
Architectural
Evaluation of
Collaborative Agent-
Based Systems

Steve G. Woods

Mario R. Barbacci

October 1999

TECHNICAL REPORT
CMU/SEI-99-TR-025

ESC-TR-99-025

Pittsburgh, PA 15213-3890

Architectural
Evaluation of
Collaborative Agent-
Based Systems

CMU/SEI-99-TR-025
ESC-TR-99-025

Steve G. Woods

Mario R. Barbacci

Unlimited distribution subject to the copyright.

October 1999

Architecture Tradeoff Analysis Initiative

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in
the interest of scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col., USAF
SEI Joint Program Office

This work is sponsored by the SEI FFRDC primary sponsor and the Defense Advanced Research Projects
Agency. The Software Engineering Institute is a federally funded research and development center
sponsored by the U.S. Department of Defense.

Copyright © 1999 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document should
be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
52.227-7013.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark
holder.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our
Web site (http://www.sei.cmu.edu/publications/pubweb.html).

CMU/SEI-99-TR-025

Table of Contents
1 Introduction 1

2 The Architecture Tradeoff Analysis Method
(ATAM) 3
2.1 Quality Attributes of Agent-Based Systems 4
2.2 Architectures of Agent-Based Systems 5

3 The Space of Architectural Choices 9
3.1 Wrapper Family 9
3.2 Monitor Family 12
3.3 Matchmaker/Broker/Mediator Family 13
3.4 Contract-Net Family 15
3.5 Embassy Family 16

4 Example: Scenarios for Matchmaker, Broker,
and Mediator Agent Systems 19
4.1 Attacker (Consumer) Issues Massive

Requests for Services 20
4.2 Provider Fails After Advertising Service 20
4.3 Spoofer (Customer) Acquires Service

and then Seeks to Replace It 21
4.4 Spoofer (Provider) Unadvertises Legitimate

Provider/Service 22
4.5 Attacker (Provider) Advertises False Service 22

5 Example: A Communications Network as a
Compound Agent System 23

6 Conclusions 27

References 29
i

ii CMU/SEI-99-TR-025

CMU/SEI-99-TR-025

List of Figures
Figure 3-1 Operation of a Matchmaker 13

Figure 3-2 Operation of a Broker 14

Figure 3-3 Operation of a Simplified Contract-Net 16

Figure 5-1 The Communications Network as a
Combined Broker/Matchmaker 23
iii

iv CMU/SEI-99-TR-025

CMU/SEI-99-TR-025

List of Tables
Table 3-1 Space of Architectural Choices in a Wrap-
per Agent 10

Table 3-2 Wrapper Family 11

Table 3-3 Monitor Family 12

Table 3-4 Matchmaker/Broker/Mediator Family 13

Table 3-5 Contract-Net Family 15

Table 3-6 Embassy Family 16
v

vi CMU/SEI-99-TR-025

Abstract

The Architecture Tradeoff Analysis MethodSM (ATAMSM) is an architecture evaluation tech-
nique currently evolving at the Software Engineering Institute (SEI). ATAM has been applied
to a number of command and control, real-time, and information systems. As collaborative,
autonomous agents become a significant software technology, the demand for evaluating the
quality attributes of the architectures of agent-based systems will increase. Very broadly,
agents may be thought of as software entities that have the ability to undertake action autono-
mously in their particular embedded environment, according to a typically general set of
requests or desired goals, and that are able to communicate with other agents as determined by
their own initiative. Given an agent-system architecture, we need scenarios that could be
applicable for conducting ATAM evaluations on instances of that agent architecture. This
report identifies a few features in agent-based systems that could be used to classify agent-sys-
tem architectures and to guide the generation of scenarios applicable to these architectures.

.

SM Architecture Tradeoff Analysis Method and ATAM are service marks of Carnegie Mellon University.
CMU/SEI-99-TR-025 vii

viii CMU/SEI-99-TR-025

1 Introduction

In large software systems, the achievement of qualities such as performance, availability, secu-
rity, and modifiability is dependent not only upon code-level practices (e.g., language choice,
detailed design, algorithms, data structures, and testing), but also upon the overall software
architecture. Quality attributes of large systems can be highly constrained by a system’s soft-
ware architecture. Thus, it is in our best interest to try to determine at the time a system’s soft-
ware architecture is specified whether the system will have the desired qualities.

A variety of qualitative and quantitative techniques are used for analyzing specific quality
attributes [Barbacci 95]. These techniques have evolved in separate communities, each with its
own vernacular and point of view, and have typically been performed in isolation. However,
the attribute-specific analyses are interdependent; for example, performance affects modifi-
ability, availability affects safety, security affects performance, and everything affects cost. In
other words, achieving a quality attribute can have side effects on other attributes. These side
effects represent dependencies between attributes and are defined by parameters that are
shared among attribute models. If we can identify these side effects, the results from one anal-
ysis can feed into the others.

Quality-attribute goals, by themselves, are not definitive enough either for design or for evalu-
ation. They must be made more concrete. Using modifiability as an example, if a system can
be easily adapted to have different user interfaces but is dependent upon a particular operating
system, is it modifiable? The answer is that it depends on what modifications are expected to
the system over its lifetime. That is, the abstract quality goal of modifiability must be made
concrete. The same observation is true for other attributes.

Agent-based systems are emerging from the artificial intelligence (AI) research community
and are being used for increasingly more sensitive applications in which economic, privacy,
safety, and other concerns are of paramount importance. Even though achieving the desired
functionality was challenging in the past, developers now have to contend with additional non-
functional (i.e., quality) attributes. The new situation calls for a more deliberate look into the
architecture of agent systems.

The Architecture Tradeoff Analysis MethodSM (ATAMSM) is an architecture evaluation tech-

nique currently evolving at the Software Engineering Institute (SEI).1 The input to ATAM

1. Architecture Tradeoff Analysis Method and ATAM are service marks of Carnegie Mellon University.
CMU/SEI-99-TR-025 1

consists of a system architecture and the perspectives of stakeholders involved with that sys-
tem; the output is an understanding of the architectural decisions that are used to achieve par-
ticular quality goals and the implications of those decisions.

This report is intended to serve as the background for the application of the ATAM process to
agent-based systems. The report will focus on a the coordination model of selected agent sys-
tems and a collection of quality attributes as previously discussed. It is important to point out
that the ATAM does not provide an absolute measure of “architecture quality”; rather it serves
to identify scenarios from the point of view of a diverse group of stakeholders (e.g., the archi-
tect, developers, users, sponsors) and to identify risks (e.g., inadequate performance, success-
ful denial-of-service attack) and possible mitigation strategies. The results of an ATAM
evaluation thus reflect the concerns of the particular collection of stakeholders and the scenar-
ios that they consider to be important at the time of the evaluation. This report is concerned
with the identification of typical quality attributes, scenarios, and agent-system architectural
patterns as a way to expedite evaluations of real agent systems.
2 CMU/SEI-99-TR-025

2 The Architecture Tradeoff Analysis
Method (ATAM)

The Architecture Tradeoff Analysis Method is an architecture evaluation technique currently
evolving at the SEI. The input to the ATAM consists of a system architecture and the perspec-
tives of stakeholders involved with that system. The ATAM relies on generating scenarios to
assess the architecture, where the scenarios are example stimuli used to represent stakehold-
ers’ interests and to understand quality attribute requirements.The scenarios give specific
instances of anticipated use, performance requirements or growth, various types of failures,
various possible threats, various likely modifications, etc.

After a collection of scenarios is generated by the stakeholders, the evaluation proceeds by
applying the scenarios to the architecture and developing an understanding of the architectural
mechanisms that are used to achieve particular quality goals and the implications of those
mechanisms. Each quality attribute is examined from the point of view of three perspectives:
What external stimuli cause the architecture to respond or change; what mechanisms are used
within the architecture to control the response; and how is the response to these stimuli mea-
sured? For performance, for example, the external stimuli are events arriving at the system; the
mechanisms are scheduling, concurrency, and resource management; and the measurements
are latency and throughput. For modifiability, for example, the external stimuli are changes to
the system; the mechanisms for controlling the cost of changes are encapsulation and data
indirection; and the measurement is the cost of a collection of changes.

There are three different types of outputs from an evaluation:

1. a collection of “sensitivity” or “tradeoff” points. A sensitivity point is a property of the
architecture that is critical for the achievement of a particular quality attribute (e.g., using
encryption to achieve confidentiality). A tradeoff point is a sensitivity point that is sensi-
tive for multiple quality attributes (e.g., encryption improves security but increases
latency).

2. a framework for reasoning about the system. The framework may include a variety of
qualitative and quantitative techniques, ranging from a discussion that follows from the
exploration of a scenario, to a model or a portion of a model and a discussion of how that
model might be analyzed when instantiated, all the way to a formula that represents how
to calculate the value of a particular quality attribute.
CMU/SEI-99-TR-025 3

3. a list of issues not addressed or decisions not yet made. The list of issues not addressed or
decisions not yet made arises from the stage of the life cycle of the system at the time of
the evaluation. An architecture represents a collection of decisions. Some of these deci-
sions are known to the development team as having not been made and are on a list for fur-
ther consideration. Others are news to the development team and stakeholders, and the
evaluation helps to identify and document them.

The ATAM includes the following activities:

• Description of the architecture views/styles: The architecture is presented in as much
detail as is currently documented. During this step, the architect also identifies quality
attribute-specific architectural approaches and styles.

• Gathering and mapping of scenarios: Scenarios are elicited from and prioritized by the
stakeholders. The architect then maps the high-priority scenarios onto the architectural
description.

• Identification of risks/sensitivities/tradeoffs: As a result of the scenario mapping and the
ensuing analysis, sets of risks, sensitivity points, and tradeoffs are documented.

We focus in particular on the first two items: agent-based system styles or approaches used in
different subsystems, and the generation of scenarios applicable to each style.

Before we deal with specific styles and scenarios, we need to understand the characteristics of
agent-based systems that might set them apart from more traditional real-time or embedded

applications used in Command and Control (C2) applications. That is, what quality attributes
do we care about in agent-based systems?

2.1 Quality Attributes of Agent-Based Systems

Intelligent Software Agents are defined as being a software program that can
perform specific tasks for a user and possesses a degree of intelligence that per-
mits it to perform part of its task autonomously and to interact with its environ-
ment in a useful manner [Brenner 98].

A number of survey books and articles on the subject of agent-based systems [Bradshaw 97,
Brenner 98, IAG 97, Hayden 99, Nwana 96] outline a set of typical design patterns for collab-
oration among agents, but they do not delve into the critical aspects of evaluating agent-based
systems in terms of software quality attributes.

We see the following set of attributes as particularly relevant to agent architectural evaluation.
While this list is by no means complete, it represents a starting point for developing an under-
standing of the qualities of interest to the deployers of an agent-based system for a particular
use.
4 CMU/SEI-99-TR-025

• Performance predictability
Since agents have (by definition) an usually high degree of autonomy in the way that they
undertake action and communication in their domains, it is difficult to predict from a
higher level of abstraction individual agent characteristics (such as timeliness and latency)
as part of determining the behavior of a system at large.

• Security against data corruption and spoofing
Agents are often free to identify their own data sources (Web agents for example), and
they may undertake additional actions based on these sources. In addition to possibly mis-
leading information (deliberate or as a matter of course) acquired by agents, there is the
distinct possibility of hostile agents attempting to “spoof” system agents as part of an
effort to acquire information normally accorded to only trusted agents of a particular lin-
eage. The protocols of verifying authenticity for data sources by individual agents is there-
fore an important concern in the evaluation of overall system quality.

• Adaptability to changes in the environment
Agents may be required to adapt to modifications in their environment. Modifications may
include changes to the agent’s communication language (new versions of KQML for
example, roughly analogous to message format changes in traditional distributed architec-
tures), or possibly the introduction of a new “type” of external agent previously unknown
that may (or may not) possess capabilities of use to a particular agent system.

• Availability and fault tolerance
Agents that offer services to other agents implicitly or explicitly make promises about the
availability of the offered services (e.g., fraction of time the agent or service is working).
A related attribute is the ability of the agent system to detect, contain, and deal appropri-
ately with external agents such that erroneous inputs (malicious or otherwise) are not
propagated destructively into the agent system itself.

The same quality attributes are of interest to other types of systems, albeit with perhaps differ-
ent relative emphases depending on the problem domain and architecture style chosen. How-
ever, while there is some degree of agreement on the definitions of traditional architectural
styles (e.g., pipes-and-filters, client-server), there is less agreement when we attempt to iden-
tify agent-system architectures.

2.2 Architectures of Agent-Based Systems
Software agents have evolved from the multi-agent systems (MAS) branch of the distributed
AI taxonomy [Bond 88] as shown below:

• distributed artificial intelligence

- parallel artificial intelligence (PAI)

- distributed problem solving (DPS)

- multi-agent systems
CMU/SEI-99-TR-025 5

While parallel AI focuses on performance and resource utilization, distributed problem solv-
ing and multi-agent systems focus on the cooperation and coordination of agents to solve a
problem, albeit using different approaches. DPS follows a top-down approach consisting of
three steps: problem decomposition and assignment, independent solutions of subproblems,
and combinations of the subproblem solutions. MAS, on the other hand, follows a bottom-up
approach and relies on communication and interaction between agents to negotiate tasks and
resolve conflicts.

The range of agent types under consideration in the literature is expanding rapidly, and there is
no consensus on a definition of what constitutes an agent. It is an umbrella term, covering a
range of specific agents. For example, H. Nwana in “Software Agents: An Overview” notes,
“some cynics may argue that this strand arises because everybody is now calling everything an
agent, therefore resulting inevitably in such broadness [Nwana 96, p. 2].” Further, he offers a
typology of agents based on many physical guises and many roles as the axes in a space of
agents:

• mobility: static, mobile

• behavior: deliberative (have an internal model), reactive (have a stimulus/response
behavior)

• desired attributes: autonomy, learning, cooperation

If we consider additional attributes [such as versatility, benevolent/non-helpful, antagonistic/
altruistic, attitude (emotion, belief/desire/intention)], the space expands considerably, although
the multiple dimensions can be collapsed into a list of agent types [Nwana 96]:

• collaborative: exhibiting learning and cooperation or autonomy and cooperation behavior
(The result is greater that the sum of the parts.)

• interface: exhibiting autonomy and learning attributes (acting on behalf of their owners)

• mobile: roaming on behalf of owners

• information/Internet: managing information from distributed sources

• reactive: exhibiting emerging behavior (stimulus/response)

• hybrid: a mix of previous agent types

• smart: exhibiting autonomy, learning, and cooperation

• heterogeneous: similar to hybrid but integrated, including legacy systems

A different classification [IAG 97] identifies a different set of defining properties:

• acting on behalf of other entities in an autonomous fashion

• performing actions with some degree of proactivity and/or reactivity

• exhibiting some level of key attributes (learning, cooperation, mobility)
6 CMU/SEI-99-TR-025

Each of these attributes leads to the definition of three main branches:

• interactive agents: Act on behalf of a user, try to acquire knowledge about user behavior,
and anticipate/optimize display of information. Interactive agent architectures include
information filtering agents, information retrieval agents, and personal digital assistants.

• distributed agents: The main attribute is cooperation; agents communicate, coordinate,
and negotiate among themselves. Agents use alternative coordination models: organiza-
tional (central), by contract/bidding, and by planning ahead (central, distributed). Agents
use alternative negotiation models: competitive (independent agents with independent
goals) and cooperative (all agents have a single global goal).

• mobile agents: Agents combine multiple models: life-cycle model, computational model,
security model, communication model, and navigation model. Most models are imple-
mented by the environment, which also provides services of various types.

These taxonomies focus on functional properties of the agents. As functionality increases, pro-
liferation of agent “types” mushroom; confusion is inevitable because of unavoidable overlaps
and subtle distinctions. These taxonomies might serve marketing needs but do not help devel-
opers or users in evaluating quality attributes such as security, availability, or performance.
Additional taxonomies are cited in the introductory chapter of [Bradshaw 97], but we do not
need to belabor the point.

Instead of attempting to conduct attribute tradeoffs based on ever-changing taxonomies of
styles, we take a different approach: First, we do not look at the functionality of the agents in
the system, rather we concentrate on external properties such as communication, cooperation,
and coordination actions performed by the agent-system components and connections. This
defines our “architecture” domain. Second, we look at the instantaneous architecture (i.e.,
components and connections and the patterns of behavior among the components). Third, we
identify a “central” component and conduct the analysis from the point of view of this compo-
nent as the focus of the interaction between the other components. As we shall see in the next
chapter, this simple approach seems to describe a large variety of agent systems.

Specifically, we look at the number of inputs/outputs to/from the focus agent, the message pro-
cessing actions (bundling, unbundling, translation) of the focus agent, and other actions spe-
cific to the focus agent. S. Hayden makes a good first step in this direction [Hayden 99], but
unfortunately that report still focuses on a “catalog” of coordination models with the inevitable
overlaps and subtle distinctions that we have observed in other taxonomies.
CMU/SEI-99-TR-025 7

8 CMU/SEI-99-TR-025

3 The Space of Architectural Choices

To differentiate the various types of agent systems we define a space of seven “binary”
choices, arranged as columns in a “table of styles,” augmented with an additional column

describing the main purpose of the focus agent.1 Using this simple scheme, the problem with
the usual names of agent systems used in the literature become readily apparent. In some
cases, the names are too broad and encompass a whole range of behaviors that are worthy of
separate consideration, as “subtypes.” In other cases, the behavior of different agent systems
are more closely related than the difference in their names might suggest.

The seven binary choices are described below:

• communication choices (four columns): one-one, one-many, many-one, many-many. The
normal case is identified by “Y,” a disallowed case is identified by “N.” A blank cell indi-
cates a “don’t care” situation, where either choice (Y/N) is applicable to the situation. We
follow the convention of associating the left side with the initiator of the operation and the
right side with the responder. The focus agent is in the middle. For example, “1-N” sug-
gest one (1) initiator and multiple (N) responders.

• processing choices (three columns): bundling of input messages, unbundling of input
messages, translation of input messages.

3.1 Wrapper Family
Table 3-1 illustrates the choices involved in a wrapper, an agent type useful in evolving sys-
tems. A wrapper agent allows a legacy application to be incorporated into a multi-agent sys-
tem. The legacy code is extended with agent capabilities by agentifying it [Hayden 99].

The wrapper allows agents to communicate with the legacy system using an agent communi-
cation language (ACL) by acting as a translator between the agents and the legacy system.
This ensures that agent communication protocols are respected and the legacy system remains
decoupled from the agents.

1. We do not suggest that all 27 =128 rows make sense or deserve to be recognized as a different type of agent
style. Rather, we expect that groups of rows in the table will collapse into coordination models. We further
suggest that a number of existing coordination models have a hierarchical relationship based on size/nest-
ing of regions.
CMU/SEI-99-TR-025 9

The wrapper is usually domain or system specific and wraps around a single legacy system,
although there might be any number of agents on the other side of the wrapper. This is indi-
cated in the cells under “Number of external participants,” where the normal case [i.e., many
agents, one legacy system (M-1)] is marked Y and the degenerate case of one single agent (1-
1) is left blank, indicating a don’t care situation.

The advantages of using a wrapper are that the life cycle of the legacy system is extended
while it is redeveloped and that the replacement will not require any changes to the interface
implemented by the wrapper; the disadvantages are that the legacy system might lack newer
functionality and that the wrapping adds performance overhead.

The legacy system should be capable of supporting any of the requests, commands, or activi-
ties possible in the agent communication language or provide a graceful denial. The wrapper
can examine the traffic and filter the messages if necessary—inappropriate requests can be
turned down by the wrapper. The wrapper illustrated in Table 3-1 has a rather rich set of capa-
bilities: (1) it can bundle multiple agent messages into one message to the legacy system (e.g.,
the wrapper understands the purpose of the individual requests and “packages” them to match
the functionality of the legacy); (2) it can unbundle agent messages into multiple messages to
the legacy system (e.g., the agent request might be too complicated for the legacy system to
handle and the wrapper breaks it into pieces matching the real functionality of the legacy); and
(3) typically there is message translation between the ACL formats and the format of the com-
mands understood by the legacy system.

Not surprisingly, one could imagine wrappers with more modest capabilities. But aside from
cost and development time, why would anyone want a simpler wrapper? The answer is
directly related to the quality attributes of the architecture—a wrapper that does not bundle
agent messages might generate extra requests of the legacy system, but the latency of the indi-
vidual responses to the agent might be shorter; a wrapper that does not unbundle agent mes-
sages would not leave the legacy system in some inconsistent state should the wrapper crash in
the middle of the sequence; a wrapper with limited translation capabilities might have to reject
complicated agent messages but will run faster for the acceptable messages.

References

Agents-Legacy Internal Behavior of Focus Agent

1-
1

1-
M

M
-1

M
-M

b
u

n
d

lin
g

u
n

b
u

n
d

lin
g

tr
an

sl
at

in
g

Action

wrapper
[Hayden 99]

N Y N Y Y Y Provides an agent-like interface to a
legacy system

Table 3-1: Space of Architectural Choices in a Wrapper Agent
10 CMU/SEI-99-TR-025

As we shall see, as the role of the wrapper is extended, it acquires characteristics of other pat-
terns such as monitor (watching and filtering the traffic) and broker (forwarding requests from
the legacy system to an appropriate agent).

The wrapper “family” is described by Table 3-2. The importance of breaking down a family is
not that one might need such fine agent specializations, but rather because specific quality-
attribute concerns that might be masked if one looks at the whole family might become appar-

ent in one of the individual members of the family.1

References

Agents-Legacy Internal Behavior of Focus Agent
1-

1

1-
M

M
-1

M
-M

b
u

n
d

lin
g

u
n

b
u

n
d

lin
g

tr
an

sl
at

in
g

Action

W
ra

p
p

er
 f

am
ily

wrapper -- Y N N N N N N Primitive wrapper, handles only one
agent and has thin understanding of the
legacy application or the agent.

Y N N N N N Y
Additional variations on the single-
agent wrapper. Different quality
attributes and constraints in behavior
might be implied in each of the alterna-
tives.

Y N N N N Y N

Y N N N N Y Y

Y N N N Y N N

Y N N N Y N Y

Y N N N Y Y N

Y N N N Y Y Y

N Y N N N N
Variations on a multi-agent wrapper.
Different quality attributes and con-
straints in behavior might be implied in
each of the alternatives.

N Y N N N Y

N Y N N Y N

N Y N N Y Y

N Y N Y N N

N Y N Y N Y

N Y N Y Y N

wrapper ++ N Y N Y Y Y Full functionality for a multi-agent
wrapper.

Table 3-2: Wrapper Family

1. We can only speculate at present, but after we gain more experience with agent-system architecture sce-
narios and evaluations, we might begin to recognize patterns of “cells” that raise specific concerns (e.g.,
availability, denial of service) and call for appropriate scenarios.
CMU/SEI-99-TR-025 11

3.2 Monitor Family
The monitor family is illustrated in Table 3-3. The intent of the monitor is to detect selected
state changes in an agent of interest (the subject) and notify other agents (the subscribers) of
their occurrence.

The monitoring pattern is a compromise between the consistency that can be achieved in a
tightly coupled system with the decoupling and reusability that can be achieved in a distrib-
uted system. Agents that must remain current with respect to a subject agent subscribe (via the
monitor) to notification of state changes. The monitor in turn requests notification of state
changes from the subject agent. When the state of the subject agent changes, the subject noti-
fies the monitor and the monitor in turn notifies the subscribers (thus, the unbundling is just a
replication of the agent notification).

The monitor pattern is suitable if an indefinite number of subscribers is interested in the sub-
ject or if it is desirable to decouple the subject from the subscribers. Subscribers may be inter-
ested in subsets of the subject agent state; the subject agent only needs to notify the monitor of
state changes for which there is at least one subscriber.

The advantages are that the subjects are decoupled from the subscribers and there is less work
for the subject because it needs to notify only the monitor, not a potentially unbounded number
of subscribers. This pattern does not protect from unforeseen consequences (such as system
instability) from large numbers of updates or cascading updates when subscribers are them-
selves the subjects of other subscribers through different monitors. While a single monitor
could detect a number of dependencies and cascaded dependencies in the overall application,
this choice would have other effects on performance (the single monitor does all the work) and
availability (the single monitor is a single point of failure and a rich target for an attacker).

Reference

Subject-
Subscribers

Internal Behavior of Focus Agent

1-
1

1-
M

M
-1

M
-M

b
u

n
d

lin
g

u
n

b
u

n
d

lin
g

tr
an

sl
at

in
g

Action

monitor Y N N N Y N Tracks agent state changes and notifies
subscribers

Table 3-3: Monitor Family
12 CMU/SEI-99-TR-025

3.3 Matchmaker/Broker/Mediator Family
These three agent patterns are clearly related, as shown in Table 3-4, although they appear
under different names in the literature. These agents act as intermediaries between a number of
agents providing services (the providers) and a number of agents requesting services (the con-
sumers).

The matchmaker simply locates a provider corresponding to a consumer request for service,
and then hands the consumer a handle to the chosen provider directly. Thus, the negotiation for
service and actual service provision are separated into two distinct phases. The broker, on the
other hand, directly handles all interactions between the consumer and the provider. Their
behaviors are illustrated in Figure 3-1 and Figure 3-2 [Brenner 98, Figure 4.3].

Reference

Consumer-
Providers

Internal Behavior of Focus Agent

1-
1

1-
M

M
-1

M
-M

b
u

n
d

lin
g

u
n

b
u

n
d

lin
g

tr
an

sl
at

in
g

Action

Matchmaker
[Brenner 98]

Y N N N N N Exports agent maps/ids

Broker
[Hayden 99]

Y N N N N Y Keeps agent maps/ids

Mediator
[Hayden 99]

Y N N Y Y Y Keeps agent maps/ids and active partic-
ipation

Table 3-4: Matchmaker/Broker/Mediator Family

Figure 3-1: Operation of a Matchmaker

Requester Matchmaker

Server

ask-all(x)

reply(names)

ask-all (x)

reply(x)

u n ad v er ti se
(as k- a ll(x))

advertise
(ask-all(x))
CMU/SEI-99-TR-025 13

The mediator acts like the broker with the following difference: While a broker simply
matches providers with consumers; a mediator encapsulates agent interactions and maintains

models of behaviors over time; these are the bundling/unbundling actions. 1

The broker presents a tradeoff with the matchmaker in that the broker insulates the consumer
and provider. Thus the broker protects the provider from hostile or unruly consumers at the
expense of a doubly-tasked broker component whose failure is crucial to any brokered interac-
tions that are ongoing or in negotiation.

The matchmaker limits its failure impact to the negotiation phase since previously negotiated
interactions are undertaken between the consumer and the provider directly; however, this
flexibility is provided at the expense of revealing provider identities to consumers. The match-
maker interaction in its simplest form then does not guarantee secure and mediated interac-
tions; however additional negotiation steps can be imagined (key exchanges, for instance)
which would further secure these interactions at the expense of additional communication and
computation overhead.

Some authors [Hayden 99] extend the standard broker architecture by adding explicit “regis-
tration” exchanges between consumers and the broker as well as between providers and the
broker. This extension explicitly addresses security concerns indicated in some of the scenar-

ios.2

1. In “Architectural Design Patterns for Multi-Agent Coordination,” S. Hayden states that legacy systems
that make requests on their own can not use a “normal” wrapper and must use a mediator agent instead
[Hayden 99, p. 7]. These two patterns become confused because proper use of a legacy system might im-
pose limits on interaction patterns. (That is, a wrapper might be “mediator-like” even if the legacy system
does not make requests, just to prevent improper use of the legacy system.)

2. Note however that “register” is apparently not a current core performative in the Knowledge Query and
Manipulation Language (KQML).

Figure 3-2: Operation of a Broker

Requester Broker

Server

ask-all(x)

reply(x)

advertise
(ask-all(x))

u n a dv e rt is e
(as k -a ll (x))

a s k-a l l(x)

reply(x)
14 CMU/SEI-99-TR-025

The advantage of a mediator is that it further decouples the agents: Individual agents do not
have to maintain models of behavior for all other agents around, and the mediator allows each
agent to vary its behavior independently. Agents need to be aware of only the mediator.

The mediator pattern works if the interactions between agents are well defined, even if coordi-
nation of distributed behavior is desired (i.e., the mediator must know the valid sequences).
Cooperating agents send and receive requests to/from the mediator, which routes the requests
in accordance with a specific conversation model. The disadvantage of this pattern is that the
mediator becomes a performance bottleneck or a single point of failure. This can be remedied
as in the broker pattern, by having multiple mediators that coordinate their activities.

3.4 Contract-Net Family
The Contract-Net family is illustrated in Table 3-5. In Contract-Net [Smith 80], a manager
agent (the focus) issues a request for proposal (RFP) or bids for a particular service to all par-
ticipating agents. The manager then accepts “proposals” to meet the service request at a partic-
ular “cost” (or messages indicating the contractors unwillingness to bid). The manager selects
among these proposals and indicates acceptance to exactly one bidder. Optionally, the manager
indicates to non-successful bidders that their bids have been rejected. The selected contractor
performs the contracted work and informs the manager upon completion.

The Contract-Net is particularly interesting because specifications for this protocol “hide” the
existence of a client. The interactions as shown in Figure 3-3 are defined entirely in the context
of a manager and possible multiple bidders. Implicit in the protocol is the existence of a client
requesting the manager to locate a provider of a particular service.

The Contract-Net acts in a manner similar to some patterns examined earlier. It is similar to a
broker in that the client and the contractor are not aware of the identity of the other. It is also
similar to a mediator in that it is heavily involved in the negotiation with the contractors, and
not just in selecting any one at random. In addition, a successful negotiation of the manager
and a contractor might involve a direct contractor-to-client interaction that is neither specified

Reference

Client-
Contractors Internal Behavior of Focus Agent

1-
1

1-
M

M
-1

M
-M

b
u

n
d

lin
g

u
n

b
u

n
d

lin
g

tr
an

sl
at

in
g

Action

Contract-Net Y N N Y N Y Negotiates with contract bidders

Table 3-5: Contract-Net Family
CMU/SEI-99-TR-025 15

nor prohibited (i.e., the manager is also a matchmaker). The “bundling” and “translating”
actions in the Contract-Net represent the packaging of the client’s needs into an RFP.

3.5 Embassy Family
In [Hayden 99], a mechanism is described for supporting a foreign agent’s access to the ser-
vices of an agent system called “Embassy,” which is illustrated in Table 3-6. Embassy interac-
tion is composed of a trusted “local” component (the focus) as the single point of interaction
between one foreign agent and multiple local agents.

The embassy single-point-of-entry method is common to networks (gateways), and it limits
the scope of violations significantly and the cost of single point-of-failure impacts to local/for-
eign interactions. Primary interactions for the embassy are described by [Hayden 99] as a gen-
eralization of the broker. The embassy is responsible for any semantic translation from foreign
performatives into local performatives and vice versa.

Reference

Foreign Agent
- Local Agents Internal Behavior of Focus Agent

1-
1

1-
M

M
-1

M
-M

b
u

n
d

lin
g

u
n

b
u

n
d

lin
g

tr
an

sl
at

in
g

Action

Embassy Y N N Y Y Y Controls access of foreign agent to
local resources

Table 3-6: Embassy Family

Figure 3-3: Operation of a Simplified Contract-Net

Contractor

Contractor

Manager

Client

Call-For-Proposal(X)

[Refuse(Ci,X)]

Propose(Ci,X,Bid)

Reject/Accept(Ci,X,Bid)

Inform(Ci,X,done)

[Cancel(Ci,X)]

etc.
16 CMU/SEI-99-TR-025

Clearly it may not be the case that all performatives are supported. In this aspect, an embassy
in general may also act as a mediator. The main phases include a client requesting access, an
embassy granting access, the client issuing a performative to embassy, the embassy “passing
through” the performative to a local destination after necessary translations, the embassy
receiving local responses to the performative, and the embassy translating the local response
into the foreign response format and responding to the foreign agent.
CMU/SEI-99-TR-025 17

18 CMU/SEI-99-TR-025

4 Example: Scenarios for Matchmaker,
Broker, and Mediator Agent Systems

The following outlined scenarios are meant to indicate the possible range of issues applicable
to the agent types described in Chapter 3. Although we classify the scenarios by agent types
(i.e., matchmaker, broker, mediator), it should be apparent that many scenarios are generic and
can apply to multiple agent systems.

The matchmaker differs from the broker primarily in that the matchmaker actually passes
responsibility for service provision directly to the matched server and requesting client,
whereas the broker completely hides the identity of the server from the client and vice versa.

Agent systems are susceptible to attacks in which an outside party intervenes in an inter-agent
exchange. Attacks that require explicit knowledge of the server by the client or knowledge of
the client by the server are prevented in the broker agent. On the other hand, the existence of a
specific intervenor in the communication between the client and the server might have an
impact on performance (increase in latency), availability (single point of failure), and even
security of information since there are now two separate communication channels to be pro-
tected. While this is unavoidable in some cases, for agent-to-agent communication it is quite
possible that public key encryption can help in the positive identification of an agent prior to
acceptance of a particular message. Such choices are the nature of architectural analysis. At
any rate, the scenarios listed below are indicative of the considerations used in evaluating
architectural properties of these negotiation patterns.

We describe the example scenarios using the following pattern:

N. <Scenario Description>
May Affect

Quality attributes that might be affected by the scenario

Implications

A description of the risk or potential problem illuminated by the scenario

Possible Solutions

A description of possible solutions, if any, to the risk
CMU/SEI-99-TR-025 19

4.1 Attacker (Consumer) Issues Massive Requests
for Services

May Affect

• performance

• availability

Implications

• denial of service

• A single broker for all services implies that one successful attack on the broker destroys all
service allocations.

Possible Solutions

• A multiple-broker solution would address this issue; however it requires that consumers
have a more elaborate understanding of the available brokers and their specialities, if any.
This is a clear tradeoff between robustness/availability and complexity and overhead.

• A registration of the consumer with the broker and provider could allow the broker to limit
the frequency of consumer requests. For certain services and/or agent systems, this may be
appropriate and could alleviate this kind of attack risk.

• Provider is restricted to a single request type to the same consumer in a given time frame.

• All consumer/provider interactions are monitored to limit the consumer actions to
expected values, including volume of messages.

• The matchmaker issues only single provider addresses to the consumer in a given time
frame.

• The matchmaker notifies the recommended provider of requests by the consumer in order
to make service available for a limited time only.

4.2 Provider Fails After Advertising Service
May Affect

• availability of service

• performance of consumer

• reliability of consumer

Implications

• If the matchmaker database contains information about non-available services, a con-
sumer can obtain a handle to an unavailable service. If the consumer blocks while waiting
for the service, the system might hang.
20 CMU/SEI-99-TR-025

Possible Solutions

• The matchmaker regularly pings service providers as assurance of presence.

• The matchmaker requires regular re-advertisement of service.

• The consumer times out and notifies the matchmaker.

4.3 Spoofer (Customer) Acquires Service and then
Seeks to Replace It

May Affect

• security of service if the attacker spoofs the provider

• reliability of service

• performance of provider

Implications

• The matchmaker database may contain erroneous provider/service information, and a cus-
tomer could obtain an apparently valid provider and receive an erroneous result.

- If the spoofed provider delivers an apparently valid response on contract, the con-
sumer could expect contracted service and not receive it.

- If the spoofed provider fails to reply to a contract request, the consumer hangs.

Possible Solutions

• Do not provide explicit provider process or port information to the consumer.

• Use public key encryption—for instance:

- The provider generates private key SPriv and registers public key SPub with the
matchmaker.

- The consumer receives the provider identifier and SPub from the matchmaker.

- The consumer generates its own RPriv and RPub and sends RPub along with
SPub+RPriv encrypted service request to the provider.

- The provider can decode SPub+RPriv only with RPub+SPriv keys.

- The spoofing provider cannot possess SPriv key.
CMU/SEI-99-TR-025 21

4.4 Spoofer (Provider) Unadvertises Legitimate
Provider/Service

May Affect

• performance

• availability

• reliability

Implications

• denial of service possible by turning off provider access to all consumers

Possible Solutions

• The matchmaker uses public key encryption to enforce same-key advertise and unadver-
tise performatives.

4.5 Attacker (Provider) Advertises False Service
May Affect

• availability

Implications

• Provider may respond to service requests with false results.

• Provider may simply not answer requests with contracted response.

Possible Solutions

• The matchmaker periodically verifies service by issuing controlled request and observing
response and server behavior.

• The consumer provides report of provider performance to the matchmaker, which may
then de-register the offending provider.
22 CMU/SEI-99-TR-025

5 Example: A Communications Network
as a Compound Agent System

A complex agent system would rarely fit neatly into one of the patterns or styles illustrated in
Chapter 3. In practice, agent systems are more likely to consist of combinations of these pat-
terns: sometimes nested and sometimes including non-agent systems in their midst. To apply
the appropriate scenarios, it is necessary to decompose the system into recognizable building

blocks.1 We illustrate the approach through a simple example of a long-distance communica-
tions network shown in Figure 5-1.

The example shows a communications network that subscribers can use to communicate with
each other. In the figure, a “calling customer” (upper left corner) tries to establish a connection

1. The decomposition needs to go down at least to the level where we can identify patterns or styles to which
we can apply scenarios similar to those illustrated in this report. The decomposition could go into increas-
ingly more primitive components, all the way down to objects, processes, lines of code, etc., depending on
the objective (e.g., code inspection to verify that a risk identified by a scenario has been mitigated).

Calling customer

Called customer

LAX1

LAX2

WAX is

2

1’

2’

registry

network is broker to
customers

matchmaker to LAX’s

4 (go/nogo)

3 (present/absent)

4

Figure 5-1: The Communications Network as a Combined Broker/Matchmaker

WAX

WAX = Wide Area eXchange
LAX = Local Area eXchange

1

5

3’
CMU/SEI-99-TR-025 23

with a remote customer (the “called customer,” in the bottom left corner). Figure 5-1 illustrates
the following sequence:

1. The caller first requests its local area exchange (LAX1) for directions to the called cus-

tomer (arrow labelled “1”).

2. The caller’s local area exchange contacts a wide area exchange (WAX) for instructions to
reach the called customer (arrow labelled “2”).

3. The wide area exchange maintains a registry of customers and their local area exchanges.
Assuming it recognizes the caller customer, the WAX returns to the requesting exchange
(LAX1) the identity of the called customer’s local area exchange, LAX2 (arrow labelled

“3”).

4. LAX1 can then contact LAX2 to request establishing a connection with the called cus-

tomer. The double-headed arrow labelled “4” suggests a protocol between the LAXs.
LAX2 then contacts the callee alerting it that it has a caller (arrow labelled “5”).

5. From then on, the two customers can carry out a dialog through their local exchanges
without involving the WAX. Arrows labelled 1’, 2’, and 3’ suggest the symmetric behav-
ior of the network. Any customer can call any other customer.

The complex behavior of the network can be explained in simpler terms by recognizing that
the WAX/LAX complex acts as a broker between customers, but the WAX itself acts as a
matchmaker between LAXs. A matchmaker (i.e., WAX) acts as a temporary intermediary
between a requester (i.e., LAX1) and a server (i.e., LAX2). Once the identity of the server is

forwarded to the requester, the matchmaker itself drops out of the picture, and the requester
and server carry on their exchanges without further intervention of the matchmaker.

A broker (i.e., the WAX/LAX complex) also acts as an intermediary between a requester (i.e.,
calling customer) and a server (i.e., called customer), but it differs from the matchmaker in a
significant way: It never drops out of the picture and remains involved throughout the opera-
tion. This behavior could be attributed to a desire for a more robust system—the WAX/LAX
complex is presumably run by the communications company, and the matchmaker is more
trusting of the local area exchanges. Subscribers, on the other hand, could exhibit erratic
behaviors that could tie up valuable resources. The broker watches over their exchanges and
takes proper actions if necessary. (For example, a customer refusing to “hang up” could result
in extra charges to the other party.) The broker can intervene and break the connection when
either party drops out.

In identifying the agent-based architectural “styles,” we are able to readily apply the earlier
experiences, reasoning, and models developed in other analyses to this new situation. In par-
ticular, the generic scenarios outlined for agents types such as broker and matchmaker can be
made more concrete for a specific instantiation of the agent type and we can then determine if
the potential risks noted in the generic case are either handled or require further investigation.
24 CMU/SEI-99-TR-025

We illustrate this with a few examples below—first in light of the external broker style evi-
denced and then in the internal matchmaker style.

In Section 4.1 we described the generic scenario “Attacker (consumer) issues massive requests
for services.” In the instantiation of this scenario in the communications network example,
there is an external brokering relationship involving a caller, a callee, and a network “agent,”
where one or more callers can flood the network broker agent with requests to connect to
callees. As outlined in the scenario, this type of action can seriously affect the performance
and availability of the connection brokering service. In the communications network domain,
obvious solutions or approaches to this problem include instantiating the generic “multiple-
broker solution” by allocating connection-agents to sets of “callers” (local area switching).
Other solutions include service limitations on individual request originators by the broker.

Each of the remaining scenarios can be similarly instantiated in the communications network
example. The key concept here is that the characteristics of the specific situation (broker or
matchmaker in this case) implies the relevance of a set of predefined generic scenarios. In the
context of an architectural tradeoff analysis of a specific system, these generic scenarios pro-
vide example of where one should start. The applicability of one or more (in this case at least
two) architectural styles can suggest specific cases, problems, solutions, and analyses appro-
priate to the overall analysis.

As has been mentioned earlier, the broker/matchmaker family is susceptible to a similar set of
problems since they differ only in the way in which a negotiated interaction occurs—that is,
directly or indirectly through an intermediary. Choosing (as in this case) a broker relationship
between external agents (in this case, customers) and a matchmaker relationship for internal
agents (in this case, local area exchanges) provides an excellent example of careful tradeoffs.
A non-brokered interaction avoids the overhead of an intermediary buffering and exchanging
messages that would be inappropriate in situations where all agents are trusted. On the other
hand, allowing point-to-point unmediated connections might be inappropriate in cases where
monitoring quality of content or quantity of service use might be crucial.
CMU/SEI-99-TR-025 25

26 CMU/SEI-99-TR-025

6 Conclusions

As part of the ATAM work, we are developing the concept of attribute-based architectural
styles (ABAS). An ABAS [Klein 99] is a specific kind of architecture in which the compo-
nents and their interactions, the attribute models and scenarios, and the attribute tradeoffs have
been previously identified and analyzed. Collections of ABAS would make the method more
efficient because they tell the architect and the other stakeholders what information is needed,
what results will be available, and what tradeoffs are possible. The analysis of architectures
built entirely or mostly from ABAS would not have to be carried out from the beginning.

The approach we suggest for the application of scenarios to the architecture of agent-based
systems is to decompose the agent-system into more primitive fragments, exhibiting a struc-
ture and behavior of previously analyzed agent styles such as wrapper or broker, where wrap-
per and broker are illustrations of ABAS for which we have previously defined scenarios. In
identifying the agent-based architectural “styles,” we are able to readily apply the earlier expe-
riences, reasoning, and models developed in other analyses to this new situation. Admittedly,
the generic scenarios outlined for agent systems lack specificity because they are inspired by a
generic architecture. When applied to a real system, specific domain and application require-
ments and constraints should be used to refine the scenarios and verify that the potential risks
are either handled by the system or present issues requiring further investigation.
CMU/SEI-99-TR-025 27

28 CMU/SEI-99-TR-025

References

[Barbacci 95] Barbacci, M.; Klein, M.; Longstaff, T.; & Weinstock, C. Quality Attributes
(CMU/SEI-95-TR-021, ADA307888). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, December 1995. Available
WWW <URL: http://www.sei.cmu.edu/publications/documents/95.reports/
95.tr.021.html>.

[Bond 88] Bond, A. and Gasser, L. (eds.). Readings in Distributed Artificial Intelli-
gence. San Mateo, CA: Morgan Kaufman Publishers, 1988.

[Bradshaw 97] Bradshaw. J. M. (ed.). Software Agents. Cambridge MA: AAAI Press/MIT
Press,1997.

[Brenner 98] Brenner, W.; Zarnekow, R.; & Wittig, H. Intelligent Software Agents, Foun-
dations and Applications. Berlin, Germany: Springer-Verlag, 1998.

[Hayden 99] Hayden, S. C.; Carrick, C.; & Yang, Q. “Architectural Design Patterns for
Multi-Agent Coordination.” Proceedings of the International Conference
on Agent Systems ’99. (Agents’99). Seattle, WA, May 1999. Available
WWW <URL: http://www.cs.sfu.ca/~isa/pubs/index.html>.

[IAG 97] Intelligent Agents Group. Software Agents: A Review. Dublin, Ireland:
A collaborative effort of Broadcom Ireland and the Computer Science
Department of Trinity College. Available FTP <URL: ftp://ftp.cs.tcd.ie/pub/
tech-reports/reports.97/TCD-CS-1997-06.ps.gz>.

[Klein 99] Klein, M. and Kazman, R. Attribute-Based Architectural Styles (CMU/SEI-
99-TR-022). Pittsburgh, PA: Software Engineering Institute, Carnegie Mel-
lon University, November 1999.

[Nwana 96] Nwana, H. S. “Software Agents: An Overview,” 1-40. Knowledge Engi-
neering Review, Vol. II, No. 3. Cambridge University Press, September
1996.

[Smith 80] Smith, R. G. “The Contract Net Protocol: High-Level Communication and
Control in a Distributed Problem Solver.” IEEE Transactions on Computers
C-29, 12 (December 1980): 1104-1113.
CMU/SEI-99-TR-025 29

30 CMU/SEI-99-TR-025

ll

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

October 1999

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Architectural Evaluation of Collaborative Agent-Based Systems

5. FUNDING NUMBERS

C — F19628-95-C-0003

6. AUTHOR(S)

Steve G. Woods, Mario R. Barbacci
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-99-TR-025

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-99-025

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.b DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The Architecture Tradeoff Analysis Method SM (ATAMSM) is an architecture evaluation technique currently
evolving at the Software Engineering Institute (SEI). ATAM has been applied to a number of command and con-
trol, real-time, and information systems. As collaborative, autonomous agents become a significant software tech-
nology, the demand for evaluating the quality attributes of the architectures of agent-based systems will increase.
Very broadly, agents may be thought of as software entities that have the ability to undertake action autonomously
in their particular embedded environment, according to a typically general set of requests or desired goals, and
that are able to communicate with other agents as determined by their own initiative. Given an agent-system
architecture, we need scenarios that could be applicable for conducting ATAM evaluations on instances of that
agent architecture. This report identifies a few features in agent-based systems that could be used to classify
agent-system architectures and to guide the generation of scenarios applicable to these architectures.

14. SUBJECT TERMS

agent-based system, Architecture Tradeoff Analysis MethodSM (ATAMSM),
communications network, Contract-Net, quality attributes, software
architecture, system scenarios

15. NUMBER OF PAGES

40
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 The Architecture Tradeoff Analysis Method (ATAM)
	2.1 Quality Attributes of Agent-Based Systems
	2.2 Architectures of Agent-Based Systems

	3 The Space of Architectural Choices
	3.1 Wrapper Family
	3.2 Monitor Family
	3.3 Matchmaker/Broker/Mediator Family
	3.4 Contract-Net Family
	3.5 Embassy Family

	4 Example: Scenarios for Matchmaker, Broker, and Mediator Agent Systems
	4.1 Attacker (Consumer) Issues Massive Requests for Services
	4.2 Provider Fails After Advertising Service
	4.3 Spoofer (Customer) Acquires Service and then Seeks to Replace It
	4.4 Spoofer (Provider) Unadvertises Legitimate Provider/Service
	4.5 Attacker (Provider) Advertises False Service

	5 Example: A Communications Network as a Compound Agent System
	6 Conclusions

