A Case Study on
Analytical Analysis of
the Inverted
Pendulum Real-Time
Control System

Danbing Seto
Lui Sha

November 1999

TECHNICAL REPORT
CMU/SEI-99-TR-023
ESC-TR-99-023



B

T

Cavrmweie Millon

Software Engineering Institute

Pittsburgh, PA 15213-3890

A Case Study on
Analytical Analysis of
the Inverted
Pendulum Real-Time
Control System

CMU/SEI-99-TR-023
ESC-TR-99-023

Danbing Seto
Lui Sha

Dependable System Upgrade

Unlimited distribution subject to the copyright.



This report was prepared for the

SEI Joint Program Office

HQ ESC/DIB

5 Eglin Street

Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

TV feds i,

Norton L. Compton, Lt Coal., USAF
SEI Joint Program Office

Thiswork is sponsored by the U.S. Department of Defense. The Software Engineering Ingtitute isa
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 1999 by Carnegie Mellon University.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, ASTO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOESNOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal useis
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Reguests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

Thiswork was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Méellon University for the operation of the Software Engineering Institute, a federally funded research and devel opment
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).



Table of Contents

Abstract Vil
1 Introduction 1

2  An Analytic Model of Inverted Pendulum
System 3

3  Feedback Control Design and

Implementation 7
3.1 Controller Design and System Performance 8
3.2 Stability Regions 11
3.3 Controller Implementation 16
4  Design of Control Switching Logic 21
4.1 Safety Region and Safety of the Physical
System 21
4.2 Design of Control Switching Logic 23
5 Conclusions 29
References 33
Appendix A 35
A1l Performance Evaluation 35
A2 Stability Region of Linear Control Systems
with Linear Constraints 37
A3 Digitized Control Implementation 40
A4 Delay Caused by Digital Filter 40

CMU/SEI-99-TR-023



CMU/SEI-99-TR-023



List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:
Figure 12:

Figure 13:

Figure 14:
Figure 15:

Figure 16:
Figure 17:

Figure 18:
Figure 19:

An Inverted Pendulum Control System

A Small Portion of the Pendulum

Friction Model for the Cart

Simulation Result

The Largest Stability Region (with K
and K, projected to x;~X, phase plan

and Xz~X4 phase plane)

The Largest Stability Region (with K
variable, projected on x;~x, phase plan
and X3~X4 phase plane)

Performance Under Three Controllers
The Largest Stability Regions (projected to
x1~x2 phase plan and x3~x4 phase plane)
Measurement Noises of Track Position
and Pendulum

Track Position with Raw M easurement,
Filtered Data, and Projected Data
Simulation Result

Check if the Physical System is Safe,

and if it is Ready for Baseline Control
Application Controller State Transition
Diagram

Active Controller State Transition Diagram
Illustration of Tolerating a Fault Caused
by a Brute Force Bug

Lyapunov Function Values

Linear Transformations Between the
Physical Position of the Variable and the
Ticks (cart position: 0.004365 * ticks;
angle: 0.0359 * ticks)

g w -

10

13

17

19
22

23

24
25

26
27

30

Measures for the Transient Response of x(t) 36

() Number of Sampling Periods Delayed
as a Function of the Signal Frequency
(b) Signals Before and After Filtering

42

CMU/SEI-99-TR-023



CMU/SEI-99-TR-023



List of Tables

Table 1: Performance Measures of the Closed-L oop
Systemwith V4 and V 11

Table 2: Summary of the Comparison on Performance
and Stability Region of Three Different
Controllers 16

CMU/SEI-99-TR-023



vi

CMU/SEI-99-TR-023



Abstract

An inverted pendulum has been used as the controlled device in a prototype real-time control
system employing the Simplex™ architecture. In this report, we address the control issues of
such asystem in an analytic way. In particular, an analytic model of the system is derived;
control agorithms are designed for the baseline control, experimental control and safety con-
trol based on the concept of analytic redundancy; the safety region is obtained as the stability
region of the system under the safety control; and the control switching logic is established to
provide fault tolerant functionality. Finally, the results obtained and the lessons learned are
summarized, and future work is discussed.

™ Simplex is atrademark of Carnegie Mellon University.
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1 Introduction

An inverted pendulum has been used as acontrolled device in a prototype control system
employing the Simplex architecture. As shown in Figure 1, the physical system consists of a
cart, driven by a DC motor, and a pendulum attached to the cart. The cart can move along a
horizontal track, and the pendulum is able to rotate freely in the range of [-30°,30°] with
respect to vertical in the vertical plane pardlel to the track. Thereis no direct control applied
to the pendulum. Both the position of the cart x and the angle 8 are measurabl e through two
potentiometers. The dynamics of the system are described by the state of the system, which
consists of the cart position x, the cart velocity X, the pendulum angle8, and the pendulum
angular velocity ¢#. The physical system has state and control constraints. Specifically, the
cart position isrestricted in the range [-0.7,0.7] meters, the maximum speed of the cart is 1.0
meter/second, the angle is constrained to the range [-30°,30°], and the motor input voltageis

limited in the range [-4.96, 4.96] volts.

Figure 1: An Inverted Pendulum Control System

The control objective of the inverted pendulum system is to move the cart from one position
to another along the track with the pendulum standing still at the upright position, i.e., 6= 0.
Since the equilibrium at =0 is unstable, such control objective has to be achieved while
mai ntai ning the stability of the system. Asthe DC motor has only limited power and the track
has finite length, there exist certain states of the physical system from which the pendulum
cannot be steered back to the upright position. Therefore, the notion of a safety region will be
introduced to characterize a subset of the system state from which the system stability can
aways be maintained.

Thereport is organized as follows. In Section 2, we derive an analytic model for the inverted
pendulum control system. In Section 3, the control system’s primary objective of stabilization
is presented and the notion of analytically redundant controllers is defined. Control algo-
rithms are designed for the baseline controller, the experimental controller, and the safety
controller based on the concept of analytic redundancy in the sense that all the controllers

CMU/SEI-99-TR-023 1



will achieve the control objective, but they will result in different system performance and
stability regions. Practical issuesin the implementation of the controllers are discussed. In
Section 4, the safety region is defined and the safety criterion of the physical system is de-
scribed. A control switching logic is established to tolerate the timing and semantic faults.
Thereport is concluded in Section 5 with discussions of the lessons learned and future work
on real-time control systems employing the Simplex architecture.
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2 An Analytic Model of Inverted Pendulum
System

A complete analytic model of the inverted pendulum controlled by a DC motor is derived in
three parts, the pendulum-cart dynamics, the friction model, and the motor dynamics. Details
are given below.

Pendulum-cart dynamics: Euler-L agrange Equation

Let M and m be the masses of the cart and pendulum, | be the length of the pendulum, F be
the motor force applied to the cart, and f. and f, are the friction on the cart and on the pendu-
lum, respectively. The kinetic energy of the cartis K_ = Mx?/2 and the potential energy of

the cart is zero with respect to a properly chosen reference. For the pendulum, consider a
small portion with mass dmlocated at q[0,l] asshownin Figure 2.

Figure 2: A Small Portion of the Pendulum

Then we have

%Ndm =x+qsing 0 Figm = X+ COSOY
Wam = dCOSE Vo = -qsin68

kinetic energy of dm:
Kym = %dm(xgm +y2 )= %dm(x2 +2qcosdxb +q°6?)
and the potential energy of dm:

P,, =dmggcos 8
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where dm = gdgq and g isthe mass per unit length of the pendulum. The total kinetic energy
and potential energy of the pendulum can be obtained by integrating K4, and P,,, from 0 to
|. Doing so, we obtain the total kinetic energy K and the potential energy P of the overall
system given by
_ 1 2. 1 R R S |
K=K, +K, ==(M +m)x* +-ml cosfx6 +—ml “6“, P =—mgl cos&
2 2 6 2
and the resulting Lagrangian:
L=K-P =1(M +m)x? + Ll cosoxd+ L mi %62 —Emgl cos6é
2 2 6 2
Then the Euler-Lagrange equations

daL _oL_._ . dJdL _JL__
dt dx Ix “ dtog 06 P

yield the equations of motion:

EEARE

m+M)x+1mI c0S66 - mi sin6? = F - f.

R

m 0039X+%mlzé—%mglsin9= -1,

Friction Model

We assume that both static friction and viscosity friction act on the cart and the pendulum
joint. These frictions are described by the following functions:

fo =sgn(x)Ae M +B.x f, =sgn(@)Ae P +B,6 (2)

with A.,B,,C,,A,,B,,C, >0. Friction f_ isdepictedin Figure 3.

X1
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Figure 3: Friction Model for the Cart

Motor Dynamics

The dynamics of the DC motor are governed by the following equations:

LI, =V,-RIl,-E,, E,=K,w
Jo@w =T,-T, -B,w

with the relations
T =KK T =Fr, w=Kx/r
where
L, - amatureinductance T, - motor torque (no load) K, - torque constant
R, - armature resistance T, - load torque K, - back-emf constant
I, - armature current ¢« - motor angular velocity Kg - gear ratio
r -drivingwhee radius ~ Jp, - rotor inertia of motor E, - back emf.
V, - armature voltage By, - viscousfriction coefficient £ _torceto the cart

Then the motor dynamics can be expressed interms of |, x, and force F as

©)

Finally, by combining Egs (1)-(3), we arrive at a complete model of the inverted pendulum
control system with the control variable V, :
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or

where

TRORER

J . K B K,K; .
0"y + Lmicosf +— L - 290 |~ Lrygngg? =1,
r 2 r2 r
N R S | .
B—mlcosex+§ml 6?—§mglsm6?=—fp
K,K
+R I, +—22x=V,
r
k=101 2(r, v+ Lmicoso(t, +C,)E
g DH3 VTR p T2
L1 — 0
%z— ml cos@(f. +C,)-M(f, +C,) 4
0 DE c 1 p ZH ()
g, R K, K
o,=-——2], -—2 b>'<+iva
a La rLa La
f = sgn(x G LB x f = 2] -Gl 4 B @
c g (X)Axe xX' 7 Sgn( )Aee 6
KyJ —
m+M + 92’“, Dlemlz—%mzlzcosZH
r
KgK 1 . 1
m gt 2 .
| . —=mlsing8-, C,=—=mglsing
r 2 2 2 2mg
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3 Feedback Control Design and
Implementation

The overall control software consists of three different controllers, Experimental Controller
(EC), Baseline Controller (BC), and Safety Controller (SC). A controller is a software mod-
ule that implements a control algorithm to compute control commands. Different control al-
gorithms are implemented in EC, BC and SC, and they are designed based on the concept of
analytical redundancy. In the Simplex, the active controller is the controller whose control
command is actually chosen to be sent to the physical system, and the application controllers
refer to the control processes that are replaceable (e.g., the basdline controller and the ex-
perimental controller). For adetailed description of the Simplex and its structure in control
systems, see Seto [Seto 98]. In this section, we discuss the design and implementation of the
analytically redundant controllers.

Definition 1. Control algorithms are analytically redundant with respect to a requirement R
if they generate control commands satisfying requirement R.

To apply Definition 3.1 to the design of EC, BC and SC, we need first to discuss the require-
ment that the control agorithms have to satisfy. Apparently, such arequirement is related to
the control objective of the system. Aswe stated in the Introduction, the inverted pendulum is
expected to be controlled to move from one track position to another while the pendulumis
kept standing till at the upright position. Clearly, it is possible to try to stabilize the system at
anew track position from anywhere on the track, but this scheme may lead to afailure of the
system, such as the pendulum falling down or the cart running off the track as there are limi-
tations on input voltage, track length, and cart velocity. To avoid such failures, wetry to sta-
bilize the system at a nearby track position and update the position towards the desired posi-
tion periodically and at a predefined rate. The desired track position isreferred to as a target
and the generated nearby track positions are called set points. The set point generation can be
done as part of the control algorithm, or be computed separately in a higher level control

loop. It isthe latter approach that we adopt in this report, which allows separation of con-
cerns. In this multi-level control architecture, the lower level control will focus on stabilizing
the system at a given set point, while the higher level control takes responsibility for gener-
ating proper set points which lead the physical system to the target. Let xs and x; be a set point
and atarget respectively. Then the control objectives for lower level controllers EC, BC and
SC can be stated as Sabilizing the systemin Eq. (4) at [x,%,6,6,1,] =[x,,0,0,0,0] subject to
the constraints:

CMU/SEI-99-TR-023 7



<07, |[4<10, 630, M, [<496 (5

and the control objective for the higher level control: Update the set point xs every T seconds
with the change vT until the generated set point reachesthe target, i.e.,

while (%, = x,|>VT|) X ((k +DT) = x, (KT) +vT
it (% —x|<MT])  x(k+DT)=x

Where T is the sampling period of higher level control and v is the desired speed of the cart.

Remark 1: The control objective for higher level control can be considered as atrajectory
generation for the cart. Namely, it generates a reference trgjectory on track position for the
system to follow. In thisreport, the reference trgjectory is alinear function of time. It is not,
however, the only possible reference.

With the control objective defined above, the lower level controllers EC, BC, and SC are said
to be analyticaly redundant, with respect to stabilizing the physical system at a given set
point, if all of them will stabilize the physical system at that set point. This definition implies
that the control commands generated by EC, BC and SC could be different, but each one of
them will stabilize the physical system at the given set point. Because of the constraints on
state and control, the state space of the physical system, [x,%,6,6] , is divided to two exclu-

sive regions, feasible region and unfeasible region. The feasible region is defined as a set that
contains all the states of the physical system, satisfying all the state constraints. Apparently,
any stability region of the physical system hasto be a subset of the feasible region. To take
into account the constraints, we modify the definition of analytically redundant controllers as:
the lower level controllers EC, BC and SC are said analytically redundant with respect to
maintaining stability of the physical systemin a given region if each one of the controllers
will asymptotically stabilize the physical systeminside the given region. In this revised defi-
nition, we do not require the stability of the system to be guaranteed at a common set point.
In fact, we say two controllers are analytically redundant if they both generate control com-
mands within the control limits to asymptoticaly stabilize the physical system at some set
point, which may not be the same, without violating the state constraints. We will require as-
ymptotic stability to guarantee effective control of the cart position. While all the analytically
redundant controllerswill asymptotically stabilize the physical system, they may result in
different system performance and stability region. In the rest of this section, we will investi-
gate these differences and propose a design principle for the controllers.

3.1 Controller Design and System Performance

Itisdifficult, if not impossible, to design stabilization control algorithms and identify the cor-
responding stability regions for the nonlinear systemin Eq. (4). Since our interest isto con-
trol the system in a neighborhood of an equilibrium state, it is reasonable to consider the line-
arization of the system at the equilibrium. In addition, since the variable | ,is not measurable,

8 CMU/SEI-99-TR-023



and the inductance is relatively small (L, = 0.00018 Herry), we reduce the order of the system
by setting L, = 0. Thisleadsto

K, K
|, =——2 2 x+—V,
R,
and
. 1 1 0
X = B%mIZ(Blva— fC—C1)+§mI cosd(f, +C2)H
6 =20 cosaBy, - . -C)-M(f, +C,)E
DE_Z 1Va c 1 p 2 E
where
— K,B., KZK.K K, K. — _
B: gzm + gz I b ] B| = g I ’Cl = Bx—lm|5|n992, CZ :_Emlsng
r r rR, 2 2

Furthermore, we drop the static friction terms by letting A, = A, =0. Then the linearized
system at [X,,0,0,0] with X the set point is given by

%0 0 1 0 0 Ox0 00 O

O %) o g, o
%252 “8yp Tag Ay 2D+Db2 R/ = AX + BV 6
x, U [0 0 0 1 OIx,0 00 O° a ©)
O~ 0 %) M- o, O
.0 ap a5  TauXg obOo

where

X =X, X0, X, %, 1T =[X =X, %,8,6]", D, =4M -3m,

4B 3mg 6B, 4B
a,, =—, =—= a, =—=, b =—,
22 D| 23 D| 24 |D| 2 D|
. 6B _ _6Mg _ _12MB, _ 6B,
“ I’ ® b’ Y m’p ' ID

Design of the controllers EC, BC and SC will be based on the linearized model in Eq. (6). In
this report, we will concentrate on linear state feedback control in the form V, = KX, al-

though other control synthesis may also be possible, especially for EC. To determine the
control gain K, we solve the linear quadratic regulator (LQR) problem: find a control V, such

that the quadratic cost function J(V,) = I:(XT DX +RV2)dt isminimized, where D isa

CMU/SEI-99-TR-023 9



4x 4 symmetric and positive definite matrix and Ris positive. The solution to thisproblem is
given by a state feedback control law.

V, =-R™"B'SX (7)

where Sisthe solution of the Riccati equation A'S+SA-SBR'B'S+D =0. It can be
shown that, for each pair of D and R, there exists a unique solution Sto the Riccati equation
and a control law in Eq. (7) that asymptotically stabilizesthe systemin Eq. (6) at X =0.

By varying matrix D and scaar R, the control gain obtained from them can be different, but
all the resulting control algorithms will asymptotically stabilize the system at X = 0. The per-
formance of the closed-loop system, however, may not be the same. For the inverted pendu-
lum, we are interested in how good the contraller isin terms of controlling the physical sys-
tem to a set point and maintaining its stability there. Such a performance requirement is
evaluated by the measures defined in Appendix A1l. Namely, we will take alook at the over-
shoot, settling time and maximum deviation associated with the cart position, the settling
time on quadratic state error, and the steady-state value of the accumulated quadratic state
error. The following example illustrates the difference in performance caused by different
controllers.
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Solid Lines: results by V 4; Dotted lines: results by V 5

Figure 4: Simulation Result
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Val Va2
Settling time (seconds) 7.66 15.76
Overshoot (meters) 0.0 0.0
M aximum derivation (meters) 0.36 0.36
Settling time on quadratic state error (seconds) 3.52 6.08
Steady-state value of the accumulated quadratic state error 0.40 0.48

Table 1: Performance Measures of the Closed-Loop System with V,; and V,

Example 1: Linearized model of the inverted pendulum control systemin Eg. (6), we design
the stabilization control laws asin Eq. (7) by choosing two Rs: R= 0.01 and R=0.1, and the
same D=diag(1,1,1,1). We will show that the control laws obtained from these different Rs
will cause different system performance. By running the Matlab, the LQR problem is solved
with the control gains:

K, =[10.0, 27.72,103.36, 23.04] forR=0.01
K, =[3.16, 19.85, 69.92, 14.38] forR=0.1

Suppose the initial conditionischosenas X, =[0.05,0.31,3.2* 7. /180,0] . Simulating the

dynamics of the closed-loop system with control Vy = KX and Vg, = KoX, we obtain the re-

sults summarized in Figure 4 and Table 1. From the performance measures, we conclude that
the control V,; resultsin abetter performance than V,, , while both controllers will stabilize

a2

the system at the equilibrium as indicated in Figure 4.

3.2 Stability Regions

While al the analytically redundant controllers stahilize the physical systemat X =0, they
may result in different stability regionsin addition to different system performance. It can be
shown that the closed-loop system performance and the stability region are negatively re-
lated, i.e., the better performance of the closed-loop system performanceis, the smaller the
stability region will be. Generic analysis on such relation will be reported elsewhere, and in
this report, we will demonstrate them with the inverted pendulum control system.

We first derive the safety region for a given controller. A stability region of the systemin Eq.
(6) under the control defined in Eq. (7) isaregion in the state space of the physical system,
from which the controller is able to asymptotically stabilize the physical systemat X =0
without violating any state or control constraints. We will focus on the stability regions de-
scribed by aclass of quadratic Lyapunov functions. Consider the constraints given by (5) in
X-coordinate:

—07-%,<%<07-X, [X|<10, |x|<30", |KX|<496

CMU/SEI-99-TR-023 11



Obviously, the constraint on the cart position described above will be as the set point varies.
Since the stability region is defined with respect to the equilibrium at a set point and is com-
puted off-line, we would like the constraint on the cart position to be set with respective to
the moving set point, i.e., X, = X — X, to be a constant. Since the total track rangeis[-0.7,
0.7], and the eligible set point range is[-0.5, 0.5], we restrict the cart motion in the range of
[-0.2, 0.2] from any given set point, i.e., |xl| < 0.2. For the angle congtraint, the current speci-

fication istoo large, given that all the nonlinearities have been ignored in the linearized
model. Hence we reduce the angle range by half. Then arevised feasibleregion I of the
physical system is described by

r={x|1x €02 % K10, |x, 15", |KX |< 496}
and a stability region Sof the systemin Eq. (7) with agiven controller V, = KX is

Sz{X‘XTPX <1, P>0, ATP+PA<O O T

Apparently, such a defined stability region is not unique for any given controller. To make a
comparison on the stability regions between controllers, we consider the largest stability re-
gion as defined in Appendix A2. In particular, wefirst derive the largest stability region for a
given controller, and then search the control gain K such that the resulting closed-loop system
will have the largest stability region. The former isthe case when K is known and the | atter
corresponds the case that K is known, which are both discussed in Appendix A2.

Casel. Kisgiven

In this case, our objective isto identify the largest stability region inside the feasible region

I" for agiven controller. The control gain has been obtained with other consideration, for in-
stance, they could be chosen to satisfy some particular performance specifications. To find
the largest stability region, we follow the procedure described in Appendix A2 and formulate
the following LMI problem to determine matrix Q = P™*:

minimize  logdetQ™
subjectto QA" + AQ<0, Q>0
a,Qa, <1, k=1..8,
where
a, =[50,0,0", a=[0100", a =[00,3820", a, =K/4.95
a, =[-5,0,0,0]", a, =[0,-1,0,0]", a, =[0,0,-3.82,0]", a, =-K/4.95

This LMI problem is solved by the algorithm devel oped in Vandenberghe [Vandenberghe 98],
and the resulting stability region, projected to x;~x, phase plan with x; = x, =0 and X3~X4
phase plane with x;, = x, =0, areshown in Figure 5.

12 CMU/SEI-99-TR-023
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Dotted Lines: the constraints due to control limitation

Figure 5: The Largest Stability Region
(with K; and K, projected to x;~x. phase plan and x3~x, phase plane)

Case 2. K isunknown

In this case, we will find the best K, among all possible Ks which render the physical system
asymptotically stable, such that the corresponding controller will result in the largest stability
region described by a quadratic Lyapunov function in the feasible region. Then the matrix

Q = P™* can be determined by solving the following LM problem:

minimize  logdetQ™*
subjectto QA" + AQ+Z'B'T +BZ <0, Q>0
a,Qa, <1, k=1..6

O b]z%>O 212
¥ oI

where
a, =[5,0,0,0]", a; =[0,1,0,0]", a; =[0,0,3.82,,0]", b, =1/4.95,
a, =[-5,0,0,0", a,=[0,-10,0]", a,=[0,0,-3.820]", b,=-1/4.95.

This problem again can be solved by the algorithm presented in [Vandenberghe 98]. The re-
sulting stability region, projected to x,~x, phase plan with x; = x, =0 and x;~X, phase plane
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with x, =X, =0, areshown in Figure 6. By solving K from equation Z = KQ, we obtain the
control gain K =[7.6,13.54,42.85, 8.25] .
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Figure 6: The Largest Stability Region
(with K variable, projected on x;~x, phase plan and x;~x, phase plane)

Finally, we conclude the controller design by comparing the performances and stability re-
gionsthat different controllersresult in. It is these differences that make the concept of ana-
Iytic redundancy applicable. In al the cases, we have the control agorithm defined as alinear
state feedback control in Eg. (7), but with the following control gains:

K, =[10.0, 27.72, 103.36, 23.04]
K, =[3.16, 19.85 69.92, 14.38]
K, =[7.6, 13.54, 42.85, 8.25]

As discussed before, the controllers with K; and K, will yield different performance, while
the controller with Kz will result in the largest stability. Since the control gain K; is derived
independent of the LQR approach, it will be inappropriate to consider its measures on quad-
ratic state error used in LQR approach. Therefore, we compare the settling time and the en-
ergy. Figure 7 shows the performance measures of the closed-loop system; Figure 8 depicts
the stability regions rendered by these controllers, and Table 2 summarizes the comparison.
The stability regions are projected to x;~X, phase plan with X; = X, = 0 and x3~x, phase
planewith x; =X, =0, respectively.
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K,X K, X | KgX

Settling time (seconds) 7.66 15.76 8.44
Overshoot (meters) 0.0 0.0 -0.152
M aximum derivation (meters) 0.36 0.36 0.37
Settling time on energy (seconds) 2.92 2.86 4.64

Measure of the size of stability region, (,/detQ) 0.0078 0.0144 | 0.0279

Table 2: Summary of the Comparison on Performance and Stability Region of Three
Different Controllers

The above comparison shows that the controller with K5 does give the largest stability region,
but has the worst performance among all three controllers. On the other hand, the controller
with gain K; yields a smallest safety region but has a much better performance. All three
controllers are analytically redundant with respect to stabilizing the inverted pendulum at the
equilibrium X = 0. Then the principle of controller design can be stated as: the control gain
associated with alarger stability region should be used to construct a safety controller, while
the control gain corresponding to better performance ought to be adopted for the baseline
controller and the experimental controller.

3.3 Controller Implementation

In the inverted pendulum control system, the control algorithm for all the analytically redun-
dant controllers are the same, namely, linear state feedback control u = KX but with differ-
ent control gains. These control gains are determined from solving LQR problems with the
objective that the system performance under the baseline controller and the experimental
controller will be satisfactory with respect to some performance specification, while the
safety controller will offer the largest stability region among all these controllers. It isworth
noting that the model that we use to compute the control gainsis only an approximation of
the real system, in which we have ignored all the nonlinearities, static frictions, motor dy-
namics, and other the uncertainties on dynamics and parameters. Therefore, the resulting
control gains are expected to be off from the gains that should be actually used, and it isim-
portant to adjust them in experiments. Let K,,K, and K, be the control gainsfor the base-
line controaller, the experimental controller and the safety controller, respectively. Thefol-
lowing gains have been used for one inverted pendulum control system

Ky, =[10.0, 36.0, 140.0, 14]; K.=[8.0, 32.0, 120, 12]; Ks=[6.0, 20.0, 60.0, 16.0]

These controllers are implemented with a sampling frequency 50 Hertz.

In addition to model imprecision, the measurements of the track position and the pendulum
angle are noisy are well. Since these are the only states can be measured from the physical

system, the cart velocity and the pendulum angular velocity have to be constructed separately.
Therefore, how to filter the measured data and construct the unknown states affect directly
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the precision of the states that are used to compute the control command. From Figure 9, it is
clear that the measurement noises' are above 5HZ. Hence afirst-order digital Butterworth
lowpass filter with cut-off frequency 5HZ is used. To construct the velocities, we apply the
first order approximation, namely

X(t) =[x(t) - x(t -T)|/T and 8(t) =[6(t) -6t -T)/T

with T the sampling period. Although the position data in above construction are the results
after filtering, they may still contain certain amount of noise. When the remaining noises are
still relatively large, we extend the first order approximation over more periods to raise the
signal-to-noise ratio. In those cases, we would have

X(t) = [X(t) - x(t - mT)]/ mT and 8(t) =[6(t) -6t — mT)]/ mT

where mis an integer greater that one. Our experiments showed that, with m = 2, the con-
structed velocities are much more clean than the case when m= 1, but they suffer further de-
lay. Therefore, the trade-off between clean velocity and the delay need to be carefully consid-
ered. For alternatives of velocity construction, one may consider using Kalman filter which
eliminates the delay in data filtering and generates accurate velocity estimates simultane-
oudly.

x107° Measurement Noise on Track Position x107° Measurement Noise on Pendulum Angle
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Figure 9: Measurement Noises of Track Position and Pendulum

Another practical issuein control implementation is delay. As we discussed in Appendix A4,
adigital filter will cause delay. In fact, the lowpass digital filter that we used will cause 1-2
sampling periods delay. We will call such delay asfiltering delay. While the effect of these
delays can be compensated by adjusting the control gainsin the control law, such delay will
have a significant effect on safety checking of the system, as described in alater section. In
addition to the filtering delay, the control implementation also causes one period delay. Spe-

! The noises shown are the difference between the physical measurements and the clean data. The
clean data is obtained by filtering the raw data forwards and backwards using a high order lowpass
filter, e.g., 10" order. While such filtering gives noiseless data with no delay, it can only be done off-
line.
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cificaly, at each sample, the measured data is acquired and the computed control command is
sent out. During one sampling period, for example, in (t,, t, +T), the control command

u(ty +T) iscomputed based on the state sampled at time t,, X(t,) . This control will not be
sent out to the physical system until the end of the period, i.e., t, +T .

Attime t, + T, however, the state of the system has been evolved to x(t, +T) . Therefore,

the control command will always act on the state that is one period later than the state from
which the command was computed. We refer such type of delay as digital implementation
delay. One may argue that the control command should be sent out right after it is computed,
given that the computation of control command could be very short. While this arrangement
can reduce the implementation delay, it may cause jittering and makes the scheduling of con-
trol tasks difficult if there are multiple tasks executing in a uniprocessor. We intentionally
choose the implementation with one period delay to avoid jittering and to ease the schedula-
bility analysis.

Both the filter delay and the digital implementation delay can be compensated by the model-
based state projection, i.e., projecting state by solving the system equations. See Appendix A3

:
for detailed computation. Let F =e”",G = Io e”"dr . Then the compensation of these delays

inperiod (t,,t, +T) can be described as below.

Filtering delay compensation

Suppose thereis one period filtering delay. Upon receiving the measurements from the physi-
cal system t,,, we feed the datato the lowpass filter. Then the filtered data can be considered

as the true (noiseless) track position and pendulum angle at the previous sample, i.e.,

[x(t, —T), 6(t,—T)] . Constructing the velocities based on the filtered data, we obtain the
full statesat t, =T, X(t, —T). Sincethe control command u(t, - T) was output to the
physical systemat t, - T and it acted on the state X (t, - T) , thefull state at time t, can be
projected as:

X(ty) = FX(t, -T) +Gu(t, - T)

Figure 10 illustrates the filtering delay compensation by plotting the physical track position
measured, filtered and projected, respectively, asthe system is traveling from x=0 to x=0.25.
We can see clearly from the enlarged portion, that the filtered datais delayed comparing to
the raw measurement and the projected data compensates the del ay.
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Figure 10: Track Position with Raw Measurement, Filtered Data, and Projected Data

Digital implementation delay compensation

The control command u(t,) has been sent out to the physical system at time t, . The noise-
less state of the physical system at t, is obtained from the compensation of the filtering de-
lay. Then to find out at what state that the control command u(t, +T) will start influencing
the physical system, namely, what state that the physical system will be at thetime t, +T
under the control u(t,) , we project from X(t,) for one more period:

X(ty +T) = FX(ty) + Gu(t,)

Thisisthe state at which the physical system will response to the control command

u(ty +T) . Then we compute u(t, +T) from the projected state X(t, +T) . While the digital
implementation delay can be dedt with by model-based state projection, it is actually com-
pensated for by adjusting the control gains properly in the experiments because the state
feedback control is reasonably robust with respect to small delay. State projection will com-
pensate for it in state safety checking discussed later.
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4 Design of Control Switching Logic

The control switching logic in the Simplex is designed to tolerate timing faults and semantic
faults. It governs the selection of the active controller such that the safety controller will be
chosen if afault is detected, and the baseline controller will bein charge once the systemis
recovered from afaulty situation. To detect atiming fault, it is simply to check if the applica-
tion controllers have missed their deadlines. For semantic fault, however, the detection is
more involved. In the follows, we will first discuss an abstraction of the continuous dynamics
of the physical system for semantic fault detection, and then design the control switching
logic.

4.1 Safety Region and Safety of the Physical System

The analytically redundant controllers in the Smplex architecture will result in different sta-
bility regions. By evaluating the state of the physical system relative to the stability regions,
control switches can be executed to tolerate the semantic faults. In particular, the safety con-
troller is designed to provide safety protection, and therefore, the stability region of the safety
controller is of special importance. In this section, we define the notion of the safety region
and the safety criterion of the physical system, which will be used for the design of control
switching.

A semantic fault is detected based on the behavior of the physical system. To abstract the
continuous dynamics of the system, we define the safety region as the following: The safety
region with respect to the safety controller us is defined as the largest stability region of the
physical system under the control of us. Let Ps be the positive definite matrix which renders
the stahility region of the system to the largest. Then the safety region SR is given by
R={X|XTP.x <1}. A state X, isinside SRif X, P,X, < 1. Hence wewould like to say
that the physical systemis safeif its state is inside the safety region, and for tolerating a se-
mantic fault, we would design a switching logic to invoke the safety controller whenever the
state of the physical system is out of the safety region. Such strategy, however, will not work.
By the definition of stability region, it isclear that the physical system may not be stabilized
if it starts from a state outside the stability region. Thusit would be too late for the safety
controller to maintain system stability once the state of the physical systemis out of its sta-
bility region. We refer this situation as the safety region paradox. To fix this problem, we
need to know, at timet,, if the state of the physical system at to+T will be inside the safety
region. If it is not, we would like to switch to the safety controller at to. Given the filtering

delay and digital implementation delay in the system, such a “look ahead” strategy can be
extended as the following. Suppo@g,t, +T) is the period that the control switching logic
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needs to make a decision if the safety controller’s output should be used. Let
z(t) =[x, (1), 6,,,(t)] and[x(t), € (t)] be the measurements and the noiseless data of the

track position and the pendulum angle, respectively. Figure 11 shows the inputs from and
outputs to the physical system.

in: z(t, - T) in: z(t,) in: z(t, +T) in:  z(t, +2T)
out: u(t, —T) out: u(ty) out: u(ty +T) out : u(t, + 2T)
] B ] ] » t

U(ty) =KX (t, —T)  u(ty +T)=KX(t,)  u(t, +2T) =KX(t, +T)

Solid Lines: results by ¥
Dotted Lines: results by

Figure 11: Simulation Result

Step 1. Filtering delay compensation

In this first step, the measuremer($,) is obtained from the physical system. Following the
compensation procedure described in last section, the true state of the physical system at time
t, can be obtained from

X(ty) =FX(t, - T)+Gu(t, - T)

Step 2. Digital implementation delay compensation

Again, as derived in last section, the state from which the physical system will response to
the control command(t, +T) is given by

X(ty +T) =FX(ty) + Gu(t,)

Step 3. One more period projection to resolve the safety region paradox

If the safety controller were chosen as the active controller in the time ineyxgl+T), it

would affect the physical systemgt+T . Therefore, the stat¥ (t, + T) can not be used to
determine if the safety controller should be selected due to the safety region paradox. This
implies that one more period state projection is needed. If the further projected state is out of
the safety region, the safety controller will be switched to active and starts controlling the
physical system &, + T , at which the state of the physical system is still inside the safety

region.
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For this projection, we use the control command that is going to be sent out to the physica
system. Let such control be u(t, + T) . Then the projection from X(t, +T) under u(t, +T)

isgiven by

Xty +2T)=FX(t, +T)+Gu(t, +T)

Then the safety criterion of the physical systemis given as: the physical system is safe the
state X (t, + 2T) isinside the safety region, i.e., X (t, + 2T)" P,X (t, + 2T) <1; otherwise, it
isunsafe. Let B, >0 be the matrix that gives the largest stability region of the physical sys-
tem under the baseline control. We say that the physical system is ready for the baseline con-
trol if the state X(t, +T) isinside the stability region givenby B, ,i.e.

X(t, +T)" P, X(t, +T) <1; otherwise, it is not ready. These are summarized in Figure 12.

Input at t,measurement  [X(to),  (to)]

b

filtering and vel ocity construction |

X(t, = T)
State projection with previous control | (t, -T) |physi cal system is not ready for BC |
VX No Physical
X(t, +T) system
State projection with current control u(t ) > (X(t +T)' BX(to +T) <1? is ready
L X(to +T) for BC.

X(to +2T)
|

State projection with future control u(t ot T)

X(t, +2T)" PX(t,+ 2T) <12

No
|UNSAFE - implies a semantic fault |

Figure 12: Check if the Physical System is Safe, and if it is Ready for Baseline
Control

4.2 Design of Control Switching Logic

The control switching logic is designed based on the detection of timing fault and semantic
fault. The former is ssmply to check if the application controllers have missed their deadlines,
while the latter isto evaluate the state of the physical system with respect to the safety region.
In addition to the behavior of the physical system and the timing performance of the applica
tion controllers, the user interface provides away to manually affect the selection of the ac-
tive controller by changing the availability of the application controllers. The state of an ap-
plication controller is defined as follows:
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Enabled the controller is running and its output can be chosen to be sent to the physical
system

Disabled the controller is running but its output is disabled

Terminated | the controller is destroyed

When a controller is destroyed, al of the resourcesit has been allocated are rel eased. For the
inverted pendulum control system, the following assumptions have been imposed:

*  When an application controller changes from being active to inactive because of afault it
contains, its output will be disabled until the user re-enablesit.

« If both the experimental controller and the baseline controller are running with valid
control commands, the experimental controller will be selected as the active controller.

The state transition of an application controller depends on the user’'s commands and if the
controller changes from being active to inactive. In particular, the events that may cause a
change of state of an application controller can be summarized in the set

{CREATE, DESTROY, ENABLE, DISABLE,A_TO_NA}
where CREATE/DESTROY and ENABLE/DISABLE are user's commands to start/terminate
the processin which the controller is implemented, and to enable/disable the controller’s out-

put, respectively. A_TO_NA isthe event when the controller is changed from being active to
inactive. A state transition diagramis given in Figure 13.

ENABLED
DESTROY,
TERMINATED )«
DESTROY

Figure 13: Application Controller State Transition Diagram

DISABLE or
A_TO_NA

DISABLED

By combining the results of the availability of the application controllers, timing performance
and the safety of the physical system, the control switching logic can be designed to tolerate
timing and semantic faults. To represent the availability of an application controller and its
timing performance, we define a Boolean variable bc_ready (ec_ready) for the baseline con-
troller (experimental controller) asthe following:

if BC meetsitsdeadlineAND itisenabled | if EC meetsitsdeadline AND it is enabled
bc_ready = TRUE ec_ready = TRUE

else else
bc ready = FALSE ec_ready = FALSE
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Suppose a control command with a value out of the allowable range (command invalid) is
considered to be caused by a semantic fault in the controller. To describe the behavior of the
physical system with relation to system safety and recovery from a faulty situation, define
Boolean variables safe and to_bc with the following assignments:

if control output isvalid AND the physical | if previous active controller is SC AND the physi-
systemis safe cal systemisready for BC
safe = TRUE to_bc=TRUE
else else
safe= FALSE to bc=FALSE

Define the state of the active controller to be
{BASELINE, EXPERIMENTAL, SAFETY}
Then the state transition of the active controller will be determined by the values of the Boo-

lean variables bc_ready, ec_ready, safe and in_bc. Figure 13 shows the state transitions of the
active controller when the Boolean expressions on the transition arcs are TRUE.

Isafe or
Ibc_ready & 'ec ready

ec_ready
bc ready &
lec ready & to bc

safe & ec ready

BASELINE < > EXPERIMENTAL
bc ready & 'ec ready & safe

Figure 14: Active Controller State Transition Diagram

We have now completely established the control switching logic to determine the active con-
troller. Implementation of thislogic amounts to coding the state transition diagramsin Fig-
ures 13 and 14. To illustrate this control switching logic, we present the following example.

Example 2: Suppose the mission wasto move the inverted pendulum fromx =-0.4to x =
0.4. All three controllers were running and the experimental controller initialy controlled the
system. A brute-force bug® was coded in the experimental controller and it triggered while the
inverted pendulum was moving to the target. Upon detection of the bug, the active controller
was switched to the safety control, and remained under safety control until the physical sys-
tem was ready for the baseline control. Here we have used a reduced size safety region as the
stability region of the baseline controller, namely, the region given by {X IXTP,X < 0.4}. To
further reduce the effect of the noise on the value of Lyapunov function, we filtered the com-
puted value of the Lyapunov function with a high order lowpass filter. The result was then

2 An experimental controller with a brute-force generates the control command with the maximum (or
minimum) control value allowed every sampling period.
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used for the recovery check, a check to seeif the physical system would be ready for the
baseline contral, i.e., if thefiltered valueisless than the threshold for recovery, 0.4. This de-
layed the switch to the baseline controller, but it guaranteed that the safety controller would
not be switched back after the baseline controller was chosen to be the active controller.?
Figure 15 shows the trgjectories of the physical system, and Figure 16 displays the results of
safety checking and controller switches. Aswe can see from the figures, the experimental
controller initialy controlled the system, and it caused the system to behave badly after 11
seconds. At t = 11.02, the value of the Lyapunov function jumped over 1 and the bug was
detected. At the same time, the safety controller was taking over the control. After one period
since the safety controller wasin charge, the value of the Lyapunov function dropped below
1, but the physical system was not ready for the baseline control yet. Having been controlled
by the safety controller for four periods, the physical system became more stable, and the
value of the Lyapunov function was reduced lower than 0.4. Hence at t = 11.1, the basdline
controller was switched active, and remained in control afterwards.
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Figure 15: lllustration of Tolerating a Fault Caused by a Brute Force Bug

® Theoretically, the value of the Lyapunov function should decrease monotonically under the safety
controller, but it may not be the case in reality due to the measurement noise, the inaccuracy in system
model and the construction of velocities. As aresult, the value of the Lyapunov function can drop to a
low level after the safety controller takes over control, which may trigger the switch to the baseline
controller, and then bounce back to above 1 to knock out the baseline controller again.
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5 Conclusions

In this report, we described analytical approaches for designing analytically redundant con-
trollers, deriving the safety region, and establishing a control switching logic in an inverted
pendulum control system using the Simplex. While these approaches were developed in asso-
ciation with a particular control system, the general analytic framework should be applicable
to other control applications without much difficulty.

Analytic redundancy is the key concept in the Simplex architecture. Based on this concept,
the baseline controller, the experimenta controller, and the safety controller were designed as
linear state feedback controls with the common requirement of asymptotically stabilizing the
physical system at an given equilibrium state. While al of the controllers will achieve this
goal, the closed-loop systems may have different performance in terms of the rate of conver-
gence to the equilibrium and different stability regions. With certain well-defined perform-
ance measures, it can be shown that the performance of the closed-loop system is negatively
related to the size of the corresponding stability region. Namely, the better performance the
closed-loop system has, the smaller its stability region will be. It isthis property that allows
us to design the safety controller to render alarge stability region although the performance it
yields may not be superior, and the application controllers to focus on improving the per-
formance while the stability regions they result in may be small. Such a combination enables
an application controller to explore high functionality under the protection of the safety con-
troller.

The safety region is defined as the largest stability region rendered by the safety controller. It
isderived by solving aLMI problem subject to stability requirements as well as the state and
control constraints. Two cases were considered: 1) derive the safety region for a given safety
controller; and 2) design the safety controller such that the resulting safety region is maxi-
mized. In the latter case, the resulting stability region isthe largest one described by a quad-
ratic Lyapunov function among all possible linear state feedback controllers that asymptoti-
cally stabilize the physical system. For testing in the lab, we used the safety region derived
with agiven safety controller whose control gains have been adjusted in therea system for
an acceptable performance.

The control switching logic was designed to tolerate the timing and semantic faults. It was
established by taking into account the availability of the application controllers, the timing
performance of the application controllers, and the safety of the physical system. The key
step in the logic design is to correctly represent the state transition of the application control-
lers and the state transition of the active controller. While the specifications on fault tolerance
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may vary from application to application, the basic structure of the state transition diagrams
will remain the same, and design procedures can be carried over cross applications.

Asthe analytic approaches were employed in the real control system, there are practi-
cal/engineering issues need to be addressed. Many of them have occurred in our implementa-
tion, and we will discuss four of them here. First, the physical system needsto be well cali-
brated. The measurements of the track position and the pendulum angle are obtained from
two potentiometers. After the A/D converter, the signals from the potentiometers are con-
verted to digital ticks. Therefore, transformations from the ticks to the physical positions of
the variables measured are needed. To derive such transformations, we manually move the
cart to different locations on the track and fix the pendulum at different angles, and for each
of these positions, record the tick readings. By applying least-square fitting, we found the
linear relation between the physical position of the variable measured and the ticksread asin
Figure 17.
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Figure 17: Linear Transformations Between the Physical Position of the Variable and
the Ticks
(cart position: 0.004365 * ticks; angle: 0.0359 * ticks)

In addition to identifying the transformations, it isimportant to get the precise tick readings at
the track center (X = 0) and zero angle (6 = 0). These two measures may need to be re-
calibrated from time to time.

Second, the accuracy of the analytic model isimportant. As we have seen, both the model-
based state projection and the derivation of the safety region are based on the analytic model.
While the control algorithm is robust with respect to imprecision in the model, model-based
state projection and the derived safety region could suffer significantly because of impreci-
sion in the estimation of the run time system state and the model of the plant. The current
model of the inverted pendulum was completely derived from mechanical principles, and
some of its parameters were adjusted by comparing the simulation of the model and the re-
sults obtained from running the physical system. This guarantees the accuracy of the model in
ashort term, i.e., the matching results of simulation and the physical system trgjectory ina

30 CMU/SEI-99-TR-023



short time, say afew periods. For state projection in alonger time, we ought to carry through
an extensive system identification procedure. Thisis certainly possible for a system like the
inverted pendulum whose linearized model well represents the actual nonlinear system.

Third, the velacity construction plays an important role in both model-based state projection
aswell asthe safety checking. When the state projection did not give a satisfactory result, the
reason could be the inaccuracy of the model as we discussed above, but it is also possibly due
to the approximation of velocities. As the position variables contain noise, the velocity ap-
proximation could be very poor. On the other hand, since the safety evaluation of the physica
system dependents on the calculation of a quadratic Lyapunov function, which involves the
full states, the result obtained could be off significantly if the velocity components are poorly
constructed. To resolve the velocity construction problem, the standard approach is to build
an observer, or Kalman filter if noise is one of the issues need to be dealt with. Again thisisa
model -based methodology, and therefore, it would be better to be use it in conjunction with a
model identification approach, even though Kalman filter would tolerate a certain inaccuracy
of the model. Thisisone of the subjects for further research.

Finally, in design of the safety controller, one objective is to make the corresponding stability
region to be as large as possible, but his should not be pushed too far. As we discussed earlier,
the larger the stability region is, the poorer the performance will be in the closed-loop system.
In the inverted pendulum system, if the control gain is chosen such that the safety region is
too large, the corresponding safety controller would take alonger time to drive the physical
system to a neighborhood of the equilibrium state after it takes over the control from afaulty
controller. Therefore, in the actual design, we need to make a trade-off between the volume
gained and performance |ost.

While the inverted pendulum is a prototype system, it certainly contains alot of control is-
sues. We would like to emphasize that the analytic approaches devel oped to address these
issues can be very well extended to other control applications, including large-scale control
systems. On the other hand, of course, there are still some unsolved problems and they will
be investigated in our future research.
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Appendix A

Al Performance Evaluation

Consider alinear time-invariant system (LTI)
X = AX +Bu

where X OR",u0R™, AOR™ BOR™™. uisthelinear state feedback control designed to
minimize the quadratic cost J(u) = I: (XTQX +u"Ru)dt , where Q are R are positive defi-

nite. Then the performance of the closed-loop system can be evaluated by system transient
response, settling time on quadratic state error, steady-state of the accumulated quadratic state
error, and settling time on energy, which are defined as the follows.

Transient Response of A State Variable Let x(t) be the dynamic variable understudy and X, be

the set point for x(t) to reach. Then the transient response of x(t) is measured by the overshoot
O,, the settling time S, , and the maximum deviation D,,, defined as the follows. Figure 18

illustrates these measures.

_ Emax(x(t) =X, if max(x(t)) > %

O
Cwhen x(to) < X, Os .
0 0 otherwise

O

s —min(x(t)) if min(x(t)) < xq
overshoot of x(t): Ewhen X(ty) > Xg, Og = t2ty () t2to (x(®)
U

MLy Ol

0 otherwise
Hwhen x(t,) =x,, O, = maxx(t) = x|

]

settling time of x(t): § =t;, —t, where t; isthe smallest t such that Ot >t

Hx(®) = x| < 0.09(x(ty) = x| X(t) # X
%x(t) - X¢| <0.05 rIlzt:\x|x(t) ~Xq| X(to) = Xs

maximum deviation: D,,, = max|x(t) - X,|
t>t,
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Figure 18: Measures for the Transient Response of x(t)
Settling Time on Quadratic State Error

By quadratic state error, it is meant the quadratic term of state variablesin the cost function,
i.e, E,(t) = X (t)QX(t). Then the settling time on quadratic state error is defined as the
time t, —t, with t, being the time when the quadratic state error decreases to 5% of E(t,)
and stay within that range for all t >t,.

Steady-State Value of the Accumul ated Quadratic State Error

It can be shown that the quadratic cost J(u) is bounded when the closed-loop systemis as-
ymptotically stable. Therefore, the steady-state of the accumulated quadratic state error is
defined as

E, = fxT QX (t)dt

Settling Time on Energy

Asdescribed in Section 2, the total energy of the inverted pendulum system is given by
_1 12, L VA 4 L 28(1\2 4 L
E(t) = > (M +m)x(t)- + > ml coséx(t)o(t) + s ml “6(t)" + > mgl coso(t)

For an asymptotically stable closed-loop system, the total energy of the system will tend to
the constant value E, =4 mgl , which isthe potential energy of the system when the pendu-

lumis at the upright position. Then the settling time on energy isdefined as S, =t,, —t,
where t,, isthesmallest t suchthat Ot > t,,
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HE(t) - E.|<0.09E(t,) -E.|  E(t,) # E,
EE(t) -E/|< 0.0SrE?x|E(t) -E.| E(t,) = E,

A2 Stability Region of Linear Control Systems with
Linear Constraints

The stability region of alinear control system will be restricted by the constraints imposed to

the system. The system can only evolve in the feasible region in the state space, where no

constraints will be violated. Thus, a stability region has to be a subset of the feasible region.
Consider alinear control system:

X = AX + Bu with congtraints: a; X <1, k =1,...,q and bjTusL j=1..r,

whereX OR", uR™, a, OR"and b; 0 R™are constant vectors. The stabilization control

agorithmisalinear state feedback control given by u = KX . Then the closed-loop system
becomes time-invariant and the constraints on control variables can be expressed in terms of
the state variables, i.e.,

X = AX with congtraints: a} X <1, k=1,...,p (A1)

where A= A+BK, a, =q,, a4, =b K,i=1..,q,j =1..,r, and p=q+r.Thenthe ob-
jectiveisto find the control gain K such that the closed-loop system is asymptotically stable.
Clearly, there areinfinite many Kswill do the work aslong as all the eigenvalues of the re-
sulting matrix A areinthe left half of the complex plan. To establish the relation between the
choice of K and the stability region associated with the control using K as the control gain,
we apply Lyapunov stability analysis.

Definition AL: The systemin Eq. (Al) is quadratically stable if there exists a positive defi-
nite matrix P >0 such that the quadratic function V(X) = X" PX has negative derivatives

along all the trgjectories of (Al).
The Lyapunov stability criterion states that the systemin Eq. (Al) is asymptotically stable if

and only if it isquadratically stable. Hence it is sufficient to study quadratic Lyapunov func-
tion for the stability analysis of the systemin Eg. (A1). Since

V =XT(A'P+PA)X

along the trgjectories of Eq. (A1), we conclude that the system in Eq. (A1) is asymptotically
stableif and only if there exist amatrix P such that
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P>0, AP+PA<0 or Q=P'>0, QA +AQ<0 (A2)

Then a stability region Sof Eq. (A1) can bedefinedas S={ X |XTPX <1} . Apparently, any
stability region hasto satisfy the constraints, namely, every point inside the region satisfies
the constraints. The following result establishes the conditions for Sto satisfy the constrains.

LemmaAl: GivenalTl system with constraintsin Eq. (A1). The stability region Sof Eq.
(A1) satisfies the constraintsin (A1) if and only if @, P™'a, <1, k =1,..., p.

Proof: By definition, Ssatisfies the constraintsif and only if aIX <10XOSs k=1..,p.
Thisimpliesthat Ssatisfies the constraints if and only if

r)r(mg;(a,fx <L k=1..,p - a,P'a.<1Lk=1..,p.

. T _ T _1 — . . . .
Next we will show max ar X =4a,Pa,, Ok =1.., p, whichimplies the |atter condition.
To this end, we solve the following nonlinear programming problem for each k=1, ... p:

maximize a, X
subjectto XTPX <1

Let X™ be the optimal solution. Then Kuhn-Tucker conditions are satisfied, namely

Chry, -2AX"TP=0
%4(1— XTPX)=0

%\ >0
Apparently, there is a solution only 4> 0. Solving above equations, we obtain
X" = (P‘l)T ak/wla{ P'a, O Tg%(al X = a,P™a,
Then we conclude thagg%(alfx <1lifand only if a, P'a, <1 for allk=1,... p.

Given that the stability region is not unique, we are interested in deriving the Begydgect

to the constraints. Since each stability region defines an ellipsoid geometrically in the state
space of the system, by the size of a stability region, it is meant the volume of the ellipsoid.
Maximizing the size of a stability region is carried out by formulating a linear matrix ine-
quality (LMI) problem, which is described extensively in [Boyd 94]. We consider two differ-
ent cases. First, control gafnis given. By solving a LQR problem, a control gKits ob-

tained such that the closed-loop system is asymptotically stable. In this case, the system in
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Eqg. (Al) iscompletely determined, and the objective is to find a matrix P such that the size
of Sisthe largest subject to constraints and conditionsin (A2). Second, control gain K isun-
known. Then we need to determine matrix P and K to maximize the size of Sand subject to
conditionsin (A2) and those given as constraints. The resulting stability region in this case
will be the largest one given by quadratic Lyapunov functions among all possible Kswhich
render the physical system asymptotically stable. We discuss these two cases separately as
follows.

Case 1. When K is given

In this case, matrix A is completely determined. Since the volume of an elipsoid given by
S={X|X"PX <1} isproportiond to +/det P~ , then the problem of maximizing the vol-
ume subject to constrains can be formulated as a LM|I problem:

minimize logdetQ™
subjectto QA +AQ<0, Q>0
a,Qa <1 k=1..,p

This problem is solved by Vandenbergh et a. in [ Vandenberghe 98].
Case 2. When K is unknown In this case, K needs to be determined along with matrix P to

guarantee asymptotic stability of the system and the largest stability region, subject to con-
straints. By substituting A= A+ BK inthe derivatives of V, we obtain the condition:

QA" + AQ+QKTB™ + BKQ<0
By introducing the change of variable Z = KQ , above condition becomes

QA" + AQ+Z"B" +BZ <0

and the constraints
T T T T—>~-15T 01 bj z0 ;
bjusl O bj KQK bj <10 bj Q77 bj O %T '"O<1, j=1..r
b, Q§

where thefirst step isthe result of Lemma (A1), the second step is due to the change of vari-
able, and the last step is carried out by Schur complements. Then the LMI problem can be
formulated as:
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minimize logdetQ™

subjectto QAT + AQ+Z'BT +BZ <0, Q>0
a;Qa, <1, k=1...,q
01 blzO

'"=0, j=1...r
%Tbi QA J

Again, this problem can be solved by the approach developed in [Vandenberghe 98].
A3 Digitized Control Implementation

Consider alinear system

X = AxX+ Bu, y =Cx

where xOR",uOR™, yOR?, AOR™,BOR™™,CORP". Then the trgjectory of the sys-
tem, starting from X, at t,, isgiven by:

t
x(t) = M) x(t,) + ﬁ eI Bu(r)dr
0

Let t, =KT,t =(k+1)T , with T the sampling period. Since the control u(t) =u(kT) for all
KT <t<(k+1T,xat (k+1)Tisderived as:

(k+l)T A((k+1)T—T)

x(k +DT) = e*Tx(KT) +%

KT

dr%u(kT) = Fx(KT) + Gu(KT)

A

T T
with F=eT .G = Ioe dr . Suppose alinear state feedback control is designed asin the sim-

pleform u(t) = Kx(t) , then the digitized state feedback control system is given by

X((k+DT) = (F +GK)x(KT)

A4 Delay Caused by Digital Filter
A digital filter can be described as

a,y(n) = b, +Zbkx<n—k)—2aky(n—k)

with x(*)and y() theraw dataand filtered data, respectively. Design of adigital filter can be

carried out directly from digital design by using certain commercially available software
package, for example, Matlab Signal Processing toolbox, or from a design of analog filter.
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Digital Design

By making use of Matlab, adigital filter is designed with the coefficients a, and b, as

—]ka)
H(z) = z"o— and frequency response: H (e!®) = z"ok—ka
Zk 0 H? Zk 0 &Z

Let
ny n, Ny Ny
B, :Zbkcoskw, B, :zbksinkw, A :Zakcoskw, A :;aksinkw

Then the frequency response can be written as

oy — - : _BA +BA _BA-BA
H(e] )_Hr+JHi W|th Hr —W i—w

Let f and T be the sampling frequency and period. With « = 27.(f,/f), the delay D caused
by the digital filter at frequency f, can be computed as

D= (DH (e"“’)/277)/fS (seconds) or D= ((DH (e"“’)/277)/fS )/T (sampling periods)

Analog Design and Diqgitization

Let f be the sampling frequency and T be the sampling period. A digital filter can be designed
from an anaog filter by applying the bilinear transformation:

21 z!
T1+z

Suppose an analog filter is given by transfer function H(s). Then adigital filter can be ob-
tained from this analog filter with the frequency response

H(e?) = H(S)| 21-¢1%

T 1+e” 1+e i@
and the delay caused by the filtering can be computed as described before.

Example Al. Consider afirst order Butterworth lowpass filter with cut-off frequency
f. =5HZ and sampling frequency f =50HZ . By running the Matlab, we obtain the filter
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coefficients a, =1, a, = -0.5095, b, = b, =0.2452 . Then the magnitude response and the
phase response are given by

‘H(ejw)‘z 2b, | OH (%) = —tan™ (1-a)tan(a/2)
J@+2)? +(1-a)? tan?(w/ 2) (1+a)

Figure 19(a) showsthe delay as afunction of the signal frequency. For instance, the delay of
asigna with frequency f, = 4.1HZ is 1.324 sampling periods, namely, 1-2 sampling periods
in implementation. Thisis verified by the plot in Figure 19(b) where the time lag between the
first perks of the signal and the filtered signal is 20 ms and the lag for the second perksis 40
ms.

0.5

Number of Sampling Periods Delayed
Solid line: signal; Dotted line: filtered signal
o

5 10 15 20 25 0 0.1 0.2 0.3 04 0.5
Frequency (Hertz) Time (seconds)

Figure 19: (a) Number of Sampling Periods Delayed as a Function of the Signal
Frequency
(b) Signals Before and After Filtering
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