

Data-Driven Software Assurance:
A Research Study

Mike Konrad
Art Manion
Andrew Moore
Julia Mullaney
William Nichols
Michael Orlando
Erin Harper

May 2014

TECHNICAL REPORT
CMU/SEI-2014-TR-010

Software Solutions Division

http://www.sei.cmu.edu

http://www.sei.cmu.edu

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the
SEI Administrative Agent
AFLCMC/PZM
20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distribut-
ed in written or electronic form without requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission should be directed to the Software En-
gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

CERT® is a registered mark of Carnegie Mellon University.

DM-0001039

mailto:permission@sei.cmu.edu

.

CMU/SEI-2014-TR-010 | i

Table of Contents

Abstract ix

1 Introduction 1

2 Project Overview 3
2.1 Problem Description 3
2.2 Project Strategy 5

3 Orthogonal Defect Classification 7
3.1 Overview of IBM ODC 7
3.2 Overview HP Defect Origins, Types, and Modes 9
3.3 Evaluation of the Models 11
3.4 Conclusions and Recommendations 12

4 Mapping Study 14
4.1 Search and Selection of Publications 15
4.2 Collection and Classification 15
4.3 Discussion: Research Questions 15

4.3.1 Research Question 1: Forums 15
4.3.2 Research Question 2: Identifying Studies 16
4.3.3 Research Question 3: Research Methods 18
4.3.4 Research Question 4: Data and Validation 18
4.3.5 Research Question 5: Metrics and Models 19
4.3.6 Research Question 6: Precision and Recall 19
4.3.7 Research Question 7: Influential Papers 19

4.4 Limitations of the Studies 21
4.5 Gaps 21
4.6 Conclusions from Mapping Study 23

5 Detailed Vulnerability Analyses 24
5.1 Heuristic to Identify Design-Related Vulnerabilities 24
5.2 SYSRET Summary 25

5.2.1 Description 25
5.2.2 Impact 26
5.2.3 Solution 27

5.3 DNS Resolvers Summary 27
5.3.1 Description 27
5.3.2 Impact 28
5.3.3 Solution 28

5.4 Advanced Micro Devices/Address Space Layout Randomization Summary 29
5.4.1 Description 29
5.4.2 Impact 29
5.4.3 Solution 29

5.5 Summary of Detailed Analyses 30

6 System Dynamics Model and Simulation 32
6.1 System Dynamics Background 32
6.2 System Dynamics Model 34

6.2.1 Software Development Flow 35
6.2.3 Attention to Secure Coding Practices 36
6.2.4 CVE and CWE Dissemination and Review 37

CMU/SEI-2014-TR-010 | ii

6.3 Initial Simulation 38
6.4 Conclusions from the Initial Model Development 41

7 DDSA Results, Stage 1 42

8 Proposed Next Steps, Stage 2 43

9 Conclusions 45

Appendix A: Additional Mapping Study Results 47

Appendix B: Relevant Documents for Mapping Study 53

Appendix C: Template for Detailed Vulnerability Analysis 55

Appendix D: Selected Design-Related Vulnerabilities 57

Appendix E: Detailed Vulnerability Analysis: SYSRET 63

Appendix F: Detailed Vulnerability Analysis: DNS Resolvers 80

Appendix G: Detailed Vulnerability Analysis: AMD/ASLR 88

References/Bibliography 98

CMU/SEI-2014-TR-010 | iii

List of Figures

Figure 1: Number of Incidents Annually 3

Figure 2: Bridging Development and Operations 5

Figure 3: IBM ODC 7

Figure 4: HP Defect Origins, Types, and Modes Model 9

Figure 5: Root Cause Analysis Process 11

Figure 6: Forum Category: Conference, Journal, or Book 16

Figure 7: Frequency Count of Author-Defined Individual Keywords 17

Figure 9: Counts by Subject Area Categories in Database 17

Figure 10: Frequency Count of Publication Citations within the Group 20

Figure 11: Frequency Count for Publication Citations 21

Figure 12: System Dynamics Notation 33

Figure 13: System Dynamics Model Overview 34

Figure 14: Software Development Flow 35

Figure 15: Attention to Secure Design Practices 36

Figure 16: Attention to Secure Coding Practices 37

Figure 17: CVE and CWE Dissemination and Review 37

Figure 18: Increment Complete 39

Figure 19: Released Software 39

Figure 20: Unknown Vulnerabilities 40

Figure 21: Software to Be Patched 40

Figure 22: Country of Publication 47

Figure 23: Number of Publications by Year of Publication 47

Figure 24: Frequency Count of Indexing Keyword Phrases 49

Figure 25: Frequency Count of Author Appearance in Publication Author List 51

Figure 26: Frequency Count of Predictive Metric Used in Model 52

CMU/SEI-2014-TR-010 | iv

CMU/SEI-2014-TR-010 | v

List of Tables

Table 1: Differences in Two Software Communities 4

Table 2: SEPM and CERT Data 5

Table 3: Mapping Study Research Questions and Motivations 14

Table 4: Summary of Vulnerability Attributes 30

Table 5: Research Questions for Stage 2 44

Table 6: Journals in Which Only One Article Appeared 48

Table 7: Conferences and Number of Papers Published 48

Table 8: Keyword Phrases Occurring Once 49

Table 9: Keyword Phrases Occurring Twice 50

Table 10: Authors Appearing in the Author List of a Single Publication 51

CMU/SEI-2014-TR-010 | vi

CMU/SEI-2014-TR-010 | vii

Acknowledgments

The authors of this report thank Julia Allen, Rich Caralli, Joji Montelibano, and Dave Zubrow for
providing inspiration and encouragement for this research project.

CMU/SEI-2014-TR-010 | viii

CMU/SEI-2014-TR-010 | ix

Abstract

Software vulnerabilities are defects or weaknesses in a software system that if exploited can lead
to compromise of the control of a system or the information it contains. The problem of vulnera-
bilities in fielded software is pervasive and serious. In 2012, Software Engineering Institute (SEI)
researchers began investigating vulnerabilities reported to the SEI’s CERT® Division and deter-
mined that a large number of significant and pernicious software vulnerabilities likely had their
origins early in the software development life cycle, in the requirements and design phases. A
research project was launched to investigate design-related vulnerabilities and quantify their ef-
fects. The Data-Driven Software Assurance project examined the origins of design vulnerabilities,
their mitigations, and the resulting economic implications. Stage 1 of the project included three
phases: 1) conduct of a mapping study and literature review, 2) conduct of detailed vulnerability
analyses, and 3) development of an initial economic model. The results of Stage 1 indicate that a
broader initial focus on secure design yields substantial benefits to both the developer and opera-
tional communities and point to ways to intervene in the software development life cycle (or op-
erations) to mitigate vulnerabilities and their impacts. This report describes Stage 1 activities and
outlines plans for follow-on work in Stage 2.

CMU/SEI-2014-TR-010 | x

CMU/SEI-2014-TR-010 | 1

1 Introduction

Software vulnerabilities are defects or weaknesses in a software system that if exploited can lead to
compromise of system control or the information a system contains. The problem of vulnerabilities
in fielded software is pervasive and serious. A recent report from the U.S. General Accounting Of-
fice (GAO) shows that operational vulnerabilities have increased 780% over the past six years
[GAO 2013].

A considerable amount of work has been done on various aspects of the vulnerability issue, but prob-
lems persist and new ones continue to emerge. Much of the research conducted so far has been
somewhat narrow in focus. Secure coding standards, for example, have had high operational validity,
but the solution is narrowly focused on the coding phase. Moreover, the knowledge gained through
research that could prevent many types of vulnerabilities is significantly lagging in application. This
gap is symptomatic of a focus on reductive approaches instead of investigations that use a systems
perspective—that is, the focus is often on fixing defects once they are found in operational software
instead of examining the entire software development lifecycle to prevent them from ever occurring.

In 2012, Software Engineering Institute (SEI) researchers began investigating vulnerabilities report-
ed to the SEI’s CERT Division, which included more than 40,000 cases, and determined that a
large number of significant, pernicious, and infamous software vulnerabilities likely had their ori-
gins early in the life cycle, in the requirements and design phases. A research project was designed
to investigate design-related vulnerabilities and quantify their effects. The Data-Driven Software
Assurance (DDSA) project was launched to examine the origins of design vulnerabilities, their miti-
gation, and the resulting economic implications.

The DDSA project bridged two distinct software communities—software developers and users of
operational software—to facilitate research with a more broadly focused systems perspective aimed
at identifying root causes instead of focusing on proximate cause. A bridge between these communi-
ties is critical for systems-based research because they are quite dissimilar in motivation and have
different views of mitigation. The SEI designed the DDSA project as a joint effort between two of
its research programs: the Software Engineering Process Management (SEPM) Initiative and the
CERT Division. The SEPM Initiative provided data and expertise from the software development
community, while the CERT Division provided data and expertise gained through interaction with
the software user community.

The intent of DDSA was to align the concerns and decisions made during development with those in
operations by better understanding how decisions made earlier in the software development life cy-
cle affect the level of vulnerabilities released into production, where defects increase sustainment
costs and risk to the mission.

The first stage of this research, Stage 1, has been completed, and the results are summarized in this
report. A proposed follow-on research project, Stage 2, is also described.

 CERT® is a registered mark owned by Carnegie Mellon University.

CMU/SEI-2014-TR-010 | 2

CMU/SEI-2014-TR-010 | 3

2 Project Overview

2.1 Problem Description

Vulnerabilities in software affect everyone and are increasing at an alarming rate. Figure 1 shows
the results of the analysis of US-CERT data: a 780% increase in incidents over the past six years.
Examples of exploited vulnerabilities are abundant in news reports, and vulnerabilities have far-
reaching effects. For example, many people experienced credit card recalls due to compromised
user data from large companies, including TJ Maxx and Citibank.1 In 2012, hackers breached a
server at the Utah Department of Health and accessed thousands of Medicaid records—about
280,000 people had their Social Security numbers exposed, and another 350,000 people had sensi-
tive data stolen, including names, birth dates, and addresses.2 Sony suffered a massive breach in its
video game online network that led to the theft of personal information, including the names, ad-
dresses, and possibly credit card data of 77 million user accounts.3

These kinds of problems are not unique to commerce. They exist everywhere computers are used
and are worse where computers are connected to a network, including in the U.S. Department of
Defense (DoD) and throughout key government agencies.

Figure 1: Number of Incidents Annually

1 http://www.computerweekly.com/news/1280090525/TJMaxx-hacker-linked-to-Citibank-hack
2 http://www.esecurityplanet.com/hackers/hackers-steal-thousands-of-medicaid-records.html
3 http://www.reuters.com/article/2011/04/26/us-sony-stoldendata-idUSTRE73P6WB20110426

http://www.computerweekly.com/news/1280090525/TJMaxx-hacker-linked-to-Citibank-hack
http://www.esecurityplanet.com/hackers/hackers-steal-thousands-of-medicaid-records.html
http://www.reuters.com/article/2011/04/26/us-sony-stoldendata-idUSTRE73P6WB20110426

CMU/SEI-2014-TR-010 | 4

The economic consequences of vulnerabilities can be divided into two general types:

1. Harm caused – breaches are costly, causing mission failures, the theft of resources, and loss of
security.

2. Fixing the problem – patching known vulnerabilities is expensive and the financial costs are
growing. Growth trends show that unless we do something, there will not be sufficient skilled
staff to even deploy needed patches in the future.

Coding-related vulnerabilities are preventable and detectable, but less attention has been paid to
vulnerabilities arising from requirements and design defects. The DDSA project was charged with
addressing this problem by identifying root causes of vulnerabilities in the requirements and design
phases of the software development life cycle and introducing cost-effective changes in how soft-
ware is built and validated.

The software development and operational software user communities are frequently disconnected
from each other—often deliberately—by arms-length relationships and have many differences, rep-
resented in Table 1. Therefore, the DDSA project was staffed with representatives from both of
these communities (found respectively in SEPM and CERT) to connect known software vulnerabili-
ties to actionable practices early in the software development life cycle (SDLC).

Table 1: Differences in Two Software Communities

Community Software Development Operations

Motivation Deliver complete product on time The mission

Disruptions Defects Vulnerabilities

Costs of disruption Rework, delay Mission failure, cost of patching, diver-
sion of attention and resources

Means to address disruptions Process (prevention, early defect re-
moval, testing, etc.)

Workarounds, patches

SEI Expertise SEPM CERT

Related SEI Data Team Software Process (TSP) data CERT Vulnerability Analysis data

Figure 2 illustrates how these two communities are currently connected (shown in black text next to
arrows) vs. how they would ideally be connected (shown in light blue text next to arrows). The red
dollar signs represent the costs of fixing issues at various stages in the software development life
cycle. Note that smaller amounts of investment early in the process (represented by the size of the
dollar sign) can prevent the largest cost: responding to exploits in operational software. Further-
more, some vulnerabilities can never be fully resolved because of their pervasiveness in large-scale
releases of operational software (e.g., some early versions of Windows are still running unpatched).
The two blue-dashed ovals in the figure relate developer and operational software user activities to
the SEI initiatives having that expertise (SEPM and CERT).

CMU/SEI-2014-TR-010 | 5

Figure 2: Bridging Development and Operations

2.2 Project Strategy

Table 2 shows the data available from the SEPM and CERT areas. The SEPM program maintains
data on best practices and effort and develops models of effort and defect containment, but it has
little information about the cost and other impacts of escaped vulnerabilities, which exists to a
greater degree in the CERT Division.

Table 2: SEPM and CERT Division Data

SEPM (TSP) Data CERT Division Data

Approximately 10,000 defect records Over 40,000 uncategorized vulnerability cases

For each defect:
 find and fix effort
 phase injected
 phase removed
 ODC type
 an explicit description of the change made
 whether or not it was injected while fixing another

defect

For each vulnerability:
 descriptive title
 tracking number
 date when reported
 quick first-order estimate of how many systems

affected (impact)
 list of vendors affected
 Common Vulnerability Scoring System (CVSS)

ratings
 URLs with additional information about vulnera-

bility, particularly those that are publicly known

Development effort for design

Effort for design review

The project identified the actions below to make the best use of the available data.

 Prioritize: Use the CERT vulnerability data as the primary source and prioritize vulnerabilities
for further analysis.

CMU/SEI-2014-TR-010 | 6

 Conduct root cause analysis. Develop or adapt a method to trace vulnerabilities to root causes of
defects and potentially actionable changes in the SDLC.

 Select practices: Model the effectiveness of proposed changes in the SDLC to select those that
are the most promising to pilot. Use existing TSP process data, effort models, and defect con-
tainment models in the construction of change effectiveness models. (We later selected a system
dynamics modeling approach.)

 Verify: Pilot and evaluate the effectiveness of the changes through the SDLC. Measure the cost
and effectiveness of the specific practices at preventing or containing targeted defects.

 Validate: Close the loop in operations by evaluating how the changes affect the escape of opera-
tional vulnerabilities.

CMU/SEI-2014-TR-010 | 7

3 Orthogonal Defect Classification

One of the first focuses of the DDSA project was to complete an overview and comparison of root
cause analysis techniques. Being able to relate vulnerabilities to their design origins was a critical ca-
pability for the project. Based on the literature review of root cause analysis, we created an orthogonal
defect classification (ODC) system that reached deeply into the origins of a design vulnerability from
an ecosystem perspective and that was incorporated into our detailed vulnerability analyses.

3.1 Overview of the IBM ODC

The orthogonal defect classification system created by IBM records attributes of defects as they are
discovered and resolved [Chillarege 1992]. The attributes are shown in Figure 3 [IBM 1999]. At
discovery, the known attributes include Activity, Trigger, and Impact. Other attributes are typically
not known until resolution; these include Target, Type, Qualifier, Source, and Age. These attributes
may contain additional levels of detail that vary according to where in the life cycle the defect is
discovered or the resolution is applied. Interestingly, ODC includes the activity, but not the life-
cycle phase (recall that the project was interested in understanding requirements and design phase-
related origins of vulnerabilities).

Figure 3: IBM ODC

The attributes in the IBM ODC can be summarized as follows:

1. “Activity” refers to the process step (i.e., code inspection, function test) when defects are dis-
covered.

2. “Trigger” describes the environment or condition that had to exist to expose the defects.
3. “Impact” refers to either a perceived or real impact on users.
4. “Target” represents the high-level identity (e.g., design, code, ID) of the entity that was fixed.
5. “Type” represents the nature of the correction that was made.
6. “Qualifier” specifies whether the fix that was made was due to missing, incorrect, or extrane-

ous code or information.
7. “Source” indicates whether the defect was found in code written in-house, reused from a li-

brary, ported from one platform to another, or outsourced to a vendor.
8. “Age” identifies the history of the target that had the defect.

CMU/SEI-2014-TR-010 | 8

These attributes are further categorized to another level of detail, listed below.

1. Activity

 Requirements review
 Requirements inspection
 Design review
 Design inspection
 Code review
 Code inspection
 Unit test
 Integration test
 Function test
 System test
 Acceptance test
 Product use

2. Trigger

 Design review/code inspection triggers
 Design conformance
 Logic/flow
 Backward compatibility
 Internal document
 Lateral compatibility
 Concurrency
 Language dependency
 Side effect
 Rare situation

 Unit test triggers
 Simple path
 Complex path

 Function test triggers
 Coverage
 Variation
 Sequencing
 Interaction

 System test/acceptance test/field test triggers
 Workload stress
 Recovery/exception
 Startup/restart
 Hardware configuration
 Software configuration

1. Impact

 Installability
 Serviceability
 Standards
 Integrity/security
 Migration
 Reliability
 Performance
 Documentation

2. Target

 Requirements
 Code
 Build/package
 Information development
 National language support

3. Defect Type

 Design/code
 Assign/init
 Checking
 Alg/method
 Func/class/object
 Timing/serial
 Interface/O-O messages
 Relationship

 Requirements
 Correctness
 Completeness
 Consistency
 Ambiguity/testability

4. Qualifier

 Missing
 Incorrect
 Extraneous

5. Source

 Developed in-house
 Reused from library
 Outsourced
 Ported

6. Age

 Base
 New
 Rewritten
 Refixed

CMU/SEI-2014-TR-010 | 9

3.2 Overview HP Defect Origins, Types, and Modes

The Hewlett Packard (HP) Defect Origins, Types, and Modes model includes a classification
scheme and a practical approach to root cause analysis [Grady 1992]. The Hewlett Packard Soft-
ware Metrics Council developed the model in 1986 as a standard defect terminology that HP pro-
jects and labs could use to report and analyze defects, helping to focus efforts to eliminate defects
and their root causes. The model is shown in Figure 4.

Figure 4: HP Defect Origins, Types, and Modes Model

“Origin” refers to the first activity in the life cycle where the defect could have been prevented, not
where it was found. “Type” refers to the area, within a particular origin, that is responsible for the
defect. “Mode” is a designator of why the defect occurred (this level of the model was not widely
used within HP).

The root cause analysis includes three stages: pre-meeting, meeting, and post-meeting. The actions
associated with each stage are listed below.

1. Pre-meeting

 Identify the division’s primary business goal.

 Have the division champion and root cause facilitator analyze data.

 Have the champion send out the meeting announcement and instructions to engineers, ask-
ing them to do the following:

a. Pick two defects from their code related to the chosen defect categories.

CMU/SEI-2014-TR-010 | 10

b. Think of ways to prevent or find defects sooner.

2. Meeting

 State the meeting’s goal. Use insights gained from failure analysis data to improve devel-
opment and support practices.

 Perform issues selection (10 minutes).

 Review the defects brought to the meeting (15 minutes).

 Perform analysis (15 minutes).

 Take a break (10 minutes).

 Brainstorm solutions (10 minutes).

 Test for commitment (10 minutes).

 Plan for change (10 minutes).

3. Post-meeting

 Have the division champion and root cause facilitator review meeting process.

 Have the division champion capture software development process baseline data.

The process can be summarized as follows:

 Categorize defects using the HP model.

 Choose specific, high-risk defect areas as targets for process improvement.

 Engage in root cause analysis to determine the causes of these categories of defects.

 Generate a defect prevention plan, with action items, for major defect areas.

 Apply the Software Testing Focus model as described to determine testing focus for the next
project.

 Determine action plans and assign owners.

 Execute the plans during the next project.

 At the end of the next project, categorize again and re-evaluate the defect trends.

 Document changes.

CMU/SEI-2014-TR-010 | 11

Figure 5: Root Cause Analysis Process

3.3 Evaluation of the Models

The IBM approach provides a thorough analysis of defect causes and effects throughout the life cy-
cle. However, it requires

 substantial training

 substantial administrative and technical support

 substantial planning to implement

 the entire life cycle to be accessible to the investigators before it can be fully applied

Although this approach can be highly effective, it was not practical for the DDSA project given the
limited resources and access.

The IBM ODC model may be more appropriate for an organization that has

 a dedicated resource

 engineers who are convinced that defect analysis will benefit their project

 sponsors willing to invest in the effort it takes to implement IBM ODC successfully throughout
the SDLC

The HP model has several benefits, described below.

 The process for using the HP model is well documented and intuitive.

CMU/SEI-2014-TR-010 | 12

 The model is specifically designed to maximize the possibility for process improvement and
incremental change. The HP model can be used by engineers who have never done defect anal-
ysis and taught in a short workshop, since each step in the process clearly suggests the next
step. With a modest investment, it is possible to get an idea about defect trends and identify fo-
cus areas for future improvement.

These notable omissions may be observed from the IBM ODC approach:

 Design and architecture are not considered targets.

 Beta test is not listed as an activity.

 Type is focused on the design and code activities, with no explicit types for requirements.
Moreover, design does not distinguish between detailed implementation designs and high-

er level design concerns such as architecture.

 Remediation cost is not considered.

 Impact in terms of cost to the customer is not considered.

A primary focus of the HP model is that all defects are not created equal. Therefore, the HP process
puts emphasis on defect prevention and early defect detection in the front end of development (re-
quirements and design). The emphasis is on what can be done to improve and better engineer the
software development and testing in the future.

3.4 Conclusions and Recommendations

The IBM ODC model is designed for use throughout the life cycle of a product, while the HP model
is focused on the requirements and design phases. The HP approach is aligned with the DDSA life-
cycle analysis, but does not serve all of our project goals.

For our work, we determined that triggers and impacts are essential to the economic analysis, and
we decided to identify the Target, Type, and Qualifier. Gathering Type information was important
because there were a number of defects from different sources. Type was a way to categorize and
sort defects as we looked for commonality. In the future, we may need to adapt to a Type taxonomy
better suited to early life-cycle phases.

We included the following attributes in our ODC for our detailed analysis of selected vulnerabili-
ties:

 Impact – used in the sense of the defect “symptom.” Our focus was on defects leading to secu-
rity vulnerabilities. This was used to determine the operational cost of the defect.

 Operational cost – included the operational cost of the defect, including patch deployment,
down time, opportunity cost, or other damages. This cost is external to the development.

 Source – provided some insight into the origin and frequency of the defect/vulnerability prior to
development. “Development” was used to mean coding to implement a software design and
subsequent testing.

 Origin – used in the sense of a phase where a defect might have been recognized or prevented.

 Activity – indicated what work was being performed when the defect entered the system.

 Type – provided a classification scheme to identify classes of defects that might be addressed
by process changes.

CMU/SEI-2014-TR-010 | 13

 Target – what had to be changed. We were concerned with pre-development products including
requirements, standards, and preliminary designs. Target could include changes to software,
procedures, documents, or standards.

 Fix cost – indicated the direct cost of identifying the defect and implementing and deploying a
patch or fix. This cost is primarily borne internally by the project or organization.

CMU/SEI-2014-TR-010 | 14

4 Mapping Study

A systematic mapping study is a study of studies that adds unique knowledge by answering ques-
tions that cannot be answered by a single study, or even a subset of studies. Through a comprehen-
sive examination of all published research on a topic, a variety of higher level questions can be ex-
plored in a reliable and repeatable manner, such as the identification of strengths, limitations, and
gaps in the current research.

Mapping studies generally include these four basic stages:

1. Search – Identify the primary studies that may contain relevant research results.

2. Include/exclude – Select the appropriate primary studies from these after
further examination.

3. Assess quality (bias/validity) – Where appropriate, perform a quality assessment of the select-
ed studies.

4. Summarize – Affinitize and summarize results (typically along some dimension of interest).

The mapping study conducted for the DDSA project examined the published literature on the subject of
predicting the presence or level of security vulnerabilities in software packages. We surveyed the litera-
ture to determine what was known about early indicators of vulnerabilities; that is, what is known when
vulnerabilities become visible that might be actionable?

The research questions in the mapping study that we investigated and the motivations for each are
listed in Table 3. A discussion of the results is provided in Section 4.3.

Table 3: Mapping Study Research Questions and Motivations

Research Questions Motivation

Q1. In what forums does the research appear? Identify the sources a researcher or practitioner should review to
remain current in the field and a researcher should consult prior to a
systematic literature review.

Q2. How easy is it to identify relevant vulnerability
 prediction studies in journals and conference
 proceedings?

Identify shortcomings of internet-based searches to identify software
vulnerability prediction papers.

Q3. What research methods have been applied to
 vulnerability prediction studies?

Identify the scope of validation with respect to the research ap-
proaches used. If a particular method has dominated, are there op-
portunities to apply others productively? Could the data possibly be
aggregated in meta-studies?

Q4. What sources of data have been used to develop
 and validate models?

Identify the scope of validation for the current research; identify gaps.
For example, do the studies apply to a variety of different applica-
tions or only a few? Open source vs. closed source? Network vs.
embedded systems?

Q5. What types of metrics and models have been
 constructed and tested?

Identify types of models and metrics that have been used, searching
for trends as well as opportunities for new directions in the research.

Q6. What kinds of precision and recall have the stud-
ies indicated?

Identify the ranges of performance in vulnerability prediction models
to determine scope for further study and improvement. Are models
performing adequately, or is there need for additional study?

Q7. What are the most influential papers in the
 field?

Identify the papers and topics considered to be the most important.

CMU/SEI-2014-TR-010 | 15

4.1 Search and Selection of Publications

The principle criterion for including a journal article or conference presentation in this study was
that it directly addressed research in predicting the presence or density of vulnerabilities in software
products. Papers focused on defects or faults in general were only included if the paper also specifi-
cally predicted cybersecurity vulnerabilities. Papers evaluating methods for finding, identifying, or
removing vulnerabilities were only included if they had estimates of vulnerability densities or vul-
nerable components prior to or after application of the methods. That is, the papers needed to esti-
mate the effectiveness of the methods using metrics such as yield, false positives and false nega-
tives, or precision and recall to be included.

Only papers that used “vulnerability” in the sense of a cybersecurity breach or potential breach were
included. Papers that use the term “vulnerability” exclusively in the more general sense were ex-
cluded; this excluded all papers that did not expressly address software engineering concerns.

Some papers appeared to report the same or closely related studies in multiple venues. For our pur-
pose these were all included because we did not intend to perform meta-statistical analysis on the
data sets. While this choice may bias counts, we provided citation counts to guide others in deciding
which papers and topics are of influence or importance.

In May 2013, we conducted a search using SciVerse Scopus for each of the keywords “software,”
“prediction,” and either “vulnerability” or “vulnerabilities” in either the title or body of the text. The
subject area excluded unrelated disciplines. A manual review identified individual authors and pub-
lication venues not relevant to the study. After these were added to the exclusion criteria, 48 results
remained.

The next step of selection involved manually screening the title and abstract. We reasoned that if the
primary focus of the paper was vulnerability prediction, it should be discernible from the abstract
and title without a detailed reading of the paper. The title and abstract of each paper were examined
for relevance using the inclusion and exclusion criteria. The effect was to remove papers that used
“vulnerability” in a more general sense, failed to report some sort of prediction performance, or re-
ported on non-software artifacts (e.g., hardware). This reduced the total count to 38 papers.

4.2 Collection and Classification

The data we collected fell into two broad categories: data associated with the publication or author
and data associated with the research methods and models. For each of the candidate papers from
the initial search, the data listed below were retrieved directly from SCOPUS. For the documents
passing the initial cuts, references and citations were also extracted.

 document type (book, article, conference
paper)

 conference name, date, and location (if ap-
plicable)

 source title, volume, issue

 page start and page end

 article title

 author keywords

 index keywords

 abstract

 link (if available)

CMU/SEI-2014-TR-010 | 15

Each of the papers was then read and coded using these broad categories:

 Prediction model/tool – described a method or a specific tool

 Requirements – evaluated requirements process or attributes

 Design – evaluated design process or attributes

 Vulnerability type – described the types of vulnerabilities found

 Defect levels – report defect density or prediction of defective components

 Model inputs

 Static analysis – used static analysis (size, complexity, and so forth)

 Developer behavior and motivation – used measures of developer’s behavior

 Development metrics – used development metrics (e.g., churn) in the prediction model

 Component interactions – used component interactions in the prediction model

 Mixed or novel techniques – used a mixture of inputs or estimates of usage

4.3 Discussion: Research Questions

This section discusses how the collected data address the research questions enumerated in Table
3. We do not include a meta-statistical aggregation because the studies in this report do not use a
consistent set of predictor factors and models. The object of a meta-analysis is to apply statistical
methods for the purpose of integrating the findings from multiple studies. That is, when consid-
ered separately, individual studies may lack statistical power to answer questions such as, “Does
X affect Y?” and “By how much?” By aggregating results from similar studies, a meta-analysis
might better answer these questions and perhaps address an additional question: “Are there other
factors that explain the variation among the studies?” Aggregation, however, is valid only when
homogeneous studies supply raw or statistical summary data and when the source of heterogenei-
ty is limited to a well-understood subject partition [Pickard 1998].

The body of research includes many local and speculative ideas about the prediction of vulnera-
bilities, but until a more coherent and systematic base of research is conducted, our ability to gen-
eralize and systematically analyze the results is limited. Therefore, the following discussion of the
research questions does not include meta-analysis. Additional detailed results from the mapping
study are available in Appendix A.

4.3.1 Research Question 1: Forums

Q1: In what forums does the research appear?

The publications were examined to determine the country of origin, publication category (book,
conference, or journal), and the names of the conferences or journals in which they were pub-
lished. As shown in Figure 6, the majority, 17, of the publications appeared in conference pro-
ceedings, followed by 11 in journal articles, and 2 in books.

CMU/SEI-2014-TR-010 | 16

Figure 6: Forum Category: Conference, Journal, or Book

Among the journals, each paper appeared in a different journal. The most notable journals were
IEEE Transactions on Software Engineering and Empirical Software Engineering. Table 6 in Ap-
pendix A lists all the journals in which the publications appeared, while Figure 21 shows the pub-
lications by country of origin.

Among conferences, only the International Symposium on Software Reliability Engineering and
ACM Conference on Computer and Communications Security appeared more than once, with
four and three publications, respectively. Nine conferences included only a single relevant paper.

The two major conferences were the forums for about 41% (7 of the 17) conference papers. Only
in 2008 did multiple papers appear in the same conference (two each in the International Sympo-
sium on Software Reliability Engineering and the ACM Conference on Computer and Communi-
cations Security). These two conferences were most active in this subject; however, the publica-
tions appear broadly and without concentration. Table 7 in Appendix A lists all the conference
and the counts of publications by conference.

Conclusion: No conference or journal can be considered a leading source. The lack of a focusing
forum suggests that there may not yet be a research community concentrated on this subject.

4.3.2 Research Question 2: Identifying Studies

Q2: How easy is it to identify relevant vulnerability prediction studies in journals and con-
ference proceedings?

A broad search using the term “vulnerability” has many false finds because the term also occurs
in the context of security vulnerability, and the term “vulnerability” may not be used at all in the
keywords. Alternate terms included “attack prone,” “thread,” and “risk.”

The keyword “vulnerability prediction” appeared in only seven of the publications, “vulnerabil-
ity” alone in four, “software security” appeared in three, and “prediction” in two. Variations of
“vulnerability” included “vulnerability prediction” (seven), “vulnerability measure” (two), “vul-
nerabilities” (two), “web application vulnerabilities” (two). In total, “prediction” in some form
occurred in only nine of the publications.

0 5 10 15 20

book

Journal

Conference

Forum Category

Book

CMU/SEI-2014-TR-010 | 17

Searching only the keywords for “vulnerability” or “prediction” is, therefore, inadequate to find
the majority of the relevant publications. Figure 7 shows the frequency of the most common au-
thor-defined individual keywords. (Table 8 and Table 9 in Appendix A include the list of keyword
phrases that occurred once or twice.)

Figure 7: Frequency Count of Author-Defined Individual Keywords

Because “vulnerability” does not occur consistently among the keywords, searches must include
the title and abstract, at a minimum. The problem is complicated by the large number of exclu-
sions required in the SCOPUS search because the term “vulnerability” occurs in a number of sub-
jects in a number of contexts. Surprisingly, only 25 of the 30 studies were included in the subject
area “computer science” Use of “engineering,” “social sciences,” “mathematics,” or “business,
management, and accounting,” further compound the search problem (see Figure 8).

Figure 8: Counts by Subject Area Categories in Database

0 2 4 6 8 10 12 14

72 words

Analysis

Fault

Risk

Attack

Evaluation

Metrics

vulnerability

Predict

0 5 10 15 20 25 30

SUBJECT AREA

Business, Management and…

Social Sciences

Mathematics

Engineering

Computer Science
Subject Area

Most Frequent Author Keywords

 Vulnerability

CMU/SEI-2014-TR-010 | 18

Conclusion: Anecdotal reports from colleagues suggested that identifying relevant studies is dif-
ficult. This mapping study indicates that this is true not only because the publication venues are
diverse and the search cannot be concentrated in a few key venues, but also because keywords—
an essential means of locating documents relevant to the topic— are not reliable for locating the
studies. This indicates that the field lacks a common vocabulary, and that is likely to impede the
ability of researchers to build on each other’s work. This inference is also supported by the exam-
ination of the research question on influential papers in Section 4.3.7.

4.3.3 Research Question 3: Research Methods

Q3: What research methods have been applied to vulnerability prediction studies?

Although the term “experiment” occurs in several papers, the meaning appears to be that a meth-
od or tool was applied to a trial set of data. There was no randomization of subjects or use of con-
trol groups for comparison. These might be characterized as case studies with the application of
quantitative methods. Of the papers in this study, four used formal hypothesis testing, including
decision tables (or more commonly, precision and recall) and regression equations with statistical
parameters.

Conclusion: Although a variety of approaches have been reported, there is little we can do to
meaningfully compare or aggregate the results. To do so, more studies are needed with similar
analysis approaches. Consistent and complete reporting of the statistical parameters is also needed
to support meta-analysis. For example, precision and recall reports are of limited use without the
actual counts or descriptions of how the independent variables are distributed among the compo-
nents.

4.3.4 Research Question 4: Data and Validation

Q4: What sources of data have been used to develop and validate models?

Validation was performed with a handful of open-source products and a few closed-source com-
mercial products. Among the open-source products, Mozilla Web Browser, Mozilla Javascript
Engine, Linux Red Hat Kernel, and APACHE were most common. One study reported using a
suite of open-source web applications. Among those using closed-source applications, authors
reported using Cisco software system, Windows Vista, Internet Information Services (IIS), an
unnamed large mobile application, and T. Three of the studies used the National Vulnerability
Database to identify known vulnerabilities.

Conclusion: Open source is popular because it provides an available source of data. The open-
source data, however, is of a limited kind, constraining the model constructs. That the same large
open-source applications are often studied raises some generalizability questions. While the data
sources are diverse, they are also limited in number and in type. Owners of closed-source applica-
tions are often reluctant to expose their source code or development process to scrutiny. The data
available from these sources appear to constrain the types of models researched.

CMU/SEI-2014-TR-010 | 19

4.3.5 Research Question 5: Metrics and Models

Q5: What types of metrics and models have been constructed and tested?

Models used included regression, multiple regression, logistic regression decision tree, random
forest, and Bayes. One model, SAVI, predicted defect density. One paper examined patterns of
input sanitization to SQL. SAVD used static analysis as the predictor with the National Vulnera-
bility Database. One study applied text analytics, another applied data mining and machine learn-
ing, while yet another surveyed developers regarding intended use of practices. See Appendix B:
Relevant Documents for more information about the papers referred to in this section.

Neuhaus’ paper examined existing vulnerability data to calibrate a tool, Vulture, that was applied
to Mozilla. A key finding was that vulnerability history did not predict future vulnerabilities in the
same component, but that similar patterns of imports and procedure calls did, suggesting repeated
design implementation problems. Shin 2008 examined correlation between complexity and vul-
nerability in Mozilla and found weak correlation. Shin 2011 used a broader set of metrics. Zim-
merman 2010 also applied a broad set of metrics to analyze Windows Vista, finding high preci-
sion but low recall with classic metrics, but dependencies predicted vulnerabilities with low
precision and higher recall.

Code size, code or structural complexity, code churn (or change), complexity, and dependency
analysis were featured prominently. Also included but less common was the history of defects and
vulnerabilities reported post release. One study included measures of developer communication
and network centrality.

Conclusion: Vulnerability density as a metric was uncommon in the reports studied. More com-
mon was the determination of a module as vulnerable or not vulnerable. Rather than reporting
correlation coefficients, the most common results used decision tables, usually as recall and preci-
sion although some used true positive, false positive, true negative, and false negative. Vulnerabil-
ities, the dependent variable, were problematic in that they are somewhat rare, including only 5-
15% of the defects (in Shin and Williams 2011). Estimates of vulnerability density, however, vary
widely and no reports on ranges or correlation between vulnerabilities and defects were included
in this mapping study.

4.3.6 Research Question 6: Precision and Recall

Q6: What kinds of precision and recall have the studies indicated?

Studies using conventional metrics typically report precision >0.8 and recall <0.2. The exception
was a study employing text analytics that found a much higher recall approaching 0.8.

Conclusion: This suggests that conventional metrics miss a very high portion of the vulnerabili-
ties, but a text analytic approach applied to the source may improve results. This, however, must
be considered with some caution because the studies are somewhat different and involve different
source code. This is an area where more research may be useful.

4.3.7 Research Question 7: Influential Papers

Q7: What are the most influential papers in the field?

CMU/SEI-2014-TR-010 | 20

One measure of influence is the citation counts overall and within the group (see Figure 9 and
Figure 10). Neuhaus 2007 (“Predicting Vulnerable Software Components”) is most cited both
overall and within the group, with 33 overall and 10 within the group. Toyssy 2006, which ad-
dresses smartphones, is second overall, but is not cited within the group. The within-group cita-
tions, shown in Figure 9, suggest a core group of Neuhaus, Shin, Zimmermann, Gegick, Chen,
and Ngueyen as the lead authors. Williams appears frequently as a secondary author on the cited
papers and first overall in authored papers. See Appendix B: Relevant Documents for more
information about the papers referred to in this section.

Among this core group, the most cited papers are Neuhaus 2007 and Shin 2000. Zimmerman 2010
and Shin 2011 each received four in-group citations.

Conclusion: Citation analysis has been argued to have some value in measuring quality and to be
useful in identifying invisible colleges that form around specialty subjects [Lindsey 1989]. How-
ever, citation counts as a measure of influence have been criticized for a many reasons [Mac-
roberts 2010]. These problems include but are not limited to not actually citing the true influences,
bias in selection of citations, citation of secondary sources rather than the primary source, the
“Matthew Effect” whereby well-known works and authors are over represented, and not citing
informal influences (for example discussions between an advisor and a student). The information
we gathered should be viewed with these arguments in mind.

Figure 9: Frequency Count of Publication Citations Within the Group

0 2 4 6 8 10 12

22 documents

Nguyen V.H.,2010

Chen K.,2010

Gegick M.,2009

Gegick M.,2008

Shin Y.,2011

Zimmermann T.,2010

Shin Y.,2008

Neuhaus S.,2007

Citations Within Group

CMU/SEI-2014-TR-010 | 21

Figure 10: Frequency Count for Publication Citations

4.4 Limitations of the Studies

The limited set of programs for development and verification make drawing generalizations prob-
lematic. Moreover, large open-source programs such as Mozilla seem to be preferred. While the
use of large open-source packages provides many advantages to the researcher, including a larger
supply of similar software modules, a large number of releases for longitudinal studies, a rich de-
velopment environment from which data can be extracted, and access to the source code, several
studies explicitly cautioned that the performance is domain dependent. Therefore, over-reliance
on a single package, such as the Mozilla browser, or even a single domain, such as web apps,
threatens generalizability.

A related threat shared among the studies is the potential bias to study large, highly used products
which have been in use for an extended period of time. The scale of the developments may affect
developer behaviors, design, or test conditions, biasing the types of defects remaining in the prod-
uct after release into production. Moreover, these programs may suffer a survivor bias if they dif-
fer in important ways from typical software packages. Another related threat is that the usage of
these programs likely differs from smaller programs, biasing the types of vulnerabilities likely to
be found and submitted for repair.

4.5 Gaps

The research examined in this mapping study focused almost exclusively on outcome measures,
to the exclusion of process measures. A single study examined the developer intents by survey.
This study did not, however, examine the actual behaviors. The result is that product state is
measured at various times in the process without an underlying theory or model to guide how the
product state should change from one life-cycle phase to the next. Because the models are purely

0 10 20 30 40

16 documents
Smith B.,2011

Gegick M.,2009
Ahmed M.S.,2011

Gegick M.,2008
Antunes J.,2008
Woo S.-W.,2011

Zimmermann T.,2010
Shin Y.,2011

Chowdhury I.,2011
Shin Y.,2008

Sharma V.S.,2005
Grunske L.,2008

Toyssy S.,2006
Neuhaus S.,2007

Citations

CMU/SEI-2014-TR-010 | 22

phenomenological, they suffer two substantial problems for utility and one for credibility and
generalizability.

First, the measures are late in the process (i.e., lagging). A product can be evaluated only after it
has been completed to some late life-cycle state. Second, different developments use different
practices, processes, tools, and developers. The apparent exceptions to process measures, devel-
oper network analysis, and code churn test this conclusion.

In the developer network analysis, the analysis can be performed only after the product is com-
plete; similarly, code churn can only be measured after the code has been produced. Rather than
being an in-process measure, it is a lagging indicator. Although this might be considered a process
measure, it is actually a measure of developer behavior that may correlate with some aspect of
process. The causation is also unclear as the communication patterns may result from some under-
lying difficulty. Code churn, though framed to suggest a “process” measure, is actually a size
measure of the code product. There may be aspects of process, such as design effort, that affect
the size of code churn, but only the artifact outcome is used in the models.

The third difficulty is that an underlying theory or model is not available to be examined and test-
ed. A process-informed model could be used to guide behavior toward improvement or to evalu-
ate the effectiveness of behavior changes or identify risk earlier in the development.

The difficulty of no guiding model is particularly important because the individual studies use a
narrow set of data for fitting or calibration so that generalizability is already a concern. A theory
would help frame analysis of generalizability. Moreover, the diverse set of metrics used raise the
concern that any individual study might produce spurious results by chance. The effects are not
particularly strong or convincing.

Only three of the studies explicitly addressed design issues. One focused on structural complexity.
A second used a tool to induce stress by automating simulated malicious traffic. A third addressed
modeling the performance degradation when fault-tolerant techniques or security mechanisms
(e.g., encryption) were employed. None of the papers explicitly addressed requirements. Moreo-
ver, the studies of artifacts examined only the product (e.g., code complexity) rather than the de-
sign process leading to the results. The applications of design standards, design techniques, repre-
sentations, inspections, design analysis, or design effort are ignored.

The use of defect and vulnerability history were used primarily to predict the location of other
vulnerabilities. Truth tables addressed the probability by modules, but not the overall likelihood of
vulnerabilities in the product or the expected count. Because this approach is limited, several
questions remain for future research, including the following:

 What is the range of vulnerability densities and how do they vary by domain?

 Can defect or vulnerability history be used to set prediction intervals on the remaining num-
ber of defects? For example, can very low vulnerability levels be reliably predicted from low
overall defect levels?

 Can the predictions be improved by including other data not always found in open-source re-
positories, such as defects found in test, use of specific development practices, and test cases?

 How effective and efficient would use of static or dynamic code analysis during development
be? Studies indicate static analysis has some predictive capability for vulnerabilities but have

CMU/SEI-2014-TR-010 | 23

not addressed the engineering question of cost/benefit or how to include it in the development
process. Moreover, the reports typically do not include the use of the tools as part of the de-
velopment process, but rather post development.

 How strong are the correlations between defects and vulnerabilities?

 How do the correlations between defects and vulnerabilities vary by programming language,
program size, defect density, or problem domain?

 How dependent are defect-vulnerability correlations on other conditions, such as test-case
coverage or development process?

 How do results generalize among problem domains or between open- and closed-source de-
velopment?

 What are the costs associated with false positives; that is, what level of false positives is ac-
ceptable?

4.6 Conclusions from Mapping Study

The literature in this field is difficult to locate because it has been published in a large variety of
conferences and journals with inconsistent indexing and keywords. Although there are 60 authors
identified, few have published repeatedly, and only a small core group exists. The core group pub-
lished fewer than half the documents found, while the documents outside the core receive the
most citations, and cross citations among the publications are limited. This is suggestive of a rela-
tive immaturity and lack of cohesion of the field.

Models have typically used code metrics and regression-related techniques. There is some work
with developer behavior and intended behavior, and novel techniques include text analytics. No
work has been identified that examines the requirements or design practices. Large open-source
projects have been the main source of data, although one study used Cisco software and two used
Microsoft IIS. Models that have been developed and tested tend to have high precision (low false
positives) but low recall (low true positives). That is, identified modules are likely to be defective,
but only a small fraction of defective modules are identified. Research is not yet “connecting the
dots” and getting to the root causes so vulnerabilities can be effectively prevented during devel-
opment.

The studies identified used heterogeneous models and approaches that are not suitable for a fol-
low up meta-analysis. Moreover, reporting is often in the form of decision tables rather than sta-
tistical summaries. Better methods are needed to predict vulnerability levels during and after de-
velopment, but new approaches would require more research and better connections in the
research community. The field needs continued research leading to improved prediction in a way
that directly addresses the management of development and customer assurance needs. More stud-
ies with more homogeneous methods are required if we are to someday aggregate studies for im-
proved statistical power and generalizability.

CMU/SEI-2014-TR-010 | 24

5 Detailed Vulnerability Analyses

A major accomplishment for the DDSA project in FY13 was the detailed analyses of selected
vulnerabilities from the CERT Vulnerability Notes Database.4 This work provided considerable
insight related to our research questions described below.

 Vulnerability databases have data that can be used by researchers to determine which vulner-
abilities are likely to have an origin early in the SDLC.

 Using other public sources in addition to vulnerability databases, we can objectively identify
architecture and design deficiencies and estimate impacts on multiple parties in many cases.

 We can define multiple, sensible ways to intervene in the SDLC (or operations) to mitigate
vulnerabilities and their impacts.

We used the steps listed below to perform the detailed vulnerability analyses.

1. Define a heuristic to identify vulnerabilities that likely resulted from defects injected during
the requirements and design phases of the software development life cycle.

2. Implement this process on CERT vulnerability data to identify design-related vulnerabilities.

3. Complete an initial orthogonal defect classification (ODC)/root cause analysis on the vulner-
abilities identified in Step 2.

4. Develop a template of the necessary information required for a detailed analysis of a vulner-
ability.

5. Conduct the analysis on selected vulnerabilities.

5.1 Heuristic to Identify Design-Related Vulnerabilities

The heuristic used to identify design-related vulnerability candidates was implemented as a search
filter, and then a manual inspection was performed by a researcher very familiar with the CERT
Vulnerability Notes Database. The first step was to search the database for published vulnerability
reports, excluding common terms in the title that typically indicate implementation (i.e., coding-
related) vulnerabilities:

VulNoteInitialDate is after 01/01/1970 and
field Name does not contain overflow and
field Name does not contain XSS and
field Name does not contain SQL and
field Name does not contain default and
field Name does not contain cross and
field Name does not contain injection and
field Name does not contain buffer and
field Name does not contain traversal

4 The Vulnerability Notes Database, online at http://www.kb.cert.org/ vulnerabilities/, provides timely information

about software vulnerabilities. Vulnerability notes include summaries, technical details, remediation information,
and lists of affected vendors.

http://www.kb.cert.org/

CMU/SEI-2014-TR-010 | 25

The resulting vulnerability reports were then manually inspected to de-select those that did not
appear to be design vulnerabilities. De-selected reports typically lacked sufficient information to
determine cause or had strong indications of implementation-related vulnerabilities. Finally, the
remaining reports were inspected, and those that appeared to have design causes were selected.
From this process, 30 reports were chosen as design-related vulnerabilities and placed on the re-
search list, shown in Appendix D. The team also completed an initial basic root cause analysis on
each of the vulnerabilities to confirm that they were, in fact, likely to be caused by requirements
or design defects.

The team then developed a detailed template to guide the detailed vulnerability analysis that in-
cluded the following steps:

1. Identify the vulnerability. (What happened?)

2. Identify the cast of characters. (Who?)

3. Outline the main story identifying main events. (Timeline)

4. Create a “character X event” table identifying the impact of each change in state on the char-
acter.

5. Identify ODC-related attributes (including what might have prevented or mitigated the vul-
nerability).

6. Analyze economic impacts. (What actually took place compared to what could have taken
place.)

The team selected three vulnerabilities from the table of 30 on which to do detailed analysis. The
detailed analyses are included in Appendices E-G. Peer reviews were performed of each complet-
ed detailed vulnerability analysis by at least one team member not involved in that analysis. Be-
low are short descriptions of the vulnerabilities analyzed. Some of the content in these descrip-
tions comes from the CERT Vulnerability Notes Database and reflects the analysis, impact,
workaround, and solutions at the time the associated note was originally written. Thus, the infor-
mation describing the state of mitigation or “recent” research may no longer be up-to-date.

5.2 SYSRET Summary

VU#649219: SYSRET 64-bit operating system privilege escalation vulnerability on Intel CPU
hardware

A full analysis of this vulnerability is presented in Appendix E.

5.2.1 Description

Some 64-bit operating systems and virtualization software running on Intel CPU hardware are
vulnerable to a local privilege escalation attack. The vulnerability may be exploited for local
privilege escalation or a guest-to-host virtual machine escape. A ring3 attacker may be able to
specifically craft a stack frame to be executed by ring0 (kernel) after a general protection excep-
tion (#GP). The fault will be handled before the stack switch, which means the exception handler
will be run at ring0 with an attacker's chosen RSP, causing a privilege escalation.

CMU/SEI-2014-TR-010 | 26

5.2.2 Impact

This security vulnerability affects 64-bit operating systems or virtual machine hypervisors running
on Intel x86-64 CPUs. The vulnerability means that an attacker might be able to execute code at
the same privilege level as the OS or hypervisor.

The x86-64 architecture was originally developed by AMD, with the aim of producing a 64-bit
CPU that was backward-compatible with the 32-bit IA32 architecture. This was implemented in
Intel’s Pentium processor, among others. The vulnerability exists because of a subtle difference
between AMD’s implementation and Intel’s. 5

When running a standard operating system, such as Linux or Windows, or a virtual machine hy-
pervisor, such as Xen, a mechanism is needed to rapidly switch back and forth from an applica-
tion, which runs with limited privileges, to the OS or hypervisor, which typically has no re-
strictions. The most commonly used mechanism on the x86-64 platform uses a pair of
instructions, SYSCALL and SYSRET. The SYSCALL instruction does the following:

 copies the instruction pointer register (RIP) to the RCX register

 changes the code segment selector to the OS or hypervisor value

A SYSRET instruction does the reverse; that is, it restores the execution context of the applica-
tion. (There is more saving and restoring to be done—of the stack pointer, for example—but that
is the responsibility of the OS or hypervisor.)

The difficulty arises in part because the x86-64 architecture does not use 64-bit addresses; rather,
it uses 48-bit addresses. This gives a 256 terabyte virtual address space, which is considerably
more than is used today. The processor has 64-bit registers, but a value to be used as an address
must be in a canonical form; attempting to use a value not in canonical form results in a general
protection (#GP) fault.

The implementation of SYSRET in AMD processors effectively changes the privilege level back
to the application level before it loads the application RIP. Thus, if a #GP fault occurs because the
restored RIP is not in canonical form, the CPU is in application state, so the OS or hypervisor can
handle the fault in the normal way. However, Intel’s implementation effectively restores the RIP
first; if the value is not in canonical form, the #GP fault will occur while the CPU is still in the
privileged state. A clever attacker could use this to run code with the same privilege level as the
OS.

Intel says that this is not a flaw in its CPU since it works according to its written spec. However,
the whole point of the implementation was to be compatible with the architecture as defined orig-
inally by AMD. Quoting from Rafal Wojtczuk, “The root cause of the vulnerability is: on some
64 bit OS, untrusted ring3 code can force the kernel to execute SYSRET instruction that would
return to a non-canonical address. On Intel CPUs, this results in an exception raised while still in
ring0. This exception cannot be handled safely.”6

5 Much of this impact description is summarized from Rich Gibb’s website at

http://richg74.wordpress.com/2012/06/19/us-cert-intel-cpu-vulnerability/.

6 http://media.blackhat.com/bh-us-12/Briefings/Wojtczuk/BH_US_12_Wojtczuk_A_Stitch_In_Time_WP.pdf

http://richg74.wordpress.com/2012/06/19/us-cert-intel-cpu-vulnerability/
http://media.blackhat.com/bh-us-12/Briefings/Wojtczuk/BH_US_12_Wojtczuk_A_Stitch_In_Time_WP.pdf

CMU/SEI-2014-TR-010 | 27

Clearly, many OS and hypervisor vendors with considerable market presence were affected. Mul-
tiple parties could have prevented the vulnerability as Intel’s SDM is very clear on the behavior of
SYSRET (and not every x86-64-based OS or hypervisor was affected). For example, they could
have adopted a safer transition back to the application following a SYSCALL. While originally
noted and reported by the Linux community back in 2006, the vulnerability was characterized and
easily dismissed as a Linux-specific issue. Also from Wojtczuk, “This is likely the reason why
developers of other OS have not noticed the issue, and they remained exploitable for six years.”
Intel could also have prevented the vulnerability by not introducing a dangerous re-interpretation
of how to return from a rapid system call.

5.2.3 Solution

Reading some of the references above and considering the short time window where all seems to
be fixed (from April to June 2012) might give the impression that the vendor only needed to find
(for its OS or hypervisor) a different, safer way to handle SYSRET (e.g., return other than through
SYSRET or check for a canonical address), but doing so is not straightforward. That perhaps the
same patch/approach might not work for all affected OS can be seen in the different ways the vul-
nerability can be exploited for different OS. So, each vendor must conduct its own careful analy-
sis of what computing assets are at risk or can be leveraged for an exploit and carefully re-
design/code system calls/returns to ensure safe transition from application to system and back
again. Also, as the intent of SYSCALL/SYSRET is that these calls be reserved for something only
the OS can do but for which execution performance is critical (e.g., by minimizing saving off reg-
isters, except for those actually needed by the system function being called), the OS-specific
patch(es) need to be designed and coded for execution speed as well as safe transition.

One of the vendors, Xen, has been particularly revealing relative to the considerable difficulties it
encountered in working with select stakeholders to diagnose, design, code, and test patches for
VU#649219, including providing a detailed timeline that describes an enormous amount of coor-
dination and analysis “behind the scenes,” giving rise, no doubt, to enormous frustration. (See
Appendix E for further details.)

5.3 DNS Resolvers Summary

VU#800113: DNS resolvers don't sufficiently randomize DNS query ID () or source port.

A full analysis of this vulnerability is presented in Appendix F.

5.3.1 Description

The domain name system (DNS) is responsible for translating host names to IP addresses (and
vice versa) and is critical for the normal operation of internet-connected systems. DNS cache poi-
soning, sometimes referred to as cache pollution, is a technique that allows an attacker to intro-
duce forged DNS information into the cache of a caching name server. DNS cache poisoning is
not a new concept; in fact, there are published articles that describe a number of inherent deficien-
cies in the DNS protocol and defects in common DNS implementations that facilitate DNS cache
poisoning.

CMU/SEI-2014-TR-010 | 28

5.3.2 Impact

The following are examples of these deficiencies and defects:

 Insufficient transaction ID space

The DNS protocol specification includes a transaction ID field of 16 bits. If the specification
is correctly implemented and the transaction ID is randomly selected with a strong random
number generator, an attacker will require, on average, 32,768 attempts to successfully pre-
dict the ID. Some flawed implementations may use a smaller number of bits for this transac-
tion ID, meaning that fewer attempts will be needed. Furthermore, there are known errors
with the randomness of transaction IDs that are generated by a number of implementations.
Amit Klein researched several affected implementations in 2007. These vulnerabilities are de-
scribed in the following vulnerability notes:

 VU#484649 - Microsoft Windows DNS Server vulnerable to cache poisoning

 VU#252735 - ISC BIND generates cryptographically weak DNS query IDs

 VU#927905 - BIND Version 8 generates cryptographically weak DNS query identifiers

 Multiple outstanding requests

Some implementations of DNS services contain a vulnerability in which multiple identical
queries for the same resource record (RR) will generate multiple outstanding queries for that
RR. This condition leads to the feasibility of a “birthday attack,” which significantly raises an
attacker’s chance of success. This problem was previously described in VU#457875. A num-
ber of vendors and implementations have already added mitigations to address this issue.

 Fixed source port for generating queries

Some current implementations allocate an arbitrary port at start-up (sometimes selected at
random) and reuse this source port for all outgoing queries. In some implementations, the
source port for outgoing queries is fixed at the traditional assigned DNS server port number,
53/udp.

Recent additional research into these issues and methods of combining them to conduct im-
proved cache-poisoning attacks has yielded extremely effective exploitation techniques. Pri-
marily, caching DNS resolvers are at risk—both those that are open (a DNS resolver is open
if it provides recursive name resolution for clients outside of its administrative domain) and
those that are not. These caching resolvers are the most common target for attackers, but stub
resolvers are also at risk.

5.3.3 Solution

Because attacks against these vulnerabilities all rely on an attacker’s ability to predictably spoof
traffic, the implementation of per-query source-port randomization in the server presents a practi-
cal mitigation against these attacks within the boundaries of the current protocol specification.
Randomized source ports can be used to gain approximately 16 additional bits of randomness in
the data that an attacker must guess. Although there are technically 65,535 ports, implementers
cannot allocate all of them (e.g., port numbers <1024 may be reserved; other ports may already be
allocated). However, randomizing the ports that are available adds a significant amount of attack
resiliency. It is important to note that without changes to the DNS protocol, such as those that the
DNS security extensions (DNSSEC) introduce, these mitigations cannot completely prevent cache

CMU/SEI-2014-TR-010 | 29

poisoning. However, if properly implemented, the mitigations reduce an attacker’s chances of
success by several orders of magnitude and make attacks impractical.

5.4 Advanced Micro Devices/Address Space Layout Randomization Summary

VU#458153: Graphic card drivers do not support ASLR

A full analysis of this vulnerability is presented in Appendix G.

5.4.1 Description

Advanced micro devices (AMD)/ATI video card driver software design requires known/static
address space layout and does not support address space layout randomization (ASLR); graphics
drivers are kernel on Windows so machines crash on boot. Non-randomized locations allow at-
tackers to use return-oriented programming (ROP) methods to bypass other runtime mitigations
like data execution prevention (DEP).

5.4.2 Impact

AMD video drivers were a problem because they often precluded end users (including IT organi-
zations) from running ASLR “always on,” which the CERT Division and others (e.g., Microsoft)
were encouraging as a means of reducing exposure to ROP-type attack vulnerabilities. A key to
the success of ROP-based attacks is having a sufficiently large code base with guessable content
at known addresses for the attacker to work with. The AMD video driver code base had a large
footprint (perhaps a megabyte or more—see http://support.amd.com/us/gpudownload/windows/
legacy/Pages/legacy-radeonaiw-vista64.aspx) and hence could contribute to a successful ROP-
type attack.

The incompatibility of AMD video card drivers and ASLR was becoming an increasingly im-
portant concern because of the following:

1. Video card drivers generally increase in size (new versions incorporate new features), making
more code available to successfully engineer a ROP-based attack.

2. To provide an effective defense, ASLR must be enabled for all processes. When any process
(e.g., the AMD driver) does not use ASLR, an attacker can use ROP techniques against that
process to execute arbitrary code.

3. Attackers might increasingly be drawn to try to engineer such attacks as more time passes and
the code base becomes increasingly studied and known (through leaks, OSS efforts, etc.).

4. When ASLR is not set “always on,” the end user must identify which applications will need
to be opted in, a conscious act requiring time, thought, skill, and effort and thus prone to error
(or worse, indefinite postponement).

5.4.3 Solution

1. AMD ensured that source code for the driver did not depend on “known addresses.”

2. AMD modified driver software to be compatible with ASLR.

3. AMD improved communication between its driver team and its tech support team to improve
overall responsiveness to warnings of potential vulnerabilities.

.

http://support.amd.com/us/gpudownload/windows/

CMU/SEI-2014-TR-010 | 30

5.5 Summary of Detailed Analyses

Table 4 summarizes the three vulnerabilities for which we completed a detailed analysis (see Appendices E-G for full analyses).

Table 4: Summary of Vulnerability Attributes

 VU#649219:SYSRET 64-bit OS privilege escalation
vulnerability on Intel CPU hardware

VU#800113: DNS resolvers don't sufficiently ran-
domize

VU#458153: AMD/ATI Graphic card drivers do not
support ASLR

Stakeholder
Dependencies

1. Virtualization Infrastructure (VI) users ->7 VI hosts ->
VI vendors.

2. Other users -> OSs (e.g., Microsoft Windows) on 64-
bit CPU (less explored here)

Critical Infrastructures (and other internet users) ->
DNS vendors.

Windows and internet users for whom security is im-
portant (everyone?) -> Microsoft EMET (ASLR, DEP)
+ AMD/ATI video card driver.

What's
Happening
Over Time

Internet and cloud server market continues to grow,
and so does application dependence on that market.
An undetected vulnerability opens the door to attack-
ing increasing high-value targets.

Internet use expands, encompassing more critical
infrastructures, making DNS resolvers a more tempt-
ing target.

Demand for 2D/3D video streaming and video card
driver footprints is increasing, making ROP tempting.
Security settings are getting complex. The broader
ecosystem benefits when all players adopt improved
security features.

Attack Carefully crafted code can force kernel to execute
SYSRET that would return to a non-canonical ad-
dress, resulting in a #GP interrupt with ring0 privilege.
(The exact triggers are VI vendor product specific.)

DNS cache poisoning through response spoofing
(MiTM, DoS).

An automated attack could exploit a first vulnerability
(e.g., buffer overflow) and use the resulting crash to
apply ROP against known video driver addresses to
read sensitive data or deposit malware, bypassing
runtime EMET mitigations.

Potential
Extent of
Attack

Users of cloud services dependent on Intel 64-bit
CPU-based internet servers. Vendors include Xen,
Microsoft, and others.
About 100 VI and OS products and versions are in-
volved (but not AMD and not 32-bit CPUs).

Almost everything on the internet depends on DNS
returning the right number for the right request.
Vendors included Microsoft, Linux/ICS, Sun, Cisco,
and others.
1-3% of monitored unpatched nameservers had a
poisoning event detected.

About 300 million Windows and internet users have
AMD video cards.

Underlying
Flaws

1. AMD specification of SYSRET in system developer's
manual (SDM) leaves ambiguous how CPU will be-
have during SYSRET.

2. Intel adopts a conformant but different interpretation,
which is unsafe.

3. Complexity of "the programming stack" and loose-
ness of instruction-set specification obscures attack
opportunities.

4. Vulnerability analysis process (including stakeholder
consultation and notification) is very complex.

1. Design of domain name system (DNS) protocol.
2. Inadequate randomization of transaction ID and

output port allows spoofing of DNS resolution trans-
action responses leading to DNS cache poisoning.

AMD/ATI video card driver design requires
known/static address space layout, precluding end
users (and IT) from running address space layout
randomization (ASLR) “always on.” Thus, 1) due to the
sizeable predictable footprint, users are vulnerable to
ROP attacks and 2) user sophistication and discipline
are needed to manage security settings (that are not
“always on”).

7 We use an arrow to indicate dependence among stakeholders: A->B means that stakeholder A depends on what stakeholder B does to operate securely.

CMU/SEI-2014-TR-010 | 31

 VU#649219:SYSRET 64-bit OS privilege escalation
vulnerability on Intel CPU hardware

VU#800113: DNS resolvers don't sufficiently ran-
domize

VU#458153: AMD/ATI Graphic card drivers do not
support ASLR

Mitigations 1. OS and VI vendors patch their products (examine
every SYSRET call and include a safe prologue).

2. VI hosts apply additional firewalls, ACLs, permis-
sions to limit reach of compromised hosts.

3. VI purchasers consider hybrid cloud solutions.

1. Apply patches to increase randomization.
2. Adopt DNSSEC (security extensions).

1. AMD updated source code, so driver did not depend
on "known addresses."

2. AMD modified driver software to be compatible with
ASLR.

3. Updates were released and distributed.

What
Triggered
Mitigation

Security researchers (e.g., Rafal Wojtczuk) identify
and communicate the vulnerability and risk; media
spotlights potential effects.
Coordination by security researchers, the CERT Divi-
sion, and possibly affected vendors.

Security researchers (e.g., Dan Kaminsky) identify and
communicate the vulnerability and risk; media dramat-
ically spotlights potential effects.
Coordination of simultaneous patches by security
researchers and the CERT Division.

Certain well-regarded blogging sites and security
newsletters brought unwanted (from AMD’s perspec-
tive) attention to the vulnerability, AMD’s role in it, and
potential consequences to users and the broader Win-
dows ecosystem. AMD had something precious to
lose: market share to NVIDIA should its concern for
user security be increasingly questioned.

How It Could
Have Been
Prevented

1. Provide unambiguous, safe specification for
SYSRET. (AMD CPU and SDM: improvements to
requirements development and design processes.)

2. Design CPU to be compatible not just with AMD
SDM but also with AMD CPU instruction behavior to
ensure deep compatibility. (Intel CPU: improvements
to requirements development and design process-
es.)

3. Design SDM to include adequate warning of how to
safely prologue use of SYSRET. (Intel CPU and
SDM: improvements to requirements development
and design processes.)

4. Require and verify secure VI from vendors. (VI hosts:
improvements to requirements development, design,
risk management, and vendor management processes)

5. Monitor emerging vulnerabilities and confirm wheth-
er one's products have the vulnerability. (Intel, VI
vendors & hosts: improvements to ongoing valida-
tion processes)

6. Specify policies to ensure the safe, correct, predict-
able use of SYSRET. (OS and VI vendors: im-
provements to requirements development and de-
sign processes)

1. Design DNS protocol for updates and address trust.
2. Consider low-entropy-based response spoofing and

DNS cache poisoning in threat modeling. (Improve-
ments to requirements development processes)

3. Select algorithms that provide sufficient entropy in
transaction ID and port utilization. (Improvements to
design processes.)

4. Monitor emerging vulnerabilities and confirm whether
one's own products have the vulnerability. (Im-
provements to requirements development ongoing
validation processes)

1. Identify and evaluate threats (threat modeling).
Needs to be ongoing because risks may increase
due to network effects (or, in the case of ROP, as
code footprint gets larger).

2. Leverage security enhancements offered for the
platform for which you develop (Windows VISTA
EMET). (Improvements to requirements develop-
ment and design processes)

3. Monitor emerging threats (e.g., ROP) and security
enhancements (e.g., EMET) and evaluate impact on
one's own products and design practices. (Improve-
ments to ongoing validation and design processes)

CMU/SEI-2014-TR-010 | 32

6 System Dynamics Model and Simulation

The research team began the third phase of the project, developing an initial economic model,
after conducting the detailed vulnerability analyses. We chose to construct a system dynamics
model (SDM), which allows people to study systems with many interrelated factors using stocks
and flows [Sterman 2000]. The goal of a simulation model is first to represent the normal behav-
ior of a system and then to introduce new input to see how the responses change.

Our model, created using Vensim, represents the design vulnerability life cycle and includes vari-
ables representing key influencers gleaned from the literature search, detailed vulnerability anal-
yses, and experience with TSP process. The variables influencing flow were modeled and incor-
porated into the SDM and the model was exercised using hypothetical data to assess their impacts.
The model is presented in this section after a brief introduction to the system dynamics method.

6.1 System Dynamics Background

The system dynamics method enables analysts to model and analyze critical behavior as it evolves
over time within complex socio-technical domains. A powerful tenet of this method is that the
dynamic complexity of critical behavior can be captured by the underlying feedback structure of
that behavior. The boundaries of a system dynamics model are drawn so that all the enterprise
elements necessary to generate and understand problematic behavior are contained within them.
The method has a long history and is described in Business Dynamics: Systems Thinking and
Modeling for a Complex World [Sterman 2000].

System dynamics and the related area of systems thinking encourage the inclusion of soft factors
in the model, such as policy, procedural, administrative, psychological, and cultural factors. The
exclusion of soft factors in other modeling techniques essentially treats their influence as negligi-
ble, which is often an inappropriate assumption. By taking the more holistic approach to modeling
that SDM offers over other modeling approaches, analysts can identify mitigations to problematic
behavior that are otherwise easily overlooked.

In the case of design vulnerabilities, Table 4 in Section 5 shows that soft factors (e.g., refusal to
agree there is a problem and the motivation to act brought by media attention) play an important
role in the creation, persistence, and eventual resolution of some costly design vulnerabilities.

Figure 11 summarizes the notation used in system dynamics modeling. The primary elements are
variables of interest, stocks (which represent collection points of resources), and flows (which
represent the transition of resources between stocks). Signed arrows represent causal relation-
ships, where the sign indicates how the variable at the arrow’s source influences the variable at
the arrow’s target. A positive (+) influence indicates that the values of the variables move in the
same direction, whereas a negative (-) influence indicates that they move in opposite directions. A
connected group of variables, stocks, and flows can create a path that is referred to as a feedback
loop.

CMU/SEI-2014-TR-010 | 33

Figure 11: System Dynamics Notation

Because the initial scope of our simulation efforts is on a single time through the development and
release cycle (i.e., a single increment), no noteworthy feedback loops are simulated, and thus the
balancing and reinforcing loop notations identified in Figure 12 do not appear in our model. In the
future we plan to expand the model to include feedback loops. For example, discovered vulnera-
bilities could be used to adjust or improve practices for secure design and coding. Currently, these
notions are represented as variables in Figure 13: Known Vuls in Software appears in the upper
right of the figure, and attn to secure design practices and attn to secure coding practices ap-
pear toward the left and center of the figure. The latter two variables are input-only variables that
are external to the model but that can be adjusted to drive the simulation. These two variables do
not currently receive input from Known Vuls in Software. Expanding the model to include these
feedback loops will provide the opportunity to evaluate the impact on multiple development in-
crements over time.

CMU/SEI-2014-TR-010 | 34

6.2 System Dynamics Model

Figure 12 provides an overview of the system dynamics model that we developed. The subsections that follow incrementally describe the fundamental
characteristics of this model.

Figure 12: System Dynamics Model Overview

Code Released
Software

Code to be
Fixed

passing testspassing code
insp

failing
testsfixing

code

Unknown Vuls
in Softwareintroducing vuls

in software

attn to secure
coding practices

CVE Vuls
Disseminated

CVE Vuls with
Patchdisseminating

CVE vuls
disseminating
CVE patches

discovering vuls
in sw

Code to be
Inspected

passing design
insp

patch
dissemination time

-

Known Vuls
in Software

discovering vuls
in software

fraction CVE vuls
relevant

+

Software
to be

Patched

patching
software

Code to be
Released releasing

code

+

+

Increment
Complete

completing
increment+

+

CVE Vuls to
be Reviewed

CVE Vuls
Reviewedreviewing CVE

vuls
accumulating

CVE vuls

+

+

Software
Weaknesses

Unknown

Software
Weaknesses

Disseminated

Secure Design
Practice

Weaknesses improving design
practices

arising practice
problems

disseminating CWE
weaknesses

arising software
weaknesses

+

attn to secure
design practices

-

avg vuls
associated with

weakness
-

failing code
insp

Design to be
Inspected

designing

Design to
be Fixed

failing design
insp

fixing
design

design insp
efficiency

-

+

cum patching
productivity+

Design

+

+

+

CVE Vuls
Identifiedarising

software vuls

+

coding

cum design insp
productivity

+

+
code insp
efficiency

-

+

cum code insp
productivity

+

+

design failure
fraction

+

-

+

cum coding
productivity

+
-

-

+

-

cum vul search
productivity

cum test
productivity

+

+

cum design
fixing PDY

+

cum code fixing
productivity

Secure Design
Practices Adopted<Secure Design

Practices Adopted>

-

vul dissemination
time

-

cum designing
productivity

+

System to
be Designed

effort to correct
design practices

+ vul density

-

<design insp
efficiency>

<code insp
efficiency>

- -

+

+

<Secure Design
Practice Weaknesses>

+

<Secure Design
Practices Adopted>

-

packaging and
release time

CMU/SEI-2014-TR-010 | 35

6.2.1 Software Development Flow

Figure 13 depicts a typical software development flow. Starting on the left, the designed system is
inspected, and any artifacts that fail are fixed. The rate of designing the software system and the
rate of inspection of software artifacts are regulated by associated productivity measures as shown.
The discovery of problems in the design depends on the design inspection efficiency (i.e., more
efficient inspections lead to greater detection of problems, all other things being equal). The varia-
ble design insp efficiency is underlined and italicized to indicate that it is an input parameter to the
simulation.

Figure 13: Software Development Flow

Coding is depicted toward the middle of the diagram followed by an inspection process similar to
that for the design. From the stock named Code, more detailed acceptance testing results in either
more fixes or passing of tests with an accumulation of Code to be Released. Once the increment
is complete, the code can be released. Of course, any later discovery of vulnerabilities in the code
needs to be patched and the code re-tested. Subsequent sections below deal with the implications of
inattention to secure design and coding practices, which influences the discovery of vulnerabilities
later in the lifecycle.

6.2.2 Attention to Secure Design Practices

Figure 14 highlights the effects of secure design practices on the software development life cycle.
The new part of the model is at the top of the figure. The variable attn. to secure design practices
by the developers influences both the rate of the system design and the rate at which practice
weaknesses arise in the design. The variable design failure fraction, along the middle left of the
figure, influences the ratio of design artifacts that fail design inspection. The design failure fraction
is influenced by Secure Design Practice Weaknesses and Secure Design Practices Adopted.
Note that the latter variable is represented as a stock in the upper right portion of the figure and as a
ghost variable in the upper left portion to reduce the clutter of arrows crossing in the full model
exposition.

Code Released
Software

Code to be
Fixed

passing testspassing code
insp

failing
testsfixing

code

discovering vuls
in sw

Code to be
Inspected

passing design
insp

Software
to be

Patched

patching
software

Code to be
Released releasing

code

+

Increment
Complete

completing
increment+

failing code
insp

Design to be
Inspected

designing

Design to
be Fixed

failing design
insp

fixing
design

design insp
efficiency

-

+

cum patching
productivity+

Design
coding

cum design insp
productivity

+

+
code insp
efficiency

-

+

cum code insp
productivity

+

+

cum coding
productivity

+

cum test
productivity

+

+

cum design
fixing PDY

+

cum code fixing
productivity

cum designing
productivity

+

System to
be Designed

CMU/SEI-2014-TR-010 | 36

Figure 14: Attention to Secure Design Practices

6.2.3 Attention to Secure Coding Practices

Figure 15 shows the effects of secure coding practices on the software development life cycle. The
input variable attn to secure coding practices, shown in the middle left, influences the rate of cod-
ing, the ratio of artifacts failing code inspection, and the vulnerability density in the software sys-
tem. Actually, vul density is a key variable in the model that is influenced by the secure design
practices and inspection efficiencies in the development and review processes. As shown, the vul-
nerability density influences the introduction of vulnerabilities in the software, which are initially
assumed to be unknown. Once the software increment is complete, the fact that vulnerabilities are a
problem in the product becomes known. Identifying the places in the software code where these
vulnerabilities reside allows patching of those vulnerabilities and re-release of the patched system.

passing design
insp

Secure Design
Practice

Weaknesses improving design
practices

arising practice
problems

attn to secure
design practices

-

Design to be
Inspected

designing

Design to
be Fixed

failing design
insp

fixing
design

design insp
efficiency

-

+

Design

cum design insp
productivity

+

+

design failure
fraction

+

-

+

-

Secure Design
Practices Adopted<Secure Design

Practices Adopted>

-

cum designing
productivity

+

System to
be Designed

effort to correct
design practices

+

CMU/SEI-2014-TR-010 | 37

Figure 15: Attention to Secure Coding Practices

6.2.4 CVE and CWE Dissemination and Review

Figure 16 shows the effects of common vulnerabilities and exposures (CVE) dissemination and
review. Data on CVE identification rates are used to instantiate the arising software vulnerabilities
variable in the top left portion of the figure. Once the CVEs are disseminated, software developers
can review them to discover vulnerabilities that might exist within their own systems, as shown on
the left side of the figure. New software vulnerabilities can sometimes lead to new classes of un-
known software weaknesses. The dissemination of these software weaknesses as part of the com-
mon weaknesses enumeration (CWE) resource can lead to improving the security design practices,
as shown on the bottom left portion of the figure, if an organization actually puts effort into im-
proving the design practices based on the information disseminated.

Figure 16: CVE and CWE Dissemination and Review

The overview of the model presented at the beginning of this section integrates the model segments
presented in the subsections above. The next section elaborates some of the key simulation results

Code Released
Software

Code to be
Fixed

passing testspassing code
insp

failing
testsfixing

code

Unknown Vuls
in Softwareintroducing vuls

in software

attn to secure
coding practices

discovering vuls
in sw

Code to be
Inspected

Known Vuls
in Software

discovering vuls
in software

Software
to be

Patched

patching
software

Code to be
Released releasing

code

+

+

Increment
Complete

completing
increment+

+

failing code
insp

cum patching
productivity+

Design
coding

code insp
efficiency

-

+

cum code insp
productivity

+

+

cum coding
productivity

+
- +

-

cum test
productivity

+

+

cum code fixing
productivity

vul density

-

<design insp
efficiency>

<code insp
efficiency>

- -

+

+

<Secure Design
Practice Weaknesses>

+

<Secure Design
Practices Adopted>

-

packaging and
release time

Unknown Vuls
in Softwareintroducing vuls

in software

CVE Vuls
Disseminated

CVE Vuls with
Patchdisseminating

CVE vuls
disseminating
CVE patches

patch
dissemination time

-

Known Vuls
in Software

discovering vuls
in software

fraction CVE vuls
relevant

+

CVE Vuls to
be Reviewed

CVE Vuls
Reviewedreviewing CVE

vuls
accumulating

CVE vuls

+

Software
Weaknesses

Unknown

Software
Weaknesses

Disseminated

Secure Design
Practice

Weaknesses improving design
practices

arising practice
problems

disseminating CWE
weaknesses

arising software
weaknesses

+

avg vuls
associated with

weakness
-

+

+

+

CVE Vuls
Identified

arising
software vuls

+

Secure Design
Practices Adopted

vul dissemination
time

-

effort to correct
design practices

+

CMU/SEI-2014-TR-010 | 38

from this preliminary model. While some available CVE data were used to run the simulation more
robust and comprehensive data are needed, especially in the following areas:

 CVE vulnerability discovery, dissemination, and patch production

 creation of CWE weaknesses through the analysis of CVEs, and the dissemination of those
weaknesses

 effectiveness and timeliness of patches generated in response to CVEs disseminated

 effectiveness and timeliness of process improvement approaches (improving design and in-
spection practices) generated in response to CWEs disseminated

6.3 Initial Simulation

The model was exercised on hypothetical data to assess the impact that increasing attention to de-
sign might have on the outcomes that stakeholders care about. Stakeholders might include, for ex-
ample, developers, managers of developers, acquirers, and those in operations. This was an initial
run since we intend to carefully calibrate the SDM with data from the TSP database in the future as
it becomes available. The TSP data would also provide a default calibration of the SDM when de-
ployed on an actual project. In such a situation, the default calibration would be replaced by data
from the project or similar projects as it becomes available. Nevertheless, the model simulation
results, presented in this section, tell a seemingly natural story.

Developers could choose to pay attention to security in the software design process with varying
degrees of rigor, as the variable attn to secure design practices allows in the above SDM. In the
simulation graphs that follow, we execute the model with low, medium, and high levels of atten-
tion to security and show the results for each simulation run. The simulation model is structured to
reflect the typical life-cycle sequence of source code release followed by vulnerability discovery,
patching, and re-release of the software. Figure 17 shows the fraction of the increment that has
been packaged for release.8 As the figure shows, while low attention to secure design practices may
be more efficient initially, problems occur that need to be fixed, so a low level of rigor results in
added work and a later release time than either medium or high attention to design security. How-
ever, the graph also shows that, at some point, increasing attention to design has diminishing re-
turns (i.e., modestly extending the development schedule), suggesting that there is a “sweet spot”
even for an incremental release, which is important if being first to market is an objective. Howev-
er, the difference is minimal in the simulation and relates only to the initial incremental release.

8 Future model refinements will involve multiple increments released through time.

CMU/SEI-2014-TR-010 | 39

Figure 17: Increment Complete

Of course, that initial release comes before problems are discovered in the field. As shown in Fig-
ure 18, the initial release between months 16 and 18 for the three runs is followed by patching and
re-release of the software. Because of the significant number of additional problems that occur for
lower levels of attention to secure design practices, the re-release is significantly delayed for the
medium and low levels of attention. Low attention to secure design practices delayed the re-release
(i.e., the bug fix release) until about month 27. Medium attention resulted in delays to month 24. In
contrast, high attention to security design practices led to a re-release at about month 19, a full 8
months before the low attention run and 5 months before the medium attention run.

Figure 18: Released Software

Figure 19 and Figure 20 show the reasons for the delay in the re-releases. Unknown vulnerabilities
are more prevalent in the software developed with less attention to secure design practices, result-

CMU/SEI-2014-TR-010 | 40

ing in more work in the re-releases to find and patch those problems. This preliminary, proof-of-
concept model shows that high attention to secure design pays off in the end and does not delay
initial release by much, if at all. By contrast, low attention to secure design is costly throughout the
product life cycle, resulting in a higher total cost of ownership.

Figure 19: Unknown Vulnerabilities

Figure 20: Software to Be Patched

CMU/SEI-2014-TR-010 | 41

6.4 Conclusions from the Initial Model Development

The SDM we developed of a design vulnerability life cycle included variables representing key
influencers and was exercised with hypothetical data. The initial simulation suggests that improv-
ing attention on secure design may lead to the following:

 modest improvements in “increment complete” duration (what developers care about)

 more of the released software functionality remaining available to operations (what operations
and the acquirer care about)

 reduced fix/patch backlog and thus more staff available for new product development (what
development management cares about)

 fewer latent design vulnerabilities (what all parties should care about)

CMU/SEI-2014-TR-010 | 42

7 DDSA Results, Stage 1

In FY13, the DDSA project established that a number of significant, pernicious, and infamous vul-
nerabilities likely have their origin in requirements and design activities. A qualitative research
approach was pursued with tasks falling under three major phases: literature review, detailed vul-
nerability analyses, and SDM development.

Literature review – In FY13, the project team performed a literature review addressing vulnera-
bility taxonomies (e.g., CVE, CWE), secure requirements and design practices (e.g., Microsoft
Security Development Lifecycle, Open Web Application Security Project), and estimating impacts
(e.g., COQUALMO). We also conducted a systematic mapping study on predicting the level of
design vulnerabilities. In general, the literature on design vulnerabilities is very sparse, especially
with regard to development and impact metrics, offering almost no foundation for a meta-analysis
or solution that the project could leverage.

Detailed vulnerability analyses – Given the sparseness of the research literature, we performed a
series of detailed vulnerability analysis explorations into selected design vulnerabilities to better
understand their life cycle (origin, discovery, reporting, and remediation) in context, characterizing
the vulnerabilities’ effects on major stakeholders including users, the vendors whose software con-
tained the vulnerability, and the providers and maintainers of the platform in which the software
operated. Ecosystems sampled included the following:

 virtualization and cloud software (Xen on Intel 64-bit CPUs)

 video streaming and gaming (AMD/ATI drivers on Windows)

 the internet’s own infrastructure (DNS resolvers)

This demonstrated that design vulnerabilities exist and affect many major computing ecosystems.
A recurring theme in the detailed vulnerability analyses is that the software vendors favor devel-
opment paths that tangibly and immediately serve user or market demands over alternatives that
more fully position the broader ecosystem for resilience to less tangible but growing threats. In
more graphical prose, the vendor is the captain of the Titanic with all major stakeholders on board,
steering the ship through the dense fog further and further into dangerous waters. Can the individu-
al initiative of the passengers (research analysts and other vendors and organizations acting quietly
behind the scenes) save the ship and its other passengers in time?

SDM development – In FY13, we developed an initial system dynamics model (SDM) in Vensim.
The SDM spans the life cycle of a design vulnerability from its origin in requirements and design
through operations to enable analysis and estimation of longer term impacts of multiple vulnera-
bilities under different “what if” development scenarios. Key variables influencing flow (design
failure rate, vulnerability density, inspection efficiency, new vulnerabilities discovery rate, and
productivity) were modeled and incorporated into the SDM. We then exercised the model in an
initial simulation to assess the impacts that secure design practices might have. We learned that
under hypothetical circumstances, a broader initial focus during design can benefit all parties.
While paying attention to secure design may cost a little more initially, it yields substantial benefits
to both the developer and operational communities.

CMU/SEI-2014-TR-010 | 43

8 Proposed Next Steps, Stage 2

In the second stage of this project, which depends on available SEI research and customer funding, we
propose to further develop and pilot the vulnerability life-cycle SDM using the following steps:

1. Extend the vulnerability life cycle systems dynamics model to address the following:

a. additional feedback loops (see discussion in Section 6.1)

b. multiple release increments (What are the cumulative, longer-term effects of design vul-
nerabilities?)

c. requirements elicitation (a source of emerging design vulnerabilities when the surround-
ing ecosystem changes)

d. operations incident capacity (At what point does patching overwhelm operations?)

2. Calibrate the model by estimating ranges for variables representing these key influencers of
vulnerability density:

a. defect injection rates and defect detection rates (including how such rates are affected by
particular mitigations)

b. development and operations staffing costs, established in part from mining the TSP data-
base

These variables will help assess where mitigations can most cost effectively be applied (and
provide an argument for developing and deploying such mitigations).

3. Select promising secure requirements and design practices and estimate their impacts.

Sources for practices include the FY13 literature review, public vulnerability taxonomies
(e.g., Building Security In Maturity Model (BSIMM)), and detailed vulnerability analyses.
Possible sources for data include the TSP database and estimates from the CERT Division;
however, in many cases, practice-specific impacts may have to be estimated by a user organi-
zation’s process owners on a case-by-case basis, especially for novel practices.

4. Refine the SDM through reviews and piloting. Collaboration with an external organization
would provide mutual benefits, allowing us to test our model while providing the organization
with a fully functional model calibrated with its own data and estimates.

5. Develop criteria and guidelines for intended SDM use.

CMU/SEI-2014-TR-010 | 44

The following research questions frame our planned work for Stage 2.

Table 5: Research Questions for Stage 2

Research Question Approach to answering

1. Does the vulnerability life-cycle model address the key

factors affecting design vulnerability density?

(Identified some key factors in FY13 through literature
review and detailed vulnerability analyses)

Similar factors are used by high-discipline development
teams to estimate defect density. We plan to validate that
the key variables have been covered by convening a
Technical Challenge Workshop of leaders from high-
discipline software organizations.

2. Can data for calibrating the SDM be easily obtained? Is

it domain or program specific?

High-discipline development teams (e.g., TSP teams) with-
in organizations that routinely collect and maintain such
process data should be able to establish an initial calibra-
tion of the SDM, replacing it with project-specific calibra-
tions during the first and second release increments. We
will evaluate feasibility and ease of performing such cali-
bration through pilots within high-discipline organizations.
Data for innovative practices with no usage history may
have to be estimated based on a broader statistical under-
standing of a particular organization’s development prac-
tices or by analogy with practices that have such a usage
history.

3. Are the estimates of practice costs and impacts pro-

duced for the SDM sufficiently accurate and precise to

support quality-cost-schedule tradeoffs?

(High-discipline development teams routinely make such
tradeoffs using defect density, but the economics of de-
sign vulnerabilities are likely underappreciated.)

Mine the TSP database, which now includes design prac-
tice and defect data, to independently evaluate reasona-
bleness of cost and impact estimates.

4. Can the resulting models be used (1) during project

planning to ensure adequate attention to design and in-

spection practices and (2) during acquisition to deter-

mine what incentives will help ensure contractor atten-

tion to broader program needs for security and total cost

of ownership?

Evaluate usefulness for quality-cost-schedule tradeoffs
through reviews and pilots.

CMU/SEI-2014-TR-010 | 45

9 Conclusions

Our initial research questions were effectively answered through our FY13 efforts. We confirmed
that the current ship-then-fix approach is sub-optimal and in the long term untenable. Our analyses
of vulnerabilities included examples in which vulnerabilities could never be fully eradicated from
the user community once the product was distributed. The system dynamics model we developed
showed that even at the level of a single development increment, the economics often favor earlier
attention to security-related requirements and design, as well as ongoing validation. In other words,
it is often not necessary to consider longer time scales to experience benefits that exceed the costs,
for all major stakeholders.

We began our research by surveying the research literature with a mapping study to determine
what was known about when vulnerabilities become visible and how that information might be
actionable, and we drew these conclusions:

 The programs covered tended to be large, highly used open-source programs (e.g., Mozilla),
limiting generalizability.

 Only three of the studies explicitly addressed design issues, and none addressed requirements.

 The focus was almost exclusively on outcome measures, or at best, lagging indicators, to the
exclusion of in-process measures (e.g., from design reviews), providing little information that
is actionable early in the lifecycle.

In terms of the utility of the models and results obtained, we drew these conclusions:

 Models that have been developed and tested tend to have high precision (low false positives) but
low recall (low true positives). That is, identified modules are likely to be defective, but only a
small fraction of defective modules are identified. Research is not yet “connecting the dots” and
getting to the root causes so vulnerabilities can be effectively prevented during development.

 Better methods are needed to predict vulnerability levels during and after development, but
new approaches would require more research and better connections in the research communi-
ty. More studies with more homogeneous methods are required if we are to someday aggregate
studies for improved statistical power and generalizability.

Next, in our analyses of vulnerabilities, we discovered that vulnerability databases supplemented
by information generally found on the internet often can provide sufficient information to retro-
spectively link known vulnerabilities to suspected deficiencies early in the software development
life cycle, from which indicators to monitor and processes to improve can be inferred. We can
identify multiple sensible ways to intervene in the software development lifecycle or operations to
mitigate vulnerabilities and their impacts. In fact, both the vulnerability analyses (in Section 5) and
the system dynamics model (in Section 6) suggest specific ways to intervene early in the SDLC,
often to the benefit of all stakeholders, including the developer.

A recurring theme in the detailed vulnerability analyses is that software vendors often favor devel-
opment paths that serve immediate market demands over alternatives that more fully position the
broader ecosystem for resilience to less tangible but growing threats. The costs attendant to address-
ing a vulnerability in operations, and concern over what actions competitors and customers might
take, often result in the vendor continuing to refuse to acknowledge suspected or known vulnerabili-

CMU/SEI-2014-TR-010 | 46

ties. If security analysts and the media succeed in attracting sufficient public attention to the potential
consequences, the vendor may finally be pressed to take action. The costs associated with a vulnera-
bility and its later resolution are often borne by multiple parties and over a long period of time.

In one area, the research team only partially succeeded: collecting the data needed to develop a
decision model to evaluate quality-cost-schedule tradeoffs. The system dynamics model (Section
6) largely fits the bill but was calibrated based on one coach’s experience with TSP teams. In Stage
2, we plan to make use of the TSP database, when more complete and detailed statistics relevant to
the variables used in the model and simulation are made available.

In summary, the research team demonstrated that an economic model could be constructed and cali-
brated to assist organizations conducting tradeoff analyses to compare alternative interventions. The
system dynamics model described in Section 6 models early SDLC parameters (e.g., design inspec-
tion efficiency) that can be calibrated to reflect the effects of different interventions (e.g., through
team training or process improvements) on the number of vulnerabilities entering operations. More
generally, such a model could be used by any member of a software development ecosystem to help
guide quality-cost-schedule-related decisions or in negotiations with other members. Use of the mod-
el could provide the information needed to incentivize and drive behavior toward the development
and use of software with higher levels of assured performance. In future work, we hope to create a
more encompassing economic model that can be calibrated to a particular organization’s capabilities
and vulnerability exposure and investigate how useful it can be.

CMU/SEI-2014-TR-010 | 47

Appendix A: Additional Mapping Study Results

This appendix contains detailed results from the mapping study discussed in Section 4.

Figure 21: Country of Publication

Figure 22: Number of Publications by Year of Publication

0 5 10 15 20

COUNTRY
Spain

Russian…
Portugal

India
Germany

Finland
Belgium

Australia
Singapore

Italy
China

Canada
United States

Number of Documents

Country of Publication

0

1

2

3

4

5

6

7

8

9

10

2005 2006 2007 2008 2009 2010 2011 2012 2013

Do
cu

m
en

ts

Documents by Year

CMU/SEI-2014-TR-010 | 48

Table 6: Journals in Which Only One Article Appeared

Journal

Empirical Software Engineering

IEEE Transactions on Software Engineering

International Journal of Human Computer Studies

Jisuanji Yanjiu yu Fazhan/Computer Research and Development

Journal in Computer Virology

Journal of Network and Systems Management

Journal of Systems and Software

Journal of Systems Architecture

Journal of Universal Computer Science

Ruan Jian Xue Bao/Journal of Software

Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika)

Table 7: Conferences and Number of Papers Published

Conference Proceedings Number of papers

2012 27th IEEE/ACM International Conference on Automated Software Engineering, ASE
2012 - Proceedings

1

6th International Workshop on Security Measurements and Metrics, MetriSec 2010 1

Computers and Security 1

ICST 2010 - 3rd International Conference on Software Testing, Verification and Validation 1

ISARCS’12 - Proceedings of the 3rd International ACM SIGSOFT Symposium on Architect-
ing Critical Systems

1

MetriSec’12 - Proceedings of the 4th International Workshop on Security Measurements and
Metrics

1

Proceedings - 4th IEEE International Conference on Software Testing, Verification, and
Validation, ICST 2011

1

Proceedings of the Annual Southeast Conference 1

Proceedings of the Fifth International Workshop on Software and Performance, WOSP’05 1

Second International Conference on Internet Monitoring and Protection, ICIMP 2007 1

Proceedings of the ACM Conference on Computer and Communications Security 3

Proceedings - International Symposium on Software Reliability Engineering 4

CMU/SEI-2014-TR-010 | 49

Figure 23: Frequency Count of Indexing Keyword Phrases

Table 8: Keyword Phrases Occurring Once

Attack propagation Model Theory of planned behavior

Classification and regression tree Model-based performance prediction Theory of reasoned action

Complexity metrics Model-driven security evaluation Vulnerability discovery model (VDM)

Composability Multi-cycle Vulnerability predicts

Confidentiality N-gram analysis Vulnerability-prone

Coupling Open-source project Web server

Coverage Parametric constraints Attack

Data mining Predict Attack immunity

Database Prioritization Automated text classification

Defect prediction Quality of protection Churn

Dependencies Rc-gram analysis Cohesion

Efficiency Remote code execution Complexity metrics

Empirical study Risk evaluation Component-based systems engineering

Estimation Risk prediction Cosine similarity

Execution metrics Secure development of applications Critical systems

Fault prediction Security evaluation CSF

Fault-tolerant techniques Security mechanisms Cyber security

Hotspots Security metrics Cyber-security

Inherited vulnerability Software analysis Empirical

Input sanitization Software complexity History vulnerability

Input validation and sanitization Software vulnerabilities Information security

0 2 4 6 8 10 12 14 16

201 Phrases

WEB_BROWSERS

NETWORK_SECURITY

FALSE_POSITIVE_RATES

VULNERABILITY_DISCOVERY

SOFTWARE_RELIABILITY

SOFTWARE_METRICS

SOFTWARE_ENGINEERING

COMPUTER_CRIME

COMPUTER_SOFTWARE

MATHEMATICAL_MODELS

COMPUTER_SOFTWARE_SELECTIO…

SECURITY_OF_DATA

Most Common Index Keyword
Phrases

CMU/SEI-2014-TR-010 | 50

Malicious software detection Software vulnerability prediction Performance

Metrics SQL Quantitative modeling

Microscopic parameters SQL injection

Table 9: Keyword Phrases Occurring Twice

Attack-prone Protection SysML

Complexity Quantitative evaluation Threat

Fault prediction Randomized projections Vulnerabilities

Information retrieval Reliability Vulnerability measure

Information security Risk Web application vulnerabilities

Organizational structure Secrecy Web security vulnerabilities

Payoff matrix Security Wikkawiki

Prediction Software Wordpress

Privacy Static code attributes

CMU/SEI-2014-TR-010 | 51

Figure 24: Frequency Count of Author Appearance in Publication Author List

Table 10: Authors Appearing in the Author List of a Single Publication

Al-Shaer E. Merseguer J Verissimo P. Holm H.

Caragea D. Mikhaleva U. A. Vouk M. Hovsepyan A.

Ekstedt M. Nagappan N. Walden J. Lidskii E. A.

Feng D. G. Neves N F. Zeller A. Neuhaus S.

Franke U. Nie C. J. Zhang X.F. Nguyen V.H.

Hamed H.H. Ou X. Zhao X. Nie C.

Han Z. Rotella P. Zulkernine M. Rodriguez R.J.

Helenius M. Scandariato R. Ahmed M.S. Sharma V.S.

Holler C. Sommestad T. Al-Shaer E.S. Smith B.

Joosen W. Su P. R. Antunes J. Toyssy S.

Joyce D. Taibah M. Atkison T. Woo S.W.

Kankanhalli A. Tran L.M.S. Chowdhury I. Woon I.M.Y.

Khan L. Trivedi, K.S. Grunske L. Zhang S.

Meneely A. Trubiani C.

0 2 4 6 8 10

54 Authors

Chen K.

Joh H.

Malaiya Y.K.

Osborne J.A.

Tan H.B.K.

Zimmermann T.

Chen K.

Joh H.

Shar L.K.

Gegick M.

Shin Y.

Williams L.

Number of Author Publications

Authored Papers

CMU/SEI-2014-TR-010 | 52

Figure 25: Frequency Count of Predictive Metric Used in Model

0 5 10 15

requirements

defect levels

development metrics

design

static analysis

Model Components

CMU/SEI-2014-TR-010 | 53

Appendix B: Relevant Documents for Mapping Study

Year Document Title Authors Journal Title Volume Issue

2005 “Architecture-based analysis of
performance, reliability and
security of software systems”

Sharma V.S.,
Trivedi K.S.

Proceedings of the Fifth Interna-
tional Workshop on Software
and Performance, WOSP’05

2006 “About malicious software in
smartphones”

Toyssy S.,
Helenius M.

Journal in Computer Virology 2 2

2007 “Predicting vulnerable software
components”

Neuhaus S.,
Zimmermann
T., Holler C.,
Zeller A.

Proceedings of the ACM Confer-
ence on Computer and Commu-
nications Security

2007 “Toward the use of automated
static analysis alerts for early
identification of vulnerability-
and attack-prone components”

Gegick M.,
Williams L.

Second International Conference
on Internet Monitoring and Pro-
tection, ICIMP 2007

2008 “Quantitative risk-based securi-
ty prediction for component-
based systems with explicitly
modeled attack profiles”

Grunske L.,
Joyce D.

Journal of Systems and Software 81 8

2008 “Is complexity really the enemy
of software security?”

Shin Y., Wil-
liams L.

Proceedings of the ACM Confer-
ence on Computer and Commu-
nications Security

2008 “Prioritizing software security
fortification through code-level
metrics”

Gegick M.,
Williams L.,
Osborne J.,
Vouk M.

Proceedings of the ACM Confer-
ence on Computer and Commu-
nications Security

2008 “Detection and prediction of
resource-exhaustion vulnera-
bilities”

Antunes J.,
Neves N.F.,
Verissimo P.

Proceedings - International
Symposium on Software Relia-
bility Engineering, ISSRE

2008 “Seasonality in vulnerability
discovery in major software
systems”

Joh H., Malaiya
Y.K.

Proceedings - International
Symposium on Software Relia-
bility Engineering, ISSRE

2009 “Toward non-security failures
as a predictor of security faults
and failures”

Gegick M.,
Rotella P.,
Williams L.

Lecture Notes in Computer Sci-
ence (including subseries Lec-
ture Notes in Artificial Intelli-
gence and Lecture Notes in
Bioinformatics)

5429

2010 “Searching for a needle in a
haystack: predicting security
vulnerabilities for Windows
Vista”

Zimmermann
T., Nagappan
N., Williams L.

ICST 2010 - 3rd International
Conference on Software Testing,
Verification and Validation

2010 “Multi-cycle vulnerability dis-
covery model for prediction”

Chen K., Feng
D.-G., Su P.-R.,
Nie C.-J.,
Zhang X.-F.

Ruan Jian Xue Bao/Journal of
Software

21 9

2010 “Aiding prediction algorithms in
detecting high-dimensional
malicious applications using a
randomized projection tech-
nique”

Atkison T. Proceedings of the Annual
Southeast Conference

2010 “Predicting vulnerable software
components with dependency
graphs”

Nguyen V.H.,
Tran L.M.S.

6th International Workshop on
Security Measurements and
Metrics, MetriSec 2010

2011 “Evaluating complexity, code
churn, and developer activity
metrics as indicators of soft-
ware vulnerabilities”

Shin Y.,
Meneely A.,
Williams L.,
Osborne J.A.

IEEE Transactions on Software
Engineering

37 6

CMU/SEI-2014-TR-010 | 54

2011 “Using complexity, coupling,
and cohesion metrics as early
indicators of vulnerabilities”

Chowdhury I.,
Zulkernine M.

Journal of Systems Architecture 57 3

2011 “Modeling vulnerability discov-
ery process in Apache and IIS
HTTP servers”

Woo S.-W., Joh
H., Alhazmi
O.H., Malaiya
Y.K.

Computers and Security 30 1

2011 “Objective risk evaluation for
automated security manage-
ment”

Ahmed M.S.,
Al-Shaer E.,
Taibah M.,
Khan L.

Journal of Network and Systems
Management

19 3

2011 “Using SQL hotspots in a priori-
tization heuristic for detecting
all types of web application
vulnerabilities”

Smith B., Wil-
liams L.

Proceedings - 4th IEEE Interna-
tional Conference on Software
Testing, Verification, and Valida-
tion, ICST 2011

2011 “An empirical study on using
the national vulnerability data-
base to predict software vul-
nerabilities”

Zhang S., Ca-
ragea D., Ou X.

Lecture Notes in Computer Sci-
ence (including subseries Lec-
ture Notes in Artificial Intelli-
gence and Lecture Notes in
Bioinformatics)

6860 1

2011 “A software vulnerability num-
ber prediction model based on
micro-parameters”

Nie C., Zhao
X., Chen K.,
Han Z.

Jisuanji Yanjiu yu
Fazhan/Computer Research and
Development

48 7

2011 “An initial study on the use of
execution complexity metrics as
indicators of software vulnera-
bilities”

Shin Y., Wil-
liams L.

Proceedings - International Con-
ference on Software Engineering

2012 “Mining input sanitization pat-
terns for predicting SQL injec-
tion and cross site scripting
vulnerabilities”

Shar L.K., Tan
H.B.K.

Proceedings - International Con-
ference on Software Engineering

2012 “Principles of prediction of in-
formation protection in the
communication network”

Lidskii E.A.,
Mikhaleva U.A.

Telecommunications and Radio
Engineering (English translation
of Elektrosvyaz and Radio-
tekhnika)

71 18

2012 “Software vulnerability predic-
tion using text analysis tech-
niques”

Hovsepyan A.,
Scandariato R.,
Joosen W.,
Walden J.

MetriSec’12 - Proceedings of the
4th International Workshop on
Security Measurements and
Metrics

2012 “Predicting common web appli-
cation vulnerabilities from input
validation and sanitization code
patterns”

Shar L.K., Tan
H.B.K.

2012 27th IEEE/ACM Interna-
tional Conference on Automated
Software Engineering, ASE 2012
- Proceedings

2012 “Fault-tolerant techniques and
security mechanisms for model-
based performance prediction
of critical systems”

Rodriguez R.J.,
Trubiani C.,
Merseguer J.

ISARCS’12 - Proceedings of the
3rd International ACM SIGSOFT
Symposium on Architecting Criti-
cal Systems

2013 “Can traditional fault prediction
models be used for vulnerability
prediction?”

Shin Y., Wil-
liams L.

Empirical Software Engineering 18 1

CMU/SEI-2014-TR-010 | 55

Appendix C: Template for Detailed Vulnerability Analysis

The steps for creating an economic analysis of a vulnerability mitigation story are described in this
appendix.

Step 1: Identify the vulnerability. Answer “What?”

Purpose: Bring focus to the investigation; provide scope, inputs, and direction to the steps that fol-
low.

The vulnerability should be described in sufficient detail to assist in identifying who was involved
and provide some sense of the impact and probability of attacks exploiting the vulnerability. Also,
key drivers of impact and probability should be mentioned (e.g., if the probability of successful
exploit is increasing in time, why?).

Step 2: Identify “cast of characters.” Answer “Who?”

Purpose: Multiple parties gain/lose from a vulnerability, so an early analysis step should be to iden-
tify who the participants are (or could have been). In addition, in support of identifying and quanti-
fying what was or might have been the gain/loss, it is important to identify assets or positions that
might have been at risk (e.g., mind share, market share, reputation, integrity).

Typical “cast members” include the attacker, software provider, and end user.

As appropriate, identify subclasses of these for whom some distinction may be economically im-
portant. Also, provide some description of their role or goal (you can return to this step later and
add detail). Finally, provide a count (i.e., size of the class at the time the vulnerability was discov-
ered) for parties that suffered loss or potential loss.

Step 3: Outline the main story identifying main events (timeline).

Purpose: The main “story” includes certain events or actions (which may include errors of omis-
sion as well as commission) by various parties that caused the vulnerability and related events to
unfold. These events often provide insight into the knowledge and motivation of various parties
(i.e., what they know and what they value). Thus, these events may help us later in identifying pos-
sible points in time (relative time) where the introduction of data feeds or decision points could
have improved the economic outlook for the characters we are concerned about.

Roughly indicate when events took place, and characterize each event in sufficient detail that its
impact on the cast of characters can be determined (Step 4). Knowing what took place and when
facilitates some of the economic analysis (e.g., how long some asset was vulnerable to attack).

Step 4: Create “Character x Event Table” identifying the impact of each change in
state (produced by the event) on the character.

Purpose: Systematically examine the impacts of each event (Step 3) on each character (Step 2) and
estimate the gains/losses that can be inferred (on what they value because it enables them to pursue
their goal or role).

CMU/SEI-2014-TR-010 | 56

Of course, you could also construct the transpose of such a table (i.e., Event x Character). In gen-
eral, you should choose to have fewer columns than rows to allow more horizontal space for the
prose and thus reduce the risk of word truncation/wraparound. You could choose whichever repre-
sentation works best for you, but in order for the results of these detailed vulnerability analyses to
be more comparable and to facilitate reuse across detailed vulnerability (and because time is usual-
ly placed along the x-axis) Character x Event analyses is recommended.

To assist in an economic analysis, include the count estimates from Step 2 and dates from Step 3.

Add to the Event Table two columns that characterize a) the state of things prior to the vulnerabil-
ity being discovered (or whatever the first event was) and b) the state of things following exploita-
tion and/or mitigation, which we call “aftermath.” These enable identifying more explicitly the
effects each event had on a character’s goal, asset, or position, thereby assisting in estimating the
loss/gain.

Add to the Events Table a final row (“Total Estimated Losses”) to also assist in capturing the re-
sults of an economic analysis.

The last column (Aftermath) and last row (Total Estimated Losses) provide us two views into the
unfolding story. In “Aftermath,” we can provide a calculation of the net impact of all the losses,
while in “Total Estimated Losses,” we can look at the effects each event had on all the characters,
with an eye to how we might make the losses more salient to the other actors in the story and iden-
tify what data/decisions might have helped (see also Step 5).

Step 5: Identify hypothetical decision points and data flows in the story.

The purpose is to help identify what could have happened as part of the economic analysis, to
make more salient the long-term consequences of decisions (what is happening to actors in the oth-
er rows), to be more conscious that those decisions exist (as opposed to automatically underplaying
what could be at stake), and to help identify what data could have led to a different outcome.

For example, at some point, AMD could have decided it was time to bite the bullet and release an
ASLR-compatible video driver. It didn’t need to take six years and a lot of embarrassment and (I
presume) many millions in likely lost sales.

Note the opportunity lost though: other incompatible drivers or applications (probably) deserved
attention, but until the situation with AMD resolved itself, their incompatibility was less visible.

Step 6: Review and identify externalities (impacts not considered in the previous
steps) as well as assumptions/missing information that might cast a different light
on the economic analysis.

For example, from the CERT description of the vulnerability mentioned in Step 5: “Software de-
sign requires known/static address space layout, doesn’t support ASLR (address space layout ran-
domization), graphics drivers are kernel on Windows so machine crashes on boot. Non-randomized
locations allow attackers to use return-oriented programming (ROP) methods to bypass other
runtime mitigations like DEP.”

Does this imply any particular economic consequences that we have overlooked?

CMU/SEI-2014-TR-010 | 57

Appendix D: Selected Design-Related Vulnerabilities

 VU# Vulnerability Title
or Name

Vulnerability Description Affected Vendors
and Software

Date
Discovered

1 458153 Graphic card drivers
do not support ASLR

Software design requires known/static address space layout, doesn’t support ASLR,
graphics drivers are kernel on Windows, so machine crashes on boot. Non-
randomized locations allow attackers to use return-oriented programming (ROP)
methods to bypass other runtime mitigations like DEP.

ATI/AMD 9/20/2012

2 800113 Non-random DNS
query ID or source
port

DNS resolvers don’t sufficiently randomize DNS query ID () or source port. Both make
cache response spoofing/poisoning possible with available network and CPU re-
sources.

Alcatel-lucent, Apple, Avaya, Blue
Coat Systems, Bluecat Networks Inc,
Disco, Debian, DNSmasq, F5 Net-
works, Norce10 Networks, Freebsd,
Fujitsu, Funkwek Enterprise Commu-
nications, Gentoo Linux, HP, IBM,
Infoblox, Internet Systems Consorti-
um, Juniper, Mandriva, Microsoft, NEC
Corporation, Nixu, Nominum, Nortel
Networks, Novell, OpenBSD, Open-
wall, QNX Software System Inc,
Redhat, Secure Computing Network
Security Evision, Slackware Linux,
Sun/Oracle, Suse Linux, Ubuntu, Wind
River Systems Inc, Yamaha Corpora-
tion

3/19/2008

3 498440 TCP sequence
number prediction

TCP sequence number prediction, allows man-in-the-middle (MITM) and other spoof-
ing attacks.

FreeBSD, Fujitsu, HP, OpenBSD, SGI,
Sun/Oracle

3/5/2001

4 261869 Clientless SSL VPN
products break web
browser domain-
based security mod-
els

Clientless SSL VPN products from multiple vendors operate in a way that breaks
fundamental browser security mechanisms. An attacker could use these devices to
bypass authentication or conduct other web-based attacks.
http://<example.com>/page1.html can access DOM objects on
http://<example.com>/page2.html, but cannot access objects hosted at
http://<example.net>/page.html. Many clientless SSL VPN products retrieve content
from different sites, then present that content as coming from the SSL VPN, effective-
ly circumventing browser same origin restrictions.

Cisco, AEP Networks, Checkpoint
Systems, Cirtix, Juniper, Microsoft,
Nortel Networks, OpenVPN Technolo-
gies, Safenet, Sonicwall, Stonesoft,
Sun/Oracle

9/14/2009

CMU/SEI-2014-TR-010 | 58

 VU# Vulnerability Title
or Name

Vulnerability Description Affected Vendors
and Software

Date
Discovered

5 178990 Erlang/OTP SSH
library uses a weak
random number
generator

The Erlang/OTP SSH library implements a number of cryptographic operations that
depend on cryptographically strong random numbers. Unfortunately the RNG used by
the library is not cryptographically strong, and is further weakened by the use of pre-
dictable seed material. The RNG (Wichman-Hill) is not mixed with an entropy source.

Ericsson 4/21/2011

6 925211 Debian and Ubuntu
OpenSSL packages
contain a predictable
random number
generator

A weakness exists in the random number generator used by the OpenSSL package
included with the Debian GNU/Linux operating system and derivative systems that
causes the generated numbers to be predictable. As a result of this weakness, certain
encryption keys are much more common than they should be. This vulnerability af-
fects cryptographic applications that use keys generated by the flawed versions of the
OpenSSL package. Affected keys include SSH keys, OpenVPN keys, DNSSEC keys,
and key material for use in X.509 certificates and session keys used in SSL/TLS con-
nections. Any of these keys generated using the affected systems on or after 2006-
09-17 may be vulnerable. Keys generated with GNUPG or GNUTLS on the affected
systems are not vulnerable because these applications use their own random number
generators and not the one from the flawed version of OpenSSL.

Debian, Ubuntu 5/12/2008

7 570177 Foxit Reader vulner-
able to arbitrary
command execution

Foxit Reader is software designed to view Portable Document Format (PDF) files.
The Adobe PDF reference supports a "launch action" that "... launches an application
or opens or prints a document." Foxit Reader uses the ShellExecute function to han-
dle PDFs that use a launch action. In some cases, Foxit Reader will not prompt the
user before an application is launched with a launch action. It is also reported that the
launch action can be used to launch an executable that is included in the PDF docu-
ment, which results in arbitrary code execution.

Foxit Software Company 3/30/2010

8 448051 eEye Retina audit
script could execute
untrusted programs
as root

The eEye Retina Network Security Scanner software executes various audits against
target systems to conduct security vulnerability assessment testing. eEye provides
audit scripts to help perform security reviews of various operating systems and appli-
cations. One audit script for Solaris, HP-UX, and IRIX systems (audit ID 2499) checks
the program version by searching the /usr/local portion of the file system and execut-
ing a file with options to display version information. The script executes a program
based on file name. If an attacker can place an executable file with an appropriate
name in /usr/local, that file will be executed by the audit script.

eEye 9/28/2011

9 433821 DISA UNIX SRR
scripts execute un-
trusted programs as
root

DISA provides SRR scripts to help perform security reviews of various operating sys-
tems and applications. The UNIX SRR scripts check versions of various programs by
searching the root file system and executing programs with options to display version
information. The scripts generally use find(1) with the -exec expression primary. The
scripts execute programs based on file name. If an attacker can place a file with an
appropriate name on the file system, that file will be executed by the SRR script. The
SRR scripts are designed to be run with root privileges.

DISA Field Security Office, Network
Defense Watch Office

9/21/2009

CMU/SEI-2014-TR-010 | 59

 VU# Vulnerability Title
or Name

Vulnerability Description Affected Vendors
and Software

Date
Discovered

10 357851 UPnP requests ac-
cepted over router
WAN interfaces

Universal Plug and Play (UPnP) is a networking protocol mostly used for personal
computing devices to discover and communicate with each other and the internet.
Some UPnP enabled router devices incorrectly accept UPnP requests over the WAN
interface. "AddPortMapping" and "DeletePortMapping" actions are accepted on these
devices. These requests can be used to connect to internal hosts behind a NAT fire-
wall and also proxy connections through the device and back out to the internet. Addi-
tional details can be found in Daniel Garcia’s whitepaper, "Universal plug and play
(UPnP) mapping attacks". A list of devices reported to be vulnerable can be found on
the UPnP hacks website.

Canyon-tech, Edimax Computer Com-
pany, Linksys, Sitecom, Sweex, Tech-
nicolor, Zyxel

9/6/2011

11 649219 SYSRET 64-bit op-
erating system privi-
lege escalation vul-
nerability on Intel
CPU hardware

Some 64-bit operating systems and virtualization software running on Intel CPU
hardware are vulnerable to a local privilege escalation attack. The vulnerability may
be exploited for local privilege escalation or a guest-to-host virtual machine escape. A
ring3 attacker may be able to specifically craft a stack frame to be executed by ring0
(kernel) after a general protection exception (#GP). The fault will be handled before
the stack switch, which means the exception handler will be run at ring0 with an at-
tacker’s chosen RSP causing a privilege escalation.

Citrix, FreeBSD, Intel, Joyent, Mi-
crosoft, NetBSD, Oracle, Redhat,
Suse, Xen

5/1/2012

12 723308 TCP may keep its
offered receive win-
dow closed indefi-
nitely (RFC 1122)

Part of the transmission control protocol (TCP) specification (RFC 1122) allows a
receiver to advertise a zero byte window, instructing the sender to maintain the con-
nection but not send additional TCP payload data. The sender should then probe the
receiver to check if the receiver is ready to accept data. Narrow interpretation of this
part of the specification can create a denial-of-service vulnerability. By advertising a
zero receive window and acknowledging probes, a malicious receiver can cause a
sender to consume resources (TCP state, buffers, and application memory), prevent-
ing the targeted service or system from handling legitimate connections.

Checkpoint, Cisco, Extreme Networks,
Force10, HP Linux Kernel Archives,
Microsoft, Redhat, Sun/Oracle, SCO
Group

10/1/2008

13 132419 Apple QuickTime
"file: URL" arbitrary
code execution

A URL handling issue exists in QuickTime’s handling of file: URLs. This may allow
arbitrary applications and files to be launched when a user plays maliciously crafted
QuickTime content in QuickTime Player.

Apple 6/10/2008

14 127185 Apple Safari auto-
matically executes
downloaded files
based on Internet
Explorer zone set-
tings

Apple Safari automatically executes downloaded files based on Internet Explorer
zone settings, which can allow a remote attacker to execute arbitrary code on a vul-
nerable system.

Apple 6/9/2008

15 889195 RuggedCom Rug-
ged Operating Sys-
tem (ROS) contains
hard-coded user
account with pre-
dictable password

RuggedCom Rugged Operating System (ROS), used in RuggedCom network infra-
structure devices, contains a hard-coded user account named "factory" that cannot be
disabled. The password for this account is based on the device’s MAC address and
can be reverse engineered easily (CWE-261: Weak Cryptography for Passwords).

Ruggedcom 2/3/2012

CMU/SEI-2014-TR-010 | 60

 VU# Vulnerability Title
or Name

Vulnerability Description Affected Vendors
and Software

Date
Discovered

16 913483 Quantum Scalar
i500, Dell ML6000
and IBM TS3310
tape libraries web
interface and pre-
configured password
vulnerabilities

The Quantum Scalar i500, Dell ML6000 and IBM TS3310 tape libraries contain pre-
configured passwords for certain accounts that are considered to be weak and could
be exploited allowing an attacker user access.

Quantum, Dell, IBM 11/16/2011

17 632633 Wyse Simple Imager
(WSI) includes vul-
nerable versions of
TFTPD32

Wyse Simple Imager (WSI) includes older versions of TFTPD32 that contain publicly
known vulnerabilities. An attacker could exploit these vulnerabilities to potentially
execute arbitrary code on the system running WSI and TFTPD32.

TFTPD32, Wyse 7/23/2009

18 759307 Adobe Acrobat and
Reader U3D
memory corruption
vulnerability

Adobe Reader supports two primary formats for 3D content in PDF documents: U3D
and PRC. U3D support is accomplished via the Right Hemisphere 3DIF Import filter,
which is provided by the 3difr.x3d file. This U3D parser contains a vulnerability that
can result in arbitrary code execution.

Adobe 12/7/2011

19 723755 WiFi Protected Set-
up (WPS) PIN brute
force vulnerability

WPS is a computing standard created by the WiFi Alliance to ease the setup and
securing of a wireless home network. WPS contains an authentication method called
"external registrar" that only requires the router’s PIN. By design this method is sus-
ceptible to brute force attacks against the PIN.

Belkin, Buffalo, Cisco, D-link, Linksys,
Netgear, Technicolor, tp-link, Zyxel

11/10/2011

20 878044 SNMPv3 improper
HMAC validation
allows authentication
bypass

SNMP can be configured to utilize version 3, which is the current standard version of
SNMP. SNMPv3 incorporates security features such as authentication and privacy
control, among other features. Authentication for SNMPv3 is done using keyed-Hash
Message Authentication Code (HMAC), a message authentication code calculated
using a cryptographic hash function in combination with a secret key.

Ecoscentric, Extreme Networks, Glob-
al Technology Associates, Internet
Initiative Japan, Juniper Networks,
Netsnmp, Network Appliance, Nokia,
Redhat, SNMP Research, Sun/Oracle

5/24/2008

21 903934 Hash table imple-
mentations vulnera-
ble to algorithmic
complexity attacks

Some programming language implementations do not sufficiently randomize their
hash functions or provide means to limit key collision attacks, which can be leveraged
by an unauthenticated attacker to cause a denial-of-service (DoS) condition.

Apache, Microsoft, Ruby, PHP 10/31/2011

22 864643 SSL 3.0 and TLS 1.0
allow chosen
plaintext attack in
CBC modes

A vulnerability in the way the SSL 3.0 and TLS 1.0 protocols select the initialization
vector (IV) when operating in cipher-block chaining (CBC) modes allows an attacker
to perform a chosen-plaintext attack on encrypted traffic.

Google, Microsoft, Mozilla, Opera 9/26/2011

23 713878 Microsoft Internet
Explorer does not
properly validate
source of redirected
frame

Microsoft Internet Explorer (IE) does not adequately validate the security context of a
frame that has been redirected by a web server. An attacker could exploit this vulner-
ability to evaluate script in different security domains. By causing script to be evaluat-
ed in the local machine zone, the attacker could execute arbitrary code with the privi-
leges of the user running IE.

Microsoft 6/9/2004

CMU/SEI-2014-TR-010 | 61

 VU# Vulnerability Title
or Name

Vulnerability Description Affected Vendors
and Software

Date
Discovered

24 928795 Netgear FVS318N
router default remote
management vul-
nerability

Netgear ProSafe Wireless-N 8-port Gigabit VPN Firewall FVS318N router allows
remote (WAN) internet users access to the administrator web interface of the device
by default.

Netgear 1/13/2012

25 520827 PHP-CGI query
string parameter
vulnerability

PHP-CGI-based setups contain a vulnerability when parsing query string parame-
ters from PHP files.

PHP 2/20/2012

26 837092 InstallShield /
Macrovision /
Acresso FLEXnet
Connect insecure-
ly retrieves and
executes scripts

Acresso FLEXnet Connect executes scripts that are insecurely retrieved from a
remote web server, which can allow a remote, unauthenticated attacker to execute
arbitrary code on a vulnerable system.

Acresso Software, Corel, IBM, In-
stallshield, Macrovision, Roxio

2/5/2008

27 636312 Oracle Java JRE
1.7 Expres-
sion.execute() and
Sun-
Toolkit.getField()
fail to restrict ac-
cess to privileged
code

The Java JRE plug-in provides its own security manager. Typically, a web applet
runs with a security manager provided by the browser or Java Web Start plugin.
Oracle’s document states, "If there is a security manager already installed, this
method first calls the security manager’s checkPermission method with a Runtime-
Permission("setSecurityManager") permission to ensure it’s safe to replace the ex-
isting security manager. This may result in throwing a SecurityException." Oracle
Java 1.7 provides an execute() method for Expression objects, which can use re-
flection to bypass restrictions to the sun.awt.SunToolkit getField() function, which
operates inside of a doPrivileged block. The getField() function also uses the reflec-
tion method setAccessible() to make the field accessible, even if it were protected
or private. By leveraging the public, privileged getField() function, an untrusted Java
applet can escalate its privileges by calling the the setSecurityManager() function to
allow full privileges, without requiring code signing. Both the Oracle JRE 1.7 and
the OpenJDK JRE 1.7 are affected.

Oracle 8/27/2012

28 707254 UTC Fire & Secu-
rity Master Clock
contains hardcod-
ed default admin-
istrator login cre-
dentials

UTC Fire & Security GE-MC100-NTP/GPS-ZB Master Clock have default adminis-
trator login credentials that cannot be modified by an administrator.

GE, UTC Fire and Security 1/4/2012

CMU/SEI-2014-TR-010 | 62

 VU# Vulnerability Title
or Name

Vulnerability Description Affected Vendors
and Software

Date
Discovered

29 362332 Wind River Sys-
tems VxWorks
debug service
enabled by default

Some products based on VxWorks have the WDB target agent debug service ena-
bled by default. This service provides read/write access to the device’s memory
and allows functions to be called.

3com, Actelis Networks, Alcatel-
Lucent, Allied Telesis, Alvarion,
AMX, Aperto Networks, Apple, Arris,
Avaya, Broadcom, Ceragon Net-
works, Cisco, D-link, Dell, Digicom,
Draytek Corp, EMC, Enablence,
Entrasys Networks, Epson, Ericson,
Fluke Networks, Foundary Net-
works, Gilant Network Systems,
Guangahou Gaoke Communica-
tions, HP, Huawei, Intel, Iwatsu
Voice Networks, Keda Communica-
tions, Knovative, Lenovo, Lutron
Electronics, Paipu Communications
Technology, Mitel Networks,
Motorola, Netgear, Nokia, Nortel,
Polycom, Proxim, Rad Vision,
Ricoh, Rockwell Automation, SFR,
Shoretel Communications, Sie-
mens, SMC Networks, Trendnet,
Tut Systems, Wind River Systems,
Xerox

6/10/2010

30 977312 Johnson Controls
CK721-A and
P2000 remote
command execu-
tion vulnerability

Johnson Controls CK721-A and P2000 products contain a remote command exe-
cution vulnerability that may allow an unauthenticated remote attacker to perform
various tasks against the devices.

Johnson Controls 5/30/2012

CMU/SEI-2014-TR-010 | 63

Appendix E: Detailed Vulnerability Analysis: SYSRET

SYSRET 64-bit Operating System Privilege Escalation Vulnerability on Intel CPU
Hardware (Vulnerability Note VU#649219)

Description

Some 64-bit operating systems and virtualization software running on Intel CPU hardware are
vulnerable to a local privilege escalation attack. The vulnerability may be exploited for local
privilege escalation or a guest-to-host virtual machine escape. A ring3 attacker may be able to
specifically craft a stack frame to be executed by ring0 (kernel) after a general protection excep-
tion (#GP). The fault will be handled before the stack switch, which means the exception handler
will be run at ring0 with an attacker’s chosen RSP causing a privilege escalation.9

Many OS and hypervisor vendors using Intel x86-64-based10 processors as a platform were

affected:

The CERT KB description of this vulnerability (whose first paragraph appears above) is interest-
ing as it includes snippets of the security advisories/bulletins from multiple affected OS and Vir-
tual OS providers including Xen, NetBSD, FreeBSD, and Microsoft Windows 7. This gives a
sense of the impact of this vulnerability: multiple OS vendors (including Linux at an earlier time)
and virtualization software providers (e.g., Xen, but not VMWare) were affected.

Additional Characterizations of the Vulnerability

 Xen blog from George Dunlap11

 Paper from the researcher, Rafal Wojtczuk, who co-discovered the vulnerability12

The description by Rich Gibbs is particularly succinct and clear: 13

…security vulnerability [affects] 64-bit operating systems or virtual machine hypervisors
running on Intel x86-64 CPUs…The vulnerability means that an attacker might be able to
execute code at the same privilege level as the OS or hypervisor.

The x86-64 architecture was originally developed by AMD, with the aim of producing a 64-
bit CPU that was backward-compatible with the 32-bit IA32 architecture, as implemented in,
for example, Intel’s Pentium processor. The vulnerability exists because of a subtle differ-
ence between AMD’s implementation and Intel’s…I will attempt a brief summary here.

Whether one is running a standard operating system, such as Linux or Windows, or a virtual
machine hypervisor, such as Xen, a mechanism is needed to [rapidly] switch [back and
forth] from an application, which runs with limited privileges, to the OS or hypervisor,
which typically has no restrictions…The most commonly-used mechanism on the x86-64
platform uses a pair of instructions, SYSCALL and SYSRET. The SYSCALL instruction does
the following:

9 http://www.kb.cert.org/ vulnerabilities/id/649219
10 In this detailed vulnerability analysis, x86-64 will be used to refer to both the 64-bit instruction set standardized by

AMD and downward compatible with the x86 32-bit and 16-bit legacy instruction sets as well as the AMD and In-
tel 64-bit processors manufactured to support that instruction set. Also, see: https://en.wikipedia.org/wiki/X86-64.

11 http://blog.xen.org/index.php/2012/06/13/the-intel-sysret-privilege-escalation/
12 http://media.blackhat.com/bh-us-12/Briefings/Wojtczuk/BH_US_12_Wojtczuk_A_Stitch_In_Time_WP.pdf
13 http://richg74.wordpress.com/2012/06/19/us-cert-intel-cpu-vulnerability/

http://www.kb.cert.org/
https://en.wikipedia.org/wiki/X86-64
http://blog.xen.org/index.php/2012/06/13/the-intel-sysret-privilege-escalation/
http://media.blackhat.com/bh-us-12/Briefings/Wojtczuk/BH_US_12_Wojtczuk_A_Stitch_In_Time_WP.pdf
http://richg74.wordpress.com/2012/06/19/us-cert-intel-cpu-vulnerability/

CMU/SEI-2014-TR-010 | 64

 copy the instruction pointer register (RIP) to the RCX register14

 change the code segment selector to the OS or hypervisor value15

A SYSRET instruction does the reverse; that is, it restores the execution context of the appli-
cation. (There is more saving and restoring to be done — of the stack pointer, for example —
but that is the responsibility of the OS or hypervisor.)

The difficulty arises [in part] because the x86-64 architecture does not use 64-bit addresses;
rather, it uses 48-bit addresses. This gives a 256 terabyte virtual address space, which is
considerably more than is used today. The processor has 64-bit registers, but a value to be
used as an address must be in a canonical form (see the Xen blog post for details); attempt-
ing to use a value not in canonical form results in a general protection (#GP) fault.

The implementation of SYSRET in AMD processors effectively changes the privilege level
back to the application level before it loads the application RIP. Thus, if a #GP fault occurs
because the restored RIP is not in canonical form, the CPU is in application state, so the OS
or hypervisor can handle the fault in the normal way. However, Intel’s implementation effec-
tively restores the RIP first; if the value is not in canonical form, the #GP fault will occur
while the CPU is still in the privileged state. A clever attacker could use this to run code with
the same privilege level as the OS.

Intel says that this is not a flaw in their CPU, since it works according to their written spec.
However, since the whole point of their implementation was to be compatible with the archi-
tecture as defined originally by AMD16 this seems a bit disingenuous.

Quoting from Rafal Wojtczuk,

The root cause of the vulnerability is: on some 64bit OS, untrusted ring3 code can force the
kernel to execute sysret instruction that would return to a non-canonical address. On Intel
CPUs, this results in an exception raised while still in ring017. This exception cannot be
handled safely.

How to Exploit

VUPEN formally developed exploits for Windows Intel 64-bit and XEN, respectively:

 http://www.vupen.com/blog/20120806.Advanced_Exploitation_of_Windows_Kernel_x64_S
ysret_EoP_MS12-042_CVE-2012-0217.php

 http://www.vupen.com/blog/20120904.Advanced_Exploitation_of_Xen_Sysret_VM_Escape
_CVE-2012-0217.php

14

 Which now points to where the next instruction is expected to be in “user land.”

15 Typically, changing it from ring3 to ring0 (i.e., elevating the privilege to same as the kernel in preparation for
executing the system function/service).

16 “Historically, AMD has developed and produced processors patterned after Intel's original designs, but with x86-
64, roles were reversed: Intel found itself in the position of adopting the architecture which AMD had created as
an extension to Intel's own x86 processor line.” (Again, for more detail, see Wikipedia entry on x86-64.)

17 And with at least one CPU register whose content (going into the system call) is under end user control, the
stack (RSP) register, which can be “set (in advance of the system call) to any value he/she wants to
in…memory, and get the hardware (in delivering a #GP) [to overwrite it with the exception record (saved regis-
ters and state)]. This can in turn be leveraged into a full exploit.

http://www.vupen.com/blog/20120806.Advanced_Exploitation_of_Windows_Kernel_x64_S
http://www.vupen.com/blog/20120904.Advanced_Exploitation_of_Xen_Sysret_VM_Escape

CMU/SEI-2014-TR-010 | 65

Impacts and Mitigation

Clearly, many OS and hypervisor vendors with considerable market presence were affected. Mul-
tiple parties could have prevented the vulnerability as Intel’s SDM is very clear on the behavior of
SYSRET (and not every x86-64-based OS or hypervisor was affected) by, for example, adopting
a safer transition back to the application following a SYSCALL. While originally noted and re-
ported by the Linux community back in 2006, the vulnerability was characterized and easily dis-
missed as a Linux-specific issue. “This is likely the reason why developers of other OS have not
noticed the issue, and they remained exploitable for six years” (From Rafal Wojtczuk link; em-
phasis added.) Intel could also have prevented the vulnerability by not introducing a dangerous re-
interpretation of how to return from a rapid system call.

So how difficult was it to mitigate VU#649219?

Reading some of the references above and considering the short time window where all seem to
be fixed (from April to June 2012) might give the impression that the vendor only needed to find
(for its OS or hypervisor) a different, safer way to handle SYSRET (e.g., return other than through
SYSRET or check for a canonical address), but doing so is not straightforward. That perhaps the
same patch/approach might not work for all affected OS can be seen in the different ways the vul-
nerability can be exploited for different OS. So each vendor must conduct its own careful analysis
of what computing assets are at risk or can be leveraged for an exploit and carefully re-
design/code system calls/returns to ensure safe transition from application to system and back
again. Also, as the intent of SYSCALL/SYSRET is that these calls be reserved for something only
the OS can do but for which execution performance is critical (e.g., by minimizing saving off reg-
isters, except for those actually needed by the system function being called), the OS-specific
patch(es) need to be designed/coded for execution speed as well as safe transition.

One of the vendors, Xen, has been particularly revealing relative to the considerable difficulties it
encountered in working with select stakeholders to diagnose, design, code, and test patches for
VU#649219, including providing a detailed timeline.18 We excerpt a non-contiguous part of the
timeline below, sufficient to indicate the enormous stress that vendors can find themselves in (and
the need for very careful attention to a lot of detail) when trying to mitigate such a potentially
dangerous vulnerability, the repeated communications and re-clarifications required with stake-
holders (and revisiting which stakeholders it needs to have “predisclosure” with—and what about
the clients of those stakeholders?), as well as the technical difficulties encountered in getting
patches correct the first time (which might include trying to limit the need to fork the code base to
distinguish AMD from Intel CPUs):

[After many entries in the timeline summarizing discussion among stakeholders leading to setting
May 10 as the embargo date for publishing information about the vulnerability and its resolution]

18 http://lists.xen.org/archives/html/xen-devel/2012-06/msg01072.html. Henceforth, we refer to this specific time-

line as the Xen timeline.

http://lists.xen.org/archives/html/xen-devel/2012-06/msg01072.html

CMU/SEI-2014-TR-010 | 66

2012-05-10 08:48 Z (3h12 before planned disclosure)
We send an ad hoc message to the predisclosure list requesting a disclosure delay
for XSA-7 / XSA-8. We do not include a revised disclosure date as we do not have
one confirmed.

2012-05-15 A member of the predisclosure list discovers what will become XSA-9. The

context was testing the fix for XSA-7.

2012-05-16 We conclude that this is due to AMD erratum #121 and involve AMD.

2012-05-16 After discussions we conclude that there is no reasonable software workaround for

Xen and that instead Xen should refuse to boot on affected systems.

2012-05-18 We decide that releasing this as a separate advisory with the same embargo date

will be less confusing than trying to fold it into XSA-7.

2012-05-18 While investigating this we come to the conclusion that our previous patch to fix

XSA-7 was incomplete.

2012-05-22 After intense internal discussions, we decide that the original fix for XSA-7 is too

fragile and conclude that it should be replaced by something more obvious.

2012-05-24 We send XSA-7 v8 (now with a cross-reference to XSA-9 and with updated

simpler patch), XSA-8 v6, and XSA-9 v1 with its own separate patch, to the
predisclosure list.

Parties Involved

Attacker

Exploits the vulnerability by writing custom code for an Intel x86-64-based OS that causes the OS
or hypervisor when using SYSRET to either crash the system or enable the attacker to attain privi-
leged execution. As more and more enterprise systems and consumer app data are moved to virtu-
alization infrastructure (VI) hosting, servers and clusters and the data they house are likely to be-
come more and more appealing as targets for attack. An example attack might leverage the
vulnerability in this way: Get onto the same cluster that houses the data for a high-value target,
escape to host with privilege, and poke around for the targeted data.

Intel and AMD

Intel and AMD are the world’s dominant providers and co-sustainers of the most widely used pro-
cessor family not just for desktop/laptop computing—but of greater relevance to our analysis of
this vulnerability— also for servers: the x86-64. According to ITCandor 2013
http://www.itcandor.com/server-2012/, “The server market ($58.8 billion in 2012) is now domi-
nated by x86-64 processing from Intel and AMD—accounting for 73.6% of revenue and 98.2% of
unit shipments in 2012.” Business drivers for Intel and AMD include meeting the need for down-
ward and upward compatibility of OS and application code in the x86-64 family while taking ad-
vantage of the increased capability to put more cores and memory on a chip. AMD provided 64-
bit support for x86 before Intel and thus was able to establish the de facto behavior for 64-bit pro-
cessor architecture including for handling rapid system calls (Intel’s implementation of SYSRET
is at the heart of this story). AMD released a statement (http://www.kb.cert.org/vulnerabilities

http://www.itcandor.com/server-2012/

CMU/SEI-2014-TR-010 | 67

/id/JALR-8V8LFS) indicating their CPUs were not vulnerable and had verified this with “archi-
tecture team, design team…tests.”

Assuming for a moment that AMD is in no way culpable for this vulnerability, we might observe
that even “innocent” players in the larger ecosystem may suffer potential reputation/market loss
from a vulnerability and need to invest time to carefully craft communication that reassures their
current and potential customers and users. But there’s a line of argument that AMD was also
somewhat culpable as the original AMD specification for SYSRET was incomplete, allowing sub-
tly varying compliant implementations; though another line of argument is that AMD did warn
about the dangers that come with non-canonical addressing.

The view of the authors of this detailed vulnerability analysis is that each party (Intel, many VI
vendors, and perhaps AMD) acted on a narrowed view (limited understanding) of what was at
stake, or consciously made a poor tradeoff decision, and thus were culpable. Each party’s limited
understanding could arguably be due to a lack of “due diligence:” acting on an overly narrow
view of the ecosystem (e.g., who is affected and how), ignorance (e.g., SYSRET implementation
could lead to a guest-to-host escape), or finite attention capacity (you can only consider so many
things within a fixed timeframe that you have been provided). These same constraints exist for
risk management and thus one could conclude that each party needed to practice better risk man-
agement, with better approaches to risk identification, analysis, and mitigation.

Affected Virtualization Infrastructure (VI) and Hypervisor Software Vendors

These include Citrix, FreeBSD, Microsoft, NetBSD, Oracle, Red Hat, Xen, and others. (Note that
some of these are also VI hosts/providers, e.g., Citrix.) As explained earlier, these vendors were
both victims and potential perpetrators of the vulnerability that they could have prevented. For
example, OpenBSD would have been on this list had it not pursued a code “cleanup.”19 Vendor
mind share, market share, and reputation were all at stake for these vendors (remember that
VUPEN actually published two successful exploits after first giving time to these parties to miti-
gate the vulnerability).

A key example is Xen, an open-source project sustaining virtualization software for the x86_64
server platform and providing hypervisors built on Linux and Solaris kernels as well as custom
kernels. Hypervisors provide services that allow multiple computer operating systems (and asso-
ciated applications) to execute on the same computer hardware concurrently. Xen provided both
heavily constrained workarounds and binary patches to resolve the vulnerability. The amount of
effort and attention given to this vulnerability by Xen and others was nontrivial as implied by the
Xen timeline. Each affected vendor has its own “security researchers,” “vulnerability notifiers,”
and principal end-user stakeholders that become involved as it develops, tests, and refines a vul-
nerability mitigation approach. When a vulnerability is discovered, it is not only these roles that
get involved but also some of the key developers who would otherwise be involved in designing,
implementing, or verifying new product features (or mentoring others to do the same). So there
also can be significant opportunity loss.

The ability to correctly respond without needing to issue a subsequent clarification or correction
to the first solution (i.e., to get the solution right the first time) is a factor of the vendor’s ability to

19 http://www.openbsd.org/cgibin/cvsweb/src/sys/arch/amd64/amd64/locore.S.diff?r1=1.47;r2=1.48

http://www.openbsd.org/cgibin/cvsweb/src/sys/arch/amd64/amd64/locore.S.diff?r1=1.47

CMU/SEI-2014-TR-010 | 68

correctly diagnose the vulnerability, design a solution, implement the solution, review and test the
solution, clearly communicate the solution, clearly and correctly identify which machines are af-
fected, and provide instructions on how to determine whether a system is affected. Thus, address-
ing vulnerabilities can be a major undertaking for a corporation, stealing its limited attention from
new products and services in a large, competitive, and lucrative market.

Security Researchers

Rafal Wojtczuk (Bromium) and Jan Beulich (SUSE) are credited by VUPEN with the
(re)discovery. VUPEN, after working behind the scenes with the affected vendors, published ex-
ample exploits and similarly, Wojtczuk presented the vulnerability and possible ways to exploit it
at Black Hat.20 There are also many security analysts internal to the vendors (see previous section
on affected VI and software vendors) who carried out their own analyses, validating the vulnera-
bility, determining which of many products were affected, designing patches or workarounds,
testing those out, and crafting communications.

Vulnerability Notifiers

These are the vulnerability analysts, often coordinating with other parties (especially the CERT
Division), who “get the word out” on vulnerabilities, alerting IT organizations and end users of
what the threat is and what might be done about it. This role may include responding as best as
one can to questions that arise, which in turn involves some degree of obtaining the attention of
security analysts and coordinating the response. Many security bloggers mentioned the vulnerabil-
ity (e.g., Rich Gibbs, who was mentioned earlier).

Virtualization Infrastructure (VI) Host/Providers

For example, companies providing internet/cloud-based storage and services, such as Amazon S3
and EC2, mentioned the vulnerabilities. As implied in the previous section on affected VI and
software vendors, the virtualization server market has recently become very large and diverse. A
vulnerability in the virtualization products offered by one VI vendor could compromise (or be
perceived as potentially compromising) a VI host/provider’s server, placing client data and rela-
tionships (and eventually company reputation) at risk. A secondary factor amplifying the loss or
risk to a VI host/provider is the growth in the overall cloud solution market and the number of
alternative products and sources for such solutions: A serious misstep could yield significant mo-
mentum to a VI host’s competitors. Therefore, this vulnerability could cause VI hosts/providers to
do the following:

1. Put pressure on established VI vendors to ensure their products do not suffer from such vul-
nerabilities in the future, or if they do, to rapidly find a fix. As any fix will likely be scruti-
nized by multiple security researchers, the fix also needs to be correct, or trust in the VI ven-
dor will quickly degrade.

2. Mitigate the risks of such vulnerabilities by utilizing multiple VI vendors (or perhaps even
other VI hosts/providers), building firewalls between clusters, maintaining redundancy and
multiple physical locations, developing hard-to-predict or dynamic process and data alloca-
tion and migration strategies toward gaining resilience and flexibility should future similar
problems arise. Because the VI host/provider is often an intermediary between the VI vendor

20 http://www.blackhat.com/usa/bh-us-12-briefings.html#Wojtczuk

http://www.blackhat.com/usa/bh-us-12-briefings.html#Wojtczuk

CMU/SEI-2014-TR-010 | 69

and VI purchaser/user, the VI host/provider will carefully weigh how it should approach
(e.g., stage) disclosure when it becomes aware of a vulnerability in a VI vendor product. On
the one hand, the host/provider wants to appear transparent to its clients (i.e., be open about
vulnerabilities and risks and thus demonstrate their concern for secure handling of client da-
ta)—and its readiness to resolve problems as they arise. But due to limitations on attention
and energy, and concern over the damaging effects and risks of vulnerabilities being brought
out into the spotlight for potentially harmful speculation, it may prefer that such information
not be fully disclosed for discussion. This is mentioned because it is difficult to ascertain
from public sources what efforts and risks VI hosts/providers bore due to their dependence
on VI vendors, in contrast to Xen, a vendor who was comparatively transparent in its efforts
to resolve the vulnerability. For example, while the Amazon EC2 service relies on Xen, and
acknowledged as much, Amazon claimed no impact from the vulnerability without providing
any justification or explanation for the claim.21

VI Purchasers/Users

Purchasers/users of cloud services may transfer critical business data to a VI host/provider (how-
ever, in hybrid cloud configurations, such data might be kept in a private cloud). VI purchas-
ers/users may be affected by this vulnerability if their VI host/provider uses one of the affected
products from a VI Vendor. Often, purchasers/users don’t know which VI vendors’ products they
are dependent on. A VI host might suffer disclosure of its data if they were stored on the same
server handling (or within reach of) a compromised app running as a guest on an affected VI
product.

Media

Reporters, journalists, and bloggers have multiple motivations: to raise end user awareness of risk
so action can be taken, gain readership, be the first to bring a story, and so forth. But whatever the
motive, the effects of media attention are to bring a spotlight to bear on particular parties (Intel,VI
vendors, and VI hosts/providers in this case), often driving those parties to align their behavior (or
at the very least, their observable behavior) with social norms and expectations, such as doing
what they can to protect the security of others. In the case of this vulnerability, certain well-
regarded blogging sites and security newsletters brought unwanted attention to the vulnerability
and its potential consequences (from Intel’s, VI vendors,’ and VI hosts/providers’ perspectives)
and also “innocent” parties such as OpenBSD and perhaps AMD. And VI vendors had something
precious to lose: time, reputation, and market share to their competitors. The vulnerability was
serious enough that it caused FreeBSD, Microsoft, Red Hat, and other VI vendors to put out their
own advisories. The vulnerability also gained some prominence on the VUPEN website and a
presentation at Black Hat.

The CERT Division

The CERT Division handled coordination between researchers and affected OS/hypervisor ven-
dors. Given the level of coordination involved, the coordination from CERT was both critical and
represented the tip of the iceberg relative to the amount of investigation, analysis, and double
checking resolving such a vulnerability entailed. CERT has broad credibility that amplifies its
influence in its roles in security research, vulnerability notification, and the news media.

21 http://aws.amazon.com/security/security-bulletins/xen-security-advisories/)

http://aws.amazon.com/security/security-bulletins/xen-security-advisories/

CMU/SEI-2014-TR-010 | 70

Additional Parties

These were not included to keep the analysis simpler but are listed in this section. This vulnerabil-
ity was also a privilege escalation vulnerability for Windows OS.22 So PC end users and compa-
nies that were not using VI providers were also affected by this if they were running Windows on
a 64-bit CPU. Parties selling commercial versions of Xen (e.g., Citrix, Oracle); those including
Xen or other affected VI vendor products in their OS distributions (primarily Linux/Unix in vari-
ous flavors); and those patching their OS to create paravirtualized versions of their OS to run on
Xen or other affected VI vendor product.

Timeline

1. 2000-2006: 64-bit computing for the x86 (i.e., x86-64) becomes a reality for consumer mar-
ket, first by AMD (Opteron, Athlon), then by Intel (“newer” Pentium 4, Core 2 Merom).

2. 2006: First discovery—The vulnerability was fixed for Linux with CVE-2006-0744. At the
time, the Linux community involved with resolving this vulnerability considered it as a pos-
sible basis for a DOS-type attack (vs. escalating privilege to execute malicious code), and the
description sounded Linux specific: “Linux kernel before 2.6.16.5 does not properly handle
uncanonical return addresses on Intel EM64T CPUs…”

3. 2006-2012 (six years of “slipping through the cracks”): Vulnerability is present on many
other OS/hypervisors running on Intel x86-64-based CPUs but no exploits are known.

4. April 2012: Rediscovery—Wojtczuk (and perhaps others) discovers the vulnerability. CERT
learns of this and begins notifying various possibly affected vendors of the vulnerability.
Vendors assess their vulnerability, find, test, mitigate, and so forth. Actually, a lot is in-
volved in investigating possible vulnerabilities as described in the Xen timeline mentioned
previously.

5. June 12, 2012: CERT advisory—After vendors have communicated back to CERT that they
have achieved some level of preparedness and mitigation, CERT releases vulnerability note
VU#649219. In the days that follow, further vendor-specific mitigation is announced and
testing is performed.

6. Aftermath (See following table for details.)

22 http://technet.microsoft.com/en-us/security/bulletin/MS12-042

http://technet.microsoft.com/en-us/security/bulletin/MS12-042

CMU/SEI-2014-TR-010 | 71

SYSRET Event Table

 2000-2006

(General state leading to
vulnerability discovery)

First discovery (2006) 6 Years of “slipping
through the cracks”
(until early 2012)

Rediscovery
(April 2012)

CERT VU# posted (June
12, 2012)

Aftermath
(General state following
vulnerability mitigation)

Attacker

Looking for vulnerabili-
ties to exploit in new 64-
bit x86-based architec-
tures for profit, notoriety,
or to serve a cause.

Attackers might not
recognize the potential
seriousness of the
Linux-discovered vul-
nerability and its ap-
plicability to other x86-
64 OS.

See at left.

Possibly until the CERT
announcement, no at-
tacker knew of or exploit-
ed this vulnerability; on
the other hand, some
may have quietly exploit-
ed it for some time.

With the CERT an-
nouncement, some at-
tackers would be motivat-
ed to take a closer look.

Except for undetected
attacks prior to CERT’s
announcement, the time
window for new attacks
is generally short, partic-
ularly for high-value
targets.

Intel and
AMD

(Sources for
x86-based
64-bit CPUs
competing
for OEM
attention)

AMD grabbed mind
share if not market
share by being the first
to provide downward-
compatible 64-bit CPU
support for x86. De facto
standard emerges around
its instruction set. But
AMD’s specification for
SYSRET is imprecise,
allowing too much varia-
tion in implementation.

Pressure from x86 de-
velopers drives Intel to
mostly adopt AMD’s
solution, but Intel’s dif-
ferent implementation of
SYSRET is unnoticed or
tolerated (Intel might
actually have preferred
its implementation for
subtle performance
reasons [SYSRET is
intended for rapid sys-
tem calls].)

The detailed sequenc-
ing in Intel’s implemen-
tation of SYSRET is
inconsistent with
AMD’s and potentially
dangerous. With the
vulnerability discovery
in the Linux communi-
ty—if Intel learned of
this—Intel had oppor-
tunity to investigate,
acknowledge, and
resolve (or at least
moderate the severity
of the problem).

Later, Intel will argue
that it is the vendor’s
responsibility to read
the SDM (developer
manual), which is ex-
plicit and correct rela-
tive to how Intel’s
SYSRET behaves.

Perhaps, over time, Intel
took its interpretation of
SYSRET to be every bit
as “de facto” as AMD’s.

Even if it considered
resolving the vulnerabil-
ity, it might have seen
the steps to do so as
fraught with risk and
require an admission of
error (e.g., updating the
SDM) for something that
was arguably a problem
owned and resolvable
by multiple parties
(“We’ve done our part,
it’s now someone else’s
problem”).

Following rediscovery, it
is unclear whether Intel
was involved in the anal-
ysis of possible impacts
and resolution. Interest-
ingly, Xen reached out to
AMD (Xen timeline); un-
clear if it reached out to
Intel.

Intel’s reputation and
integrity takes some
bruising from those inves-
tigating the vulnerability.
The media somewhat
amplified the attribution of
the vulnerability to Intel by
how they characterized
the vulnerability (e.g., in
article titles). AMD also
felt some need to explain.

The CERT announce-
ment, though carefully
worded, helps place Intel
in the spotlight. Its de-
fense gets more thorough-
ly tested.

It would have been easier
for everyone if six years
before Intel had provided
a fix by updating the SDM
to provide a more cautious
prologue (coding) for safe
SYSRET use. It is also
possible that Intel and
AMD underestimated the
potential consequences of
this difference in SYSRET
implementation.

Competition with AMD,
heated by AMD’s leap
into 64, was the main
psychological driver
(remember Intel’s incen-
tives to OEMs to use
Intel). OS and VI ven-
dors’ needs for clarity on
SYSRET implementation
were not fully addressed
by anyone. Taking any
(direct) steps to resolve
were perhaps fraught
with risks.

But also, there was a
lack of clarity as to who
owned this problem; Intel
had already tried to be
transparent (explicitness
in SDM) and thus could
say it saw this as some-
one else’s responsibility.
So Intel could “stay the
course.”

CMU/SEI-2014-TR-010 | 72

 2000-2006
(General state leading to
vulnerability discovery)

First discovery (2006) 6 Years of “slipping
through the cracks”
(until early 2012)

Rediscovery
(April 2012)

CERT VU# posted (June
12, 2012)

Aftermath
(General state following
vulnerability mitigation)

Affected OS
and
Hypervisor
(VI) Vendors

(About 50-
100 separate
products
and ver-
sions?)

64-bit CPUs are a way
to offer better perfor-
mance and a competi-
tive edge. How can I
best leverage what Intel
and AMD offer or can
offer for x86-64?

There is more focus on
learning the new archi-
tecture than in identify-
ing and evaluating as-
sociated risks (multiple
modes, canonical ad-
dressing, etc.).

AMD is first with x86-64
instruction set—VI ven-
dors put pressure on
Intel to conform to the
de facto AMD standard,
thereby reducing their
product complexity and
costs, and ultimately,
growing the 64-bit eco-
system faster, enabling
support for growing
server and VI markets.

Outside Linux, no one
seems aware of vul-
nerability.

With increasing x86-64
ubiquity, “minor” differ-
ences in AMD and Intel
implementations of
x86-64 are increasingly
perceived as benign
and fade into status
quo.

Around 2005, there is a
resurgence…in the use
of virtualization tech-
nology among Unix
and Linux server ven-
dors, including moves
into the cloud, fueling
the rise of new vendors
and a new market for
x86-64 adoption.

See at left.

In 2011, OpenBSD miti-
gates the inconsistency
in SYSRET during code
cleanup, apparently
without recognizing its
broader significance.

Many of these vendors
have multiple affected OS
(or hypervisor) versions
running on different CPU
versions. So there can be
a lot of tedious work to
determine which systems
are affected and how to
fix them; test the fix; and
then to determine which
stakeholders to involve in
all this investigative activi-
ty.

Key technical staff are
pulled off other priority
projects to ensure rapid
correct resolution of the
vulnerability. Vulnerability
notifiers prepare vendor-
specific advisories.

Perhaps significant op-
portunity loss for new
products, mentoring staff,
and detecting or resolving
other problems.

The mitigation involves a
lot of communication and
coordination with stake-
holders, clients, and us-
ers, including help with
issues arising during
patching, configuring, etc.
for each affected version
of the VI vendor’s prod-
ucts.

A possible reflection of the
complexity of the change
and its idiosyncrasies from
vendor to vendor is the
difference in approach
needed to successfully
exploit the vulnerability (as
implied in Wojtczuk’s
article).

Each vendor had to carry
off its own investigation
and coordinate and com-
municate about patch
installation and deploy-
ment.

Patching, sleuthing 100
versions of systems, and
identifying a relatively
high-confident deploya-
ble mitigation.

There may have been
significant loss of new
product opportunities for
several weeks up to a
few months for the af-
fected vendors during
which competitors forge
ahead.

Had this vulnerability not
been addressed in 2012,
the next generation gam-
ing devices (Sony PS4,
Xbox One), which would
be x86-64-based due to
the increased market
power possessed by PC
game publishers who
want to be able to easily
publish across all plat-
forms, might have creat-
ed an additional attack
vector (e.g., for credit
card account fraud).

CMU/SEI-2014-TR-010 | 73

 2000-2006
(General state leading to
vulnerability discovery)

First discovery (2006) 6 Years of “slipping
through the cracks”
(until early 2012)

Rediscovery
(April 2012)

CERT VU# posted (June
12, 2012)

Aftermath
(General state following
vulnerability mitigation)

VI Hosts and
Providers

(50-100 ap-
prox.)

Utility computing
emerged in the late 90s
with IBM, HP, and Mi-
crosoft taking the lead in
supporting on-demand
computing and backup
storage for the enter-
prise, but data centers
consisting of servers
running x86-64 emerge
as Intel and AMD tri-
umph with commercial
production of proces-
sors, setting the stage
for x86-64-based VI.23

Era of “cloud compu-
ting” begins24 with
launch of Amazon Web
Service (AWS) in 2006.
Its widely used AWS
service, EC2, is based
on the Xen x86-64
based hypervisor.
SalesForce follows suit
with a cloud-based
platform, Force.com, in
2007.

Unclear what due dili-
gence VI hosts were
exercising before utiliz-
ing a VI vendor’s prod-
ucts.

With the rise of more
powerful hardware and
reduced pricing, VI be-
comes a more feasible
and trusted option: “The
enterprise market saw a
huge transformation…in
IT…driven totally by
consumers… [with]
applications hosted on
far away data centers
becoming a rage…
launching the era of
cloud computing and
services based upon an
“as a service” delivery
model.”25

VI hosts and providers
mostly avoid the spotlight
created by the vulnerabil-
ity, but behind the
scenes, they were 1)
putting pressure on VI
vendors to verify their
products 2) reassuring
nervous clients 3) in-
creasing enterprise mar-
ket confidence in the
security of the cloud solu-
tions they offer through
security standards certifi-
cation (e.g., ISO 27001).

To compete with other VI
hosts and providers, and
to assuage nervousness,
some VI hosts/providers
create more diversified
service portfolios by offer-
ing hybrid cloud solutions
and services.

VI hosts and providers
suffered some opportunity
loss addressing the vul-
nerability and limiting
reputation damage.

The overall server/cloud
market suffered some
nervousness for a few
weeks, with some con-
cern about reliance on
the cloud, perhaps trans-
lating to more business
for private and hybrid
cloud models, favoring
VI hosts who were better
positioned to offer such
services.

VI hosts probably have
good operational pro-
cesses to keep vendor
software up to date.

23 Utility computing has usually envisioned some form of virtualization so that the amount of storage or computing power available is considerably larger than that of a single time-

sharing computer. Multiple servers are used on the "back end" to make this possible. These might be a dedicated computer cluster specifically built for the purpose of being rented
out.

24 http://sourcedigit.com/497-timeline-history-of-cloud-computing/

25 http://sourcedigit.com/497-timeline-history-of-cloud-computing/

http://sourcedigit.com/497-timeline-history-of-cloud-computing/
http://sourcedigit.com/497-timeline-history-of-cloud-computing/

CMU/SEI-2014-TR-010 | 74

 2000-2006
(General state leading to
vulnerability discovery)

First discovery (2006) 6 Years of “slipping
through the cracks”
(until early 2012)

Rediscovery
(April 2012)

CERT VU# posted (June
12, 2012)

Aftermath
(General state following
vulnerability mitigation)

VI

Purchasers

and Users

(10-30 M.
enterprises?
1.3 billion
consumers
[Facebook
market
share])

Many large and medium
enterprises (e.g., banks,
engage utility compu-
ting-based services).

Growth of data centers
continues as small-to-
medium-sized enterpris-
es increasingly conduct
business over the web.

See at left.

Consumer presence on
the web continues to
grow and results in
additional growth for
data centers, and the
server market starts to
really take off.

See at left and VI hosts
and providers cell.

With the rise of cloud
computing for enterprises,
more and more business
processing and data
moves to the cloud.

Smartphone use “sky-
rockets” creating enor-
mous demand26 for addi-
tional data center
processing of requests
and services.

The same could be said
for geo-locating ser-
vices.27

See at left.
Consumers mostly in the
dark over the vulnerability
(except for savvy users) but
large enterprises have
security experts who quietly
became aware of the vul-
nerability and pressured
their VI host and provider
source(s) for status and
risk information.

Perhaps some enterprises
put off decisions to expand
their presence in the cloud,
while others contemplated
moving critical data off the
cloud and back to the en-
terprise.

Vendors moved quickly,
and the time window for
exploit was relatively short
for a major exploit. (The
most high-value targets are
also the ones likely to have
staff to enable them to take
appropriate action, e.g., to
apply patches.)

Potentially a large number of
mobile devices—and more
broadly, most computing
devices—provide data
online that goes to an exter-
nal server that, due to the
vulnerability, could leak data,
but such servers usually get
regular updates.

Unpatched users are
vulnerable, not just to
this vulnerability but
many other serious
ones.

User economic losses
could have been very
significant, but, except-
ing the damage done by
unnoticed exploits, ap-
parently were not.

Security
Researcher

(Those work-
ing for a
vendor are
included
under “Af-
fected Ven-
dors”)

X86-based vulnerabili-
ties are a long-term
focus of researchers
given the prevalence of
Windows and Linux.

The emerging x86-64
architecture provides a
new generation of archi-
tecture vulnerabilities to
study.

Apparently the suscep-
tibility of other OS to
the vulnerability was
not understood—nor
were the exploits it
enables (beyond
DDoS).

But this early and
modest correction paid
off for the Linux com-
munity six years later.

Perhaps researchers
assumed that any signif-
icant divergences in
implementing x86-64
would have been ad-
dressed long ago, and
not worth the time to
pursue.

It apparently takes 6
years to recognize the
difference is significant.

For the 1-2 who discov-
ered the vulnerability, a
path to (added) glory; for
others (vendors), a very
stressful journey to un-
derstand the vulnerability
and its mitigation.

The vulnerability can be
exploited in various ways.

Wojtczuk goes to Black
Hat and addresses the
range of possible exploits;
VUPEN gets to “show its
chops.” Other researchers
test SYSRET behavior
and confirm which sys-
tems were affected.

Other differences in x86-
64 draw scrutiny.

A very small number of
security researchers gain
credit and at least one
(Wojtczuk) gains some
fame.

But security researchers
working for vendors are
perhaps stressed out
and perhaps temporarily
more error-prone.

CERT Coordinating response
to attacks; broadening
mission to include pre-
vention. Want to get the
word out if any vulnera-
bilities threaten business
or consumer data.

See at left. See at left. Security researcher con-
tacts CERT who reaches
out to possibly affected
vendors. OS vendors
seem prone to take this
seriously.

CERT posts its advisory
after it is satisfied some
critical affected vendors
have done what they can
to mitigate.

All in a day’s work (sev-
eral days!) for CERT.
Maybe one-month of
effort ensuring notifica-
tion and testing the vul-
nerability and mitiga-
tions?

26 As more users are using their phones to check prices of products, book a table at a restaurant, and so forth, the service owner needs to load balance their services and the most

inexpensive way to do this is by using cloud services.

27 If 50% of your customer base is in Hong Kong, it would make sense to acquire a VI hosting provider in China to lower bandwidth costs.

CMU/SEI-2014-TR-010 | 75

 2000-2006
(General state leading to
vulnerability discovery)

First discovery (2006) 6 Years of “slipping
through the cracks”
(until early 2012)

Rediscovery
(April 2012)

CERT VU# posted (June
12, 2012)

Aftermath
(General state following
vulnerability mitigation)

Media

Fascinated by AMD vs.
Intel; promise of 64-bit
computing.

Interest in how Linux
defines a relatively new
business model for
software development,
but the significance of
the vulnerability goes
unexplored.

Intel vs. AMD on 64-bit
CPUs is yester-year’s
story.

Media report this vulnera-
bility and shine a spotlight
on Intel (e.g., “Intel CPU
flaw is vulnerable to
hacker attacks”).28

See at left. 1) Educated end users
and made them less vul-
nerable, 2) intensified
spotlight and damage to
Intel and VI vendors, 3)
made VI purchasers/users
concerned about reliance
on vulnerable VI vendor
products.

Total esti-
mated loss-
es

No vulnerability-related
losses (of course).

Some effort to detect,
correct, test within
Linux community.
Maybe 0.1 FTE?

OpenBSD “accidentally
fixes” as part of “code
cleanup.” Maybe 0.1
FTE?

We could find no men-
tions of actual exploits in
the wild.

Hosts/providers might have
spent additional money to
set up additional mitigation
options (i.e., hardware
firewalls or more granular
ACLs or permissions to
prevent compromised virtu-
al hosts from spreading).

Vendor mitigation: $20K for
1-4 person-weeks to code
and test per OS/hypervisor
version * 100 versions = $2
million. Associated security
researcher burnout and
market loss to competitors
is more difficult to estimate.

Perhaps the vulnerability
contributed to some contin-
ued hesitancy in including
Xen in Linux distributions.

The x86-64 lock on the
cloud market is very solid,
but perhaps the vulnerabil-
ity introduced some hesi-
tancy to future use of Intel
and AMD offerings.

Assumes no exploitation.

See at left.

Perhaps one way to
provide a very gross
estimate of opportunity
loss would be to assume
100K staff reading and
acting in some way on
the advisory, averaging
one person-day on the
vulnerability = 100K
person-days = 400 per-
son-years = (at 150k per
person) $60 million op-
portunity loss.

28 See http://www.theinquirer.net/inquirer/news/2185052/intel-cpu-flaw-vulnerable-hacker-attacks and http://threatpost.com/intel-processor-sysret-vulnerability-affecting-some-64-bit-

systems-061812/.

http://www.theinquirer.net/inquirer/news/2185052/intel-cpu-flaw-vulnerable-hacker-attacks
http://threatpost.com/intel-processor-sysret-vulnerability-affecting-some-64-bit-systems-061812/
http://threatpost.com/intel-processor-sysret-vulnerability-affecting-some-64-bit-systems-061812/
http://threatpost.com/intel-processor-sysret-vulnerability-affecting-some-64-bit-systems-061812/

CMU/SEI-2014-TR-010 | 76

Orthogonal Defect Classification-Related Attributes

Origin/phase when injected: Two possible interpretations of where the vulnerability was inject-
ed depending on how far back one considers errors:

1. Errors in the x86-64 CPU architecture specification:

a. AMD: the specification of SYSRET was ambiguous relative to when privilege de-
escalation took place. The specification apparently also includes a general warning of
the unsafeness of non-canonical addresses. However, this constraint and caution are in-
sufficient to predict how the CPU will behave in some circumstances. The AMD speci-
fication should have been more precise in these areas, and thus one could say that the
error was introduced during development of the system developer’s manual (SDM).
This ambiguity apparently also affected AMD because it later had to test its processors
to ensure they handled SYSRET correctly.

b. Intel: its specification of SYSRET is more precise and apparently satisfies the letter of
the AMD specification, but Intel designed and implemented x86-64 for its CPUs in a
way that differed from the safer (but undocumented) AMD interpretation. One can take
at least two perspectives on what the error was here: i) the error was introduced during
requirements development for the x86-64 CPU processor family. One source for re-
quirements was the AMD x86-64 instruction set. Intel should have investigated the be-
havior of SYSRET more thoroughly (both to identify the potential danger in differing
interpretations of SYSRET and the danger in its own interpretation) before implement-
ing according to its own interpretation. Here the initial error lay not in Intel’s SDM but
with Intel’s CPU architecture. ii) There were sound reasons for adopting a variant inter-
pretation of SYSRET in the hardware (e.g., reuse existing CPU design, better hardware
performance) that led Intel to implement SYSRET the way it did, in which case the er-
ror might lie instead with its SDM not including adequate warning of the lack of safe-
ness in its implementation of SYSRET and guidance on how to safely use SYSRET.
Such an error is actually a requirements allocation error, the error regarding safe im-
plementation of x86-64 set would here be allocated to the SDM rather than to Intel’s
CPU architecture.

2. Errors in VI vendors’ products: VI vendors (and associated open-source communities) failed
to recognize during the development of their products some of the subtleties of the AMD and
Intel platforms they were writing to (we found no mention of anything they did to mitigate
any downsides arising from any SYSRET-related subtleties). This might, at first glance,
seem to be an implementation or training issue—after all, OS and VI product programmers
are the utilizers of the x86-64 instruction set, and thus a correct understanding of it would
seem to be a focus of their training and skills development. But given the incompleteness of
both AMD’s (ambiguous) and Intel’s (dangerous without being pointed out as dangerous) in-
struction set specifications, the fault arguably lies not so much with training but with devel-
oping a correct understanding of the x86-64 instruction set and its limitations—something
which is not in the provided specification, and thus is more of a requirement or design issue.
The consistency with which this oversight occurred across various vendors even more
strongly suggests that this is a requirements or design issue. Even if it is the case—and there
is no particular reason to think so—that the misunderstanding started with one open-source

CMU/SEI-2014-TR-010 | 77

code developer, the obligation falls on others reusing the code to ensure that it will work cor-
rectly in its new environment. Notwithstanding the issue of Intel’s implementation of
SYSRET, writing code using ambiguously specified instructions (i.e., AMD’s version of
SYSRET) cannot be considered a safe practice unless additional checks on the processor
state leading to the call to SYSRET were introduced as a design policy and perhaps also au-
tomated to help ensure safe use of SYSRET. Again, handling SYSRET correctly in such sit-
uations is a design concern as well as a training concern (so that implementers understand
the policy, the motivation for it, and any automation support).

3. Note that at some future date, perhaps AMD might also come to rely on the specification for
SYSRET found in its SDM, allowing its CPU designers additional freedom in how they in-
terpreted its behavior. The result could be a dangerous implementation of SYSRET, repeat-
ing Intel’s error.

4. Perhaps there is also a trust issue here: some time has passed and no exploits have been dis-
covered. Therefore it is probably safe to rely on this specification of SYSRET.

Trigger: The vulnerability can be triggered in different ways depending on the particular VI ven-
dor product, but it starts through carefully crafting code to force a #GP interrupt during SYSRET
prior to it de-escalating privilege. Wojtczuk outlines several ways to initiate the exploit. (The ex-
act triggers can be very VI-vendor-product specific.)

Age: The vulnerability had been around mostly undetected for six years. Over those six years,
more users and businesses became dependent on internet servers and the cloud for much of their
application data and processing. Thus, there came into being more high-value targets and different
ways to exploit the vulnerability, but no exploit was observed in the wild.

Source: Arguably AMD and Intel were the source (see “Origin/SLC phase when injected”
above), but affected VI vendors should have exercised more care in understanding the nuances of
the platform for which they were developing code.

Direct mitigation/preventative actions: Different patches and workarounds are required for dif-
ferent VI vendors, and to some degree, different versions of the product. Specific mitigations are
mentioned by Dunlap and others:

a. VI vendors review every SYSRET call and appropriately replace with a different pro-
logue (e.g., check RCX register for canonical address prior to issuing SYSRET; if non-
canonical, exit safely).

b. AMD and Intel update their SDM documentation and ensure consistency with the way
SYSRET is actually implemented in their x86-64-based CPUs.

DoD: might have become victim of exploits somewhat in proportion to its dependence on external
cloud and internet servers.

CMU/SEI-2014-TR-010 | 78

Economic Considerations: What Actually Took Place vs. What Could Have Taken
Place Instead

 What actually took place What could have taken place had the vulnerability been
prevented

AMD and
Intel

Ambiguity in SYSRET specification and differ-
ences in SYSRET implementation persist for six
years.

Back in 2004-5: AMD should have been more precise in its
specification of SYSRET behavior (its implementation of
SYSRET in its CPU processors is apparently safe).

Intel should have recognized that its implementation of SYSRET
might be unsafe and either 1) adopted a safer interpretation
(e.g., what AMD actually implemented) or 2) included appropri-
ate caveats when SYSRET might be called from a processor in
a possibly (attacker-crafted) unsafe state by suggesting the
system developer include an appropriate prologue in advance of
the call to SYSRET to ensure a safe return to the application.

In 2006 when the Linux vulnerability was discovered, Intel could
have updated the SDM to make it easy and obvious for others
how to invoke SYSRET safely in system calls.

VI
Vendors

Didn’t understand the risk that lay with the
SYSRET ambiguity or difference: most VI vendors
developing for Intel CPUs introduce the vulnera-
bility. (And had AMD implemented their specifica-
tion differently, this might have also resulted in
unsafe situations).

The Xen blog suggests that improved vulnerability disclosure,
investigation, and remediation process(es) needed, and that
certainly seems true, but one should question their requirements
and design processes as well (as noted in item 2 under
“Origin/SLC Phase when Injected”).

In 2006, VI vendors (then in existence) could have recognized
the reported Linux vulnerability was a problem for them too.
They could have pressured Intel (and perhaps AMD) to update
SDMs and make it easier for the broader ecosystem to use their
CPUs safely.

More broadly, VI vendors should have recognized that SYSRET
might not be safely implemented (in AMD CPUs too given the
imprecision of the AMD specification) and ensured SYSRET is
only called after appropriate due diligence checking of the pro-
cessor state.

VI Hosts/
Providers

Apparently, trusting in VI vendor capabilities to
safely handle processor exception/faulting condi-
tions, but vulnerable for six years to potential
exploits.

Could do due diligence with any VI vendors they depend on to
ensure a VI vendor’s products are free from such vulnerabilities.
Could investigate possible risks to the internet server and cloud
services they offer if such vulnerabilities escaped detection and
were discovered and exploited in the wild.

Ecosystem
as a whole

A potentially very significant vulnerability goes
undetected (maybe unexploited too) for six years.

Many players had to become involved in a short-
duration time window to minimize damage to VI
purchaser/user trust and confidence in internet
server and cloud solutions. During that time, there
was some opportunity loss and potential market
loss to competitors.

Some of the more sophisticated VI purchasers
and users became more wary of cloud solutions
and perhaps investigated hybrid clouds and use
of strong encryption and other mitigations against
future exploits.

Maintain sufficient level of trust in the VI ecosystem to ensure its
sustained growth and enable efficient business growth and
handling unexpected swings in demand.

CMU/SEI-2014-TR-010 | 79

Other possible cost calculations:

1. Relative to the VI ecosystem as a whole, we assumed 100K reading and taking some action
(1 day effort on average) because of the CERT advisory. The former number may be low,
but the latter number may be high.

2. Potential damage to the application developer, website developer, and IT organization con-
fidence and trust in internet server and cloud solutions.

3. Xen was one of the VI vendors most affected given its market presence and exposure to the
unsafe Intel implementation of SYSRET. There was an enormous amount of (normally be-
hind-the-scenes communications) and furious efforts to craft, review, and test patches. What
on the surface might have seemed simple was much, much more convoluted as can be ob-
served from the Xen posted timeline of its disclosure process and what went wrong.

Closing Thoughts

When it comes to drawing lessons from our observations, it is not just the observed behavior that
matters, it is also the justification one offers for one’s behavior. Integrity can be thought of as how
well our behavior aligns with who we say we are, and reputation as how well our integrity has
held up over time. Integrity and reputation influence the degree to which a communicated purpose
or justification is accepted. If all align well, then over time, we include that party among those we
trust. On the other hand, the perception that a social norm has been violated can incur much loss
of social capital. Transactions with the party become more taxing as we need to account for risk
that what the party purports to be the case for its product or service is not so. An entity not
demonstrating integrity quickly moves outside the trust circle, and it can take a long while before
it returns. This is the outcome that those thought to have created a vulnerability and to be brought
into the media spotlight are trying to avoid. All their actions will be scrutinized—past, present,
and future—against their words. Past some point of suspicion, even the words won’t immediately
improve matters much. In a growing market, as is the case with servers, one of the last things you
want is to not be trusted. This is why media—in its many forms—has such an important role in
the rapid resolution of a vulnerability. Likewise, industries are increasingly dependent on the trust
that their customers, end users, partners, providers, subcontractors, and so forth. place in com-
merce over the internet. This can create a sense of shared identification among all companies
within the same ecosystem to work together to rapidly overcome weaknesses in the internet and
software infrastructure. In such contexts, integrity and reputation become very important. Interde-
pendence can develop as several parties work together to address vulnerabilities that threaten all
their collective livelihoods or market positions. Identification and interdependence are what binds
multiple parties into pursuing a shared mission.

These forces are essential in understanding the life cycle of vulnerabilities and more strategic
ways to address them.

CMU/SEI-2014-TR-010 | 80

Appendix F: Detailed Vulnerability Analysis: DNS Resolvers

VU#800113: DNS resolvers don’t sufficiently randomize DNS query ID () or source
port. Both make cache response spoofing/poisoning possible with available
network and CPU resources.

Description

The Domain Name System (DNS) is responsible for translating host names to IP addresses (and
vice versa) and is critical for the normal operation of internet-connected systems. DNS cache poi-
soning (sometimes referred to as cache pollution) is an attack technique that allows an attacker to
introduce forged DNS information into the cache of a caching name server. DNS cache poisoning
is not a new concept; in fact, there are published articles that describe a number of inherent defi-
ciencies in the DNS protocol and defects in common DNS implementations that facilitate DNS
cache poisoning. The following are examples of these deficiencies and defects:

 Insufficient transaction ID space

The DNS protocol specification includes a transaction ID field of 16 bits. If the specification
is correctly implemented and the transaction ID is randomly selected with a strong random
number generator, an attacker will require, on average, 32,768 attempts to successfully pre-
dict the ID. Some flawed implementations may use a smaller number of bits for this transac-
tion ID, meaning that fewer attempts will be needed. Furthermore, there are known errors
with the randomness of transaction IDs that are generated by a number of implementations.
Amit Klein researched several affected implementations in 2007. These vulnerabilities are de-
scribed in the following vulnerability notes:

VU#484649 - Microsoft Windows DNS Server vulnerable to cache poisoning

VU#252735 - ISC BIND generates cryptographically weak DNS query IDs

VU#927905 - BIND Version 8 generates cryptographically weak DNS query identifiers

 Multiple outstanding requests

Some implementations of DNS services contain a vulnerability in which multiple identical
queries for the same resource record (RR) will generate multiple outstanding queries for that
RR. This condition leads to the feasibility of a "birthday attack," which significantly raises an
attacker’s chance of success. This problem was previously described in VU#457875. A num-
ber of vendors and implementations have already added mitigations to address this issue.

 Fixed source port for generating queries

Some current implementations allocate an arbitrary port at startup (sometimes selected at ran-
dom) and reuse this source port for all outgoing queries. In some implementations, the source
port for outgoing queries is fixed at the traditional assigned DNS server port number, 53/udp.

Recent additional research into these issues and methods of combining them to conduct im-
proved cache poisoning attacks have yielded extremely effective exploitation techniques.
Caching DNS resolvers are primarily at risk—both those that are open (a DNS resolver is
open if it provides recursive name resolution for clients outside of its administrative domain),

CMU/SEI-2014-TR-010 | 81

and those that are not. These caching resolvers are the most common target for attackers;
however, stub resolvers are also at risk.

Because attacks against these vulnerabilities all rely on an attacker’s ability to predictably
spoof traffic, the implementation of per-query source port randomization in the server pre-
sents a practical mitigation against these attacks within the boundaries of the current protocol
specification. Randomized source ports can be used to gain approximately 16 additional bits
of randomness in the data that an attacker must guess. Although there are technically 65,535
ports, implementers cannot allocate all of them (port numbers <1024 may be reserved, other
ports may already be allocated, etc.). However, randomizing the ports that are available adds
a significant amount of attack resiliency. It is important to note that without changes to the
DNS protocol, such as those that the DNS Security Extensions (DNSSEC) introduce, these
mitigations cannot completely prevent cache poisoning. However, if properly implemented,
the mitigations reduce an attacker’s chances of success by several orders of magnitude and
make attacks impractical.

Parties Involved

Attacker (hypothetical)

An attacker with the ability to conduct a successful cache poisoning attack can cause a name serv-
er’s clients to contact the incorrect, and possibly malicious, hosts for particular services. Conse-
quently, web traffic, email, and other important network data can be redirected to systems under
the attacker’s control.

DNS vendors (the software providers)

Provides DNS software. While other DNS providers were aware of this vulnerability, some chose
to not address it.

CritSec

The DNS is critical to the effective operation of critical infrastructures as it provides the ability to
interconnect devices dynamically. This vulnerability could allow an attacker to perform a denial
of service or man-in-the-middle attack on a critical device in order to prevent or modify its behav-
ior.

Other user

The DNS is what allows the internet to function. Without the DNS, users would need to com-
municate IP addresses to each other through another channel for communications. This vulnera-
bility could be leveraged to enable man-in-the-middle attacks against users in order to compro-
mise their systems.

Security researchers: Both the original vulnerability reporter and other security researchers begin
to put the pieces of the puzzle together in hopes of understanding the core of the vulnerabilities
and how to mitigate it.

Media

News organizations, media outlets, online blogs, and so forth reporting on and interviewing relevant
parties.

The CERT Division

Handling coordination between researchers and affected DNS vendors.

CMU/SEI-2014-TR-010 | 82

Timeline

1. Feb 2008 - Researcher Dan Kaminsky discovers a fundamental flaw in the design of the
Domain Name System (DNS).

2. Mar 19, 2008 - Kaminsky sends out a notification to a small number of parties via CERT.

3. Mar 31, 2008 - At DNS Summit 2008, Kaminsky discusses

 detailed disclosure
 proposed solution
 proposed patch date 2008.08.07
 detailed release date at Blackhat

4. Jul 08, 2008 - Public announcement of the DNS flaw and proposed patch date. Kaminsky
states he will fully describe the vulnerability in 30 days, allowing time for companies that
operate web sites or internet service providers to put the patches in place. The CERT Divi-
sion publishes its vulnerability note.29

5. Jul 09, 2008 - Some details are leaked about how many DNS providers are affected. But no
official information has been released.

6. Jul 14, 2008 - Additional information is leaked.

7. Jul 21, 2008 – The DNS security flaw is completely leaked prior to disclosure date. “Patch
DNS as fast as possible” is advised.

8. Jul 23, 2008 - DNS attack code gets published (Metasploit module).

9. Jul 24, 2008 - US-CERT updates its vulnerability note with reports of DNS exploit code in
the wild; emphasizes urgent patching.

10. Jul 28, 2008 - Possible first attacks leveraging the DNS flaw have been reported.

11. Jul 30, 2008 - Reports that HD Moore (creator of Metasploit) is hacked using the DNS flaw.

12. Aug 07, 2008 - Kaminsky DNS Bug Disclosure - Dan Kaminsky releases the full vulnerabil-
ity information at Blackhat 2008.

A pictorial version of the timeline is shown in the following figure.30

29 http://www.kb.cert.org/ vulnerabilities/id/800113

30 This figure was originally published at http://www.cert.org/netsa/publications/faber-OARC2008.pdf.

http://www.kb.cert.org/
http://www.cert.org/netsa/publications/faber-OARC2008.pdf

CMU/SEI-2014-TR-010 | 83

CMU/SEI-2014-TR-010 | 84

 Prior to 2008
(General state of each
character leading to vul-
nerability discovery)

Vulnerability
discovered
(Early 2008—up
to just before
CERT advisory)

DNS vulnerability
announced
(March 2008 - up to
just before CERT
advisory)

CERT VU# posted
(July 8, 2008)

DNS vulnerability
leaked and exploit
module released
(July 23-25 2008)

BlackHat presenta-
tion with full vul-
nerability details

(Aug 7, 2008)

Aftermath
(general state of each
character following vul-
nerability mitigation)

Attacker

DNS was typically out of
scope unless an attacker
could compromise the
administrative account and
modify the DNS records.

See at left. Attacker knows there
are flaws in the DNS
but does not know all
the details yet. DNS is
widely used across
the internet and would
be a powerful attack
vector.

Attempts to exploit the
vulnerability might
initially increase as
CERT announcement
might “validate” a
closer look.

Attacker is now able
to attack a DNS
server remotely
without needing to
compromise an
administrative ac-
count.

Full vulnerability
details are released
and demonstrated at
Blackhat. Attackers
have all the infor-
mation needed to
create their own
exploits (including
tools and demo files
from presentation).

DNS cache poisoning is
still happening; however,
most DNS servers have
been patched to address
these vulnerabilities.

DNS Vendors DNS servers built and
placed on the inter-
net/networks without un-
derstanding possible risks.
There was some
knowledge of flaws in the
DNS among specific ven-
dors, but no one realized
the vulnerabilities were
more widespread and
could be combined.

Vendors private-
ly are given de-
tails of the vul-
nerability.
Vendors begin to
realize the se-
verity of the
flaws in their
software. They
begin developing
patches.

Vendors are called
out for being vulnera-
ble and are trying to
release patches
ASAP. It puts a fire
under the burner for
getting patches avail-
able.

See at left. Vendors that have
released patches tell
end users to patch
ASAP as sites are
beginning to be
exploited. Vendors
who are still working
on patches are
scrambling to get a
patch released.

See at left. Vendors are more aware
of the impact that
shortcuts or flaws in
their designs have on
their customers.

CritSec
(15-30 mil-
lion)

Push toward moving infor-
mation and data to be
online and shared among
private and sometimes
public users (facilitates
access to and manage-
ment of the critical infra-
structure and associated
services).

As more critical
devices and
information is
placed online,
we are adding
additional meth-
ods attackers
can use to ac-
quire the infor-
mation.

Potentially all DNS
servers could be
compromised. Patch-
es needed to be de-
ployed ASAP before
vulnerability details
are released.

See at left. Vulnerability details
are released allow-
ing all critical DNS
servers to be com-
promised. Patches
needed to be de-
ployed ASAP.

See at left. More users are adding
additional security op-
tions such as DNSSEC
and trusted zones for
communicating between
DNS servers. If a DNS
only receives updates
from one or two trusted
sources, it verifies the
update through a sec-
ond method.

Other users
(300 million)

DNS was a "black hole"
that most end users didn’t
understand.

See at left. Users begin to under-
stand how the DNS
works and the risks
associated with the
vulnerability infor-
mation.

In part through the
media, users are
advised to read advi-
sories and patch their
DNS servers.

Potentially all DNS
servers could be
compromised. Users
are at risk visiting
typical websites.

See at left. Potentially all DNS serv-
ers could be compro-
mised. Users are at risk
visiting typical websites.

CMU/SEI-2014-TR-010 | 85

 Prior to 2008
(General state of each
character leading to vul-
nerability discovery)

Vulnerability
discovered (Ear-
ly 2008—up to
just before
CERT advisory)

DNS vulnerability
announced
(March 2008 - up to
just before CERT
advisory)

CERT VU# posted
(July 8, 2008)

DNS vulnerability
leaked and exploit
module released
(July 23-25 2008)

BlackHat presenta-
tion with full vul-
nerability details

(Aug 7, 2008)

Aftermath
(general state of each
character following
vulnerability mitiga-
tion)

Security re-
searcher

Other DNS vulnerabilities
were found in the past:
 VU#484649 - Microsoft

Windows DNS Server
vulnerable to cache poi-
soning

 VU#252735 - ISC BIND
generates cryptograph-
ically weak DNS query
IDs

 VU#927905 - BIND ver-
sion 8 generates crypto-
graphically weak DNS
query identifiers

See at left. Researcher gives
basic information to
the public but tries to
prevent vulnerability
details from being
released.

Other researchers
realize parts of this
vulnerability were
talked about before,
but until that point no
one had a way to
exploit them.

Everyone is at risk
including vulnerabil-
ity researchers, at
least one of whom
gets his own website
compromised.

With additional tools
and demos re-
leased, researchers
are able to assist
with creating mitiga-
tion strategies for
customers and
sponsors.

As researchers for-hire,
they can perform pen-
tests for customers that
include DNS attacks.

Media

Little to no coverage of the
DNS.

See at left. Tons of coverage
about the DNS. Some
news networks begin
to make statements
that the internet is at
risk (partially true).
Media coverage helps
bring the risks of vul-
nerability to non-
technical users.

Confirms (and deep-
ens understanding of)
the risks that they had
learned about from
the researcher. Allows
more coverage and
central information-
gathering sources.

Media publishes that
details have been
released and urges
users to patch
ASAP. Helps ven-
dors broadcast in-
formation about
where patches are
available.

Media covers
presentation.

News coverage helped
spread the word about
the vulnerability and
patches to users who
would be unaware of the
vulnerability otherwise
(i.e., they do not follow
US-CERT tech notes or
CERT/CC vulnerability
notes).

CERT CERT has handled large
scale coordination efforts
before.

Researchers
brings CERT into
coordination
effort when they
realize how large
affected parties
are. CERT be-
gins to work with
affected parties.

CERT continues to
work with researcher
and affected parties
drafting their vulnera-
bility report.

Report gets pub-
lished.

CERT continues to
work with researcher
and affected parties
drafting their vulner-
ability report.

CERT continues to
work with researcher
and affected parties
drafting their vulner-
ability report. Report
continues to get
updated as new
information about
patches are re-
leased.

News coverage helped
bring more users to the
US-CERT and
CERT/CC websites who
had not known about it
before.

CMU/SEI-2014-TR-010 | 86

Orthogonal Defect Classification-Related Attributes

Origin/phase when injected: There are several possible origins, listed below.

1. Early in the vendor’s design phase when the decision to use predictable ordered numbers or
any available random number generator was made instead of carefully selecting a generator
having sufficient entropy.

2. Early in the design phase of the particular open source software (OSS) community develop-
ing such software for web servers that gets re-packaged and bundled with services by a soft-
ware vendor. In this case, one might credit the vulnerability’s origin to either that OSS com-
munity or to the vendor’s decision to base its business around that OSS without doing the
necessary due diligence on the licensed software to ensure it was relatively impervious to
threats such as low-entropy-based attacks.

3. More broadly, the injection could be credited to insufficient attacks/misuse/abuse case con-
sideration during requirements development and design. Early in the establishment of the in-
ternet, such threats might seem (and be) easier to mitigate. As internet use expanded and the
market for DNS resolvers grew, it became an increasingly tempting target for attack and dif-
ficult to mitigate (expansion favored the attacker over the ability of vendors to completely
mitigate).

4. Also, as the vulnerability was discovered and analyzed in some DNS vendors’ products, oth-
er DNS vendors still failed to confirm if their own products were affected. In other words,
once injected, the vulnerability might still have been caught and mitigated before its exploi-
tation but many DNS vendors failed to appreciate or act on their own products’ vulnerabili-
ties.

5. Finally, one could point to the design of the DNS system itself as lending itself to various
stratagems of attack, or even go further back than that to the overall design of the open inter-
net as inherently causing opportunities to create such vulnerabilities (as Dan Kaminsky did).

Trigger: Vulnerability is triggered by an attacker being able to predict transaction IDs at the same
time as predicting source ports on the DNS server. Once attackers are able to acquire both pieces
of information, they can simultaneously send a "request" and "answer" packet to the DNS server
allowing them to inject malicious data into the DNS cache table.

Age: Other DNS providers began to notice there was a risk of using predictable IDs and ports
around 2008.

Source: Generally speaking, 1) open-source software developers (Apache Software Foundation)
or 2) a commercial DNS vendor’s software developers.

Direct mitigation/preventative actions: Preventing update access of DNS tables by untrusted
third parties, limiting data leakage, using a more secure method of DNS data transfer such as
DNSSEC (was still being developed and ratified in 2008).

DoD: DoD runs DNS servers both private and public, which could have been affected. DoD em-
ployees are vulnerable when visiting external websites as their credentials could be compromised
on the attacker’s website.

CMU/SEI-2014-TR-010 | 87

Economic Considerations: What Actually Took Place V. What Could Have Taken
Place Instead

What actually took place What could have taken place had the

vulnerability been prevented

DNS vendors Since most DNS applications are open
source or freely available it is difficult to
estimate loss of sales, but reputation costs
would account for the majority of losses.

A DNS vendor exercising care to prevent
this vulnerability would have stood out from
their competition if they had addressed this
vulnerability sooner.

CritSec Exploits may have led to obtaining creden-
tials of key staff responsible for critical infra-
structures.

Critical infrastructures—and the staff that
sustain and secure them—would have been
at less risk from attack (e.g., by diverting
those seeking to legitimately access/monitor
the infrastructure [and their email] to an
attacker’s website). Credentials of the staff
would be more secure.

Security re-
searcher, Media,
CERT

Ecosystem as a
whole

CMU/SEI-2014-TR-010 | 88

Appendix G: Detailed Vulnerability Analysis: AMD/ASLR

VU#458153: Graphic card drivers do not support ASLR.

Description

“[AMD/ATI video card driver] Software design requires known/static address space layout,
doesn’t support ASLR (address space layout randomization), graphics drivers are kernel on Win-
dows so machine crashes on boot. Non-randomized locations allow attackers to use return-
oriented programming (ROP31) methods to bypass other runtime mitigations like DEP.”

Further detail

AMD video drivers were a problem because they precluded end users (including IT organiza-
tions32) from running ASLR “always on,” which CERT and others (e.g., Microsoft) were encour-
aging as a means of reducing exposure to ROP-type attack vulnerabilities. A key to the success of
ROP-based attacks is having a sufficiently large code base with guessable content at known ad-
dresses for the attacker to work with. The AMD video driver code base had a large footprint (per-
haps a megabyte or more,33 and hence could contribute to a successful ROP-type attack.

This is why AMD video card drivers incompatible with ASLR were becoming an increasingly
important concern:

1. Video card drivers generally increase in size (new versions incorporate new features), mak-
ing more code available to successfully engineer an ROP-based attack.

2. Attackers might be drawn increasingly to try to engineer such attacks, as more time passes
and the code base becomes increasingly studied and known (e.g., through leaks and OSS ef-
forts).

3. When ASLR is not set “always on,” it becomes necessary for the end user to identify which
applications will need to be opted in—a conscious act requiring time, thought, skill, and ef-
fort and thus prone to error—or worse—indefinite postponement.

Parties involved

Attacker (hypothetical)

Executes an attack pattern in which the system is made to crash (e.g., via a buffer overflow) in a
state allowing a return-oriented (or possibly JIT compiler code injection) type of attack. Goal:
obtain full-privilege control allowing installation of malware or execution of data breach (for eco-
nomic, political, or notoriety reasons). Video drivers are tempting targets for attack because they
run in kernel mode with full privileges, so anyone who can leverage a vulnerability in a video

31 For an unusual use of ROP, as well as a summary description of how it works, see

http://www.faqs.org/patents/app/20120030758

32 We could—but won’t—distinguish IT organizations from the end users they support, treating both as end users.
A more careful economic analysis would of course separate these two. Such a separation is essential in the
case of the Wind River vulnerabilities, for example, in which 100 vendors marketed devices using VxWorks as
their embedded RTOS. For this particular example, such separation may be unnecessary.

33 http://support.amd.com/us/gpudownload/windows/legacy/Pages/legacy-radeonaiw-vista64.aspx

http://www.faqs.org/patents/app/20120030758
http://support.amd.com/us/gpudownload/windows/legacy/Pages/legacy-radeonaiw-vista64.aspx

CMU/SEI-2014-TR-010 | 89

driver gains full privileges—not just user privileges. In this example, the attacker’s existence is
hypothetical but plausible, and considered as such, but his existence was assumed by some of the
other cast members.

AMD (the software provider)

Provides an ATI graphics driver that does not support ASLR. Later, through CERT involvement,
AMD provided an update (AMD Catalyst 12.6 = 6th month of 2012) that does support ASLR.

CritSec

Those end users of the ATI video card who need, for reasons of security risk, to run Microsoft’s
Enhanced Mitigation Experience Toolkit (EMET)34 turned on with mandatory ASLR—and who
have the capability to do so (relatively easy actually, there’s a download and link and instructions
on the Microsoft website). This includes IT departments trying to ensure protection of proprietary
data on employee machines. Count: About 15-30 million; assuming 5-10% of all 300 million end
users have critical security requirements for ASLR always on.

Other end users

Those with the ATI video card but for whatever reason do not run ASLR (e.g., security not of
much concern, those who take other precautions, those that have infrequent internet access, those
with no awareness of ASLR). Actually, not all these should be treated economically the same
(e.g., those without awareness might have much to lose), but we’ll simplify the economic analy-
sis. Count: About 300 million; assuming about 1.5 billion Windows machines and 20% of them
having AMD graphics cards (based on estimates found online for both number of Windows ma-
chines and AMD/ATI market share). We could reduce this number by the 15-30 million noted in
#3 above, but this seems close enough.

Security researchers

The individuals who found and investigated the vulnerability or who participated in finding a so-
lution can be a bit broadly defined. One or more of these bring the vulnerability to CERT’s atten-
tion. They may also participate in validating a proposed solution.

Media

Multiple motivations: Raise end-user awareness of risk so action can be taken, gain readership, be
the first to bring a story, and so forth. But whatever the motive, the effect of media attention is to
bring a spotlight to bear on particular parties (AMD, the security researchers), often driving those
parties to align their behavior with social norms (such as caring about the security of others) that
they might otherwise be unaware of, ignore, or avoid. In the case of this vulnerability, certain
well-regarded blogging sites and security newsletters brought unwanted (from AMD’s perspec-
tive) attention to the vulnerability, AMD’s role in it, and potential consequences. And AMD had
something precious to lose: market share to Nvidia.

The CERT Division

CERT got involved and nudged AMD into resolving the vulnerability. CERT acts a bit like both
security researchers and the media but is motivated to use media more to nudge the correct behav-
ior of the software provider than to gain spotlight on itself or to grow an audience. Relative to the
story of this particular vulnerability, Michael Orlando shared that CERT at this time, and others in

34 Name changed slightly with the release of EMET V2 as described in

https://blogs.technet.com/b/srd/archive/2010/07/28/announcing-the-upcoming-release-of-emet-v2.aspx.

https://blogs.technet.com/b/srd/archive/2010/07/28/announcing-the-upcoming-release-of-emet-v2.aspx

CMU/SEI-2014-TR-010 | 90

the security community, were trying to increase vendor and end-user awareness of the value of
ASLR, DEP, and so forth (under the Windows package of security enhancements known as um-
brella EMET) in mitigating exploitation of vulnerabilities.

Timeline

1. Ongoing (but focusing prior to 2006): Security research community explores return-oriented
programming-type attacks/exploits and approaches to defend/mitigate them over a couple of
decades as computer systems grow in complexity and new avenues of attack become availa-
ble.35

2. May 2006: Microsoft announces Windows Vista Beta 2 to feature ASLR.36

3. September 2009: Microsoft announces EMET 2.0 with mandatory ASLR.37

 The EMET 2.0 announcement summarizes Microsoft’s intent for EMET 2.0: “…provides users
with the ability to deploy security mitigation technologies to arbitrary applications. This helps
prevent vulnerabilities in those applications (especially line of business and third party apps)
from successfully being exploited. By deploying these mitigation technologies on legacy prod-
ucts, the tool can also help customers manage risk while they are in the process of transitioning
over to modern, more secure products. In addition, it makes it easy for customers to test mitiga-
tions against any software and provide feedback on their experience to the vendor.” Among
those security mitigation technologies is mandatory ASLR, and this is explained (along with
other security mitigation technologies) in the above announcement that includes a link to the
users’ guide, which explains38 mandatory ASLR and how to take advantage of the increased
protections it provides on an application-by-application basis.

4. Early 2012: Security researcher(s) notes ASLR “always on” causes Windows systems with
AMD video drivers to crash. CERT also learns of this.

5. June 6, 2012: CERT posts VU#458153 that notes that AMD video drivers for Windows systems
create significant vulnerabilities.39

 CERT’s announcement served multiple inter-related purposes: 1) continuing to educate end users
of the value that ASLR has for them (and more broadly, remind end users of the need to take
steps to minimize exposure to vulnerabilities) 2) continue to educate vendors on the value that
ASLR (and similar mitigations) has for end users of that vendor’s products, and thus the need for

35 We are not sure how much was actually achieved by attackers using this type of exploit but knowing where

certain code is in memory provides significant automated exploit opportunities, and as the footprint of such code
becomes larger, the more code there exists for exploitation via a ROP-type attack.

36 Announcement/motivation for it appears in this Michael Howard blog:
http://blogs.msdn.com/b/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-windows-
vista.aspx. The overall message of the blog is that Microsoft is introducing with the new version of Windows
some options and features at compile time, link time, and runtime so that the applications an end user uses can
have more protection from successful exploit of vulnerabilities they might contain.

37 http://blogs.technet.com/b/srd/archive/2010/09/02/enhanced-mitigation-experience-toolkit-emet-v2-0-0.aspx

38 The Users' Guide says this on page 16: “There is an unsafe option for the ASLR setting called “always on.” This
setting will force address space randomization for binaries that do not specifically support it. This setting is not
visible by default due to the risk of introducing system instability. “In our tests, we encountered issues in a
common use scenario where having ASLR set to “always on” would cause a system to blue screen during boot.
This occurred because the address space for certain third-party video drivers was being randomized. These
drivers had not been built to support this randomization and subsequently crashed, causing the whole system to
crash as well.

39 The same goes for AMD video drivers for PAX (Linux) systems (excluded from this analysis).

http://blogs.msdn.com/b/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-windows-vista.aspx
http://blogs.msdn.com/b/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-windows-vista.aspx
http://blogs.msdn.com/b/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-windows-vista.aspx
http://blogs.technet.com/b/srd/archive/2010/09/02/enhanced-mitigation-experience-toolkit-emet-v2-0-0.aspx

CMU/SEI-2014-TR-010 | 91

them to create ASLR-compatible products where possible, and 3) a strong nudge to AMD, in
tight competition with Nvidia and Intel, to fix the problem.40

6. June 29, 2012: AMD releases Catalyst 12.6 for Windows systems that is compatible with
ASLR “always on” only 23 days later. This announcement was a big issue for AMD and ob-
taining a solution was urgent. Validation of the solution would follow relatively quickly.

7. July 23, 2012: Update to CERT’s announcement noting availability of a solution by AMD

8. Aftermath (See the table on the following page for details.)

40 CERT researcher Michael Orlando states, “We have seen vendors fix something in <24 hours, and other ven-

dors take 18 months. Three to five weeks is a safe number as it falls within our typical 45 day disclosure win-
dow.”

CMU/SEI-2014-TR-010 | 92

Prior to 2006

(General state of
each character lead-
ing to vulnerability
discovery)

ASLR announced

(May 2006)

Vulnerability dis-
covered
(Early 2012—up to
just before CERT
advisory)

CERT VU# posted

(June 6, 2012)

AMD releases
ASLR compatible
driver

(June 29, 2012)

CERT notifies solu-
tion exists
(July 23, 2012)

Aftermath

(General state of
each character fol-
lowing vulnerability
mitigation)

Attacker

Looking for ways to
use increasing
knowledge of Win-
dows systems (and
applications) to de-
sign attacks for prof-
it, notoriety, or serve
a cause

PC market grows,
and more code can
be leveraged for
ROP-based auto-
mated attacks. But
announcement of
ASLR suggests “time
is running out” on
ability to exploit.

Attackers might have
been quietly exploit-
ing such vulnerabili-
ties. (We couldn’t
verify one way or the
other.)

Attempts to exploit
the vulnerability
might initially in-
crease as CERT
announcement might
“validate” a closer
look.

Attackers, sensing
reduced opportunity,
might look else-
where for exploits.

See at left. Some ROP attacks
end (if there were
any). But perhaps
some exploits con-
tinue on unpatched
internet-accessible
systems.

AMD As PC market grows,
AMD designs new
features, increasing
its video driver code
base. AMD also
leverages OSS
community to im-
prove cycle time and
as competitive dif-
ferentiator, but such
actions make more
of its code known.

Maybe initial evalua-
tion concluded “little
risk” from ROP-type
attacks, but PC mar-
ket and risk are
growing.
Also, Vista has a
rough launch,41
which might embold-
en those building on
the Windows plat-
form not to rush to
comply with ASLR,
etc.

See at left.

Also: Engaged in
competitive feature
race. Maybe ASLR
incompatibility not
seen as sufficiently
high risk, relative to
beating (or keeping
up with) the competi-
tion on features.42

Spotlight on AMD.
Fear that sales will
take a hit. Damage
control. Urgent at-
tention given to mak-
ing drivers ASLR
compatible.

Solution release.
Now need to get
security researchers
and CERT to vali-
date the solution and
official channels to
distribute the word
through channels.

AMD has solved the
immediate problem
and resumes dealing
with its more persis-
tent, longer term
existential threats:
Intel and Nvidia.

Losses in sales from
June 6 through July
(~1 month). At 20%
of 170 million/yr at
50% impact => 1.5
million lost sales of
$300 => $0.45 bil-
lion; also some im-
pact on future
sales—harder to
estimate.

41 http://en.wikipedia.org/wiki/Criticism_of_Windows_Vista

42 This could be the motivation for keeping a narrow focus during the SDLC: neglecting consideration of ROP threat (during Requirements Development/Threat Modeling) and avail-
ability of VISTA counter measures (during Design). This information corresponds to the “SDLC Phase when Injected” attribute in ODC.

http://en.wikipedia.org/wiki/Criticism_of_Windows_Vista

CMU/SEI-2014-TR-010 | 93

Prior to 2006

(General state of
each character lead-
ing to vulnerability
discovery)

ASLR announced

(May 2006)

Vulnerability dis-
covered
(Early 2012—up to
just before CERT
advisory)

CERT VU# posted

(June 6, 2012)

AMD releases
ASLR compatible
driver

(June 29, 2012)

CERT notifies solu-
tion exists
(July 23, 2012)

Aftermath

(General state of
each character fol-
lowing vulnerability
mitigation)

CritSec

(15-30 mil-
lion)

Increasingly vulner-
able to ROP-type
attacks as attackers
learn what kernel
code/data is stored
where.

Decreasing confi-
dence in Windows
platform as attacks
and exploits in-
crease.

Put pressure on
Microsoft to resolve.

As a whole, Vista
(and ASLR, DEP,
etc.) seems promis-
ing but also a radical
change that comes
at the cost of usabil-
ity and may leave
key providers build-
ing on the Windows
platform behind.

Perhaps stay with
XP and wait for Win-
dows 7, pressuring
Microsoft to get it
right.

Growing interest but
too many vendors
not cooperating,
resulting in risk from
many kernel-level
apps not being
ASLR-ed.

Windows ecosystem
more aligned but
with key players
such as AMD not
being compatible.

Perhaps add to spot-
lighting of AMD not
going along with
ASLR.

Probably fewer pur-
chases and AMD
losing “favored sup-
plier” status. (And
perhaps not just for
video drivers.)

AMD no longer an
obstacle to
operating Windows
systems with ASLR
“always on.”

Driver updates need
to be applied.

See at left. CritSec no longer as
likely to be subjected
to ROP-type attacks.

Perhaps AMD again
becoming an ac-
ceptable supplier,
thereby offering a
sometimes cheaper
alternative ($ saved).

Other end
users (300
million)

Also vulnerable but
more oblivious to the
nature of the risk or
solution.

Mostly oblivious;
perhaps seen as
unnecessary.

Perhaps worried
about Vista being a
BIG step backwards.
Become as cynical
about security as
with Microsoft.

PCs work tolerably
well and that’s what
matters.

Oblivious to silent
malware until per-
sonally affected.

For a subset of end
users, the CERT
advisory makes it
less socially ac-
ceptable to purchase
AMD. Others don’t
care.

Further impact on
AMD purchases is
reduced but may
persist for some time
period and even be
slightly contagious.

See at left. Updates perhaps
obtained automati-
cally. Not as much
an attractive target
for attackers, but
some segment might
still be vulnerable.

Security
researcher

“Kicking the tires” to
find new vulnerabili-
ties or ways to ex-
ploit them (seeking
recognition and ap-
preciation).

Recognition of the
ROP general prob-
lem achieved. Con-
tinue to look for nov-
el exploits or
defenses.

For the researcher
who found the vul-
nerability, a gain of
appreciation for
where to place spot-
light.

(See at left.) ROP
researchers obtain
validation for their
research and can
publish it.

See at left. See at left. Have gained atten-
tion and respect—
and for doing what
they enjoy, caused
the world to be a
safer place.

CMU/SEI-2014-TR-010 | 94

Prior to 2006

(General state of
each character lead-
ing to vulnerability
discovery)

ASLR announced

(May 2006)

Vulnerability dis-
covered
(Early 2012—up to
just before CERT
advisory)

CERT VU# posted

(June 6, 2012)

AMD releases
ASLR compatible
driver

(June 29, 2012)

CERT notifies solu-
tion exists
(July 23, 2012)

Aftermath

(General state of
each character fol-
lowing vulnerability
mitigation)

Media

Looking for the good
story to educate
readership and in-
crease eyeballs—
and revenue.

Might have been
slow to fully appreci-
ate. Maybe over-
looked.

Probably not aware. If brought to readers’
attention, could be
beneficial for readers
and also for reve-
nue.

With a solution at
hand, can continue
publicizing this.

See at left. Events exploited for
profit but also 1)
educated end users
and made them less
vulnerable 2) intensi-
fied spotlight and
damage to AMD.

CERT Coordinating re-
sponse to attacks;
broadening mission
to include preven-
tion.

Go after vendors to
help make ASLR etc.
effective.

See at left. Put AMD in the spot-
light while educating
end users of risk.

Before publicizing
existence of the
solution, CERT
needs to validate
that AMD release
12.6 is a solution.
Perhaps under pres-
sure to do so.

CERT expends effort
to get the word out
and monitors for any
hiccups (new vul-
nerabilities re-
vealed).

CERT has brought
awareness to a
problem and helped
a larger community
benefit from reduced
likelihood of a class
of exploitations.

Total esti-
mated loss-
es

Scale of ROP-based
attacks is un-
known43, but pre-
sumably monoton-
ically increasing
given growth in PC
sales (targets), size
of code at known
locations (attack
opportunities).

Economic impact of
ASLR announce-
ment is unclear.

Perhaps slowly re-
gaining trust for
Microsoft products.
Some vendors get-
ting angry and tired
of incompatibilities.

Security researcher
only direct benefi-
ciary at this point.

Actual ROP-based
attacks are unknown
on Windows, but the
risk is real.

AMD almost imme-
diately begins to lose
planned purchases
among CritSec and
perhaps others.
Other laggards see
need to comply.

Effect on AMD sales
gradually diminish-
ing. CritSec can
achieve a level of
security from auto-
mated ROP-type
attacks. AMD again
an alternative sup-
plier of video card
drivers.

See at left. Missing: Analyst
time worrying about
ROP-type attacks
but unable to quanti-
fy their likelihood?

43 It is unclear how we might estimate “background ROP exploitation,” and it perhaps continues, resulting in a further loss for those with unpatched Windows systems and ASLR not

“always on.” We have not heard of any successful ROP exploits on Windows systems (other than for demonstration by security researchers).

CMU/SEI-2014-TR-010 | 95

Orthogonal Defect Classification-Related Attributes

Origin/ phase when injected: Combination of getting the requirements complete (threat model-
ing may have neglected considering ROP-type attacks) and design (leverage newly provided secu-
rity features in Vista vs. the consequences to end users and to the larger Windows ecosystem of
NOT doing so). (Already mentioned in earlier steps.)

Trigger: An automated pre-designed attack could exploit a first vulnerability (e.g., a buffer over-
flow) and use the resulting crash to apply ROP against known (video driver) addresses to read
sensitive data or deposit malware. This kind of attack is hard to engineer. (Already mentioned in
earlier steps.)

Age: Emergent (i.e., initially there was no ASLR to push back on ROP-type attacks). ROP-type
attacks were more of a concept than a reality initially, particularly with the initially smaller code
bases that existed in earlier Windows ecoystems.

Source: In-house (vs. third party/OSS)

Direct Mitigation/Preventative actions:44

1. AMD ensured source code for driver did not depend on "known addresses."

2. AMD modified driver software to be compatible with ASLR.

3. AMD improved communication between AMD’s driver team and AMD’s tech support team.

DoD: might have 1) been/become victim of ROP attacks 2) borne additional expenses equipping
PCs with video cards if, due to the vulnerability, they were to drop AMD as a supplier.

44 Inferences based on http://blogs.amd.com/play/2012/06/28/our-driver-team-answers-the-call-once-again/

http://blogs.amd.com/play/2012/06/28/our-driver-team-answers-the-call-once-again/

CMU/SEI-2014-TR-010 | 96

Economic Considerations: What Actually Took Place vs. What Could Have Taken
Place Instead

 What actually took place What could have taken place had the vulnera-
bility been prevented

AMD AMD might have lost sales in mid/late 2012 (back-
of-the-envelope style estimation was $0.45 billion)
and perhaps beyond, and in reputation costs.

A counterpoint: by deferring attention to security,
could AMD actually have benefitted in market
share for the short term? But introducing threat
modeling and observing the increasing risk of ROP
were not expensive or time consuming. When it
came time to create an ASLR-compatible driver, it
took AMD maybe 10 days for 5 staff = 0.2 FTE
effort. Couldn’t it have done this years before?

CritSec The overall Windows ecosystem grew more risky as
long as major providers (AMD) created ASLR-
incompatible drivers. The eventual mission disrup-
tions and costs could have been enormous (and
maybe were enormous in some attacks, e.g., at least
one compiler was actually created that generated
ROP-type instructions to create arbitrary executable
code out of existing kernel code at known address-
es).

CritSec no longer as likely to be subjected to ROP-
type attacks.

Perhaps AMD again becoming an acceptable
supplier, thereby offering a sometimes cheaper
alternative ($ saved).

Perhaps other benefits reaped from a safer eco-
system as further described in the rows below.

Security re-
searcher,
media, CERT

Attention of all three parties was diverted to deal with
this non-complying major actor (AMD), and this vul-
nerability took a share of whatever “attention space”
these actors could claim. As a consequence, time
and attention from potentially millions of end users
was diverted to learn about or deal with this vulnera-
bility.

All three parties could instead deal with other vul-
nerabilities that were also the basis of attacks or
could become the basis of attacks. Losses due to
these other vulnerabilities could have been
stemmed earlier.

Ecosystem as a
whole

Note there was also an opportunity lost: Other in-
compatible drivers or applications (probably) de-
served attention, but until the situation with AMD
resolved itself, their incompatibility was less visible.
And perhaps had AMD complied to begin with, others
might have more readily followed suit.

Overall ecosystem more aligned, which has some
non-linear benefits: reinforce security norms for all
and stronger expectations get set for heightened
attention to security.

Other possible cost calculations:

Assuming 20% of CritSec upload the new graphics driver, maybe 3 million end users spent 5
minutes each to ensure they were running the new device driver =~ 100 full time equivalent (FTE)
effort =~ $20 million in costs.

And for the small number of end users actually opting to replace AMD video card with other vid-
eo HW = 2.5% of CritSec ~ 300K new customizations at $400 per and 15 minutes time =~ $130
million.

200K reading CERT advisory and reflecting on what to do about it = 20 mins/reader =~ 30 FTE
=~ $6 million

What a more general process preventing the vulnerability and many “similar vulnerabilities”
might have entailed:

 eliciting security needs and thresholds

 threat modeling assuming attacker orchestrates attacks such as ROP

 leveraging security enhancements offered by whatever platforms you develop products for
(e.g., ASLR and more broadly EMET in the case of Windows systems)

CMU/SEI-2014-TR-010 | 97

Developers should avail themselves of the security features and options offered by whatever plat-
forms or software sources they are using; this should be the usual organizational practice enforced
through reviews during design and implementation.

Implementing these new practices, deploying them to where they are needed, offering training,
motivation, and support, and assuring they are performed.

Closing Thoughts

Relative to leveraging security enhancements, Michael Howard’s blog implies that Microsoft
gave careful consideration to what could be done differently during OS/application development,
compile, link, run, and deployment time to ensure any applications running on the Windows OS
platform (including many older versions) would offer attackers a significantly reduced attack sur-
face (reduced ease of and consequences from exploitation). That is, Microsoft gave careful con-
sideration to security design based on assumptions of how vendors, end users, and attackers
would behave so that end users would be more secure. This seems to involve considerations
broader than what the phrase “OS design” might normally convey, perhaps “platform design” and
even “ecosystem design” better captures the focus of Microsoft’s considerations. But many ven-
dors such as AMD were not initially aligned with Microsoft or each other on the overall approach
(or its need), so Microsoft’s security design strategy was “broken” (as Microsoft itself recognized
as implied by the quote in footnote 38) potentially undermining the security and safety of the
overall PC ecosystem.

Regarding this example from a perspective of the ecosystem and human behavior, the changing of
one’s attitudes and values toward adopting what might be called a “security mindset” (and more
generally, any change in mindset) often takes a long while to achieve. In the case of this vulnera-
bility, what was required was enough mindsets to change across the larger ecosystem (i.e., includ-
ing AMD) that Microsoft’s efforts with EMET could provide improved security for end users.
Thus, in many ways, with its significant pivot toward security, what needed to be considered goes
well beyond what has traditionally been treated as “design” (the organization of software re-
sources at runtime) to include how other actors (stakeholders) in the ecosystem will behave during
and after the intended changes.

CMU/SEI-2014-TR-010 | 98

References

[Aslam 1996]
Aslam, T. & Spafford, E. H. “Use of a Taxonomy of Security Faults.” Proceedings of the 19th
National Information Systems Security Conference (1996).

[Budgen 2008]
Budgen, David. "Using Mapping Studies in Software Engineering.” Proceedings of PPIG 8
(2008).

[Catal 2009]
Catal, Cagatay & Diri, Banu. “A Systematic Review of Software Fault Prediction Studies.” Expert
Systems with Applications 36, 4 (May 2009): 7346-7354.

[Chillarege 1992]
Chillarege, Ram; Bhandari, Inderpal S.; Chaar, Jarir K.; Halliday, Michael J.; Moebus, Diane S.;
Ray, Bonnie K.; & Wong, an-Yuen. “Orthogonal Defect Classification - A Concept for In-Process
Measurements.” IEEE Transactions on Software Engineering 18, 11 (Nov 1992).

[GAO 2013]
United States Government Accountability Office (GAO). Cybersecurity: National Strategy,
Roles, and Responsibilities Need to Be Better Defined and More Effectively Implemented (GAO-
13-187) Feb 2013.

[Garber 2012]
Garber, Lee. “Have Java’s Security Issues Gotten out of Hand?” IEEE Computer 45, 12 (2012):
18-21.

[Grady 1992]
Grady, Robert B. Practical Software Metrics for Project Management and Process Improvement.
Prentice Hall, Inc., (1992).

[Hall 2012]
Hall, T.; Beecham, S.; Bowes, D.; Gray, D.; & Counsell, S. “A Systematic Literature Review on
Fault Prediction Performance in Software Engineering.” IEEE Transactions on Software
Engineering 38, 6 (2012): 1276–1304.

[IBM 1999]
IBM Research Group. Details on Orthogonal Defect Classification for Design and Code. IBM
Center for Software Engineering,1999.
http://www.research.ibm.com/softeng/ODC/DETODC.HTM

[IEEE 2009]
IEEE Std 1044-2009 (Revision of IEEE Std 1044-1993) IEEE Standard Classification for Soft-
ware Anomalies, 2009.

http://www.research.ibm.com/softeng/ODC/DETODC.HTM

CMU/SEI-2014-TR-010 | 99

[Kitchenham 2007]
Kitchenham, B.A. Guidelines for Performing Systematic Literature Reviews in Software Engi-
neering Version 2.3. Software Engineering Group, Keele University and Department of Computer
Science University of Durham, 2007.

[Landwehr 1994]
Landwehr, C. E.; Bull, A. R.; McDermott J. P.; & Choi, W. S. “A Taxonomy of Computer Pro-
gram Security Flaws.” ACM Computing Surveys 26 (1994).

[Lindsey 1989]
Lindsey, D. “Using Citation Counts as a Measure of Quality in Science: Measuring What’s Meas-
urable Rather Than What’s Valid.” Scientometrics 15 (1989): 189–203.

[Macroberts 2010]
Macroberts, M. H. & Macroberts, B. R. “Problems of Citation Analysis: A Study of Uncited and
Seldom-Cited Influences.” Journal of the American Society for Information Science and Technol-
ogy, 61 (2010): 1–12.

[Petersen 2008]
Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. “Systematic Mapping Studies in
Software Engineering.” Proceedings of the 12th International Conference on Evaluation and
Assessment in Software Engineering (EASE). University of Bari, Italy, June 2008.

[Pickard 1998]
Pickard, L. M.; Kitchenham, B.; and Jones, P. W. “Combining Empirical Results in Software En-
gineering.” Information and Software Technology, 40, 14 (1998) 811–821.

[Seaman 2008]
Seaman, Carolyn B.; Shull, Forrest; Regardie, Myrna; Elbert, Denis; Feldmann, Raimund L.;
Guo, Yuepu; & Sally Godfrey. “Defect Categorization: Making Use of a Decade of Widely Vary-
ing Historical Data.” Proceedings of the Second ACM-IEEE International Symposium on Empiri-
cal Software Engineering and Measurement (ESEM ‘08). ACM, 2008.

[Shin 2013]
Shin, Y. & Williams, L. “Can Traditional Fault Prediction Models Be Used for Vulnerability Pre-
diction?” Empirical Software Engineering 18 (2013): 25–59.

[Sterman 2000]
Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for a Complex World. Ir-
win/McGraw-Hill, 2000.

[Van Eeten 2008]
Van Eeten, Michel J. G. & Bauer, Johannes M. Economics of Malware: Security, Decisions, In-
centives and Externalities. Working paper DSTI/DOC(2008)1. Organisation for Economic Co-
operation and Development, May 29, 2008.

CMU/SEI-2014-TR-010 | 100

[Weber 2005]
Weber, S.; Karger, P. A.; & Paradkar, A. “A Software Flaw Taxonomy: Aiming Tools at Securi-
ty.” ACM SIGSOFT Software Engineering Notes 30 (2005) 1-7.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

May 2014

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Data-Driven Software Assurance:
A Research Study

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Mike Konrad, Art Manion, Andrew Moore, Julia Mullaney, William Nichols, Michael Orlando, Erin Harper

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2014-TR-010

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom

Enterprise Acquisition Division

20 Schilling Circle

Building 1305

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Software vulnerabilities are defects or weaknesses in a software system that if exploited can lead to compromise of the control of a sys-
tem or the information it contains. The problem of vulnerabilities in fielded software is pervasive and serious. In 2012, Software Engi-
neering Institute (SEI) researchers began investigating vulnerabilities reported to the SEI’s CERT® Division and determined that a large
number of significant and pernicious software vulnerabilities likely had their origins early in the software development life cycle, in the re-
quirements and design phases. A research project was launched to investigate design-related vulnerabilities and quantify their effects.
The Data-Driven Software Assurance project examined the origins of design vulnerabilities, their mitigations, and the resulting economic
implications. Stage 1 of the project included three phases: 1) conduct of a mapping study and literature review, 2) conduct of detailed
vulnerability analyses, and 3) development of an initial economic model. The results of Stage 1 indicate that a broader initial focus on
secure design yields substantial benefits to both the developer and operational communities and point to ways to intervene in the soft-
ware development life cycle (or operations) to mitigate vulnerabilities and their impacts. This report describes Stage 1 activities and out-
lines plans for follow-on work in Stage 2.

14. SUBJECT TERMS

Mapping study, software design, data analysis, literature review, system dynamics model,
software assurance

15. NUMBER OF PAGES

115

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

y

	Abstract
	1	Introduction
	2	Project Overview
	3	Orthogonal Defect Classification
	4	Mapping Study
	5	Detailed Vulnerability Analyses
	6	System Dynamics Model and Simulation
	7	DDSA Results, Stage 1
	8	Proposed Next Steps, Stage 2
	9	Conclusions
	Appendix A:	Additional Mapping Study Results
	Appendix B:	Relevant Documents for Mapping Study
	Appendix C:	Template for Detailed Vulnerability Analysis
	Appendix D:	Selected Design-Related Vulnerabilities
	Appendix E:	Detailed Vulnerability Analysis: SYSRET	63
	Appendix F:	Detailed Vulnerability Analysis: DNS Resolvers
	Appendix G:	Detailed Vulnerability Analysis: AMD/ASLR
	References/Bibliography

