and complexity [Hatton 1997, 
Withrow 1990]. To the extent that MBE reduces the amount of hand-built code, it should have a 
direct linear effect on size and effort and a superlinear effect on software defect density. 

The following sections discuss modeling of the development process and engineering economics. 
We also explain why the complexity of software models matters and how it impacts the benefits 
of MBE, increasing or decreasing the value of MBE development approaches. 

2.2 Development 

Traditional or conventional software development involves highly variable amounts of require-
ments engineering and design, followed by an equal or greater amount of coding effort, followed 
by an amount of inspections, testing, and integration. Verification and validation vary according 
to the assurance levels required by the application (e.g., the Design Assurance Level [DAL] for 
avionics application), regulatory requirements, the size of the code, and especially the defect con-
tent of the code. High-assurance code typically relies on both team inspections and exhaustive 
testing. Each production activity has the potential to introduce defects into the system, including 
the possibility that defect fixes themselves are defective. In this section, we provide benchmarks 
for production and defect rates for baseline development, examine how MBE changes the cost of 
production, and infer how reducing complexity in the underlying model should increase the bene-
fits of MBE. 

At typical levels of quality, Jones estimates the expected costs associated with defects in several 
phases of the lifecycle [Jones 2012a]: 

Typical data for cost per defect varies from study to study but resembles the following pat-
tern circa 2012: 

Defects found during requirements = $250 

Defects found during design = $500 

Defects found during coding and testing = $1,250 

Defects found after release = $5,000 
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To better understand how MBE might change the economics of development and verification, we 
begin by noting the role that correctness of the software plays in safety and security [Davis 2004] 
and then examine benchmark data for how effort is distributed among the development phases for 
a high-quality development process. The data in Table 1 are from teams using the Team Software 
Process (TSP) [Humphrey 2000, Musson 2002]. TSP data has the advantages of representing 
high-quality development and including sufficiently detailed measurements to inform estimates 
involving process change. 

Table 1: Effort Distribution for Production of High-Quality Software 

Phase % Effort 

Planning 2.00 

Requirements 2.00 

System Test Plan 2.50 

Requirements Inspection 5.00 

High-Level Design (HLD) 7.00 

Integration Test Plan 5.00 

HLD Inspection 3.00 

Detailed-Level Design (DLD) 11.50 

DLD Review 5.00 

Test Development 5.00 

DLD Inspection 10.00 

Code 15.00 

Code Review 5.00 

Compile 1.00 

Code Inspection 9.00 

Unit Test 3.00 

Build and Integration Test 3.00 

System Test 5.00 

Postmortem 1.00 

In data shown in Table 1, construction (i.e., activities to build the system – design, code, build) 
consumes about 65% of the total effort. The DO-178B/C standard requires additional test-based 
verification of 100% LOC coverage or modified condition/decision coverage (MC/DC) 
[Ackermann 2010]. This additional testing would likely increase the total development cost by 
50% to 200% because of additional required analysis activities. Depending on the safety level of a 
component, DO-178C may require exhaustive low-level test of the code. The more stringent lev-
els of test include complete line-of-code coverage, test of all decisions (essentially path coverage), 
and MC/DC [DO-178 IG 2015]. The result is that effort to develop and execute the tests can sub-
stantially exceed the effort to develop the code. To account for this effort, we will apply a factor 
of 2.0 to the construction, realized in the unit test phase. We will also consider that very high as-
surance generally applies additional resources to inspections, typically four to five inspectors ra-
ther than the more common two to three inspectors. 

The most direct potential for savings from MBE is through reducing the effort for phases from de-
tailed-level design (DLD) through unit test, which in TSP benchmarks contain roughly 64% of the 
total effort (see Table 1). MBE approaches might reduce these aspects even more when combined 
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with use of a certified code generator, as produced code is automatically compliant with regula-
tory constraints. Additional savings may be realized from efficiency in the design phases, during 
integration, and through lower levels of defects. 

The SEI’s experience with high-reliability systems has been that a high-quality process leads to a 
low number of defects and reduces rather than increases cost [Nichols 2012, Obradovic 2013]. 
Nonetheless, actual industry practice and estimates of cost for high-reliability software vary 
widely. Shull reports increases to development costs ranging from 50% to 1,000% due to more 
coding constraints and certification requirements (e.g., testing, validation) [Shull 2002]. The SEI 
data suggest that the costs are not due to reliability per se but to the cost of developing, executing, 
and documenting the required test-based verification activities. 

A white paper by Hilderman suggests that with planning, a high-quality development process, and 
test automation, the increase in cost would be a factor of roughly 1.7 [Hilderman 2009]. In a book 
on avionics certification, Hilderman states that SEI/CMMI Level 3 techniques should increase 
costs of developing safety-critical systems by 25–40%, with industry experience averaging closer 
to 75–100% [Hilderman 2007]. In his book on the economics of software quality, Capers Jones 
reports that CMMI Level 5 has among the lowest development costs [Jones 2011]. By focusing on 
system design, validating its correctness before implementation, and automatically generating cer-
tified code, an MBE development process delivers high-dependability systems quickly and afford-
ably. 

From these varied data, we might suppose that (1) the skill and experience of the staff are a signif-
icant factor and (2) extensive use of testing as quality control, as required for certification by DO-
178B, will increase costs. A typical industry rule of thumb is that producing high-quality software 
increases cost by a factor of 3 [Ebert 2009], though this appears to rely more on tests than alterna-
tive verification methods. It seems a reasonable estimate that cost savings can be realized through 
quality assurance (process), and cost increases can result from exhaustive testing for quality con-
trol. To analyze the cost savings, we will use the conservative estimates that assume an emphasis 
on software quality assurance prior to application of quality control. 

From the quality data and modeling, software assurance for high-reliability systems typically 
costs more until the product is released into test. After release to test, net savings are realized from 
running test cases once or just a few times, as opposed to a test-until-fixed approach, which tends 
to increase both the number of times a test suite is executed as well as the overall schedule. 

Typical costs for inspection and testing effort run between 30% and 70% of the overall initial con-
struction effort [RTI 2002], with either assurance level or defect content having the ability to 
dominate costs if it is high. Highly effective inspections require about 1 developer hour per 200 
lines of code inspected, typically with four or five inspectors assigned. The inspection process 
alone could then cost 25 hours per KSLOC. TSP benchmark data indicates that there are less than 
1,000 direct hours available per developer per year, which suggests that inspection alone would 
require at least 25 man years of effort for 1 MSLOC. MBE alters both the introduction and re-
moval of defects; therefore, we include a description of the defect potentials in software. 

Defects are injected in all portions of the development lifecycle, including maintenance. Jones 
provides some benchmark data for the typical number of defects, shown in Table 2 [Jones 2009]. 
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Table 2: Average Defect Potentials for Software in the United States [Data from Jones 2009] 

Source of Defect Defects per Function Point 

Requirements 1.00  

Architecture 0.30  

Design 1.15  

Code 1.35  

Security code flaws 0.25 (security flaws)  

Documents 0.50  

Bad fixes 0.40  

Total 4.95  

Note that in Jones’ data, requirements, design, and code each contribute comparable numbers of 
defects. Not included in this table is the defect potential of the test cases themselves, which in our 
experience (and verified in private communications with multiple developers) is comparable to 
the code defects. 

Jones has pointed out that the defect potential depends on the implementation choices; for exam-
ple, two different languages require different code sizes to implement functionality and therefore 
inject substantially different numbers of defects [Jones 2012b]. To a first approximation, the de-
fect levels scale with the size of the implementation. This is largely because developers inject de-
fects into hand-crafted code at statistically predictable rates; thus defects scale with code size. 

Table 3: Defect Potentials in Comparable Systems for C and Java [Data from Jones 2012a] 

Defect Source 

Defects in C per 

2,000 SLOC 

Defects 

Defects in Java per 

1,000 SLOC 

Defects 

Requirements 10 10 

Design 20 20 

Source code 30 15 

Documents 3 3 

Bad fixes 2 2 

Total 65 50 

Per KSLOC 3.25 2.5 

Using an MBE approach to development instead of traditional approaches improves the develop-
ment process of most major lifecycle activities. With data collected from industry case studies, we 
estimated the potential reduction in cost for two DALs: Level A (with the highest constraints, 
where a failure has catastrophic consequences) and Level C (where a failure has major conse-
quences) [RTCA 2011b]. Software at a high DAL requires more testing and analysis (e.g., code 
coverage, state validation), increasing development costs. Table 4 summarizes how an MBE envi-
ronment might affect the development process for safety-critical code. The phase effort ratios are 
similar to those seen in our TSP benchmark data, but show slightly more use of test and less use 
of review and inspection. The values are similar enough that we are confident that the data and 
models are sufficiently reliable to provide reasonable estimates. The use of MBE will alter the as-
sumptions. 

Table 4: MBE Effect on Baseline Development for DO-178C Level C and A 

Activity Use of MBE in Development 
Baseline 
% Effort 

Reduction 
for DAL C 

Reduction 
for DAL A 

Plan 
MBE provides a repeatable process for plan-
ning, saving time, and making the plan more 

9.3% 75% 75% 
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accurate and predictable. Substantially less 
planning effort is devoted to coding and test-
ing activities. 

Requirements, system 
design, functions, and 
system architecture 

MBE is used to model functions and archi-
tecture. 

8.4% 17% 20% 

System requirements 
allocated to software 

Formal notation helps in early stage of con-
trol algorithms design. 

11.2% 17% 25% 

Software design 
The formally defined language is used di-
rectly for embedded software design. 

6.5% 19% 25% 

Code 
Code is generated directly from the design, 
though some specific manual code remains. 

16.8% 77% 83% 

Test 

A code generator can be certified. The test 
environment for host and target can be quali-
fied as a verification tool. 
While the designs must be verified, the code 
generation development process reduces the 
need for low-level testing of generated code. 
Formal MBE enables development of tools to 
support developing and running the same 
high-level tests on both host and target. 

14.0% 59% 56% 

Reviews and inspec-
tions 

Design and architecture have formal designs 
that can be reviewed with tool support. 
If the code generator is certified, code review 
is unnecessary for generated code.  
Manual code still requires review. 
Low-level test reviews are unnecessary 
where verification requires no test. 
User Context verification is automated. 
Detailed Certification Kits enable a repeata-
ble process to be enacted. 

16.8% 44% 60% 

Integration, software of 
components, hard-
ware, and software 

The formally defined model and components 
enable integration development and meas-
urement coverage with automated support. 

16.8% 79% 80% 

 Final estimated effort % of baseline 100% 59% 43% 

First, in the planning activity, use of the tools and formal methods requires a disciplined, repeata-
ble process. The repeatable process can be reused, and benchmark data can be used for planning. 
Moreover, a substantial portion of planning typically involves estimation of the software size, 
coding, and testing. In the manual case, just under 10% of the effort is required. The net from the 
process change is a reduction of 75% more or less, regardless of Level C or Level A. 

Second, MBE supports the early requirements and design through formal modeling of the func-
tionality and architecture. Modeling the control algorithms using formal notation also helps in the 
early stages of design to allocate functionality to software. These stages typically require about 
20% of the total effort and can be modestly reduced with tool support. Tools and formal methods 
reduce the effort by just under 20% for Level C and just over 20% for the more rigorous Level A. 

Third, software design is performed, whether implicitly or explicitly, regardless of MBE use. 
MBE, however, provides a formal approach directly applicable to embedded systems, along with 
tool support. The result is a modest reduction in effort of 20% to 25% in the software design 
phase. 

Fourth, by generating code from design, MBE eliminates much of the coding effort, thereby elim-
inating that cost. This reduction can vary according to the particular MBE environment used. 
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However, experience indicates that roughly 20% of the code must still be manually constructed or 
modified, leaving a significant 80% savings for this stage. 

Fifth, for an MBE environment certified to generate code, the product is precisely what the design 
language specifies, and the inspection and testing costs are reduced dramatically since verification 
is proven through the code generator rather than by inspection and test. Designs must still be in-
spected and tested, as must manually written code, but code, code review, and detailed test efforts 
are substantially reduced. The cost benefits of using a certified code generator are magnified at 
this point. Assuming that inspectors and test developers are familiar with the design language in-
volved, whether graphical, textual, or a mix, any reduction in the complexity of the design should 
result in less effort to verify (inspect and test) and in higher quality (fewer defects escaping from 
development). 

Sixth, the integration effort in Table 4 is for certified and predictable components for which the 
interactions have been formally modeled. Integrating the various parts of a complex software sys-
tem is usually a case of assembling its component parts in a logical sequence in order to verify the 
expected operation of each part in its proper place, typically only with minimal, expected interac-
tions with other parts. A simpler, less complex system should result in a simpler, quicker, and less 
error-prone integration effort, both in designing the integration and actually performing it. Use of 
MBE should result not only in finding fewer defects during integration but also in improving con-
figuration management of the components, thus reducing time and effort related to integration ac-
tivities. The effort of integration and debugging can be reduced by about 80%.  

As systems become larger and more complex, we suspect that the inherent benefits of MBE, espe-
cially when considering the benefits of reducing the complexity of the underlying model, may be 
understated. During the integration phase, having a less complex system (e.g., fewer interfaces, 
fewer components, and models that are easy to understand and well documented) will make this 
phase faster to complete. Also, MBE facilitates the auto-integration of models that use different 
notations, which would then automate the integration process. We do not estimate these latter ef-
fects here, but it seems logical to assume that these benefits could become more significant as the 
size and essential complexity of a system increase. 

MBE does, however, increase some costs. There may be some growth in the effort to develop and 
interpret requirements. The design of a solution that satisfies requirements requires developers 
trained in the chosen MBE environment rather than developers who presumably would work with 
less well-specified inputs. We can also assume that more time will be spent in developing the 
more rigorous and detailed design. It is reasonable to assume that a more highly trained, and thus 
more expensive, group of designers will be required. While verification is still necessary to con-
firm that the design satisfies the requirements, this effort should remain steady or possibly be re-
duced somewhat since all relevant aspects of the design should be explicitly available due to the 
input demands of MBE. 

2.3 Maintenance 

Maintenance includes defect fixes, addition of new functionality, improvement of existing func-
tionality or performance, or adaptation to a new environment, hardware, or software. Various 
sources, including Banker and the Software Technology Support Center, suggest that maintenance 
comprises 60% to 90% of the total lifetime costs [Banker 1991, 1993; STSC 2003]. Because 
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maintenance is the biggest contributor of the total cost of ownership (TCO), we will examine the 
effect of MBE generally on the maintenance phase of the product lifecycle and the impact of com-
plexity over these activities. As safety-critical systems are maintained for decades, software com-
plexity has a critical impact and will ultimately affect maintenance activities. 

Capers Jones lists a number of categories of work performed under the generic term “mainte-
nance,” reproduced in Table 5. 

Table 5: Major Kinds of Work Performed During Maintenance [Jones 2006] 

1. Major Enhancements (new features of > 20 function points) 

2. Minor Enhancements (new features of < 5 function points) 

3. Maintenance (repairing defects for good will) 

4. Warranty repairs (repairing defects under formal contract) 

5. Customer support (responding to client phone calls or problem reports) 

6. Error-prone module removal (eliminating very troublesome code segments) 

7. Mandatory changes (required or statutory changes) 

8. Complexity analysis (quantifying control flow using complexity metrics) 

9. Code restructuring (reducing cyclomatic and essential complexity) 

10. Optimization (increasing performance or throughput) 

11. Migration (moving software from one platform to another) 

12. Conversion (Changing the interface or file structure) 

13. Reverse engineering (extracting latent design information from code) 

14. Reengineering (transforming legacy application to client-server form) 

15. Dead code removal (removing segments no longer utilized) 

16. Dormant application elimination (archiving unused software) 

17. Nationalization (modifying software for international use) 

18. Year 2000 Repairs (date format expansion or masking) 

19. Euro-currency conversion (adding the new unified currency to financial applications) 

20. Retirement (withdrawing an application from active service) 

21. Field service (sending maintenance members to client locations) 

We discuss major and minor enhancements in Section 2.4 on upgrades. Most, but not all, other 
items on this list are relevant to the embedded software in control systems and avionics. For ex-
ample, we can ignore Y2K and currency conversions. Also, avionic software should have few or 
no error-prone modules, dead code, or unused software because these are DO-178C require-
ments). We begin by demonstrating substantial savings with the reduction of defects. 

A common feature of maintenance is the modification of existing software (e.g., bug fixes). In this 
respect, maintenance work looks like and costs similarly to new development, and the estimates 
from MBE for development still apply. According to Capers Jones, TCO is largely driven by de-
fect removal [Jones 2009]; however, other factors may apply. Such factors include the compre-
hensiveness and correctness of designs, adequacy of documentation, configuration management, 
and staff familiarity with the products. 

Maintenance costs tend to be somewhat higher per changed line of code for a variety of reasons: 

 New staff are unfamiliar with the current design and implementations (as safety-critical sys-
tems operate for decades, the staff maintaining the software is usually not the staff who de-
veloped it). 

 Poorly structured code (or models) is more difficult to understand and alter, especially with 
undertrained staff. 
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 Defects found in operation can be difficult to reproduce and locate in the code or model. 

 For large bodies of code or models, it is difficult to maintain the current design. 

 Regression tests must be maintained and executed for each change. 

 Changes can introduce unanticipated incompatibilities within the system. 

Banker estimates that software complexity itself can increase maintenance costs of commercial 
applications by 25% and increase the total lifecycle costs by 17% [Banker 1993]. Considering not 
only that safety-critical applications have stringent quality requirements but also that both the 
software and models of such applications must be maintained for decades, the real costs could be 
higher than these estimates for critical applications. 

Maintenance costs are largely mitigated through use of MBE for the following reasons: 

 Designs provide a higher level of abstraction and focus on business concerns, hiding unnec-
essary complexity. 

 Designs are the primary developer artifact and are maintained through use of the tool. 

 Staff can hide implementation details and focus attention at a higher level of analysis than 
the detailed code. 

 Optimization and low-level structure are managed through code generation (especially true 
when using certified code generator) or at the design level of abstraction. 

 For MBE environments providing certified code generation, the same reductions in cost and 
escaped defects enjoyed in development are repeated in maintenance. 

 Code restructuring is largely unnecessary, or if it is necessary, it happens for only the effort 
required to change the model, with the code following along for minimal or zero cost. 

 Fewer regression tests must be maintained. 

Jones provides a sample calculation showing factors of 0.5 to 10 TCO savings in development, 
enhancement, and maintenance when using high-quality, certifiable, reused components [Jones 
2009]. That is, the benefits of high quality not only propagate throughout the product life but also 
provide larger savings during the maintenance phase than during initial development. If fewer de-
fects escape from development due to the reduced complexity there, maintenance cost should be 
reduced proportionally. Also, the simpler MBE artifacts that result from reduced complexity make 
finding and fixing defects easier and faster. 

For long-lived systems, adaptation to new hardware components must from time to time be ac-
counted for, as obsolete hardware is replaced with newer components. The integration of new 
hardware components usually requires software revisions to accommodate changes to the inputs, 
outputs, and performance. MBE affects the software development and verification during this 
stage as much as MBE affects new development. 

Finally, the maintenance staff is often not the same staff who did the development, especially for 
systems operating for many years. Some systems are maintained for more than 50 years and re-
quire software upgrades to support additional components and adaptation to new operating sys-
tems or processors. In this case, there is a potentially large effort just to understand the existing 
artifacts. MBE provides obvious benefits through a smaller, design-oriented view of software 
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functionality than the code itself, and any reduction in complexity of the MBE artifacts will re-
duce that effort accordingly. Thus in maintenance activities, reduction of complexity will have the 
biggest potential savings. 

2.4 Upgrades 

Upgrades are a small-to-medium development activity integrated with maintenance efforts. An 
upgrade combines substantial development and integration. Most of the analysis that applies to 
new development will, once again, directly apply to upgrades. Depending on the type of upgrade, 
MBE will either reduce or avoid effort. When integrating a new functionality, the use of MBE 
will reduce the upgrade process through the same benefits as in development and other mainte-
nance activities. In some cases (e.g., support of a new execution platform, such as modification of 
the operating system or target processor), upgrade efforts will be supported by the code generator. 

During upgrade activities, developers must understand the existing development artifacts in order 
to accommodate the new features into the design. This is made easier by using a high-level repre-
sentation, as provided by the MBE environment, that hides implementation complexity. The pro-
cess is reinforced by the use of a certified code generator, as the generated code does not need to 
be reviewed. 

Then developers must design the upgrade (again, made easier by reduced initial complexity) and 
implement the upgrade (with the same logic in favor of reduced complexity as in development, 
and enhanced in the case of certified code generation). Finally, they must integrate and test the 
upgrade with the same approach discussed in initial development. The same factors apply, favor-
ing reduced complexity, reduced unit test, and automated support for integration and integration 
test. 

2.5 Summary and Conclusion 

In this analysis, we have seen that the baseline assumptions for productivity are supported by both 
industry data and data collected from TSP teams. Conventional development approaches fail to 
scale because the cost per line of code becomes prohibitive at some volume of code. New devel-
opment approaches that reduce development efforts and overall complexity are required to ad-
dress this issue. The MBE paradigm seems to address these problems by 

 reducing design complexity with a higher level of abstraction that focuses on system design, 
validates it earlier, and hides implementation (e.g., code) details 

 generating code from the models, thereby reducing implementation (e.g., code production) 
activities 

 reducing testing and certification activities, especially when using a certified code generator 

 assisting with the management of change propagation during maintenance via a high-level 
set of reusable components 

We showed that when using a certified code generator, MBE can cut 50% of the development 
costs, depending on the criticality level, as illustrated in Table 4. Obviously, the more critical the 
component, the more tests engineers must write and execute. And when large numbers of tests 
must be written and executed, an MBE approach with a certified code generator will reduce test-
ing efforts and increase savings. 
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Using an MBE approach makes the development process more robust and eases the certification 
process and the related testing activities. In addition, reducing model complexity has a significant 
impact on maintenance activities, and maintaining a well-documented model that is easy to under-
stand and modify will decrease the TCO. Because safety-critical systems are maintained for dec-
ades, ensuring high-quality development artifacts (with reduced complexity) can reduce the TCO 
merely by reducing the effort in development, inspection, and test. Complexity reduction alone 
may reduce the maintenance costs by 25% and the TCO by 17%. Although model complexity is a 
contributor to high-quality components, this study demonstrates that maintaining low-complexity 
components and delivering high-quality models reduce maintenance activities and associated 
costs. 
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3 Detecting and Avoiding Complexity 

3.1 Complexity Measures and Metrics 

Software complexity is different at the architecture level, where it is defined by how components 
communicate and are integrated, than at the code or behavior level, where it is defined by how 
components are implemented. 

At the architecture level, notations range from informal (narrative descriptions, block diagrams, 
etc.) to formal, in the form of architecture description languages (ADLs), state machines, and 
computer code. ADLs capture abstracted components of the system and their interactions among 
one another [Aiguier 2009]. Given that ADLs represent a specification formalism of architectural 
connectors, the denotation is essentially a formalism in which complexity can be characterized by 
the notation of property emergence. Aiguier considers a system complex when the global system 
does not preserve the complete behavior of some subsystems and when some global properties 
cannot be deduced from a complete knowledge of system components. Unfortunately, and proba-
bly because of a lack of efficient notations, there has been limited application of this work on ar-
chitecture complexity to identify and measure software complexity in models. 

Most often, complexity metrics are applied at the code level. The code structure—along with data 
and control flow paths and associated interface variables—form the basis for assessing complex-
ity. In addition, code is a formal notation that can be processed to produce complexity metrics. 
The following paragraphs introduce metrics used in industry to gain insight into the complexity of 
the software. 

3.1.1 McCabe Complexity Metric 

McCabe complexity focuses on the data flow in the architecture [McCabe 1976]. The metric rep-
resents a program as a graph and defines the complexity, C, as = − + 2 , 

where E is the number of edges, N is the number of nodes, and P is the number of connected com-
ponents. 

One problem with the McCabe complexity metric is its application to various programming lan-
guages and the granularity of the mapping between the graph and the programming language. In 
some cases, the graph is mapped onto different source code artifacts and two analysis tools might 
have different interpretations of the metrics and their representation in the programming language. 
For example, an edge can be a use relationship, a method/function call, or an inheritance link. 
When using this metric, we must keep these restrictions in mind and clearly define our mapping 
between the model elements and the graph. 
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3.1.2 Halstead Complexity Metrics 

Halstead metrics aim to estimate the programming effort [Halstead 1972, 1977]. The metrics can 
be applied to preliminary software design artifacts (pseudo code) as well as to the code itself. The 
metrics are based on counting various characteristics of the software system: 

 n1: number of distinct operators 

 n2: number of distinct operands 

 N1: total number of operators 

 N2: total number of operands 

The following measures are then produced: 	 ℎ	 = 1 + 2 	 	 = 1 + 2 	 	 = ∗ log  

 	 = 	 12 ∗ 2/ 2 	 = ∗  	 	 	 = /18 

	 	 	 :	 ∗∗ 233,000  

The constants (18 for the time to implement the system and 3,000 for the number of delivered 
bugs) were defined by Halstead himself. It might be useful to revise them, depending on the appli-
cation background, the domain, and specific constraints or requirements on the software. 

Because they work at the implementation level (processing the source code), Halstead metrics can 
be inaccurate for users who want metrics for a higher level of abstraction: producing these metrics 
requires the actual system realization. 

3.1.3 Zage Complexity Metrics 

Zage metrics focus on two measures [Zage 1993]: 

 De: an external metric related to the component’s external interfaces and other interactions 
within the system 

 Di: an internal metric related to the component’s internal structure (algorithms, internal data 
flows, etc.) 

The global metrics are then the sum of both De and Di. 

De, the external measure, is defined as follows for a particular component in the system: = ∗ (# ∗ # ) + 	(# ∗ # ), 
where e1 and e2 are weighting factors defined by the user. 
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Di, the internal measure, is defined as follows: = ∗ + 	 + 	 / , 

where 

 i1, i2, and i3 are weighting factors defined by the user 

 CC is the number of procedure invocations 

 DSM is the number of references to complex data types (pointers, records, arrays, etc.) 

 I/O is the number of input/output operations (read a device, write in a file, receive data from 
the network, etc.) 

The external metric focuses on the external interfaces (what is using or used by the component) 
and does not take into account the data flow in the architecture (in contrast to other metrics, such 
as McCabe’s). The internal metric is very precise but can be difficult to map into a programming 
language. For example, some concepts are not present or are hidden by some languages: the num-
ber of I/Os is often abstracted by the language, and the number of references to complex data 
types is language dependent (e.g., in Java, any object variable can be counted as a pointer). 

3.1.4 Program Counting 

There are many other metrics to analyze software and to characterize and identify complexity. In 
some respects, the McCabe, Halstead, and Zage metrics also use these values to provide a better 
view of complexity. However, in some cases, the raw data alone can be a good indicator of soft-
ware complexity. One simple approach is to count the program elements and identify whether 
there are too few, too many, or just enough elements. Some coding guidelines use program count-
ing approaches to evaluate the complexity and quality of a piece of code. For example, in the 
Linux kernel coding style, the code should have fewer than four levels of indentation to keep it 
simple to understand [LKO 2015]. Many similar techniques can give developers insight into soft-
ware complexity, such as the number of functions, use of specialized data types, number of argu-
ments for a method or function, and the number of methods within a class. 

3.2 Effects on System Qualities: Application of Complexity Metrics in a 
Model-Based Environment 

Can one apply complexity metrics that have been developed for specific programming languages 
and design artifacts to actual models, which rely on several different tools and languages? In fact, 
due to differences in language semantics, existing metrics cannot be used on all programs because 
the language does not provide the required values. For example, current code analysis tools have 
different understandings of dependencies in Java, such as use of a class and call of a method. 
Thus, applying complexity metrics initially designed for traditional programming languages in a 
model-based environment is a real challenge. It is a paradigm shift that needs some tailoring. The 
design methods for manual code and models use different artifacts; to apply the metrics in mod-
els, one has to identify how to map programming language concepts into models. 

This challenge has been previously discussed mostly for Simulink models. Prabhu applies 
McCabe’s cyclomatic complexity and the Halstead metrics to evaluate the complexity of Sim-
ulink models [Prabhu 2010]. He notes the challenge of switching from programming languages to 
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models: metrics have to be tailored and values obtained at the code or model level so that com-
puted values are different. Olszewska introduced new metrics specific to high-level design [Ol-
szewska 2011]. They focus primarily on model counting, such as the average number of blocks 
per layer or the stability of the number of inputs/outputs across the model. 

Actual modeling tools include limited support for complexity features. In MATLAB, SLdiagnos-
tics provides a model counting tool but does not apply any existing complexity metrics used with 
typical programming languages such as McCabe or Halstead [MathWorks 2014]. But model-
based engineering is still emerging, and the topic of software model complexity is fairly new. Be-
fore integrating complexity-related features into modeling tools, it is worth defining how to iden-
tify complexity in models and how to compute it. 

Similarly to programming languages, commercial modeling tools have guidelines and rules for 
writing models [ANSYS 2014b, MAAB 2007]. Rules are focused not solely on quantitative as-
pects (e.g., number of components, connections) but also on graphical aspects (organization of 
model elements when using a graphical representation), naming rules, data type definitions, com-
ponents to use or avoid, and others. Even if these guidelines can help the system designer, there is 
no automatic support for validating their enforcement. 

3.3 Cost Savings Estimates 

Research has demonstrated that MBE can save a significant amount of effort, especially for 
safety-critical systems, due to better design and a reduced need for testing [Hagan 2012]. Costs 
savings are even more significant when the code generator is certified by DO-178C standards 
[RTCA 2011a], which further reduces the number of tests to be performed. Empirical studies 
based on previous projects show that using models can save from 21% (using a regular platform) 
to almost 60% (using a certified platform) when producing software at the highest criticality level 
(e.g., DAL A for DO-178C, which is the most stringent in terms of verification) and from 30% 
(non-certified platform) to 40% (certified platform) when designing software at the lowest level 
(e.g., DAL D). As there are fewer verification activities for software at a lower criticality level, 
using a certified code generator does not save as much as when designing critical software. 

However, these estimates are often made by tool vendors using in-house models. Because tool 
vendors have a good knowledge of their own technologies, the models they evaluate do not con-
tain many defects. Models from designers can have a lot more complexity that originates from the 
users’ background, experience, and understanding of a tool. For practitioners, the model complex-
ity becomes a variability factor when estimating software development costs. These estimates not 
only show the value of MBE but also how much complexity increases or decreases software de-
velopment costs. The previous section of this report provided more detailed cost savings estimates 
not only for the development process but also for the overall lifecycle. 
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4 Detecting Complexity – A Practical Example 

4.1 Tool Overview 

We built our complexity metric tools as scripts written in the TCL language to be installed on 
SCADE. SCADE supports the installation of TCL scripts as extensions, and these scripts are fully 
integrated in the SCADE environment. In the following, we explain what part of the model the 
tool covers so that users will understand what it does. For installation instructions, a complete user 
guide is available in the work of Nam [Nam 2015]. 

4.2 Discovering and Reducing Avoidable Complexity 

The following metrics are available in our tools: 

 McCabe: computes the regular McCabe metric for a node [McCabe 1976] 

 Halstead: computes the Halstead metrics for a node [Halstead 1972, 1977] 

 Zage: computes the Zage metrics for a node [Zage 1993] 

 nesting level: counts the depth of non-predefined operators and state machine states in mod-
eling components 

 generic type: detects use of generic types (int, bool, etc.) 

 single connection check: looks for operators that may be better merged with other operators 
because they consist of a single input connection 

To use the tool, select the operator (a) that you want to analyze, and invoke the tool using the 
Complexity Tools menu (b), as shown in Figure 4. 

 

Figure 4: Invoking the Complexity Metrics Tools 

In the following, we describe the implementation of each complexity metric and detail what part 
of a SCADE model is being processed. Consequently, it would be useful to be familiar with the 
SCADE tool. 
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4.2.1 McCabe Metric 

For the McCabe metric, the tool searches for IF and CASE statements and loops (FOR state-
ments) in the model and counts them to calculate the McCabe complexity value. For CASE state-
ments, it considers the number of case values and whether or not they are default values. It 
currently does not check “If Block,” “If Node,” “When Block,” and “When Branch” in SCADE. 
State machines generate case statements in code. Thus, the tool considers the number of states. 
Also, the tool recognizes that if a state machine has at least one strong transition (a transition that 
activates a state when the transition condition becomes true), each state counts for two cases. Each 
transition in a state machine generates one IF statement. Among the predefined operators, we 
found that the operators in the “Higher Order” category generate FOR loops. Each FOR loop is 
counted as 1. 

Currently the tool starts from the selected operator and checks all equations and contained opera-
tors, which are also represented as equations. If a state machine exists in the operator, the tool 
searches inside the states and state transitions for the aforementioned elements. For state transi-
tions, the tools checks only the conditions. States can contain other state machines inside, so the 
tool searches recursively through all state machines. 

After the tool runs, it prints the final McCabe complexity value in the Script tab in Output, as 
shown in Figure 5. 

 

Figure 5: McCabe Complexity Value in the Script Tab 

The McCabe tab shows which elements contributed to the final complexity count; see the Count 
column in Figure 6. 
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Figure 6: McCabe Tab 

4.2.2 Halstead Metrics 

To evaluate Halstead metrics, the tool calculates four values: 

1. total number of operators 

2. total numbers of operands 

3. total number of distinct operators 

4. total number of distinct operands 

To do this, the tool navigates through the model, finds all “Predefined Operators” as defined in 
SCADE, and counts their number of instances. If an operator is used at least once, it is counted as 
1 for the number of operators. For each operator, the tool also investigate its inputs for operands. 
It calculates the total number of operands by adding all parameters that are of the type ExprId for 
each predefined operator instance. 

To account for distinct operands, if an input to one operator is also an input to another, those in-
puts count as one single operand. The tool calculates the number of operands by first saving all 
local variables in an operator into a set. The total number of local variables in the set is N_all. 
Then for each suboperator, the tool tries to remove all local variables that are used as inputs from 
the set. After the tool does this for each suboperator, the set is left with local variables that are 
used only for outputs or saved in local variables (and never used for input to another operator). 
The current size of the set equals N_output. Then by subtracting N_output from N_all, we get the 
number of distinct inputs that exist for all the suboperators in an operator. We add this value for 
every SCADE operator. 

The accuracy depends on whether the search goes to every possible place in the model that could 
have a predefined operator. Currently the tool starts from the selected operator and checks all 
equations and contained operators that are also represented as equations. If a state machine exists 
in the operator, the tool searches inside the states and state transitions for equations and operators. 
For state transitions, it checks only the conditions. States can have another state machine inside, 
and the tool recursively searches through all state machines. 
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In Figure 7, the Halstead Script tab shows the results of the analysis and the values for the total 
number of operators, operands, distinct operators, and distinct operands. It will also display which 
operator keys (unique values in SCADE for each predefined operator) exist and how frequently 
they are used. 

 

Figure 7: Script Execution Output 

From the Halstead tab, shown in Figure 8, users can do a visual check of which operators and op-
erands are accounted for. The count column shows only the total count number and not the dis-
tinct number for an item. 

 

Figure 8: Halstead Tab 

4.2.3 Zage Metrics 

For Zage metrics, the tool looks for four values: 

1. number of inputs 

2. number of outputs 

3. number of fan-in units 
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4. number of fan-out units 

The tool gives these values for each operator that is not predefined. It counts the number of inputs 
and outputs by analyzing the equation that calls the operator. Fan-in is counted by adding the 
number of times an operator type is used in the model. Fan-out is counted by the number of 
suboperators that an operator contains. The tool analyzes operators that are given in the SCADE 
as libraries to use, such as MAX and MIN. 

In Figure 9, the result is shown at the end of the tab named Zage. After scrolling down to the end 
of the table, the user sees a list of all the non-predefined operators that were used, the four values 
listed above, and the De value (the external design metric), which is currently the multiple of Num 
Input and Num Output summed with the multiple of FanIn and FanOut. Weight factors are simpli-
fied to 1.  

 

Figure 9: Zage Metrics Tab Results 

4.2.4 Nesting Level 

In Figure 10, the Script tab shows the maximum nesting level, and the NestLevel tab shows the 
level of each non-predefined operator and state that were identified in the model. 
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Figure 10: NestLevel Tab 

4.2.5 Generic Type 

Input variables are shown in the GenericType tab in Output (Figure 11). Beneath the input varia-
ble, the tool shows the variable type. Double-clicking on the variable reveals the location of the 
variable in the GenericType tab in the Workspace. 

 

Figure 11: GenericType Tab 
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4.2.6 Single Connection Check 

A dialog appears with the total number of operators that have single connections. All non-prede-
fined operators in the model are shown in the Connection tab from Output (Figure 12). Below 
each operator, the tool shows the count of inputs and indicates whether there is only one connec-
tion. 

 

Figure 12: Connection Tab 
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5 Results and Conclusions 

Safety-critical systems, such as those used in the avionics, aerospace, medical, and automotive do-
mains, are becoming more software reliant, and their size has increased enormously. An increase 
of software volume implies that more components are executed by different computers and con-
nected through different protocols, increasing the software complexity. Compliance with certifica-
tion requirements for these systems is growing more and more expensive, and verification 
activities require significant manpower. For those reasons, reducing software size and complexity 
will lower certification costs and reduce software maintenance efforts.  

The purpose of this research was to better understand complexity within a model-based software 
development paradigm and to determine whether an MBE approach can help reduce the overall 
complexity of software models and ultimately of safety-critical software. Our research questions 
were 

1. How can we identify complexity in model-based systems?  

2. How can we measure complexity and distinguish essential from avoidable complexity?  

3. What is the impact of avoidable complexity? 

4. How can we mitigate software complexity? 

In order to reduce complexity in models and software, a development team must be able to iden-
tify and measure it. To identify complexity in software models, we first adapted complexity met-
rics typically used with traditional programming languages (e.g., Java, C) to modeling languages 
(e.g., SCADE). We evaluated these established metrics and their relevance for software models. 
While they provide an overview of a model’s complexity, we think that new complexity metrics 
specific to the model’s semantics and its data flow approach would more accurately capture 
model complexity.  

We then introduced our data flow analysis complexity tool, which analyzes each data flow in a 
model and ultimately provides insight about its inherent complexity (number of components used, 
division of the flow across the architecture, etc.). We detailed the use of our metrics to identify 
and reduce avoidable complexity; our tool helps users apply these metrics to the system under de-
velopment to mitigate complexity through every stage of the system’s lifecycle. While these met-
rics are a step toward a better understanding of model complexity, they need to be calibrated in 
order to distinguish and qualify models (e.g., which one requires rework or refactoring efforts and 
what needs to be done).  

We estimated that, depending on development requirements and constraints, using an MBE ap-
proach could reduce development costs by as much as 50%. In addition to these savings, reducing 
model complexity could lower maintenance costs by 25%. As maintenance activities account for 
70% to 90% of the total lifecycle costs, using a MBE development approach and keeping the 
complexity of software models low can reduce the TCO for a system by as much as 30%. 
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Appendix Acronyms 

ADL  architecture description language 

DAL  Design Assurance Level 

DLD  detailed-level design 

HLD  high-level design 

KSLOC  thousand source lines of code 

LOC  lines of code 

MBE  model-based engineering 

MD/DC  modified condition/decision coverage 

MSLOC million source lines of code 

TCL  tool command language 

TOC  total cost of ownership 

TSP  Team Software Process 
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