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Executive Summary 
 
The causes of the failure or significant cost/schedule overruns of complex embedded 
software-intensive systems projects almost always involve a combination of management 
issues and technical issues.  This paper focuses on the technical issues of such complex 
embedded software-intensive systems across multiple domains, including avionics, 
spacecraft flight systems, and command & control systems. 
 
Having served for many years as senior reviewers and/or consultants on many complex 
embedded systems, we have witnessed that in many cases major difficulties have often 
been caused by a relatively small number of complex and difficult hardware and 
especially software problems.  In many cases however, solutions to these problems are 
known, but only by a relatively small number of experts.  This leads to the recurrent 
phenomenon of many projects encountering serious troubles and subsequently being 
rescued by “tiger teams”.   
 
As observed by the Standish group “a staggering 31.1% of projects will be canceled 
before they ever get completed. Further results indicate 52.7% of projects will cost 189% 
of their original estimates. The cost of these failures and overruns are just the tip of the 
proverbial iceberg.”1 In a discussion of the comparison between bridge building and 
software development, the Standish group also noted that, “there is another difference 
between software failures and bridge failures, beside 3,000 years of experience. When a 
bridge falls down, it is investigated and a report is written on the cause of the failure.  

                                                 
1 http://www.cs.nmt.edu/~cs328/reading/Standish.pdf 
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This is not so in the computer industry where failures are covered up, ignored, and/or 
rationalized. As a result, we keep making the same mistakes over and over again.”   
 
In many cases, the phenomenon of different projects encountering serious troubles caused 
by similar technical challenges is exacerbated by a lack of effective metrics and 
associated application procedures in system design reviews for the detection and 
mitigation of system engineering risks.  
 
The objective of this white paper is to initiate a process to develop system design review 
and risk mitigation methods that will be effective in reducing the recurrence of high 
impact technical problems that are common across many programs, in an analogous way 
to the monitoring of cholesterol levels to help the prediction and therefore the initiation of 
preventive measures to forestall heart attacks and strokes.  In addition, we also include a 
small sample of useful metrics during program development and early system integration 
as suggested by some of reviewers.   
 
Clearly, there are many more metrics and design check list items for multiple phases of 
the software lifecycle beyond the ones described in this white paper.  This paper has been 
created to identify the need to create these metrics and design check lists, building on the 
experience of many experts who have been involved in the architecture, design, 
development, and review of embedded software intensive programs.  The authors thank 
many such experts who reviewed this white paper and who may be available to help 
bring the proposed work to fruition. 

 
1.0 Introduction 
 
In modern complex embedded systems such as avionics system development efforts, 
significant cost and schedule overruns are very common.  For example, after many years 
of development and lab tests, the F/A-22 flight test program began in late 1997.  But it 
continued to experience serious avionics instability problems as late as 2003 – “The Air 
Force told us avionics have failed or shut down during numerous tests of F/A-22 aircraft 
due to software problems. The shutdowns have occurred when the pilot attempts to use 
the radar, communication, navigation, identification, and electronic warfare systems 
concurrently.”2 ,3   
 
Even in more conservative civilian avionics, during the development of the air Traffic 
Alert/Collision Avoidance System (TCAS) software, “version 6.00 was the original 
software for TCAS II. When using this software, some very interesting problems 
occurred. False conflict alerts were being triggered by transponders on ships and 
bridges. Additionally, parallel final approach courses less than 5000 feet apart were 
causing false alerts. It has even been reported that a pilot’s own aircraft can cause a 
false alarm. In this situation the pilot found himself trying to outmaneuver himself”4  
 

                                                 
2 GAO Testimony to Committee on Armed Service  http://www.gao.gov/new.items/d03603t.pdf  
3 The F/A-22 instability problem was finally under control in late 2003 with the assistance of the Avionics 
Advisory team established by the Office of Secretary of Defense. 
4 http://www.allstar.fiu.edu/aero/TCAS.htm  
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In a March 2004 GAO report to congress, it was reported that “in the last 40 years, 
functionality provided by software for aircraft, for example, has increased from about 10 
percent in the early 1960s for the F-4 to 80 percent for theF/A-22”, and that “DOD’s 
software-intensive weapon system acquisitions remain plagued by cost overruns, 
schedule delays, and failure to meet performance goals.”5 It was also reported that in 
2003 DoD spent $8 billion (40%) of its software budget in fixing bugs. These problems 
are not limited to avionics software. There is no indication that the incidence of these 
problems has decreased in recent years.  For example, situations are still occurring in 
which project milestones are missed with no prior indications from the contractor, 
indicating either a fundamental lack of understanding of the state of the project or the 
unwillingness to report known problems. 
 
As reported by IBM, in a typical commercial development organization, “debugging, 
testing, and verification activities can easily range from 50 to 75 percent of the total 
development cost”6.   The integration phase is often the most difficult and time 
consuming phase in large system development.  Early in a project, most of the application 
functional bugs can be localized within individual modules.  Unfortunately, challenging 
subsystem interaction bugs in properties that cut across multiple components such as real 
time and stability are unlikely to show up early in the project.  As integration proceeds, 
the degree of concurrency and the complexity of interaction increase exponentially.  And 
the larger interaction space allows dormant bugs to turn active, to multiply and to hide.  
This not only makes debugging a very time consuming and costly activity, but also 
creates a “sinister” phenomenon in the development of large systems in that a stormy 
system integration phase is often preceded by a relatively calm unit development and 
testing phase, which often lowers the guard of the management and review teams.  Thus, 
developing system design review methods and metrics that can detect and help mitigate 
integration problems lurking beneath the surface are of particular importance.  We 
discuss a small sample of such metrics and design checklists in next section of this paper. 
 
A significant portion of these problems can be traced back to deficiencies in system 
design such as unexpected interference and delays in resource sharing, inadequate 
determinism in concurrent interactions, and potential system instability caused by 
dependency inversion7.  However, even though these problems generally have their 
origin in system requirements and design, they very often first become visible during 
integration.  Therefore, many of the metrics and other methods described in this paper are 
largely oriented for use in guiding problem analysis and recommendations during the 
integration phase. 
 
In the next section, we give a sample of risk detection and mitigation metrics and design 
checklists for some of the high impact recurrent problems. We conclude this white paper 
by describing a proposed process that is needed to develop a more comprehensive set of 
system evaluation metrics and design checklists.     
 
2.0 Examples of Useful Metrics and Checklists 

                                                 
5 http://www.gao.gov/new.items/d04393.pdf 
6 http://www.research.ibm.com/journal/sj/411/hailpern.html 
7 Dependency inversion is when critical software (inadvertently) depends on non-critical software 



   

 4 

 
Each set of metrics designed or design check lists for detecting and mitigating a specific 
type of engineering risk must meet the following requirements: 

1. Quantifiably measures, and/or verifiable/testable logical assertion 
2. Identifies trends in risk detection and mitigation 
3. Predicts domain-significant success/failure 
4. Leads to usable information for remediation 

 
Examples include metrics and design check lists to be used during system design review 
and programmatic ones that can be used during program development  
 
2.1 Determinism  
 
A real time system’s behavior is said to be deterministic if, given the same system state 
and the same inputs, the system makes the same state transitions, produces the same 
outputs and meets its timing constraints. Otherwise, the system is said to be non-
deterministic. Non-deterministic systems are extremely difficult to test, debug, verify, 
and validate.  
 
Deterministic behaviors of system architecture have profound implications on the quality, 
cost and schedule of complex systems. For example, the F-35 avionics, while facing 
many challenges, has a much more stable development record as compared with F-22. 
This is not an accident, but is rather a result that comes directly from the architecture 
team’s systematic use of constructs with known deterministic behaviors.  
 
The development of a comprehensive and concise set of metrics and design checklists to 
gauge the determinism of an architecture is of great importance. However, this effort is 
beyond the scope of this white paper. Instead, we will give some examples that are 
important indicators of non-determinism.  For example, race conditions, especially 
distributed race conditions, and concurrent fault handling are leading causes of non-
deterministic behavior.  In this paper, we specifically discuss distributed race conditions. 
  
2.1.1 Distributed Race Conditions 
 
In a distributed system, a global computation is a function of distributed system states 
and hence all the machines participating in the global computation must have consistent 
views of the state.  For example, in a distributed fault tolerant application, machines that 
are still working must agree on which have failed in order to carry out a successful 
reconfiguration.  Reaching consistent views takes an elapsed time of at least the one end-
to-end computation and network delay.  Thus a global computation runs at a slower rate 
than that of a local computation.  A local computation frequently requires the 
collaboration of other machines, for example, when adjusting the speed of a locally 
controlled engine.   
 
Networked real time distributed systems such as avionics are often called globally 
asynchronous locally synchronous (GALS) systems, because clock skews between local 
clocks can only be bounded but not eliminated.  When global computation between nodes 
is directly driven by local clocks or driven by local events without first being mediated by 
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a proven correct clock synchronization protocol, the resulting interactions become 
inherently asynchronous.  Given an asynchronous design, the correctness of system 
interactions becomes a function of relative clock skews and computation and 
communication delays.  From a system engineering perspective, we say that the system 
design has distributed race conditions. Figure 1 gives a simple illustrative example.  
  
 

 
 
Let M1 and M2 be replicated applications on two different nodes for fault tolerance.  Both 
M1 and M2 are encountering state (S+1) in their respective local nodes.  Suppose machine 
M1 enters state (S+1) first, while M2 lags slightly behind. It will enter state (S+1) δ time 
units later as illustrated in Figure 1.   
 
Let the communication delay between the two machines be ε < δ.   When machine M1 at 
state (S+1) sends an event (e.g., a message) to replicated machine M2, the event could be 
received by M2 while it is still in state S as illustrated in Figure 1. Since these are 
replicated machines, this is logically equivalent to sending a message to one’s own past, 
resulting in a violation of causality! It is also easy to see that if the pilot (or a high level 
controller) sends a command to these two replicated machines, it is possible that M1 
receives the event at state (S+1), while M2 receives the same event at state S, leading to 
divergence in their state transitions and a globally inconsistent state.  Distributed race 
conditions are a known cause that leads to the failure of fault tolerant systems as well as 
unexpected startups, and restarts.  Such failures will be observed only during system 
integration and/or deployment, and are highly intermittent, so they will be extremely 
difficult (and expensive) to replicate and find/fix. 
 
In summary, when interactions are driven by asynchronous events, distributed race 
conditions may occur. When there are distributed race conditions, the verification space 
of interaction correctness faces combinatorial explosion, since we need to check all the 
resulting states for all the possible combinations of relative delays at the resolution of 
each clock tick! This directly results in huge problems in integration testing, debugging, 
verification and validation.  
 
System Evaluation Metric:  Distributed race conditions are best prevented by auditing 
the design; these type of problems cannot be found through the normal “black box” 
testing.  Once we find that a proven synchronization protocol for interactions is missing, 
we can easily design a test to demonstrate its existence. However, relying on black box 

δ 

M1= S+1 

M2=S + 1 

Figure 1:  Sending a message to one’s logical past 

Time 
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testing to find distributed race conditions will be worse than looking for a needle in a 
haystack.  

1. Identify every instance of global computation in a distributed system. 
2. Check whether a proven correct interactional synchronization protocol is used for 

each instance. 
 
 
Recommendation:  

1. Interaction synchronization should be a service embedded in middleware, or as 
library functions. Letting individual application programs reinvent the interaction 
synchronization solution will lead to excessive design, implementation, 
integration and maintenance cost.  

 
2. If a system experiences intermittent lockups or anomalies across nodes, audit the 

design to see if an interaction synchronization protocol is missing or implemented 
incorrectly.  

 
3. Consider use of a current model-checking tool, because model-checking tools can 

enumerate all possible interleavings and can therefore detect faults that are 
undetectable through normal testing.  

 
2.1.2 Fault Reproducibility and Traceability  
 
The ability to reproduce a fault is a prerequisite to successful debugging.  Race 
conditions, especially distributed race conditions are a leading cause of difficulty in 
reproducing detected faults and failures.  Next on the list is event driven design.  In an 
event driven design, a system reacts to each event immediately.  Under an event driven 
architecture, when a fault leads to incorrect state transitions in nodes, the correlation 
between the chain of events and the time at which a fault has been detected is weak, 
making a fault much more difficult to reproduce as compared with a time triggered 
architecture in which events are buffered first and are acted on only at predetermined 
instants of time.  Good fault reproducibility and traceability pays for itself.      
 
System Evaluation Metric:  To quantify fault reproducibility and traceability, we can 

1. Define the families of common fault types found in similar programs,  
2. Conduct randomized fault injection drawn from the selected fault types,  
3. Compute the percentage of faults that can be produced and traced. 

 
Recommendation:   

• Use a time triggered architecture whenever it is applicable 
• Use targeted instrumentation based on risk analysis 
 

2.2 Real Time Performance Metrics 
 
Most embedded systems, including avionics and spacecraft flight systems contain some 
hard real time tasks. Using an analytic approach such as Rate Monotonic Analysis 
(RMA) to guide the development and integration of real time tasks is a key to meeting 
stringent timing requirements.  The theory of RMA provides a sound theoretic foundation 
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and is currently widely considered to be a best practice.  In this section, we assume that 
RMA is used.  If not, our recommendation is to immediately train all project systems 
engineers on this topic. 
 
The prediction provided by RMA will hold only if bounds on worst case computation 
time and bounds on priority inversion exist and are accurately determined.  In this 
section, we review three important issues impacting real time performance for efficient 
and predictable real time performance: (1) bounds on priority inversion; (2) bounds on 
cross partition interference under Integrated Modular Avionics (IMA); and (3) rate group 
schedulability margin.  Although we use avionics as an example, the techniques 
discussed here are also generally applicable to other real time embedded systems 
 
2.2.1 Bounds on Priority Inversion  
 
Most embedded real-time systems are likely to use static priority scheduling based on 
rate monotonic analysis (RMA).  When a high priority task is delayed by one or more 
lower priority tasks, priority inversion is said to occur.  Bounds on priority inversions, if 
not calculated correctly, will render an RMA analysis invalid, leading to unexpected 
timing failures during integration or deployment.  Bounds on priority inversion must be 
computed for each type of shared resource, especially: 

1. Bounds on the duration of priority inversion on CPU sharing 
2. Bounds on the duration of priority inversion on I/O interfaces 
3. Bounds on the duration of priority inversion on each communication switch. 

 
The basic concept of priority inversion is now well known. However, a significant 
percentage of engineers focus only on priority inversion in the CPU and fail to analyze 
priority inversion in complex I/O interfaces such as a PCI bus or a network switch.  As a 
result, many real time performance failures during system integration and/or deployment 
are found in systems with a heavy I/O or communication load.   
 
The experimental investigation of priority inversion bounds must be guided by the actual 
system architecture and specific configuration model. Otherwise, the number is 
meaningless. For example, a PCI bus has many different physical configuration and bus 
transaction types. However, the bound on priority inversion is specific to these physical 
configuration and selected bus transaction types. As another example, priority inversion 
for application tasks depends on the specific real time operating system and the real time 
synchronization protocol that it implements. 
 
System Designs Check List:     

1. Check whether the operating system, middleware, and communication support 
real time synchronization protocols.   

2. Validate the bounds on priority inversion for the CPU, IO, and communication 
switches 

3. Establish an engineering process to ensure that if the architecture model changes, 
bounds are updated accordingly. 

 
 
2.2.2 Bound on CPU Stall Induced Worst Case Execution Time (SWCET) Inflation 
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Figure 2:  Interactions between CPU, cache & bus 

 
RMA uses each task’s worst case execution time as part of the required inputs for 
schedulability analysis. Many developers assume that the worst case execution time of a 
task remains the same when it runs alone or runs together with other tasks. Unfortunately, 
this is NOT true.  
 
As illustrated in Figure 2, modern “smart” I/O devices can be independent bus masters. If  
a task’s cache was first invalidated by 
prior tasks, the current task will try to 
reload the cache with instructions across 
the front side bus.  If there is an ongoing 
bus transaction on behalf of other tasks, 
the filling of the cache can be 
significantly slowed because a typical 
bus master uses a round-robin sequence 
for competing bus transactions.  This 
causes the CPU to stall and results in a 
significant slowdown of the task 
execution.  Using a PCI bus, the 
execution time of the task has been 
found to increase as much as 37% in 
laboratory experiments.  Indeed, this a 
key reason for frame overruns that frequently occur when there is heavy I/O.    
 
CPU stall induced worst case execution time (SWCET) has ominous implications for 
modern IMA architectures because many users of IMA architectures mistakenly believe 
that the CPU cycles allocated to each ARINC 653 partition are isolated from those in 
other partitions.  When tasks in the one partition invalidate the cache of a later partition, 
tasks in the later partition must reload their cache via the front side bus.  The bus is 
subjected to the interference of direct memory access (DMA) from other partitions.  
Thus, a partition dedicated to a safety critical real time application can be adversely 
affected by I/O for non-safety critical applications in other partitions.  The solution for 
this problem is to have an integrated CPU and I/O real time architecture, which is, 
however, outside the scope of this white paper.  What we are concerned with here is to 
calculate the bound on SWCET, especially in the context of IMA because most avionics 
systems have widely adopted ARINC 653.   
 
    To measure the SWCET for IMA systems, we  
 

1. Flush the cache before the application in next partition starts 
2. Conduct heavy DMA on the front side bus as permitted by the existing design 
3. Measure the increase of Worst Case Execution Time (WCET) as compared with 

the case in which there is no DMA on the front side bus. 
4. Add SWCET to WCET in the RMA analysis for all of the hard real time tasks 

 
 
2.2.3   Capacity Margin and Peak Load 
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In hard real time applications, it is important to monitor peak load and spare capacity for 
future growth.  However, when a task runs, it always uses 100% of CPU. When there is 
no task running, it idles at 0% CPU load.  So what does peak load mean?   Furthermore, 
in a real time system using fixed priority scheduling or rate group scheduling, a task can 
miss its deadline with a workload considerably less than 100%.  How do we usefully 
measure spare capacity and peak load?  
 
For rate group scheduled tasks, the correct metric is the rate group schedulability margin.  
The rate group schedulability margin can be estimated by using exact schedulability 
analysis to compute the worst case margin for each rate group ((Margin = deadline – 
worst case completion time). The system peak load corresponds to the minimal margin 
over all of the rate groups.  However, margin and peak load computation is correct only if 
the estimation of worst case execution time, the bound on priority inversion, and bound 
on SWCET are all valid. 
 
Note that this computation for peak load is very different from the peak load 
measurement generally reported for most computer systems.  Most peak load values are 
generated by measuring the utilization of a background task, or by summing the 
measured loads of each rate group.  These methods for computing peak load lead to 
highly optimistic views of the worst-case system performance 
 
System Design Check List:    During system integration, an experimental measure of 
rate group schedulability margin and peak load should be conducted to guard against 
inadvertent mistakes in parameter estimation.  

1. For tasks not yet written, replace them with dummy tasks using busy loops and 
dummy I/O. 

2. Run all the tasks under stress scenarios, including lower priority tasks. Running 
low priority tasks is important to check for priority inversions that may have been 
overlooked in analysis.  

3. Permitted by the design, engineer test runs with heavy I/O workload and heavy 
application CPU workload concurrently.   

4. Program the logic analyzer and capture the minimum schedulability margin for 
each rate group task (Margin = deadline - completion time) 

5. Plot the schedulability margin for each task.  
 
The system peak load is (1.0 – the minimum of the task schedulability margins).   
 
Recommendation IMA is relatively new and many engineers and even system architects 
are not aware that if nothing is done, inter-partition interference can be as high as 30-
40%. It is not wise to roll the dice. 
 

1. Establish a small but competent real time performance engineering team and 
architect.  

2. Partition structures with low priority inversion and low inter-partition 
interference. 

3. Measure, validate and track bounds of priority inversion and inter-partition 
interference. 

4. Develop a schedulability model. 
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5. Estimate, measure and track schedulability margin and peak load. 
  
 
2.3 Defect Rate and Defect Closing Rate and Related Indicators 
 
The profiles of the difference between defect reporting rate and defect closing rate are 
simple and useful high level indicators of difficulty encountered by the program 
development.  These are a commonly used “lagging” indicators of problems found to be 
resistant to identification, isolation, and remediation, but are frequently missed as 
indicators that a software technical review should be conducted immediately to prevent 
significant risk of cost and schedule overrun. 
 
During unit testing, the typical profile is an initial spike of defect rates, followed by a fast 
defect closing rate, and then followed by a slower closing rate for a small number of 
more serious defects that frequently take weeks or even longer to close, typically due to 
the need for a redesign. If a unit has a significant number of defects that require redesign, 
the system engineering team should immediately step in and provide support and 
oversight.  Simply pushing the schedule and pushing the problematic unit into integration 
is a recipe for generating serious system integration problems. 
 
During system integration, the typical profile begins with a continuing rise of defect 
reports. Unfortunately, this rise is often not followed by a rapidly declining closing rate, 
due to the difficulty of tracking down and fixing interaction bugs.  Here are two example 
warning signs of potentially serious system integration problems: 
 
Cascaded Interface Changes:  Cascaded interface changes are a serious warning of 
architecture instability due to either poor design and/or requirement instability.  
 

System Evaluation Metric:  Cascade interface changes are measured by counting 
1) The number of groups encounter inter-related interface changes 
2) The number of interfaces change in each group  
 
Recommendation: Prime contractor senior management must immediately step in 
and establish/strengthen the system architecture team to ensure that requirements are 
stable and to adopt an architecture model that is known to support the requirement in 
question.   If requirements instability comes from customer requests, then the prime 
contractor must get together with the customer’s senior management, identify the 
sources of instability, and stabilize the requirements at the contractual level.  

 
Time to Closure/Time Open:   A persistently poor defect closing rate at the system 
integration time usually indicates that there are serious defects in the system design 
and/or implementation. Some of the common problems are listed next subsections. When 
we see a persistently poor closing rate during system integration, it is like a doctor 
encountering a patient who has radiating chest pains.   
 
System Evaluation Metric: Count the number of open defects that persist over time 
intervals such as 1, 2, 3, > 4 months. 
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Recommendation: This calls for an immediate system architecture design audit. 
Strengthening the system architecture team must become a top management priority. A 
much better program management process is to utilize an experienced independent 
review team to audit the architecture and track the follow-on designs to make sure that 
the designs are free from common pitfalls such as the ones discussed in these subsections.    
 
2.4 System Stability 
 
Software faults are caused by defects triggered by a combination of system states and 
external inputs. Hence, the reliability of a computing system is a function of its 
application profiles. Stability is a measure of the resilience of a system’s critical services 
under heavy work load and under interferences from the erroneous behaviors of failed 
less critical services.  That is, stability reflects the reliability of critical/essential services 
under stress conditions. Mathematically, it is the mean time to failure of critical services 
under profiles of overload conditions, out-of-sequence behaviors, and faulty behaviors 
from non-critical services.   
 
The leading causes of low stability are: 

1. Poor isolation in the sharing of physical and/or logical resources across 
components with different levels of criticality. 

2. Dependency inversion in design or implementation: a critical service 
(inadvertently) depends on the service of less critical components. A critical 
service may use but not depend on the service of less critical components.  For 
example, a critical service must never wait for a less critical service without a 
time limit. 

 
Recommendation:  for systems with multi-level criticality, it is advisable to measure 
system stability during early stages of system integration as follows.   

1. Separate services into different criticality levels. 
2. Define the levels of workloads that exceed requirements but may occur. 
3. Define the families of common fault types in non-critical services.  
4. Conduct randomized fault injection tests drawn from the fault types into non-

essential components.  The purpose of injecting faults into non-critical services is 
to test the quality of isolation mechanisms which include memory protection, 
temporal isolation in CPU, I/O and network, and input error checking. 

5. Compute the mean time to failure of the essential services under excessive 
workload and injected faults.    

 
3.0 Conclusions 
 
Developing complex software-intensive embedded systems, generally with real-time 
constraints such as advanced avionics systems, is certainly risky as evidenced by the 
epidemic of cost and schedule overruns.  It is risky because we constantly push the 
envelope of existing knowledge and technology.   
 
Changing technology landscapes generate changing risk profiles.  For example, recent 
widespread adoption of IMA by the avionics industry has created a new form of system 
integration risk that has not been seen in previous federated system architectures.   
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In this white paper, we have provided a small sample of useful programmatic metrics and 
system design check lists that can be used in program reviews to detect some recurring 
system integration problems.    We recommend the development of a full report which 
systematically addresses technical challenges during design time, implementation time 
and integration time.  A major goal of such a report would be to generate significant 
progress toward reducing the number of projects encountering cost and schedule overruns 
at integration time due to errors in requirements, design, and implementation decisions. 
 
Some of the design check lists described here are applicable to early system architecture 
designs and others are applicable during detailed design. Some programmatic metrics are 
useful during system development and some are useful during system integration.  Thus, 
it is important to keep at least the core of the system architecture team in place for the 
entire system development cycle.      
 
The principles that govern the development of risk detection and mitigation metrics are:  

1. Before the System Development:  The development of risk detection and 
mitigation metrics must be based on the analysis of actual recurring high impact 
problems, analogous to what NTSB does for accidents. 

2. During the System Development:  Metrics and design checklists must be 
selected according to the type of system in question, and adjusted for each major 
stage of development.  Currently, a significant fraction of the metrics used in 
system review is time consuming to collect and ineffective in practice.  
Developers often ignore them before and after program reviews. 

3. After the System Development:  There must be a feedback process to examine 
the effectiveness of the metrics. Ineffective metrics and design checklists must be 
eliminated, weak ones must be strengthened, and missing ones must be added.  
Similar to the NTSB after an accident, the root cause(s) of the observed failures 
should be identified and mitigation processes should be defined to prevent their 
recurrence in other systems.  

 
The Bottom Line: We recommend the Office of the Secretary of Defense establish a 
DoD or National Systems Architecture and Design Agency (SADA) with in-house and 
external experts to execute independent design reviews, drawing experts from senior 
architects, leading researchers, and technical leaders in “tiger teams” to: 

1. Identify and agree on the high impact recurrent problems, the contexts, and the 
early warning signs.   

2. Develop effective metrics, standardized design checklists, and supporting 
engineering management processes for detecting, tracking, and mitigating high 
impact recurrent problems. 

3. Capture the best organizational and technical practices and provide recommended 
practices.  

4. Develop a plan for making this information readily known to project management 
and technical personnel across the system development community, both in the 
government and the contractor communities. 

 
 


