
 

 

Mobile SCALe: Rules and Analysis for 
Secure Java and Android Coding 

Lujo Bauer, Carnegie Mellon University, Department of Electrical and Computer Engineering 
Lori Flynn, Software Engineering Institute 
Limin Jia, Carnegie Mellon University, Department of Electrical and Computer Engineering 
Will Klieber, Software Engineering Institute 
Fred Long, Aberystwyth University, Department of Computer Science 
Dean F. Sutherland, Software Engineering Institute 
David Svoboda, Software Engineering Institute 

November 2013 

TECHNICAL REPORT 
CMU/SEI-2013-TR-015 
ESC-TR-2013-015 

CERT® Division 

http://www.sei.cmu.edu 

http://www.sei.cmu.edu


 

 

Copyright 2013 Carnegie Mellon University 

 

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 

with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and 

development center. 

 

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not 

necessarily reflect the views of the United States Department of Defense. 

 

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, 

does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its 

Software Engineering Institute. 

 

This report was prepared for the 

SEI Administrative Agent 

AFLCMC/PZM 

20 Schilling Circle, Bldg 1305, 3rd floor 

Hanscom AFB, MA 01731-2125 

 

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE 

MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES 

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, 

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED 

FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY 

KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. 

 

This material has been approved for public release and unlimited distribution except as restricted below. 

 

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is granted, 

provided the copyright and “No Warranty” statements are included with all reproductions and derivative works. 

 

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or 

electronic form without requesting formal permission. Permission is required for any other external and/or commercial use. 

Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu. 

 

* These restrictions do not apply to U.S. government entities. 

 

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University. 

 

DM-0000726 

 

mailto:permission@sei.cmu.edu


 

CMU/SEI-2013-TR-015 | i 

Table of Contents 

Acknowledgments vii 

Abstract ix 

1 Introduction 1 

2 The Java Coding Guidelines Book 2 

3 Android Secure Coding Rules 3 

4 Android App Analysis Tool 5 
4.1 Design and Implementation 5 
4.2 Limitations and Future Work 7 

5 Summary and Future Work 8 

References 9 

 

  



 

CMU/SEI-2013-TR-015 | ii 



 

CMU/SEI-2013-TR-015 | iii 

List of Figures 

Figure 1: Java Coding Guidelines Book Cover 2 

Figure 2: Introductory Section of an Android Rule 3 

 



 

CMU/SEI-2013-TR-015 | iv 



 

CMU/SEI-2013-TR-015 | v 

List of Tables 

Table 1: Count of Java Guidelines, as Applicable to Android 2 

Table 2: Guidelines Applicability Definitions 2 

Table 3: Count of Java Rules, as Applicable to Android 4 

Table 4: Rule Applicability Definitions 4 

 

  



 

CMU/SEI-2013-TR-015 | vi 

 



 

CMU/SEI-2013-TR-015 | vii 

Acknowledgments 

We are grateful for the line funding award from the Software Engineering Institute, which enabled 
this work to be done. Many thanks go to JPCERT for the major contributions of Masaki Kubo, 
Hiroshi Kumagai, and Yozo Toda toward Android rule creation and analysis of applicability of 
rules and guidelines. We also thank professional editor Carol Lallier for her improvements to this 
paper. 

  



 

CMU/SEI-2013-TR-015 | viii 

 



 

CMU/SEI-2013-TR-015 | ix 

Abstract 

This report describes Android secure coding rules, guidelines, and static analysis that were 
developed as part of the Mobile Source Code Analysis Laboratory (SCALe) project. The project 
aims to create a set of rules that can be checked (and potentially enforced) and to develop 
checkers for these rules. These efforts are intended to increase confidence in continued safe and 
secure operation of mobile devices and the networks on which they operate. The focus for this 
phase of the project is the Android platform for mobile devices. Work described in this report 
involved three activities: (1) preparing the Java Coding Guidelines book for publication, 
(2) developing Android secure coding rules for the Android section of the CERT Oracle Secure 
Coding Standard for Java wiki, and (3) developing software that does static analysis of a set of 
Android apps for data flows between them so that security leaks can be detected. 
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1 Introduction 

This report describes Android secure coding rules, guidelines, and static analysis that were 
developed as part of the Mobile SCALe project. The project aims to create a set of rules that can 
be checked (and potentially enforced) and to develop checkers for these rules. These efforts are 
intended to increase confidence in continued safe and secure operation of mobile devices and the 
networks on which they operate. The current phase of the project focuses on the Android platform 
for mobile devices. 

Mobile SCALe project work discussed in this report is a continuation of related work done by the 
CERT® Secure Coding Initiative, part of Carnegie Mellon University’s Software Engineering 
Institute, particularly the Initiative’s previous work on secure coding for the Java language. That 
work includes the development of the CERT Oracle Secure Coding Standard for Java wiki and 
publication of the eponymous book [Long 2011]. The CERT Oracle Secure Coding Standard for 
Java contains a set of normative rules, meaning that it should be possible to determine whether a 
piece of code conforms to these rules.  

Recommended practices, even though they are not normative, can help with the production of 
more secure and reliable code. Section 2 of this report tells about new work that developed these 
recommended practices into a set of guidelines for publication as a second book. 

An Android extension of the original CERT Oracle Secure Coding Standard for Java was needed 
to give better guidance for secure coding of Java applications (apps) for Android mobile devices. 
Section 3 of the report details the new Android section that we added to the CERT Oracle Secure 
Coding Standard for Java wiki. 

With the development of secure coding rules for Android, the Source Code Analysis Laboratory 
(SCALe) tools needed to be extended so that they could cope with the Android architecture. 
Section 4 of this report describes a new static analysis tool we developed for Android apps.   

Section 5 of this report summarizes the latest work completed and tells about future work 
planned.  

 
®  CERT® is a registered mark owned by Carnegie Mellon University. 
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2 The Java Coding Guidelines Book 

Some members of the Mobile SCALe project team helped prepare the book Java Coding 
Guidelines: 75 Recommendations for Reliable and Secure Programs [Long 2013] for publication 
(Figure 1). The work for the book was originally developed on a private wiki. The wiki pages 
were then exported as documents in a format used for offline prepublication work, edited, and 
sent to the publisher in May 2013. Proofs were received from the publisher and corrections and 
edits made to the proofs, which were then returned to the publisher. Final proofs were received 
from the publisher and further minor corrections made and submitted in July. The book was 
published on September 9, 2013.  

 

Figure 1: Java Coding Guidelines Book Cover 

The Java language is the basis for the Android platform used in many mobile devices. However, 
the Android architecture differs somewhat from that used in normal Java applications, and the 
security model differs a lot. Not all of the newly developed Java coding guidelines apply to 
Android. Analysis was done to determine the applicability of each of the Java coding guidelines 
to Android. The book’s appendix describes the applicability of the guidelines in the book to 
developing Java apps for the Android platform, as summarized in Table 1 using definitions listed 
in Table 2. 

Table 1: Count of Java Guidelines, as Applicable to Android 

 Android-
only 

Definitely 
Applicable 

Probably 
Applicable 

Applicable 
in Principle 

Not 
Applicable 

Unknown (not 
judged Probably 
Applicable) 

Guidelines 0 58 0 9 6 2 

Table 2: Guidelines Applicability Definitions 

Term Definition 

Android-only The guideline is relevant only to Android platforms 

Definitely applicable The guideline can be applied to general Java platforms, including Android 

Probably applicable One reviewer found the guideline to be applicable to the Android platform, but we 
are waiting for applicability to be verified 

Applicable in principle The guideline can be applied to Android, but the code examples shown in the 
guideline are not relevant to Android 

Not applicable The guideline cannot be applied to Android platforms 
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3 Android Secure Coding Rules 

We added an Android section to the CERT Oracle Secure Coding Standard for Java wiki. The 
rules in this section are specific to Android apps. However, they have the same structure as rules 
in the other sections (see Figure 2). That is, each rule contains an introduction followed by one or 
more sets of noncompliant code examples, illustrating how violation of the rule may lead to 
vulnerability in the code, and a compliant solution, showing how to avoid the vulnerability. These 
coding examples are followed by a risk assessment that indicates the severity of any vulnerability 
likely to arise from violating the rule, the likelihood that such vulnerability could be exploited, 
and the cost of remediation if the violation of the rule is found in existing code. Each of these 
three attributes is given a score in the range 1 to 3. The three scores are then multiplied to give a 
priority for ranking the rule. The rule is also assigned a level indicating the rule’s criticality for 
secure coding, with level 1 being the most critical and level 3 being the least critical. The risk 
assessment may be followed by sections on automated detection of the rule and on related 
vulnerabilities and related guidelines. Each rule has a bibliography providing links to further 
information. 

 

Figure 2: Introductory Section of an Android Rule  
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The Android rules were developed in collaboration with members of the Japan Computer 
Emergency Response Team Coordination Center (JPCERT). JPCERT was the first Computer 
Security Incident Response Team (CSIRT) established in Japan. It acts as a coordinating center 
for other CSIRTs in the Japanese community. Members of JPCERT have been very active in 
identifying vulnerabilities in Android code. 

The Android section of the CERT Oracle Secure Coding Standard for Java wiki currently contains 
nine rules. Six of them were provided by members of JPCERT, and they have been formatted and 
edited by members of the Mobile SCALe team. The remaining three were suggested by a member 
of the Mobile SCALe team, but they are awaiting completion. 

Two of the nine rules are Android-specific instances of more general Java rules, one concerning 
the logging of sensitive data and the other concerning canonicalization of file path names. 

Four of the remaining seven rules are concerned with the handling of sensitive data by Android 
apps. They discuss aspects of Android programming that could lead unwary programmers to 
release sensitive data by misusing features of the Android architecture. 

The remaining three rules concern very specific aspects of Android programming that require 
particular care to avoid security problems: granting uniform resource identifier (URI) 
permissions, dealing with malicious intents, and protecting exported services. 

All except one of the nine rules were allocated level 1 in the three-level priority model used by the 
CERT secure coding standards. The remaining rule was allocated level 2. 

Also as part of this activity within the Android Project, an analysis has been made of the CERT 
Oracle Secure Coding Standard for Java rules that are applicable to Android coding, and a page 
was added to the Android section of the wiki showing the outcome of that analysis. Table 3 
summarizes the count of Java rules, with applicability to Android, as defined in Table 4.  

Table 3: Count of Java Rules, as Applicable to Android 

 Android-only Definitely 
Applicable 

Probably 
Applicable 

Applicable 
in Principle 

Not 
Applicable 

Unknown (not 
judged Probably 
Applicable) 

Rules 9 79 67 10 11 0 

Table 4: Rule Applicability Definitions 

Term Definition 

Android-only The rule is relevant only to Android platforms 

Definitely applicable The rule can be applied to general Java platforms, including Android 

Probably applicable One reviewer found the rule to be applicable to the Android platform, but we are 
waiting for applicability to be verified 

Applicable in principle The rule can be applied to Android, but the code examples shown in the rule are not 
relevant to Android 

Not applicable The rule cannot be applied to Android platforms 
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4 Android App Analysis Tool 

A main type of threat to data and application security on the Android platform is privilege 
escalation and illicit information-flow vulnerabilities caused by well-intentioned but buggy apps. 
These are caused by apps that both (1) have legitimate access to sensitive resources (e.g., the 
phone’s microphone) or output channels (e.g., the ability to use the internet) and (2) export 
inadequately protected (e.g., through the use of permissions or stringent input validation) 
interfaces to other applications. The impact of privilege escalation is heightened by many apps 
requesting more permissions than they actually use [Felt 2011]. 

A malicious app can misuse another application’s privileges or leak information. If a malicious 
application A doesn’t have permission P but another application B does have permission P, then A 
might be able to trick B (or collude with B) to perform an operation requiring permission P on A’s 
behalf. Additionally, A might be able to receive sensitive information from B that A shouldn’t 
have access to. For instance, if B has the READ_CONTACTS permission, and B is allowed to call 
A, and A does not have the READ_CONTACTS permission, then a communication flow from B to A 
might allow the leakage of sensitive address-book information.  

To help address such threats, we designed a tool that analyzes potential communication between 
apps. Our static analyzer builds on previous research [Chin 2011, Fuchs 2009]. We focus 
exclusively on the sending and receiving of intents, which comprise the primary system of inter-
app communication in Android. Intents are also used for intra-app communication between 
different components of a single app. Unfortunately, it is easy for a developer to mistakenly make 
app interfaces public when they should be private, allowing malicious apps to hijack or eavesdrop 
on apps that have access to sensitive information or resources. 

Our static analysis tool analyzes each app individually to (1) find likely violations of secure 
coding rules, (2) produce a list of what kinds of intents the app registers receive, and (3) produce a 
list of program sites (source code or bytecode locations) that send intents, along with the action 
string and target class (if known). Given a set of apps, the information about individual apps can 
be composed to find the possible cross-application information flows within the set. For example, 
a security-conscious organization that distributes Android devices to its employees might test the 
set of apps that are preinstalled or approved for installation on its devices. By combining (1) the 
cross-app information flows, (2) the permissions required by each app, and (3) the sensitive 
information available to each app, we can detect possible information leaks and other 
communication-related vulnerabilities within the set of apps. The permissions required by each 
app are easily obtained from the app’s manifest. However, there is no automatic way to determine 
what sensitive information will be available to each app; this requires input from the developers 
and/or users of the app. 

4.1 Design and Implementation 

We used the Soot Java analysis framework [Vallée-Rai 1999, Sable 2012, Einarsson 2008]. Soot 
provides a suite of static analysis facilities for inspecting Java programs. These facilities enable us 
to identify the method calls that send Android intents. Where possible, we identified the action 
string associated with the intent and the target of the intent in the case of an explicit intent. Even 
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though our analysis is relatively simple, we were able to precisely identify the action string and 
target in most cases in the apps that we analyzed. 

The goal of our static analysis is, for each program site that sends an intent, to identify the intent’s 
possible pairs of action_string and target_class . Most such program sites have only a 
single possible action string and target class, so we focus on this case. If more than one action 
string or target class is possible, we report it as unknown. 

We represent the program state as a pair of an environment (which maps variables to memory 
locations) and a store (which identifies contents of memory locations): 

prog_state: pair of (env, store) 
env: mapping of var_name to mem_loc 
store: mapping of mem_loc to obj_info 
obj_info: mapping of field_name to value 

If we do not know the memory location to which a variable points, we do not include the variable 
in the environment mapping. The store maps each memory location to an obj_info mapping, 
which describes the contents of the object stored at the memory location. In particular, for each 
field of the object, obj_info maps the field name to the value of the field. If the value of a field 
is unknown, the field is not included in the mapping. Our analysis is concerned with only one type 
of mutable object (Intent) and two of its fields: the action string and the target class. 

We track three types of objects: strings, class objects, and intents. For strings (which are 
immutable in Java), we encode the value of the string in the name of the memory location, so we 
do not need an entry in the store. This practice loses precision (because we cannot distinguish 
between identical strings that are at different memory locations), but for our purposes, it does not 
matter. Class objects are handled in a similar way to strings: the name of the class is encoded in 
the name of the memory location. 

For intents, the name of the memory location is the program site where the intent object was 
allocated. For example, if line 100 of Foo.java consists of the statement x = new Intent(), 
then the name of the memory location might be “Foo.java:100.1.” This naming scheme implies 
that we cannot distinguish between two intents that were both allocated at the same program site. 
Typically, however, only the most recently allocated intent is of interest. In addition, we need to 
allow strong updates to the most recently allocated intent. So, whenever a new intent is allocated, 
we first forget about all intents that were previously allocated at the same allocation site. That is, 
we remove any environment mappings to the memory location, and we remove the memory 
location from the store. 

Our analysis is a forward-flow analysis that uses the fixed-point framework of Soot [Vallée-Rai 
1999]. At program points that have more than one inflow (e.g., the top of a loop body), the 
program states of the two inflows are merged as follows: For each variable name var, if var is 
mapped to the same memory location by both inflows, then the merged environment will also 
map var to the same memory cell. If the two inflows differ in this regard, then var will be 
omitted in the merged environment mapping. Similarly, for each memory location loc and each 
field name field, if store_in1[loc][field] = store_in2[loc][field], then 
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store_merged[loc][field] will have the same value as in the two inflows, and otherwise 
field will not be mapped by store_merged[loc]. 

A common mistake in Android apps (and a violation of secure coding rules) is to use implicit 
intents for intra-app communication. Such intents should be explicit to prevent malicious apps 
from accessing the communication interface. There is no definitive way to determine whether an 
implicit intent was really intended for intra-app communication or whether the developer 
contemplated the intent being sent to another app. However, most inter-app intents use a standard, 
predefined action string (starting with “android.intent.action.”). As a heuristic, if an 
implicit intent is sent with a nonstandard action string, we flag the intent as a possible violation. 

4.2 Limitations and Future Work 

In its current state, the tool has several limitations that can be addressed in the future. First, the 
approach to detecting information flows between applications is coarse grained, and potential 
flows flagged by the tool need not appear in any execution (e.g., a detected method call for 
inducing cross-application communication is not reachable). Finer grained static analysis could be 
used to reduce the incidence of such false positives. 

Second, the tool currently focuses exclusively on Android intents, the main method of cross-
application communication. Applications have other communication methods at their disposal, 
such as (1) directly querying ContentProviders, (2) reading from and writing to an SD card, 
and (3) using native code and communication channels implemented by the underlying operating 
system (e.g., sockets). Such means are currently beyond the scope of our analysis. Some of them 
could easily be accounted for by small extensions to the current analysis. Others would require 
more substantial effort to detect, and some (such as the use of covert channels) may not be 
feasible to detect automatically.  
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5 Summary and Future Work  

This report describes Android secure coding rules, guidelines, and static analysis that were 
developed as part of the Mobile SCALe project. We prepared Java Coding Guidelines: 75 
Recommendations for Reliable and Secure Programs [Long 2013] for publication; the book 
includes an appendix describing the applicability of guidelines to developing Java apps for the 
Android platform, and it was published September 9, 2013. We added an Android section to the 
CERT Oracle Secure Coding Standard for Java wiki, with new Android-only rules plus charts 
showing analyzed applicability of previously existing Java secure coding rules and guidelines. 
The new Android rules require further work to complete. The applicability analysis of previously 
developed rules and guidelines also requires further work to complete, although significant 
progress has been made: 137 were found definitely applicable, 17 were found definitely not 
applicable, and the remaining rules/guidelines have undergone initial review for applicability. We 
designed and implemented a tool that takes as input a set of Android applications and outputs a 
list of the cross-application information flows that can potentially exist within the set. However, 
information flows analyzed are coarse-grained and limited to intents. The analysis is sound (in 
that it will find all potential information flows of the kind that it looks for), so it is necessarily 
imprecise (i.e., a flagged potential information flow might never appear in any actual execution).  

Currently, our static analysis tool flags all communication flows, including both legitimate and 
malicious flows, since the chief distinction between the two can be in the users’ expectation (e.g., 
one app is trusted to receive sensitive information, while another is not equally trusted even 
though it behaves similarly as far as static analysis is concerned). Such false positives cannot be 
remedied through more sophisticated analyses. They can, however, largely be ruled out using 
input from the developers and users of the apps. An interesting problem is how to enable such 
input to be provided in a reasonably feasible manner. For example, work by Jia and colleagues 
[Jia 2013] develops such a system for labeling apps and their components to dynamically enforce 
information-flow properties. 

Future work includes further development of a secure coding standard that can be used to develop 
Java Android apps and a version of SCALe that can be used to analyze these applications and 
determine if they conform to the standard. This effort will include completion of the analysis of 
applicability to Android of existing Java rules and guidelines, as well as creation of new ones. We 
also plan to do finer grained static and dynamic analyses of information flows between 
applications, to extend analyses to additional types of information flows, and possibly to 
instrument apps with runtime checks.  
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