i

Software Engineering Institute
Carnegie Mellon University

Making DidFail Succeed: Enhancing the CERT
Static Taint Analyzer for Android App Sets

Jonathan Burket
Lori Flynn
William Klieber
Jonathan Lim
Wei Shen
William Snavely

March 2015

TECHNICAL REPORT
CMU/SEI-2015-TR-001

CERT Division

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright 2015 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute,
a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring
by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the SEI Administrative Agent AFLCMC/PZM 20 Schilling Circle, Bldg 1305,
3rd floor Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTI-
TUTE MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUD-
ING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNI-
VERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.
Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.
DM-0002059

Table of Contents

Acknowledgments

Abstract
1 Introduction
2 DidFail
3 Flows Involving Services
3.1 General Modifications
3.1.1 Recognizing New Intent Sinks
3.1.2 Matching Flows by Component Types
3.2 Initial Test Results
4 Flows Involving BroadcastReceivers
4.1 Parsing Epicc Output for BroadcastReceivers
4.2 Marking Broadcast Intents as a Sink/Source in FlowDroid
4.3 Trace Broadcast Flows in Phase 2
4.4 Test Applications
4.5 Results
4.6 Dynamically Registered BroadcastReceivers
4.7 Future Work
5 Flows Involving Static Fields
5.1 The Issue with Static Fields
5.2 Adding Support for Static Field Flows
5.3 Harder Static Field Flows
5.4 Phase Il Static Field Analysis
5.5 Results
5.6 Drawbacks, Limitations, and Future Work
6 Infrastructure Improvements
6.1 The Problem
6.2 Porting Phase 1
6.3 Measuring Phase 1 Performance
6.4 |Initial Testing
6.5 FlowDroid Performance Tweaks
6.6 Conclusions and Future Work on Infrastructure Improvements
7 Related Work
8 Conclusions and Future Work
References

vii

N

R

Y el e e e N e
WwwNhh~R OO O oo ~Nooo o1t

el el el el
~No orortoron B

[S~ S
o o0 o

CMU/SEI-2015-TR-001 | i

CMU/SEI-2015-TR-001 | ii

List of Figures

Figure 2.1
Figure 3.1
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 5.1
Figure 5.2
Figure 5.3
Figure 6.1
Figure 6.2

Overview of DidFail Phase 1

Initial App Set for Service Components

Example Epicc Output for a BroadcastReceiver

Transmitter Code Leaking Device ID Through a Broadcast Intent
Statically Declared BroadcastReceiver in a Manifest File

Code for a BroadcastReceiver that Sends Text Messages

Manifest Code of KludgeBroadcastRxDyn

Registering a BroadcastReceiver Dynamically

Code for a BroadcastReceiver that Writes to a File

Output of adb logcat

Simple Static Field Example (Simplified Version of AppChat Code)
Static Fields with Aliasing

Field of Static Class; Other Class Gets and Sets Field

Results of FlowDroid Test Run on 90 Apps, With and Without Modifications
Results of the FlowDroid Test Run on a High-Performance Machine

OO0 NNNNO1TON

el e e e
DDA~ N O

CMU/SEI-2015-TR-001 | iii

CMU/SEI-2015-TR-001 | iv

Acknowledgments

We thank Professor Patrick Tague of Carnegie Mellon University for allowing the graduate
student team from his Mobile Security class (Will Snavely, Jonathan Burket, Jonathan Lim,
and Wei Shen) to work on this project. We thank Dr. Alexandre Bartel of the Technical
University of Darmstadt, Germany, for his useful discussion about FlowDroid developments for
dynamically registered BroadcastReceivers and details of its nopath option. Lori Flynn and Will
Klieber worked on this project thanks to funding by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon (for the operation of the Software Engineering
Institute (SEI), an FFRDC), by the Office of Naval Research (ONR) grant N000141310156.

CMU/SEI-2015-TR-001 | v

CMU/SEI-2015-TR-001 | vi

Abstract

This report describes recent significant enhancements to DidFail (Droid Intent Data Flow Anal-
ysis for Information Leakage), the CERT static taint analyzer for sets of Android apps. In
addition to improving the analyzer itself, the enhancements include a new testing framework,
new test apps, and test results. A framework for testing the DidFail analyzer, including a setup
for cloud-based testing was developed and instrumented to measure performance. Cloud-based
testing enables the parallel use of powerful, commercially available virtual machines to speed up
testing. DidFail was also modified to use the most current version of FlowDroid and Soot, in-
creasing its success rate from 18% to 68% on our test set of real-world apps. Analytical features
were added for more types of components and shared static fields and new apps developed to
test these features. The improved DidFail analyzer and the cloud-based testing framework were
used to test the new apps and additional apps from the Google Play store.

CMU/SEI-2015-TR-001 | vii

CMU/SEI-2015-TR-001 | viii

1 Introduction

DidFail (Droid Intent Data Flow Analysis for Information Leakage) is a static analyzer, de-
veloped by the CERT Division of the Software Engineering Institute (SEI) at Carnegie Mellon
University. DidFail detects possible flows of sensitive information in sets of Android apps. This
technical report describes enhancements recently made to the analyzer itself, a new testing
framework, newly developed test apps, and test results.

The permission system is an important feature of Android security. By placing adjustable
limitations on what resources applications can use, Android allows users a large degree of control
over how much trust should be given to specific applications. This system allows untrusted
applications to coexist in an environment with sensitive information, such as the user’s location,
contacts, and other personal details.

One of the core assumptions of the Android permission system is that an application that
lacks permission to access a resource cannot obtain access to that resource. This assumption
is enforced with code that checks that an application has permission for a resource when it
requests it from the system. Once the application has access to the resource, however, it can
use that resource as it sees fit. This ability to freely use the resource can include sharing
private information with other applications or executing actions on behalf of other applications.
Indeed, while the Android permission system is well suited for controlling access for applications
in isolation, it can fail to protect resources on the device.

Consider the case where a user installs an application for recording audio notes. Because the user
is recording sensitive information, he or she verifies that the application has no network access.
The same user then installs a weather application that uses the internet but has access to no
sensitive content. Considering the applications in isolation, the user has made sensible decisions;
the application that has internet access does not have access to sensitive information and vice
versa. If, however, these applications can communicate (either intentionally or unintentionally),
then the user’s information may be at risk. If the audio recording application can send messages
to the weather app that are then sent over the internet, an outside attacker could gain access
to audio recorded by the device.

Considering the Android permission system alone is insufficient for reasoning about scenarios
where information flow between applications circumvents intended permission limitations. Did-
Fail is a tool for detecting such flows [1]. DidFail statically analyzes sets of Android application
packages (APKs) to detect cases where sensitive information may be leaked from one applica-
tion to another. While DidFail is a useful tool, it previously fell short in several scenarios. In
its previous release, DidFail tracked flows between Activities only by intents. Other types of
dataflows, such as those through static fields or between an Activity and a BroadcastReceiver,
were missed. With the work detailed in this report, we expanded DidFail’s capabilities to work
with more applications and handle more types of flows.! In sections 3 through 6, we detail four
improved DidFail features.

The main DidFail webpage is http://www.cert.org/secure-coding/tools/didfail.cfm. The
version of DidFail and the test apps described in this report are also directly available on the
Carnegie Mellon University website:
https://www.cs.cmu.edu/~wklieber/didfail/install-latest.html.

1Some flow types are yet to be implemented.

CMU/SEI-2015-TR-001 | 1

http://www.cert.org/secure-coding/tools/didfail.cfm
https://www.cs.cmu.edu/~wklieber/didfail/install-latest.html

2 DidFail

DidFail is a static analysis tool for Android applications that detects possible information flows
between applications. DidFail works using two phases.

In Phase 1 (Figure 2.1), each APK is fed into the APK Transformer, a tool that annotates
intent-related function calls with information that uniquely identifies individual cases where
intents are used in the application. Once completed, the transformed APK is passed to two
other tools: FlowDroid [2] and Epicc [3].

Application APK

APK Transformer

Transformed APK

FlowDroid

Application
Intent Profile Source to Sink
Flows

Figure 2.1: Overview of DidFail Phase 1

The FlowDroid tool performs static taint tracking in Android applications. Given a set of method
signatures that correspond to taint sources and sinks, FlowDroid conservatively propagates taint
from sources in the application, reporting all flows from sensitive sources to sinks. Sources
include function calls that access sensitive information in Android, such as getLatitude() or
getSimSerialNumber (). Sinks include function calls that exfiltrate information, such as Log.d
and FileOutputStream.write. In addition, reads from received intents are treated as sources,
and writes to intents are treated as sinks. Output from FlowDroid might identify, for example,
that an application reads contact information from some source, then sends it as part of an
intent, or that an application reads information from an intent, then sends it as a Short Message
Service (SMS) message.

Epicc [3] performs static analysis to map out inter-component communication within an Android
application. While this analysis is mainly used to understand how parts of a single application
work together, it can also discover what portions of the application are externally accessible via
either explicit or implicit intents. While FlowDroid is useful for understanding flows within an
application, Epicc reveals the interfaces that can be used for an application to communicate
with other applications.

Phase 1 of DidFail can be performed on one application at a time and, once completed, does
not need to be run again.

Phase 2 of FlowDroid combines the Phase 1 output of multiple applications to determine how
specific applications in a set can interact. Consider our example from Section 1 of the audio and
weather applications. If these applications colluded via an intent, then in Phase 1, DidFail would

CMU/SEI-2015-TR-001 | 2

discover that the audio app obtains audio information (a taint source) and the information flows
to an intent sent to an application with a specific name.

Similarly, Phase 1 would reveal that the weather app handles intents, reads information from
the intent, and then sends it over the internet.

In Phase 2, DidFail combines the information about these two applications. DidFail analyzes
dataflows between apps that can occur through intents, eventually discovering and reporting
that sensitive audio information is sent over the internet.

Cases like this one are where DidFail shines. Unfortunately, the tool is still limited in the types
of flows it can analyze. In our work, we enhanced DidFail to handle more applications and more
types of flows.

CMU/SEI-2015-TR-001 | 3

3 Flows Involving Services

A Service is an application component that is meant to run without direct user interaction (e.g.,
provide some functionality while the app is not in the foreground). A Service can be instantiated
by passing an intent corresponding to a Service’s intent filter, or the name of the class instance,
and making a call to the startService method. We added new functionality to DidFail to
handle some dataflows involving Services.

3.1 General Modifications

The following sections describe the general modifications we made to the DidFail tool.

3.1.1 Recognizing New Intent Sinks

DidFail’'s APK Transformer identifies intent sinks in an Android app by matching method
signatures in the app with known intent sink method signatures. If the signatures match, an
intent ID is generated for the intent sink method. Method signatures for the non-Activity intent
sinks were added to track intent sinks for BroadcastReceivers and Services. Similarly, FlowDroid
had to be modified slightly to recognize the new intent sinks.

3.1.2 Matching Flows by Component Types

DidFail initially handled only flows involving activities. Extending DidFail to also support

BroadcastReceiver and Service components required a slight modification to how the sources and

sinks were matched. Certain methods indicate the type of a receiving component and need to be

accounted for when matching receiving components and sending components (e.g., startService —
service, startActivity — activity). By recording the sink component type, we enabled the match-

ing process to create appropriate flows.

3.2 Initial Test Results

Using two apps we created, we tested the analyzer on a single app set. SendApp’s main Activity
component obtains location information by calling getLocation() and stores the information
in an intent set with a custom action string matching SendAppService’s intent filter.

As illustrated in Figure 3.1, the intent is passed to startService, received by SendApp’s Service
component, and similarly sent to the ReceiveAppService component. ReceiveAppService passes
the tainted information to ReceiveApp’s Activity component by calling startActivity.

Phase 1 and Phase 2 analysis results were as we expected, tracing the tainted location informa-
tion through the Activity and Service components as well as identifying the sources and sinks.
We also ran a preliminary test of 100 APKs for Phase 1 using the extended APK Transformer,
Epice, and FlowDroid. We observed that intent sinks, such as startService and bindService,
were identified. Further testing still needs to be done to verify that the modifications improve
Phase 2 results.

CMU/SEI-2015-TR-001 | 4

Source Sink
(e.g., location) (e.g., SMS)

Service Service

Figure 3.1: Initial App Set for Service Components

4 Flows Involving BroadcastReceivers

Previous versions of DidFail failed to detect dataflows that involve broadcast intents. Broad-
cast intents are received in a particular way; the app contains a class that extends the class
android.content.BroadcastReceiver, which implements the onReceive method. An appli-
cation can declare the broadcasts it wishes to receive statically in the manifest or dynamically
with the registerReceiver () method. There are different types of broadcasts: normal broad-
casts with unordered receivers, ordered broadcasts, and sticky broadcasts that remain active
after the initial broadcast distribution is completed.

An app can unregister a dynamically registered receiver (and thereby stop it from receiving
broadcasts) by calling the Context .unregisterReceiver () method. DidFail does not consider
calls to unregisterReceiver (); if it can be proven that a receiver cannot be live when a tainted
broadcast is sent, then DidFail produces a false alarm.

We made three modifications to allow DidFail to analyze dataflows that include broadcast in-
tents. As mentioned in Section 4.6, a manual adjustment is necessary to handle dynamically
registered receivers, and we do not yet analyze for the dataflow of sticky broadcasts and ordered
broadcasts. We enhanced the Epicc parser to extract information about broadcast intents, mod-
ified FlowDroid to mark broadcast-related functions as sources or sinks, and extended Phase 2
to consume the new output resulting from the previous modifications.

4.1 Parsing Epicc Output for BroadcastReceivers

Dynamically registered receivers do not appear in the manifest, but they do appear in the
output of Epicc. An entry starts with the line “Type: android.content.BroadcastReceiver.”
Potential filter properties are given as a list (for example, the Actions field in Figure 4.1).

Type: android.content.BroadcastReceiver
No permission

Intent Filter value: 1 possible value(s):
Actions: [DeviceIdBroadcast]

Figure 4.1: Example Epicc Output for a BroadcastReceiver

CMU/SEI-2015-TR-001 | 5

We added a separate parser function named parse_bcast to address this issue. It is used by
DidFail in addition to the previously existing parser function named epicc_parser.

4.2 Marking Broadcast Intents as a Sink/Source in FlowDroid

Function signatures related to transmitting and receiving broadcast intents were added to the
APK Transformer and FlowDroid so that they were recognized as sources or sinks. Table 4.1
shows the related functions.

Table 4.1: Functions Related to Broadcasting Intents

onReceive

sendBroadcast
sendBroadcastAsUser
sendOrderedBroadcast
sendOrderedBroadcastAsUser
sendStickyBroadcast
sendStickyBroadcastAsUser
sendStickyOrderedBroadcast

sendStickyOrderedBroadcastAsUser

4.3 Trace Broadcast Flows in Phase 2

The taintflows.py program (responsible for executing Phase 2 of DidFail) was extended to
parse the additional sinks and sources introduced in the previous sections and to match broadcast
intent filters. The logic is the same as with non-broadcast intents.

4.4 Test Applications

We wrote four apps to test this new feature:

e BroadcastTr has the READ_PHONE_STATE permission and sends the device ID via a
broadcast intent with an action filter. See Figure 4.2 for the code that leaks the device
ID.

e BroadcastRx_Static has the SEND_SMS permission and receives broadcast intents via a
statically declared receiver with the same action filter as declared in the manifest file. See
Figure 4.3 for the manifest, and Figure 4.4 for the receiver class.

e BroadcastRz_Dyn has the ACCESS_FINE_LOCATION permission and receives a broad-
cast intent via a dynamically registered receiver with the same filter. See Figure 4.6 for
the receiver registration, and see Figure 4.7 for the receiver class.

e KludgeBroadcastRzDyn is the same as BroadcastRx_Dyn, except it has a filter declara-
tion in the manifest (see Figure 4.5) as well as a standard dynamic registration of the
BroadcastReceiver in the component’s Java code.

CMU/SEI-2015-TR-001 | 6

TelephonyManager tm = ...;

String tmDevice = tm.getDeviceId(); // A Source
Intent intent = new Intent();
intent.setAction("DeviceIDBroadcast");
intent.putExtra("deviceID", tmDevice);
sendBroadcast (intent); // 4 Sink

Figure 4.2: Transmitter Code Leaking Device ID Through a Broadcast Intent

<receiver android:name="static_br"
android:exported="true">
<intent-filter>
<action android:name="DevicelDBroadcast>">
</intent-filter>
</receiver>

Figure 4.3: Statically Declared BroadcastReceiver in a Manifest File

public void onReceive(Context context, Intent intent) {
Bundle extras = intent.getExtras();
SmsManager smsManager = ...;
String number = "55555555555";
String id = extras.get("deviceID");
smsManager .sendTextMessage (number, null, id, null, null);

Figure 4.4: Code for a BroadcastReceiver that Sends Text Messages

<receiver android:name="MyBroadcastReceiver_Dyn" android:exported="true">
<intent-filter>
<action android:name="DeviceIDBroadcast" />
</intent-filter>
</receiver>

Figure 4.5: Manifest Code of KludgeBroadcastRxDyn, with Manually Added Filter for Dynami-
cally Registered BroadcastReceiver

4.5 Results

Our modified FlowDroid identified the expected flows from sources to sinks in three of the four
toy applications: BroadcastTxz, BroadcastRz Static, and KludgeBroadcastRxDyn. For these apps,
it identified the leakage of the device ID through a broadcast intent in Figure 4.2 as a tainted
source. The BroadcastReceivers in Figure 4.4 and Figure 4.7 were identified as sinks.

CMU/SEI-2015-TR-001 | 7

this.recvr = new MyBroadcastReceiver_Dyn();
registerReceiver(

this.recvr,

new IntentFilter("DevicelIDBroadcast"));

Figure 4.6: Registering a BroadcastReceiver Dynamically

public class MyBroadcastReceiver_Dyn extends BroadcastReceiver {
public void onReceive(Context c, Intent i) {
String file = "devicelDSinkFile.txt";
Bundle extras = i.getExtras();
String id = extras.get("deviceID");
// Write id to the file...

Figure 4.7: Code for a BroadcastReceiver that Writes to a File

Phase 2 analysis correctly identified two inter-application flows: (1) from the transmitter to
the statically registered BroadcastReceiver and (2) from the transmitter to the dynamically
registered BroadcastReceiver.

DidFail did not detect the dataflows from sources to sinks in the other app, BroadcastRxz_Dyn,
for reasons described in Section 4.6.

Because FlowDroid was unable to statically detect flows in BroadcastRz_Dyn, we tested this
app on a physical phone, alongside BroadcastTz. Figure 4.8 shows the log messages (from adb
logcat) when running BroadcastTz and BroadcastRz_Dyn.

D/BcastTx (28361): 0OnClick

D/BcastTx (28361): DeviceID: 35| EGEzo3

D/BcastTx (28361): Intent has been sent.

D/BcastRxDyn (28399) : 35| G003

Figure 4.8: Output of adb logcat (The Device ID Has Been Partially Redacted.)

4.6 Dynamically Registered BroadcastReceivers

Currently, for a dynamically registered BroadcastReceiver to be handled by DidFail, a dummy
static declaration of the BroadcastReceiver must be added to the manifest file so that FlowDroid
can appropriately analyze it. This dummy declaration can be added after analysis of the code
shows a BroadcastReceiver is dynamically registered, as successfully demonstrated in the test
app KludgeBroadcastRzDyn.!

IThis and the other test apps we developed for this project are available for free download at:
http://www.cs.cmu.edu/~wklieber/didfail /test-apps-dec2014/

CMU/SEI-2015-TR-001 | 8

http://www.cs.cmu.edu/~wklieber/didfail/test-apps-dec2014/

Some problems with analyzing dynamically registered BroadcastReceivers have been fixed in
the latest version of FlowDroid’s development branch. The develop branch of the standard
FlowDroid distribution? has newly added handling of some dataflows involving dynamically
declared BroadcastReceivers. Their DroidBench? test app distribution now includes two apps
(BroadcastReceiverLifecycle2 and BroadcastTaintAndLeak?), which have dynamically declared
BroadcastReceivers with taint flows that FlowDroid detects, and it detects taint flow in our test
app KludgeBroadcastRxDyn. However, at the time of this writing, the taint flow in our test app
BroadcastRx_Dyn is not detected by FlowDroid.

4.7 Future Work

We plan to modify DidFail to handle dynamically declared BroadcastReceivers in a fully auto-
mated way by integrating it with a recent version of FlowDroid and working to fix remaining
un-analyzed taint flows. We plan to investigate modifying FlowDroid to analyze the flows, or al-
ternatively, modifying the APK Transformer to automatically add this dummy declaration into
the app’s manifest file. We also plan to add analysis specific to ordered and sticky broadcasts.

https://github.com /secure-software-engineering /soot-infoflow-android
3https://github.com /secure-software-engineering/DroidBench /tree /develop

CMU/SEI-2015-TR-001 | 9

5 Flows Involving Static Fields

There are many ways that Android apps could communicate. The most direct way is for appli-
cations to send and receive intents, which are specifically designed for inter-application commu-
nication. Other, more subtle communication mechanisms can also be used to share information
between applications, including cooperative use of shared state, or covert channels such as power
usage and timing. DidFail needs to understand as many communication channels as possible,
to determine how applications share permissions.

5.1 The Issue with Static Fields

While DidFail does not detect many of these communication channels, support was successfully
added for detecting some flows through static shared fields. A static field in Java (denoted by
using the static keyword) shares its value among all instances of the class. The declaration of
static fields establishes state at the class level rather than at the instance level.

Static fields present an interesting challenge when trying to detect inter-application flows on An-
droid. Consider a hypothetical application, AppChat, that receives intents, appends the contents
of received intents to a static String holdover, and then returns the contents of holdover to
the application that originally issued the intent. This AppChat application allows two applica-
tions (A and B) to communicate with each other via proxy. A can send a message to AppChat;
that message is saved in the static field chatlog. When B sends a message to AppChat, it will
receive back the message sent to AppChat by A. Consequently, in the application set containing
A, B, and AppChat, there exist six potential inter-application flows: A— AppChat, AppChat— A,
B— AppChat, AppChat— B, A— B, and B— A.

Unfortunately, DidFail originally failed to detect some of these potential flows, due to its use
of the FlowDroid tool [2]. FlowDroid statically detects potential flows from labeled source and
sink functions in an APK. In this case, getIntent is considered a source, while setResult is
considered a sink. Consequently, FlowDroid reports a single flow from getIntent to setResult.
Notably, this result is the same as if the static field holdover had not been used at all (that is,
the received message is echoed back as the reply). Indeed, while FlowDroid does track through
static fields, it does not indicate their presence in the results. As a result, the second phase of
DidFail is unaware of the presence of any static fields in an application.

static String log = "";

private void getDataFromIntent() {
Intent i = getIntent();
String message = getString("message");
log = log + message;
Intent reply = new Intent();
reply.putExtra("STORED_DATA", log);
setResult (Activity.RESULT_OK, reply);

Figure 5.1: Simple Static Field Example (Simplified Version of AppChat Code)

CMU/SEI-2015-TR-001 | 10

Given only the flow from getIntent to setResult, DidFail understood that the AppChat ap-
plication accepts input from an application and then replies to that application based on that
input. As a result, DidFail reported the following flows: T4 — R(I4) and Ip — R(Ip). These
flows account for four of the six of the flows we described above (A— AppChat, AppChat— A,
B— AppChat, AppChat— B). Crucially missing, however, was the flow between applications A
and B, which can communicate via the static field holdover.

5.2 Adding Support for Static Field Flows

For DidFail to analyze flows involving static fields, FlowDroid needed to be modified to report
about how static fields are used in an application. Given that static fields provide persistent
state that can be both read from and written to, it makes sense to treat static fields as both a
source and a sink. In other words, if sensitive information flows from a source to a static field,
we should report the flow, and if content flows from a static field to a sink, we should report
that flow as well.

There were a number of key challenges we encountered while trying to add this feature to
FlowDroid. First and foremost, FlowDroid handles only sources and sinks that occur as function
calls. Consequently, while it is easy to mark a function as a new taint source, there is no support
for adding more general types of sources, such as those associated with a specific variable. This
limitation meant that we needed to modify the actual code associated with FlowDroid’s taint
analysis to achieve our goals.

At a high level, FlowDroid discovers flows in an application using the following steps:

1. Load source code of the application, convert the code to Jimple [4], and construct an
exploded supergraph that models interprocedural interactions. Note that a node is a state-
ment in Jimple, and an edge is directed, pointing from a node A to B, if B can succeed A
in some possible program execution. Each node also has a taint status T.

2. Scan through the graph and add an edge (), N) for every N that contains a source to a
worklist W.

3. While W is non-empty, pop edge (N1, No) from W:

(a) Given the current taint status on Ny, run the flow function on (N7, Na) to produce
the current taint status for INVs.

(b) If the taint status of Ny changed, for every child of Ny, N3, add edge (N2, N3) to the
worklist WW.

4. Use the per-statement taint information to compute the source-to-sink flows through the
application.

The majority of this algorithm is based on the general IFDS Framework for dataflow analysis [5].
The key component of FlowDroid’s instantiation are the flow functions used to propagate taint
information across edges. These flow functions, one of which is selected based on the type of
statement in question, dictate when taint information is created, propagated, and destroyed.
Consider an assignment statement x = y. If y is tainted, then we should mark z as tainted, and
if y is not tainted, then we do not mark z as tainted.

In the original FlowDroid, because all taint sources and sinks are function calls, an assignment of
the form x = y can only propagate taint, not create or destroy it. To support static fields, how-
ever, this approach must be changed. We modified the flow function for assignment statements
of the form x = y to instead have the following logic:

o If y is a static field, mark = with taint T}, where T}, is taint originating from static field y.

CMU/SEI-2015-TR-001 | 11

class Box {
String x;

3

static Box b = new Box();

Box b2 = b;
b2.x = source();
sink(b2.x);

O 0O ~NOO1TL P~ WN -

Figure 5.2: Static Fields with Aliasing

o If x is a static field and y is tainted with taint 7', add a T'— x to the list of sink results.
e Otherwise, the taint of x is set to the taint of y.

In addition, we altered the original code that seeds the IFDS algorithm with initial edges to also
add edges for assignment statements involving reads from static fields. This modification works
quite well for basic examples. FlowDroid now correctly reports the flows getIntent — holdover,
holdover — setResult; and getIntent — setResult from the Figure 5.1 example. With the static
field information now recorded as extra information flows, judgments can now be made about
inter-application flows through static fields. (See Section 5.4.)

5.3 Harder Static Field Flows

Unfortunately, this simple solution does not work in a non-trivial case. Consider the situation
where a static variable has been aliased, as in Figure 5.2. In this case, when we run the flow
function on the line b2.x = source(), we should treat b2.x as a sink because it is a static field.
It is not obvious that term b2.z is a static field, however. It is only the fact that b2.x comes
after the line b2 = b that causes it to be a static field. What this reveals is that, in the general
case, context is necessary for identifying static fields. If b2.z occurred after b2 = newBox(),
then b2.x would not be considered to be a sink on Line 8.

Naturally, whether a given term z.y.z... = t is a write to a static field is an undecidable property.
We can, however, obtain a conservative guess of which fields are static by creating an additional
FlowDroid pass that occurs before the main taint analysis. This pass, which uses the same type
of taint analysis, marks all static variables as sources and then propagates taint forward. For the
code in Figure 5.2, b would be tainted on Line 7, which would cause b2 to be tainted. Because
b2 is tainted, b2.x is also tainted. Once we finish with this initial pass, we record the results of
what is tainted in a set.

With this initial pass completed, we now have enough information to solve our aliasing problem.
We no longer need to guess whether b2.z is a static field; we can simply check whether it is
in the set of statements marked as tainted in the first pass. With this modification, our flow
function for assignment y = x now becomes the following:

e If y is a static field, mark = with taint T, where T is taint originating from static field x.

e If z is a static field OR z is in the set of tainted statements from Pass 1, and y is
tainted with taint T, add a T'— x to the list of sink results.

e Otherwise, the taint of z is set to the taint of y.

CMU/SEI-2015-TR-001 | 12

This reuse of FlowDroid’s taint analysis to find static fields turns out to be a pleasant and concise
solution. In contrast, our initial attempts at a solution in one pass that involved backtracking
were much more complex and did not generalize well.

5.4 Phase Il Static Field Analysis

Phase 1II still needs to make use of the flows through static fields information produced in Phase
I. Recall that in our original example involving applications A, B, and AppChat, DidFail found
the flows Iy — R(I4) and Ip — R(Ig), where I4 and Ip are intents issued by A and B,
respectively.

When we run modified FlowDroid on AppChat, we obtain the flows getIntent — holdover,
holdover — setResult, and getIntent — setResult, as stated earlier. Because holdover is a static
field that could persist across the handling of multiple intents, every application that reads
from holdover is tainted by every application that writes to that static field. This approach
effectively amounts to taking the Cartesian product of all reads and writes to the field. We
find that application A and B both write to and read from holdover, so taking the Cartesian
product, we get (A, A), (A, B),(B,A), and (B, B). This result means that in addition to the
flow where A and B interact with AppChat in isolation, we must now consider the case where
input from A flows to B and vice versa.

These additional flows from the Cartesian product calculation are added to the set of flows
after DidFail generates the Phase II flow equations. (Generating the Phase II flow equations is
described in detail in Section 3.3 of [1]).

5.5 Results

Our enhanced DidFail identified the expected flows from sources to sinks in a set of three toy
apps we developed, which provided the taint flow described in sections 5.1 and 5.4: AppChat,
SendSMS2, and LogWrite. SendSMS2 calls source method getLinelNumber (), which gets the
MSISDN for a GSM phone. SendSMS2 sends data it receives from AppChat into an SMS-
sending sink call. LogWrite calls source method getLastKnownLocation(java.lang.String)
and sends data it receives from AppChat into a sink method call to Log.w. DidFail finds that
both sources can reach both sinks via data flows that involve a static field in AppChat.

Figure 5.3 shows an example static field setup where FlowDroid fails to identify any flow through
the static field, and so our modifications also fail to trace taint through it. The taint flow analysis
fails to detect flows, for flows involving fields of static classes that another class gets and sets.

5.6 Drawbacks, Limitations, and Future Work

Our analysis appeared to work correctly, except for fields of static classes that another class gets
and sets, as discussed in 5.5. We plan to modify FlowDroid to detect those taint flows. While
our modifications to support flows through static fields worked quite well in most cases, there
are some additional issues with our solution. With two taint passes instead of one, that analysis
can take twice as long as the original analysis.

More critically, the FlowDroid runtime also scales with the number of sources, which means that
adding a new source for every static field read could also severely impair performance depending
on how frequently static fields are used. To evaluate how important this issue is, we tested 100
APKs that, prior to adding this new feature, were successfully analyzed within the allocated
time and memory (using virtual machines with 61 GB and FlowDroid analysis memory allowed

CMU/SEI-2015-TR-001 | 13

1 public static class staticBox {
2 public String holdoverFieldA = "";
3 3}
4
5 private static staticBox holdover = new staticBox();
6
7 public class holdingBox {
8 public String getStatic() {
9 return holdover.holdoverFieldA;
10 }
11 public void setStatic(String s) {
12 holdover.holdoverFieldA = s;
13 }
14 3
Figure 5.3: Field of Static Class; Other Class Gets and Sets Field

to take up to 32 GB). (See Section 6.) Unfortunately, the majority (66 out of 100) timed out
or ran out of heap space. Most applications make frequent use of static fields, particularly
when invoking libraries such as Google Ads. For many of these applications, an additional taint
analysis for every static field read was prohibitively expensive. In the future, we will increase
virtual machine memory size to see if it enables successful static field taint analysis of more
apps. Virtual machines with 244 GB of memory are available,’ which also have 32 virtual cores.
Future work will also develop strategies to reduce the number of reads that get traced through
the program.

As noted earlier, detecting which fields are static is undecidable and our taint-based solution is
an overapproximation. Consequently, some reported flows to static fields may not be realizable
in practice. The solution is not a strict over approximation, however, because there are some
cases where FlowDroid itself does not recognize that a flow exists at all. We cannot detect flows
that use static fields for legitimate flows missed by FlowDroid.

Finally, the current implementation does not support static fields involving arrays. This feature
should be straightforward to add, however.

6 Infrastructure Improvements

The original DidFail implementation experienced a high failure rate in the Phase 1 analysis.
Recall that Phase 1 analysis is run on each APK separately to find tainted flows in these apps.
This first step of the analysis transforms the input APK, instrumenting the callsite of intent-
sending methods with a unique ID. The transformed APK is then processed by FlowDroid and
Epicc. With this improvement, we sought to increase the success rate of APK processing in
Phase 1.

Thttp://aws.amazon.com/ec2/pricing/

CMU/SEI-2015-TR-001 | 14

http://aws.amazon.com/ec2/pricing/

6.1 The Problem

We identified several issues that contributed to a high failure rate in Phase 1. The APK Trans-
former and FlowDroid rely on the underlying Soot framework to handle reading and writing
APK files. While the APK Transformer itself rarely failed, FlowDroid often choked on the APK
produced by the APK Transformer. Moreover, some APKs encountered no explicit FlowDroid
failures, but were not analyzable in a timely fashion (the FlowDroid invocation ran out of time
or memory). These issues together resulted in a very low success rate in Phase 1. There were no
significant issues encountered with the Epicc tool. In the time since the original DidFail version
was completed in March 2014, a new version of the Soot framework was released. This new
version included significantly better facilities for handling APK files, but it was not completely
compatible with code written against the older version of Soot. A new version of FlowDroid
was also released, which used the new version of Soot.

6.2 Porting Phase 1

Our first step was to port the DidFail changes to the latest versions of Soot and FlowDroid.
This step involved inspecting the modifications to the old FlowDroid branch, moving them to
the latest FlowDroid branch, and then testing for correctness. Moreover, the APK Transformer
was changed to use the latest version of Soot, requiring a few source changes and further testing.

6.3 Measuring Phase 1 Performance

The next step was to create an instrumented harness for running the various components of Phase
1. In particular, we were interested in gathering data about FlowDroid, since in previous test
runs many APKs timed out during FlowDroid processing. A small test harness was developed
in Python for running various Phase 1 components (the APK Transformer, Epice, FlowDroid,
etc.) with various parameters and with a specified timeout. This harness also measured system
metrics (e.g., memory usage, CPU usage) while the DidFail analyses were running.

6.4 Initial Testing

A selection of 90 APKs was chosen randomly from a large set, with the goal of running them
through both the old and new versions of DidFail to evaluate the effectiveness of our changes. A
machine was provisioned from Amazon EC2 to run the test because it was difficult to secure time
on a machine locally with enough resources. This machine was equipped with 4 cores and 32
GB of memory. FlowDroid was allocated 16 GB of memory (through the heap space parameter
to the JVM) and a 15-minute timeout. APKs were processed by the APK Transformer before
being sent to FlowDroid. The graph in Figure 6.1 summarizes the results of this test.

The number of APKs successfully processed by FlowDroid roughly tripled from 16 to 61 with
very few failures. A few APKs were skipped due to errors in the transformation stage. There
were 21 APKs that timed out during FlowDroid analysis—5 more than timed out in the initial
run. The smaller number of timeouts in the initial run may be explained by the high failure
rate; if more APKs hadn’t run into runtime exceptions, they may have eventually timed out.
This test run showed that our modifications substantially improved the baseline success rate of
Phase 1 analysis.

CMU/SEI-2015-TR-001 | 15

FlowDroid

80 B NEW
EOLD
2 60
o
<
(o]
5 40
o
5
Zz 20

Success Failure Timeout Skipped

Figure 6.1: Results of FlowDroid Test Run, With and Without Modifications

6.5 FlowDroid Performance Tweaks

Next, we investigated the 21 timeouts in the FlowDroid test. By reviewing the performance
counters, we saw that these analyses consumed all the memory allocated to them (16 GB) and
were unable to make further progress.

The first thing we tried was vertical scaling. We provisioned a much larger machine and ran
FlowDroid again on one of the timed-out APKs. This run was not productive. Despite allocating
nearly 170GB of memory to the process and disabling timeouts, the analysis reached the same
state as before: consuming all allocated memory and making next to no progress. Figure 6.2
shows memory usage over time (approximately 2 hours) for that analysis attempt.

Memory Usage
200

150

GB 100

50

Time
Figure 6.2: Results of the FlowDroid Test Run on a High-Performance Machine

It was clear that the analysis itself needed to be tuned. Recall that FlowDroid seeks to construct
paths between sources and sinks in an application. Two fundamental aspects we could tweak
were the source/sink identification process and the pathfinding process. Regarding the former,
we could try to reduce the number of sources and sinks by filtering them in some fashion.
Regarding the latter, we could reduce the precision of the pathfinding process. Of course, this
tuning impacts the quality of the analysis. Filtering the sources/sinks may cause FlowDroid to
miss a potentially dangerous flow. Dumbing down the pathfinding bears this risk as well, and
carries the additional risk of introducing false positives.

Nonetheless, we were interested in determining how much tuning FlowDroid required to process
the remaining 21 APKs. We provisioned the same machine as before (32 GB of memory, 4
cores), and maintained the same timeout (15 minutes).

CMU/SEI-2015-TR-001 | 16

Source/sink filtering resulted in 9 out of the 21 APKs getting successfully processed by Flow-
Droid. Source/sink filtering uses the FlowDroid command-line parameters nocallbacks and
layoutmode. The first disables the emulation of Android callbacks (due to button clicks, GPS
location changes, etc.), while the second ignores Android GUI components, like input fields, as
dataflow sources.

Tuning the pathfinding precision by setting the aplength parameter resulted in six of the twelve
remaining APKs succeeding. The aplength parameter accepts an integer and sets the Flow-
Droid access path length. Consider the Java statement X.Y.Z = 5. The left-hand side of the
assignment statement has an access path length of 2. Using this parameter, one can configure
how deeply FlowDroid will search access paths when tracking taint. With an access path length
of 0, all the fields of an object referenced by a variable are conflated, potentially resulting in
many false alarms.

Using the nopaths parameter was required for the remaining six APKs to make it through
FlowDroid without timing out. The nopaths parameter causes FlowDroid to invest no effort in
constructing accurate paths. Rather, it will simply report source/sink pairs.

Additional options to improve performance are described on the FlowDroid webpage.! For future
testing, we will compare these options in terms of precision versus computation requirements,
as we did for the work discussed in this report.

6.6 Conclusions and Future Work on Infrastructure Improvements

We substantially improved the success rate of Phase 1 analysis and investigated the performance
of FlowDroid. We found in many cases that vertical scaling is not a viable solution to FlowDroid
timeouts. Moreover, we found that some APKs will not yield to (timely) FlowDroid analysis
without very liberal compromises on path precision.

There are two broad directions for future work in this area. First, more effort can be invested in
Phase 1. FlowDroid could potentially be made to be more resource efficient. Also, more config-
uration options could be added to FlowDroid to allow more granular tuning of the pathfinding
process. Further, the results reported here do not include the modifications made as part of
the rest of the project (initial enhancements for analysis of dataflows that traverse shared static
fields, Service components, and BroadcastReceiver components). These additions increase the
work required by the Phase 1 analysis, in some cases non-trivially. At the time of this writing,
preliminary results show increased timeouts when FlowDroid is run with these additions using
the same hardware configuration. In summary, building a Phase 1 analysis that accurately finds
a wide variety of flows, in a timely fashion, is a difficult problem — one that requires a variety
of compromises.

Next, Phase 2 analysis needs some attention. There are some interesting questions yet to answer.
How does tuning down the precision of Phase 1 affect Phase 2 results? Now that more APKs
can be processed by Phase 1, can we find legitimate, inter-application flows in the wild with
Phase 2 analysis?

Thttps://github.com /secure-software-engineering /soot-infoflow-android /wiki

CMU/SEI-2015-TR-001 | 17

https://github.com/secure-software-engineering/soot-infoflow-android/wiki

7 Related Work

Felt et al. [6] found that about one-third of Android apps (of the 940 they tested) asked for more
privileges than they actually used. They also found evidence that one cause of over-privilege
is developer confusion, in part due to insufficient Android API documentation. Malicious apps
can use permission re-delegation attack methods [7] that, when successful, take advantage of a
higher-privilege app performing a privileged task for an application without permissions. The
Epice [3] tool precisely analyzes inter-app communication in Android. By looking at intents
sent and intent filters (both declared in the manifest file and dynamically registered in the case
of BroadcastReceivers), Epicc can detect vulnerabilities due to app communication, such as
activity hijacking. Although it examines vulnerabilities due to intents, the Epicc analysis alone
does not trace and identify data flows between sources and sinks. TaintDroid [8] does real-time
taint tracking to dynamically detect data leaks, including flows that traverse multiple apps.

The most similar work to DidFail is IccTA [9],! which was developed at roughly the same time as
DidFail. Like DidFail, IccTA statically analyzes app sets to detect flows of sensitive data. IccTA
uses a single-phase approach that runs the full analysis monolithically, as opposed to DidFail’s
compositional two-phase approach with fast install-time analysis. IccTA is more precise than the
current version of DidFail. Because of its greater context sensitivity, it does less overestimation
of tainted data reaching sinks.

8 Conclusions and Future Work

Improvements to DidFail helped it succeed with more applications and detect more flows. These
improvements focused on static fields, BroadcastReceiver components, Service components, and
integration with new versions of Soot and FlowDroid. The new setup for instrumented cloud-
based testing enables us to take advantage of Amazon’s powerful virtual machines and to use
virtual machines in parallel for faster test completion. We will continue to use the instrumen-
tation in the new setup to monitor and optimize DidFail’s performance. DidFail was modified
to use new versions of FlowDroid and Soot, which include a better module for converting be-
tween Android DEX representation and Jimple intermediate representation. The new version
of DidFail was able to successfully process three times as many apps as it was able to process
previously.

The enhancements discussed in this report move us significantly closer to the goal of analyz-
ing taint flows through all types of components and shared static fields. There are still more
dataflows that need to be detected and analyzed, but our work has helped improve DidFail as
a practical security tool. With a few more improvements, we hope that DidFail can ultimately
be incorporated as part of a review process for vetting applications for malicious behavior.

1n addition to the arXiv preprint, a paper has been accepted at ICSE 2015 and will be published later this year.

CMU/SEI-2015-TR-001 | 18

References

URLs are valid as of the publication date of this document.

[1]

[4]

[5]

[6]

[7]

8]

[9]

W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “Android Taint Flow Analysis
for App Sets,” in Proceedings of the 3rd ACM SIGPLAN International Workshop on the
State Of the Art in Java Program analysis (SOAP), October 2014. [Online]. Available:
http://doi.acm.org/10.1145/2614628.2614633

C. Fritz, S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein, Y. le Traon, D. Octeau,
and P. McDaniel, “FlowDroid: Precise Context, Flow, Field, Object-sensitive and
Lifecycle-Aware Taint Analysis for Android Apps,” in Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation, January
2014. [Online]. Available: http://www.bodden.de/pubs/far+14flowdroid.pdf

D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein, and Y. L. Traon,
“Effective Inter-Component Communication Mapping in Android with Epicc: An Essential
Step Towards Holistic Security Analysis,” in Proceedings of the 22nd USENIX Security
Symposium (USENIX Security 13), Washington, D.C., 2013, pp. 543-558. [Online].
Available: http://siis.cse.psu.edu/epicc/papers/octeau-secl3.pdf

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot — a Java
Bytecode Optimization Framework,” in Proceedings of the 1999 Conference of the Centre
for Advanced Studies on Collaborative Research. IBM Press, 1999, p. 13.

T. Reps, S. Horwitz, and M. Sagiv, “Precise Interprocedural Dataflow Analysis via Graph
Reachability,” in Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. ACM, January 1995, pp. 49-61.

A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android Permissions Demystified,”
in Proceedings of the 18th ACM Conference on Computer and Communications Security,

October 2011.

A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin, “Permission Re-Delegation:
Attacks and Defenses,” in USENIX Security Symposium, June 2011.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. Sheth, “Taint-
Droid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smart-
phones,” in Proc. OSDI, 2010.

L. Li, A. Bartel, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, and
P. McDaniel, “I Know What Leaked in Your Pocket: Uncovering Privacy Leaks on Android
Apps with Static Taint Analysis,” arXiv preprint arXiv:1404.7431, 2014.

CMU/SEI-2015-TR-001 | 19

http://doi.acm.org/10.1145/2614628.2614633
http://www.bodden.de/pubs/far+14flowdroid.pdf
http://siis.cse.psu.edu/epicc/papers/octeau-sec13.pdf

	Acknowledgments
	Abstract
	1 Introduction
	2 DidFail
	3 Flows Involving Services
	4 Flows Involving BroadcastReceivers
	5 Flows Involving Static Fields
	6 Infrastructure Improvements
	7 Related Work
	8 Conclusions and Future Work
	References

