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Abstract

Simplex is an engineering framework embodying fault tolerance and dynamic upgrade in a
highly maintainable system. This report describes an approach to using Simplex to construct
a COTS-based computer system capable of coordinated real-time motion control in a hostile
communications environment. It also discusses how selected portions of the Coordinated
Prototype tolerate software faults and allow new software to be deployed and tested during
system operation.
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1 Problem Statement

Accelerating rates of change will make the future environment more
unpredictable and less stable, presenting our Armed Forces with a wide range of
plausible futures. Whatever direction global change ultimately takes, it will affect
how we think about and conduct joint and multinational operations in the 21st
century. How we respond to dynamic changes concerning potential adversaries,
technological advances and their implications, and the emerging importance for
information superiority will dramatically impact how well our Armed Forces can
perform its duties in 2010. [DoD ND]

Superior intelligence and the technology for its effective application provide a force multi-
plier of proven value. Timely collection, distribution, and interpretation of information is al-
ready an important component of military systems and it is reasonable to assume that its
value will increase in the immediate future. As information becomes more abundant and
timely, cooperating force components can make increasing use of real-time information to
coordinate their activities and respond to changes in the operating environment.

While the increased use of off-platform sensors and real-time processing allows flexible re-
sponse to rapidly changing situations, increasing dependence on information delivered during
missions requires mitigation of risks as well as the exploitation of benefits. If communica-
tions are interrupted, how can systems compensate? When the form and content of informa-
tion changes as new sensors and information sources are fielded, how can existing systems be
upgraded to adapt?

To explore these issues, we adapted SimplexTM technology to a communications dependent en-
vironment and developed the Coordinated Prototype. In this prototype, two independent
computer systems attempt to perform a task that requires coordination using message ex-
change to synchronize their actions. The communications link between the systems is subject
to degradation or interruption during operation and the system must compensate for missing
information. The software is also tolerant of software faults, maintaining safe operation in the
face of errors in active software.

To provide clear, visible evidence of success or failure, the prototype uses the problem of co-
ordinating the movement of inverted pendulums. Each pair of inverted pendulums may move
independently under computer control. Through communications links, a separate system can
provide a destination for each pendulum. The pendulums then advance to the target location.
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The focus of the prototype demonstration is to maintain coordinated control of the pendulum
pair. That is, they must advance in synchronization. If the pendulum motion is severely out of
synchronization the pendulums will fall. In demonstrations, faulty control software upgrades
and disruptions to external communication are introduced without causing a light rod con-
necting the pendulum tips to drop.

The Coordinated Prototype addresses the following questions by applying Simplex technol-
ogy:

• Can coordination be maintained in the face of communications problems?

− What are the effects of partially or completely denying communications for a period?
− What are the effects of degraded communications, where communications links are

overloaded with spurious messages?

• Can platform safety be assured when software is altered?

− What if the system is upgraded with partially tested software prior to mission start?
− What if software is changed during operation?

The Coordinated Prototype design was not intended to represent any specific system or repli-
cate a particular mission profile.

The next section describes the concept of the prototype—how we model the communications
problem using dual inverted pendulums. The third section introduces Simplex concepts, and
gives an overview of how these concepts are applied to the dual pendulum prototype. For
those interested, Section Four provides implementation details, followed by sections on dem-
onstration scenarios and analytical studies. In the final section, we conclude with a discussion
of lessons learned.
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2 A Prototype for Coordinated Control

Consider a single aircraft or missile. In itself, an air vehicle typically contains the necessary
sensors and controls to maneuver from point to point in an autonomous fashion. However, a
single vehicle is frequently deployed as part of a larger mission, moving in concert with other
elements. Group action can be achieved in various ways. With sufficient pre-planning, indi-
vidual vehicles can achieve coordination by rigidly adhering to a schedule. If nothing
changes, individual vehicles can be partially or completely unaware of the other participants,
simply conforming to the schedule. In early air missions, group action was achieved by flying
in formations that coordinated by maintaining visual contact. As off platform sensors and ef-
fective communications became available, aircraft were more able to react to events that were
beyond the sensor range of the air vehicle. All of these operational modes are still relevant,
but the possibility for flexible response based on remote input is the most challenging sce-
nario and was considered the most interesting problem for the Coordinated Prototype.

As a further example, consider midair refueling—a widely employed technique for extending
military aircraft range and payload. Since the refueling aircraft are generally vulnerable and
usually of quite different types than the refueled aircraft, they seldom travel together
throughout a mission. At its simplest, two aircraft must rendezvous and then fly in close for-
mation to transfer fuel. With sufficient preparation, this rendezvous can be achieved without
radio communication, providing security advantages. However, pre-planned arrangements
may not be sufficient due to the variability inherent in military flying. Plans must be altered
in that case to bring available tankers and aircraft together within a limited time frame.

A general design for the prototype was derived from the above observations along with the
desire to simulate the problem of coordinating such systems in a hostile communications en-
vironment. Inverted pendulums were used in the design to provide visible evidence of a
communications failure. Previous Simplex prototypes were based on inverted pendulums and
therefore, they provided a fairly low risk way of providing a meaningful—though abstract—
test environment. The decision was made to use as much COTS hardware and software as
possible.

An inverted pendulum is an intrinsically unstable device, which requires continuous real-time
control to stay upright. In addition to keeping the pendulum upright, it is possible to write
controllers that can move the pendulum to arbitrary locations on the track and statically bal-
ance the pendulum in a vertical position. These functions can be defined in combination,
giving a system that will attempt to balance the pendulum at a specified location on the track.
These movement combinations were demonstrated in earlier Simplex prototypes.
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Although a very modest personal computer or equivalent can easily provide control for an
inverted pendulum, multiple computers have been used in some Simplex prototypes to dem-
onstrate how hardware redundancy is compatible with the Simplex engineering framework.
In these prototypes, a COTS network was successfully used to handle the distribution of real-
time pendulum control data. These configurations were the basis for the Coordinated Proto-
type.

The primary scenario for the Coordinated Prototype is to bring the two pendulums into syn-
chronized movement and move them together to specified locations on the track (coordinated
motion). At any time, communications may be partially or completely blocked between the
two pendulums. Even when communications are blocked, the pendulums must stay together.
This functionality requires additional control algorithms for coordination, as well as predict-
able movement algorithms to hold the pendulums together.

For coordinated motion, pendulum controllers must hold the pendulum within a “box” cen-
tered on the current position of the other pendulum. In addition, as target locations are en-
tered and changed, the pendulums must accelerate and decelerate together to reach the goal.
Two strategies can achieve this result. The first is to use controllers whose behavior is highly
predictable so that a synchronized start signal is sufficient to keep the pendulums together.
The second is to exchange position information frequently so the controller is constantly
aware of the other pendulum’s position. The first strategy is highly autonomous, but requires
great precision and predictability. The second has demanding communications requirements,
but the controller need not be very precise.

In practice, a mixed strategy was developed. The pendulum controllers are relatively precise;
the pendulum can be kept upright without large excursions from a desired position and the
direction and motion rate of the pendulum can be varied predictably. The position of the other
pendulum is known through regular updates. In case of communications interruption, the
pendulums reduce speed and then stop as the position updates became less frequent.

The pendulum controller moves the pendulum to achieve several goals: small movements to
keep the pendulum upright, acceleration or deceleration towards a desired target location and
velocity adjustment (or station keeping) to stay in synchronization with the other pendulum.
A single controller need not accomplish all of these tasks; in the Coordinated Prototype, sim-
ple pendulum motion is handled by an inner control loop which performs movement to a
specified goal position (similar to the controller for previous Simplex prototypes) and syn-
chronized movement by an outer coordination loop which coordinates motion between the
two pendulums by exchanging pendulum position information and feeding target locations to
the inner controllers.

There were two advantages to this design. First, most of the algorithms for the inner control
loop were available from previous prototypes, allowing us to concentrate on developing the
strategies for the outer coordination loop. Second, the two loops could be executed at differ-
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ent rates, with the speeds matching their different timing requirements, consuming fewer
system resources. The ability to adjust execution rates independently proved useful in re-
solving communications bottlenecks.
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3 Simplex Concepts

As illustrated in the previous section, just as it is relatively easy to coordinate aircraft on a
mission in a benign environment, it is also relatively easy, given the right algorithms, to co-
ordinate twin pendulums. What happens, however, if the environment is not so benign? Can
we continue to coordinate our aircraft or pendulums in a hostile environment? How does our
prototype system have to be enhanced to do this successfully? Finally, if we want to intro-
duce improvements to the prototype (that is, upgrade it) can we do so in a safe and reliable
manner? In this section, we discuss these questions.

In order to answer the above questions affirmatively, our system needs to exhibit the follow-
ing characteristics:

• The individual pendulum controllers must be able to ensure that their pendulum remains
upright at all times.

• Each of the individual pendulum controllers must be able to deal with the partial or
complete loss of communications with the other pendulum controller and do the
“reasonable” thing.

• It must be possible to introduce new software into the system while ensuring that both of
the above conditions are still met.

The Simplex Architectural Framework, along with some careful system design, allows us to
achieve these goals. The major components of this framework are Dynamic Binding, Ana-
lytic Redundancy and Rate Monotonic Scheduling (RMS) Theory.

Dynamic binding is the mechanism that allows new software components to be inserted into
the running system. The combination of Analytic Redundancy and RMS Theory are used to
guarantee that the controller is able to keep the pendulum upright at all times, to deal with the
temporary loss of communications between pendulum controllers, and to deal with the inser-
tion of possibly “buggy” new software. We will discuss each of these components in turn.

This section will also discuss the issues related to the use of Simplex and COTS software
including their application to the Coordinated Prototype and will close with an overview of
the benefits of Simplex.
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Figure 1:  Coordinated Prototype Sofware Architecture Block Diagram

3.1 Dynamic Component Binding
Dynamic binding is the set of features that permits the creation and deletion of a portion of a
system during execution. Using dynamic binding, portions of a system can be altered without
stopping the entire system facilitating fault resistance and software upgrades. Because inter-
ruption of service is not acceptable during the execution of a real-time program, dynamic
component binding must be performed without stopping the flow and processing of informa-
tion although the software creating or processing information flows may be varied. The spe-
cific communication technology that is used by Simplex is a publish/subscribe mechanism as
described in [Rajkumar 95]. The producer of a piece of data “publishes” it. Any subsystem
that wishes to make use of the data “subscribes” to it. The implementation is based on POSIX
.1b message queues and is similar to the labeled message construct in POSIX .21.

The Coordinated Prototype uses dynamic binding to allow the seamless insertion of upgraded
control algorithms into the system while maintaining continuous real-time control of the pen-
dulums.

3.1.1 Replacement Units
Dynamic components are packaged as replacement units. A replacement unit is a process
abstraction which encapsulates a user-defined set of application functionality with a template
for communicating with other replacement units and sufficient address space protection such
that any one replacement unit cannot corrupt the address space of any other replacement unit.
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Replacement units are designed in such a way that they are able to replace an existing re-
placement unit or be replaced by a new replacement unit without interrupting system opera-
tion.  Replacement units allow dynamic upgrade, through replacement. With fault detection
and functional replication, replacement units allow fault recovery by implementing analytical
redundancy.

The Simplex Engineering Framework allows any type functionality to be encapsulated in a
replacement unit. In the Coordinated Prototype, replacement units are used to hold some (but
not all) of the real-time controllers and coordinators. In the prototype, three real-time con-
troller slots were provided for the inner control loop and three slots for the outer coordination
loop. A slot may be encapsulated as a replacement unit or a controller or coordinator can be
“hard-wired” into the slot. In the prototype, a single controller in each control and coordina-
tion loop was packaged as a replacement unit (“Upgrade SW” in Figure 1 on page 8) and the
remaining slots contain hard-wired controllers (see also Figure 15 on page 45). Controller
slots and the controllers or coordinators they contain are named, in order of increasing stabil-
ity (and decreasing sophistication): upgrade, baseline, and safety. This ordering becomes im-
portant in fault correction. For instance, the safety controller serves as the last chance control
for the system, while the baseline controller is preferred over the safety controller for normal
operation.

3.1.2 Fault Containment
Replacement units encapsulate code to perform a specific function and allow the code to be
replaced with new code as needed. In addition to allowing software upgrade, replacement
units facilitate fault containment. Fault containment is the process of preventing flaws in a
form propagating to other parts of a system. Fault containment, in itself, neither prevents
failure nor repairs the failure. Fault containment does help assure the success of fault recov-
ery when redundancy exists.

Application faults can cause damage in several ways and the prototype uses several strategies
to contain faults. Process address space protection and interprocess group communication are
used to contain runtime errors. Rate Monotonic Analysis (RMA) and enforcement of dead-
lines contain timing faults. Analytic redundancy provides protection from semantic faults by
using multiple controllers whose output is dissimilar and trading off between the reliability
and the performance of these controllers. Finally, the prototype isolates untrusted replacement
units on separate nodes, where the potentially unreliable combination of deliberately mali-
cious software, COTS hardware and COTS software can be isolated.

3.2 Analytic Redundancy
Redundancy, the provision of backup components in case of failure, is a common technique
in fault tolerant systems. Analytic redundancy is a specific kind of redundancy, which is best
illustrated by example.
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Suppose there are two subsystems that accomplish the same task. One of them is preferred
because it produces “better” results. It may be deemed better for any number of reasons. Per-
haps it produces more accurate values, or it produces the values faster, or perhaps it uses
fewer resources. For whatever the reason, we prefer to use the results of this subsystem.
However, in the event that the preferred subsystem fails to accomplish its task, we are happy
to use the “inferior” results of the non-preferred subsystem. The preferred and the non-
preferred systems are said to be analytic redundant because they accomplish the same task,
though by different methods and with different semantic results.

Many systems exhibit analytic redundancy. For instance the power-assisted steering in most
vehicles is an analytically redundant system. We prefer the power assist because it makes
steering easier. But if the power assist is lost (e.g., due to an engine failure or a belt break-
age), we can fall back upon the mechanical steering.

Simplex uses analytic redundancy as a key enabling technology. Instead of simply creating
multiple copies of a component considered likely to fail, the redundant components are delib-
erately varied to allow individual components to emphasize desired characteristics, with the
intent of forming a complementary set. Components can be crafted to optimize performance,
even at the risk of errors, if a backup component can be relied upon to provide enough func-
tionality to keep the system safe. Similarly, the backup component can focus on reliability
and simplicity since it functions only infrequently, mostly in case of failure. Analytic redun-
dancy is particularly applicable to systems where software must be upgraded. Use of a well-
proven backup component allows new functionality to be safely introduced and tested during
system operation.

During operation, Simplex ensures the integrity of the overall system by using the Simple
Leadership Protocol [Sha 95]. Of all the analytically redundant components available, only
the leader is in actual control. The remaining components are held as spares. The leader re-
mains in control until it either fails an error check or is replaced by the system operator.

A Simplex-based system is fault resistant because the system includes a set of checks on the
behavior of the constituent elements and switching logic to select among the analytically re-
dundant components when the checks detect a leader’s failure. The specific checks applied
are system dependent.

Analytic redundancy is applied to the Coordinated Prototype to ensure the following proper-
ties:

• The pendulum remains upright. The pendulum will become uncontrollable
(potentially) if it gets too close to the end of its track, if it is allowed to tilt too far, or for
other reasons. By running a trusted controller in an analytically redundant manner we can
guarantee that these conditions will never be allowed to occur.
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• The pendulum motion is coordinated. The two pendulms are kept within a specified
distance of each other. In the demonstration, a lightweight rod can be laid across the tops
of the two pendulums and will stay balanced during communications attacks.

• The pendulum controllers can be upgraded. Pendulum controllers can be changed
during system operation, with any errors in the new software being contained safely.

3.2.1 Analytic Redundancy as Applied to Control
In a typical control system, it is impossible to have good coverage tests of the correctness of
instantaneous outputs and it is often not possible to roll back the system even if the output is
later recognized as incorrect. For example, in an inverted pendulum, if the pendulum starts to
fall, at some point it will be unrecoverable no matter what action we take. Thus, we require
that while the system is under the control of the high performance software it always be re-
coverable by the simpler high assurance software. This means that the high performance and
the high assurance software are not logically independent. Rather, the high performance up-
grade and baseline controllers must keep the system states within the recoverable region of
the simpler high assurance safety controller. A comparison between the difference in reliabil-
ity and availability of three different types of analytically redundant control systems, includ-
ing Simplex, alternatives are given in Appendix B.

Once we are assured that the system is recoverable by the high-assurance safety controller,
we can add optimization steps such as performance monitoring. In the context of motion
control, performance monitoring can be achieved by monitoring the square of the errors be-
tween the reference trajectory and the system trajectory over a moving window of time. Sim-
ple output range checking is also used to speed up the error detection, but we do not rely
upon it since its fault coverage is limited.

We execute different controllers in parallel, but we prefer the outputs from the high-
performance upgrade controller as long as the system performance is acceptable and the sys-
tem’s state is within the recovery region of the high-assurance safety controller. If either the
output range checking or the performance monitoring indicates there is an error but the sys-
tem state is far from the boundary of the recovery region, the control can be directly passed to
an alternate (baseline) high performance controller. Otherwise, the high assurance safety
controller is invoked to move the system sufficiently far away from the boundary at which
point control is passed to the baseline high performance controller.

3.2.2 The Decision Module
The behavior checking and switching logic is normally placed in a decision module, which
typically includes the testing code and the controller of last resort (the high assurance safety
controller). Since both elements must be functional for safe operation, their inclusion in a
single process simplifies system scheduling without decreasing system safety.

For the Coordinated Prototype, two separate decision modules are present on each of the
prototype’s maneuver systems, the inner decision module to monitor the inner loop control-
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lers—responsible for direct pendulum control and the outer decision module to monitor the
outer loop coordinators—responsible for coordination of the pendulums. In the Coordinated
Prototype, each decision module (both inner and outer) contains two controllers, a high as-
surance or safety controller and a baseline high performance controller. Operationally, the
prototype limited dynamic upgrades to a separate computer system, and therefore there was
little reason to place trusted controllers and coordinators into separate replacement units.

Two factors were important in devising checks for the prototype decision modules:

1. Is the controller or coordinator exhibiting incorrect behavior, by consuming excessive
resources, failing to respond in a timely fashion or producing incorrect output?

2. If the output from an controller or coordinator is used to control the system, will the
system enter a state where the remaining analytically redundant elements cannot
successfully control the system?

While the problems of developing and implementing appropriate switching logic are consid-
erable, the problem can be simplified by considering a sufficient solution rather than an opti-
mal solution. In the prototype, it is critical that the “safety controller” be able to recover the
system after a failure in the lead controller. It is difficult to determine the full recovery range
of the safety controller, but a partial range is sufficient provided that

• The partial range is not incorrectly selected.

• The system meets operational goals (is fast enough, accurate enough, etc.). The prototype
used safety regions based on empirical testing and controller modeling to determine a
sufficient recovery zone for the safety controller and coordinator.

Safety Controller’s
Operational Region

Pendulum Trajectory

Leader’s Operational
Region

Pendulum
Recovery 
Trajectory

Recovery Zone

Figure 2:  Recovery Zone for Two Analytically Redundant Controllers

3.2.3 Trusted and Untrusted Elements
Intrinsic, in the use of analytical redundancy, is the concept of placing higher confidence in
some elements than others. This confidence is not absolute, but when two element’s results
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disagree, the final arbitration is based on the degree of trust placed in the contending ele-
ments.

Replacement units are trusted because of long experience using them, extensive testing, or
formal proof of correctness. Untrusted units are generally new or upgraded versions of older
trusted units. Trusted units replace untrusted units upon the occurrence of an error in the un-
trusted units.

In designing the prototype, the controllers and coordinators containing analytically redundant
controllers were split into trusted or untrusted groups. This distinction gives an indication of
confidence in the analytical sense, but it is primarily used to distinguish between those con-
trollers whose origins are well known and controllers which are new, perhaps transmitted
through insecure links and in which much hope but little trust is placed.

In the prototype, untrusted replacement units are placed on a separate node precisely because
they are more likely to be faulty, and are potentially a source of deliberately designed attack.
COTS-based nodes are considered vulnerable to a deliberate and considered attack, but node
failure is not capable of causing system failure due to the firewall provided at the communi-
cations link.

3.2.4 Software Upgrade
For conventional software upgrades, new code is written, tested “sufficiently”, and then in-
troduced into a running system. This process depends heavily on the accuracy and complete-
ness of the testing process before software is used in actual operation. In the Simplex Engi-
neering Framework, the conventional software upgrade process is augmented by provision
for the safe introduction of software upgrades into an operational system.

Replacement units allow the safe upgrade of the system during execution without precluding
the use of conventional upgrade techniques. Since the real-time control and coordination
tasks were key elements of the prototype, they were selected for online upgrade and written
as replacement units.

Up to three analytically redundant versions were provided for real-time control of the in-
verted pendulum and three for the pendulum coordination software. Of these, the upgrade
controller is encapsulated in a replacement unit and isolated on a separate node and is up-
gradeable during system operation. The last chance safety controller and the medium per-
formance baseline controller were, for the coordinated prototype, “hard-wired” into the deci-
sion module. The decision module can only be upgraded in a conventional manner.

3.2.5 Analytic Redundancy Compared to Other Methods
Analytic redundancy is related to both recovery blocks and N-Version programming
[Randell 75 and Avizienes 85]. To summarize, in a recovery block system, a program unit is
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executed and then an acceptance test is applied. In the event that the acceptance test fails, the
system is rolled back to a recovery point and an alternate program unit is executed. The se-
quence (execute—apply acceptance test—rollback—execute alternative) is repeated until
either the acceptance test is passed or there are no additional alternates. This is an example of
backward recovery. In N-Version programming, multiple presumably independent program
units are developed to accomplish the same task via (perhaps) differing algorithms. The mul-
tiple units are executed in parallel and a majority determines the correct set of outputs. This is
an example of fault masking. In analytic redundancy, we execute multiple presumably inde-
pendent program units in parallel, but we prefer the outputs from one of the program units as
long as the output passes the acceptance test. If the acceptance test fails, we use the output of
one of the alternative program units. Because it does not require rollback, analytic redun-
dancy is an example of a forward recovery method.

3.3 Rate-Monotonic Scheduling Theory
For real-time systems, we also have to be able to make performance guarantees. Generalized
Rate-Monotonic Scheduling (GRMS) Theory [Sha 94] guarantees that, as long as certain
conditions are met (e.g., task execution time, strict adherence to priority, etc.), a given task
set can be guaranteed to meet its deadlines. Rate Monotonic Analysis (RMA) techniques
coupled with the appropriate real-time operating system scheduling support can provide both
analytic and runtime guarantees for real-time applications. Simplex utilizes RMA and GRMS
techniques to ensure predictable execution, including upgrades of software components dur-
ing system operation. A full description of RMS is beyond the scope of this paper. For a gen-
eral introduction, see the article by Sha and Goodenough [Sha 90]. A practitioner’s guide is
available in the book by Klein [Klein 93].

RMS Theory was applied to the Coordinated Prototype to ensure that the pendulums continue
to meet all real-time constraints in their operation even in the presence of faults. Under RMS,
higher frequency tasks are assigned higher priorities. Within the same frequency, ties can be
broken arbitrarily without affecting schedulability.

A simple example may help in understanding RMS. In this example, there are two task fre-
quencies. The pendulum controller is executed at 50 Hz while the coordinated outer loop is
running at 10 Hz. The 50 Hz tasks are given higher priorities than the 10 Hz tasks according
RMS. Note that RMS requires priority inheritance. Any POSIX .1b OS such as Lynx OS
automatically enforces priority inheritance.

Within the 50 Hz controller, the high assurance controller and the decision logic are given the
relatively higher priority than the untrusted high performance control software. This simple
arrangement ensures that the high assurance controller and the decision logic can meet their
deadlines even if the high performance controller overuses its budget.

Note that this arrangement is adequate for the case where there is only a single control loop.
Should there be multiple, hard, real-time controllers in the system, the execution time of the
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controllers must be monitored during runtime and the lower priority tasks must be interrupted
if they overrun their execution budget. If not, the high performance controller could miss its
deadline, and if lower priority high real-time controller(s) are present, their timeliness could
be adversely affected. As long as the replacement unit can be terminated when it reaches its
execution limit, the system remains schedulable and will meet its deadlines.

3.4 Simplex and COTS
Enabling technologies critical to the Simplex engineering framework can be crafted as part of
the system, but the cost of constructing a complete Simplex-system on a “bare” computer
would be very high. Throughout the evolution of Simplex based systems, support provided
by commercially operating systems and use of standard hardware for Simplex has been es-
sential.

For example, Simplex Engineering Framework depends on certain system protections to iso-
late replacement units and allow fault recovery. These protections include the following:

• Address space protection–to prevent processes from affecting memory dedicated to
other processes

• Execution time monitoring–to detect when processes are exceeding their execution
budget

• Process creation and deletion–to allow replacement units to be created and destroyed

These services are available in some COTS operating systems and hardware. The Coordi-
nated Prototype used COTS support for these features. Simplex is compatible with the real-
time POSIX standard and with operating systems that implement the RT POSIX standard.

3.5 The Benefits of Simplex
The Coordinated Prototype uses the Simplex Architectural Framework to provide two major
benefits:

1. Failure resistance

− Combine high reliability with COTS
− New features without loss of reliability

2. Software upgrade capability

− Separation of concerns
− Reduce test and validation requirements

The prototype requires that the system handle software failures without halting operation.
Simplex provides a model for handling faults that can be applied to a complete system or to
targeted portions of a system. In the prototype, selected portions of the system are made re-
sistant to software faults. Since Simplex is compatible with the use of COTS software and
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hardware, the prototype uses COTS components for all the prototype hardware and most of
the prototype software.

Simplex provides techniques to support software and hardware upgrades by allowing up-
grades of the system to take place without compromising system safety and reliability. In the
prototype, deliberate errors introduced into upgraded pendulum-control algorithms are han-
dled without failure. By separating out a safety critical core of the system from complex, high
efficiency system functions, upgrade costs can be reduced particularly when testing can be
safely accomplished in the operational system.
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4 Prototype Design and Implementation

The Coordinated Prototype was designed and implemented as a concept demonstrator using
the Simplex engineering framework.

4.1 Technical Challenges
The prototype was required to meet several technical criteria:

• It must be highly reliable. Specifically, it must provide continuous control for the real-
time portions of the system; interruptions in communication, software flaws and upgrade
failures must be handled without interruption of real-time control.

• The effect of communications attacks must be contained without failure and a recovery
strategy must be employed when communciations are resumed. Attacks made by
bombarding the target system with messages and attacks that prevent the delivery of
legitimate messages must both be handled.

• It must allow software to be changed and upgraded before and during operation. Faults in
the upgraded software must be handled without preventing the continuous operation of
the system, whether the faulty software halts, produces incorrect output, or runs wild.

• It should use COTS hardware and software wherever possible.

• Software from prior Simplex prototypes should be reused in whole and as design
templates wherever appropriate.

Several simplifying assumptions were made to allow the prototype to meet the above criteria:

• While the pendulums must remain upright and within the specified distance of each
other, coordinated movement may be slowed or stopped temporarily.

• Communications attacks may delay or change the ordering of messages and spurious
messages may be generated, but the contents of legitimate messages may not be changed.

• Communications may only be blocked for a bounded (finite) length of time.

• Only selected software components may be upgraded; specifically, the algorithms for
real-time control and coordinated motion may be changed, but communications and
operating software need not be fault resistant.1

                                                
1 Fully fault tolerant Simplex architected prototypes have been developed and demonstrated which
allow dynamic upgrade of all software elements. This functionality was feasible for the prototype, but
was not included to reduce costs and speed deployment.
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4.2 Hardware and Software Architecture
The prototype consists of a set of personal computers (PCs) connected by communications
links to real-time devices (the inverted pendulums) and to each other (Figure 3).

Untrusted
Node

Trusted
Node

Communications
Node

Untrusted
Node

Trusted
Node

Communications
Node

Command
System

Attacker
System

Inverted
Pendulum

Inverted
Pendulum
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System 1
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Figure 3:  Hardware Configuration for the Prototype

The computers are grouped into four task specific systems. Each system represents a con-
ceptually independent entity, which can reach other systems through external communica-
tions links:

• two maneuver systems, each with an attached real-time control device (notational “strike
elements”)

• a command system that contains a user interface for operational control of the system and
provides destination locations to the maneuver systems (the “command center”)

• a hostile jamming system that performs communication attacks (the “attacker”)2

While the command and jamming systems consist of a single computer, the maneuver sys-
tems have three computers (nodes) and an inverted pendulum. Each of the nodes in a maneu-
ver system supports a specific function: running trusted software, handling external commu-
nications, and running untrusted software.

                                                
2 Additional communications attack software is placed in the manuver systems to implement selective
loss of legitimate messages (e.g., “50% of messages are lost”).
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4.2.1 Real-time Device Control and Coordination
The Coordinated Prototype includes two (identical) inverted pendulums (Figure 4). Each
pendulum consists of a track with a cart-mounted pendulum. The pendulum is a solid metal
rod joined to the cart by a hinge that allows the rod to swing freely. The cart can be moved
back and forth on the track by a motor attached to the cart. These devices are inherently un-
stable and need constant control input to keep the pendulum upright.3 The prototype uses a
modified commercially available pendulum with extended length tracks to allow greater cart
movement.

Figure 4:  Inverted Pendulums

Initially, the rod is placed in a near vertical position by hand and the control program is
started; the computer can then control the angle of the rod by moving the cart. The inverted
pendulum will fall if the rod leans too far, if the cart reaches the track end, or if the rod an-
gular velocity is too large. In addition to keeping the inverted pendulum upright the prototype
must move the cart to specified and arbitrary locations along the track.

The unstable inverted pendulum is used in the prototype to represent, in a simple way, a sys-
tem where a complete loss of the controlling computers will have a catastrophic effect. In the
prototype, the system can lose some functionality due to attacks or faults but not at the risk of
allowing the inverted pendulum to fall.

The ability to maintain safe real-time control of a single device in the presence of software
and hardware faults and failures has been demonstrated in other Simplex-based prototypes;
this prototype adds the capability of coordinating two real-time devices and doing so under
communications attack. Coordinated motion is achieved through software and inter-system
communication; the standard pendulum hardware was not modified. The two pendulums

                                                
3 With sufficient care, inverted pendulums can be “parked” in a vertical position, but they seldom
remain balanced for long due to their susceptabilty to external disturbances.
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were placed side by side and, in coordinated mode, a lightweight horizontal rod placed across
the rod tops will remain in place even when software faults and communications interrup-
tions occur.

4.2.2 Computation and Communication Topology
The nodes in the prototype are tied by communications links. Each system shares a common
external network, while communications between computers within the multi-node maneuver
systems are handled by dedicated links. Conceptually, external communications are through a
broadcast media subject to interception and to attacks that can block and delay message
transmission. Internal communication links, by contrast, are private and safe from interfer-
ence. In each maneuver system, one node is directly cabled to an inverted pendulum and is
responsible for sending control output to the pendulum and reading pendulum position data
(Figure 1 on page 8 and Figure 5 on page 26).

4.2.3 Software Components
Figure 1 shows a high-level view of the software. The network is shown as a heavy vertical
line with connections to individual systems drawn horizontally. To the right are the attacker
and command systems, which have a support function in the prototype. They use conven-
tional software architectures. The maneuver systems, which have real-time and fault resis-
tance requirements, applies the Simplex engineering framework to the software design.

The command system has the least complex software of the systems. The command system is
responsible for interacting with the user, displaying the prototype status and issues commands
to the remaining systems via the network. The command system is responsible for sending
periodic commands, but is not responsible for real-time control.

The attacker system simulates wireless jamming by executing two types of denial of service
communications attacks over the local network: message bombardment and message block-
ing. The attacker performs message bombardments by sending a barrage of packets over the
network to consume available bandwidth and processing resources on receiving nodes. Mes-
sage blocking is performed indirectly through “agent software” installed on the maneuver
systems. In message blocking attacks, individual messages are either delivered or blocked
according to the probability of receipt orders set by the system operator (through the com-
mand system or on the attacker). The attacker software is not fault resistant.

The maneuver systems are multi-node systems, with each node assigned a specific function.
The three nodes are not required for computational power; instead the functional separation
ensures system safety:

• The trusted node handles core real-time functions.

• The untrusted node provides a proving ground for software upgrades which may fail
during operation.
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• The communications node handles the external communications for the trusted node,
isolating it from the network.

The software on the trusted node provides the critical core functions of the system: direct
control of the inverted pendulum, core real-time control software, and core coordination be-
tween the maneuver systems. The trusted node is in direct communication with the other
nodes of the maneuver system via point-to-point serial lines, but uses the communications
node for external transmissions to the network.

The untrusted node supports upgraded real-time control and coordination software. Any fault
in the upgrade, whether unintentional or malicious, is, at the worst, able to affect only the
untrusted node. This design also allows the use of commercial operating systems, which
might fail under a deliberate attack.

The communications node handles the external communications of the maneuver system. By
isolating communications functions, communications attacks cannot overrun the critical
functions of the maneuver systems by consuming excessive computing resources.

4.2.4 Communications Attack Modes
The Coordinated Prototype distinguishes between inter-system and intra-system communica-
tions. Inter-system communication is subject to interruption and interference through com-
munication attacks, simulating wireless communications. Intra-system communications is
immune from direct external interference.

Two basic types communications attacks were considered during the design of the prototype:

1. Denial of service attacks: legitimate messages are lost or delayed during transmission.

2. Deceptive jamming attacks: contents of messages are altered or false messages with
correct syntax are created.

After review of possible attack modes, several limitations were placed on the allowable at-
tacks to simplify design and implementation of the system:

• The contents of legitimate messages may not be changed.

• Communications may only be blocked for a bounded (finite) length of time.

• Only the maneuver systems will be attacked directly (the command system is affected
indirectly by reduced network capacity).

These restrictions precluded deceptive jamming attacks, but allowed a guarantee of commu-
nications recovery during coordinated pendulum movement. Limiting attacks to the maneu-
ver systems simplified the design and implementation of both the attacker and command
systems.
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The prototype implements two kinds of denial of service attacks:

1. Message blocking: legitimate messages are lost during transmission.

2. Message bombardment (or “packet barrage”) attacks: spurious messages are generated
and directed at target communications links.

During message blocking attacks, each message may reach its destination or it may be lost
during transmission according to probabilities set in a jamming specifier sent to agent soft-
ware on the maneuver systems.

During a message bombardment, the attacker broadcasts network packets to the other systems
in an attempt to clog the network. While these messages consume resources on the targeted
systems, they are not deceptive or false messages.

Additional information on the communications attack implementation is available in Appen-
dix A.

4.3 Prototype Implementation
In implementing the prototype, the development team exploited the software and experience
from previous Simplex demonstrations and prototypes. Important components reused from
previous Simplex systems include the commercial operating systems for each of the nodes,
software development tools, code for pendulum control, and intra- and inter-processor com-
munications software.

Major implementation challenges for the prototype included the following:

• Long track pendulums–these pendulums were unique to the prototype. The prototype
real-time pendulum control software was based on the standard length pendulum
controllers, but the long track pendulum dynamics required an extensive rewrite of
existing software.

• Pendulum coordination–the requirement to coordinate the movement of two separate
pendulums required an additional layer of coordination sofware running in real-time.

• Communications support–unlike previous Simplex prototpes, the prototype allowed
disruption of communications links. This required creation of software to disrupt
communications as well as the implementation of a separate set of secure
communications links between nodes within systems.

• User interface–in the prototype, the user interface regulates coordinated motion by
sending target locations to each maneuver system. This had the effect of making use of
the user interface a requirement for coordinated motion. In previous Simplex systems, the
user interface was simply a convenience for system operation.

During the implementation phase of the prototype, a small team of developers was used. The
problem was largely separable individual tasks according to the expertise of the participants.
An iterative design, implement, assess and redesign strategy was employed to implement the
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system. Relatively little specialized development software was used, although a memory log-
ging facility developed for previous prototypes was found to be useful.

4.3.1 Long Track Pendulums
The long track pendulums were scaled up from standard pendulum hardware. Much of the
hardware was adapted directly from standard pendulums. In order to accommodate the longer
track length without use of new sensors, the granularity of track measurement was increased.
Consequently, the accuracy of track position measurements for the pendulum cart was re-
duced.

Similarly, the extended pendulum length required that the drive system be extended by
splicing together pieces of rack to engage the cart drive gear and the provision of longer ca-
bles to allow greater cart movement. Joints in the rack and the extra cable length were found
to interfere with the pendulum movement. The pendulum hardware was modified by re-
placement of cables and switching from a gear drive system to a friction drive system.

The pendulum power supply, which provides regulated DC power to move the pendulum,
was found to pass unwanted signals. A low pass filter was added to reduce interference. Vari-
ance in individual power supplies is also a factor in setting the pendulum controller gains for
the individual maneuver systems.

In order to model pendulum behavior and create pendulum control software, a new set of pa-
rameters was required. These were determined empirically and the existing pendulum con-
trollers were rewritten to work with the new pendulum hardware.

4.3.2 Pendulum Coordination
Pendulum coordination, the movement of two real-time devices in synchronization, was a
new requirement for the prototype. The design of the coordination software and the algo-
rithms employed in its preparation was a major element of the development. The software
itself was based on the existing pendulum control software and presented relatively few im-
plementation challenges, although the code was frequently modified during the course of
software development.

4.3.3 Communications Support
The Coordinated Prototype consists of individual computers connected by communications
links; within nodes, the modules of the Simplex architected system must intercommunicate to
perform their assigned functions. This includes modules that are dynamically replaceable,
which must be able to connect and disconnect from communications links during system op-
eration.

The prototype design required the development of two types of system-to-system communi-
cations links, distinguished by their vulnerability to attack. Communications links between
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individual systems were subject to interference. Communications within systems were im-
mune from interference.

In single node systems, internal communications links could be handled with inter-process
communications based on system services and preexisting Dtag software. The maneuver
systems, with multiple nodes, required secure links between the system nodes in addition to
inter-process communications.

4.3.3.1 Dtag Communications

A communication abstraction, Dtag communications is used to link the dynamically replace-
able components. The Dtag interface allows a common interface for replacement units,
whether they are located locally (on the trusted node) or on a separate node (the upgrade
node).

The Coordinated Prototype makes use of Dtag communications to support dynamic compo-
nent binding. Dtag communications is a form of publisher-subscriber messaging analogous to
POSIX .21 labeled messaging. In Dtag communications, communications ports are labeled
(or named) with tags. To establish communications, a subscription request for a specific tag
is made by the subscriber to a tag manager. The tag manager establishes the connection to
the publisher who holds the specified tag. The requestor does not need to know where the
tagged communications port actually resides and the responding publisher does not know
how many subscribers are using a tag.

The tag manager maintains the list of tags and the locations of communicating processes.
Limits can be set on how many subscribers are allow to subscribe to a specified tag.

For efficiency, the prototype uses Dtag communications to handle connections not to distrib-
ute individual messages. To communicate through a specific tag, a connection must be estab-
lished which gives access to the stream of messages passing to or from the tagged port. There
is no provision to send individual messages to a list of tags.

4.3.3.2 Inter-node Communications

Two different media were implemented for communications between nodes.

4.3.3.2.1 Between Systems

Ethernet links were used for inter-system communications, simulating the characteristics of a
radio frequency broadcast media. Standard Ethernet software was used for basic communica-
tions. Additional software was added to some message queues to selectively block receipt and
transmission of messages. A separate computer system was used to handle message bom-
bardment (packet barrage) attacks.
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One node of the maneuver system, the trusted node, is not connected to the Ethernet, pro-
tecting it from the direct effects of network attacks. It can communicate indirectly through the
communications node.

4.3.3.2.2 Within Maneuver Systems

With network links subject to attack, separate communications links were implemented be-
tween nodes that made up the maneuver systems. Standard serial hardware was used for this
purpose. Software for the serial links was developed to support Dtag communications
through serial connections. Due to the limited capacity of the serial links, some messages
between maneuver system nodes are transmitted between the untrusted and communications
nodes via the Ethernet (Figure 5).

Untrusted
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Trusted
Node

Communications
Node

Maneuver
System

Serial LinkDirect Connection Network Link

COTS
Computer

Figure 5:  Communications Links for a Maneuver System

4.3.3.3 Intra-node Communications

The Coordinated Prototype uses the interprocess communications provided by the operating
system. The communications blocking software and Dtag communications facilities are built
on top of the operating system facilities.

4.3.3.4 Replacement Communications

In the Coordinated Prototype, Dtag communications are the basis for allowing dynamic al-
teration of software. Using Dtag as a foundation, replacement communications implements
replacement unit creation and destruction.

In the prototype, replacement units encapsulate the pendulum upgrade controller and upgrade
coordinator, which are located on the untrusted node of the maneuver system.
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The replacement unit manager carries out the actual activation of replacement units. It han-
dles process creation, synchronization, and retirement. During replacement unit activation, it
must allow for simultaneous execution of functionally identical software, as the new software
is readied and the old software is retired.

4.3.4 Control and Coordination Algorithms
The prototype divides the real-time control of the dual pendulum system into two parts: the
control of individual pendulums and the coordination of the pendulums in synchronized mo-
tion. These two parts form a hierarchical structure, namely, an outer loop control which deals
with the coordination and an inner loop control that keeps the pendulum standing up and
moves it to a desired track position. In this section, the system level control specifications
will be described first, the problem of controlling a single long track pendulum is considered
second, and then the coordination of two pendulums is addressed. Finally, we examine how
the system responds to faults and communications disruptions.

4.3.4.1 System Level Control Specification

The prototype is designed to demonstrate the reconfigurability of a multi-level control system
to carry out the mission in both normal and fault disrupted conditions. The control objective
of the overall system is to steer the pendulums to a target position in coordinated motion or
independently. Such an objective is achieved by designing an inner loop control and an outer
loop control for each pendulum. The inner control loop, here referred to as the controller, is
responsible for stabilizing the pendulum in the upright position at a given set point on the
track, while the outer control loop, called the coordinator, generates the set points for the in-
ner loop control. Coordination is accomplished by adjusting the set points for each pendulum
and successful coordinated operation is demonstrated by a bar attached the pendulum tips.
The following specifications are used in design of the system.

User Commands:

• TARGET – Set the target track position.

• COOR_ON – Turn on the coordination. The pendulums will move coordinately.

• COOR_OFF – Turn off the coordination. The pendulums will move independently.

To formally describe the controlled operation, three overall system states (OSS) are defined
as

OSS = {INIT, INDEPENDENT, COORDINATED}
With

INIT – the initialization state of the overall system;
INDEPENDENT – moving and stabilizing the pendulums to the target independ-
ently;
COORDINATED – moving and stabilizing the pendulums to the target in coordina-
tion;

the state transition diagram is given in Figure 6.
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[TARGET, COOR_ON]
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Figure 6:  State Transition Diagram of Overall System Operation

Example: Suppose the pendulums are initially located at different positions along the track
and they are required to move to a new target position in coordination. A sequential control
procedure may be given by the user as follows: 1) Issue the commands TARGET and
COOR_OFF to move the pendulums independently to a track position, say the mid-point of
the two initial positions of the pendulums. 2) Once the pendulums are aligned, turn on the
coordination with the command COOR_ON. 3) After the pendulums stabilized in synchroni-
zation, send the command TARGET to move the pendulums in coordination to the new target
location.

Communication Assumption

Information on the current state of the pendulum and current status of the inner loop con-
troller need to be exchanged between two trusted computers if COOR_ON is commanded.

Fault Model

• Communication fault: at least one trusted computer does not get a message from the
other in the required time period.

• Pendulum fault: at least one of the pendulums is attacked by external disturbance and it
is under the inner loop safety control.

• Alignment fault: the pendulums are too far from each other in the coordinated mode.

Safety Requirement

• Safety criterion for a pendulum: a pendulum is said to be safe if its state is inside the
recovery region, otherwise it is unsafe.

• Safety criterion for coordination: coordination is said to be safe if

- Both trusted computers receive messages at the specified rate;

- None of the pendulums is under inner loop safety control;

- The pendulums are aligned.

Otherwise, the coordinator is said to be unsafe.

Performance Requirement

The pendulums carry the bar to the target position in a given time interval. Specifically, let
MAX_SP_UPDATE and MIN_SP_UPDATE be the maximum and minimum set point
distance updates in one outer loop sampling period, prev_sp and current_sp be the set
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points in the previous and current periods, respectively, and Target be the target track posi-
tion. Then the coordinator that generates the current_sp is said to be performing if

current_sp = Target

   if |prev_sp – Target| <= MAX_SP_UPDATE;

prev_sp + MIN_SP_UPDATE <= current_sp <= prev_sp + MAX_SP_UPDATE

if prev_sp < Target – MAX_SP_UPDATE;

prev_sp – MAX_SP_UPDATE <= current_sp <= prev_sp – MIN_SP_UPDATE

if prev_sp > Target + MAX_SP_UPDATE.

Otherwise, the coordinator is said to be non_performing.

4.3.4.2 Control of An Individual Pendulum

As shown in Figure 3, the physical system consists of a cart driven by a DC motor and a pen-
dulum attached to the cart. The cart can move along a horizontal track and the pendulum is
able to rotate freely in the range of ]30,30[ oo−  with respect to vertical in the vertical plan par-

allel to the track. There is no direct control applied to the pendulum. Both the cart position x
and the pendulum angleθ  are measurable through two potentiometers. The dynamics of the
system is described by the state of the system, which consists of the cart position y, the cart

velocity y& , the pendulum angleθ , and the pendulum angular velocityθ& . The physical sys-

tem has state and control constraints. Specifically, the cart position is restricted in the range
[-0.7, 0.7] meters due to the length of the track, the maximum speed of the cart is 1.0 me-

ter/second, the angle is constrained to the range of ]30,30[ oo− , and the motor input voltage is
limited in the range [-4.96, 4.96] volts. The control objective of the inverted pendulum sys-
tem is to move the cart to the given set point along the track with the pendulum standing at
the upright position (i.e., 0≈θ ).

M

x

l,
m

θ    

Figure 7:  Single Pendulum Physical System

The dynamics of this system can be modeled by a 4-th order linear-differential equation in
the form: BuAxx +=& , where Txxxxx ],,,[ 4321=  is a vector of states consisting of the dif-

ference between the cart position and set point, cart velocity, pendulum angle and pendulum
angular velocity and u is the control variable, the voltage sent to the motor. Matrices A and B
contain the parameters of the physical system. The control algorithm is designed as a linear
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feedback control in the form u = Kx with K a constant gain vector. Hence the control con-
straint can be converted to a state constraint and the set of state constraints considered in
control design is given by

{ }volts95.4,30sec,/m0.1,m)|7.0||,7.0|(min 321 ≤≤≤−−−≤ Kxxxspspx o

with sp the given set point. In our design, we will move the cart in between [-0.5m, 0.5m]
(i.e., have the range of the set point in [-0.5m, 0.5m]). Apparently, the constraint on cart posi-
tion is a function of the set point. For instance, if the set point is at 0.5m (-0.5m), the cart
constraint would be m2.0|| 1 ≤x , while it is m3.0|| 1 ≤x  when sp = 0.4m (-0.4m). Such a vari-

able constraint will make it difficult to derive a recovery region. To address this problem, we
re-examine the meaning of a recovery region. By definition, a recovery region is a region in
the system state space in which the safety controller is able to stabilize the system without
violating the system constraints. In control of an inverted pendulum, we could always design
the safety controller to stabilize the system at the track position where the safety controller
first takes over the control. In other words, the set point for the safety controller is always the
cart position when the safety controller started to control the system. With this safety control
objective, we could say that, when the safety controller is in control, the track constraint is
always m2.0|| 1 ≤x  given that the set point is in the range of [-0.5m, 0.5m]. In summary, the

state constraints used in design of safety controller and derivation of recovery region is given
by

{ }volts95.4,30sec,/m0.1,m2.0 321 ≤≤≤≤ Kxxxx o

With a linear state feedback control algorithm, the design of a safety controller amounts to
determining the control gain K. Both control gain K and the maximized recovery region can
be derived from the linear matrix inequality approach [Boyd ND]. Such approach will give us
a quadratic function in the form 1=QxxT  with Q  a positive definite matrix that defines a 4

dimensional ellipsoid. The recoverable region, }1:{ ≤= QxxxR T , is the set of the states inside

the ellipsoid. For the particular pendulum system in our lab, a satisfactory control gain was
derived as ]25.8,85.42,54.13,6.7[=K .

Figure 8 shows the projections of cart position and velocity as well as pendulum angle and
angular velocity of the four dimensional ellipsoid.
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Figure 8:  Recovery Region Projections

Solid lines–the boundary of the recovery region; Dashed lines–the state constraints; Dotted
lines–the constraints due to control limitation.

The experimental demonstration system runs on a single PC using POSIX real-time OS, Lynx
OS.

From the high-assurance computing perspective, what is relevant here is that each controller
is a different software process. The high-performance control process-timing budget per
sampling period is also monitored and controlled. When a process has a timing budget over-
run fault, it will be detected and terminated, rather than denying the execution of other proc-
esses.
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Figure 9:  System Performance During Fault Recovery

A variety of faulty high-performance upgrade controllers have been tested. Predefined bugs
include infinitive loops, sign errors, bad control gains, and designer bugs. A designer bug
consists of malicious code that attempts to bring down the inverted pendulum with full
knowledge of the high-assurance controller and the recovery region. They were designed by
us for testing purposes and by visiting scientists to verify our claims. Upgrade controllers,
with and without bugs, can be changed on the fly. In every instance, once the bugs were acti-
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vated, the buggy upgrade controller would be switched off and the control passed back to the
baseline controller once the high-assurance safety controller stabilizes the inverted pendulum.

Figure 9 is a sample of experimental data when a bug activates in a faulty upgrade controller.
From time t = 4.3 to 11.2 second, we can see that xTQx values form a relatively large wave
pattern. This was due to the rod shaking back and forth modestly while the upgrade controller
is moving it to the set point. But it is well within the recovery region. At time t = 11.2, the
large spike of xTQx value that is greater than 1 means that the system state would go outside
of the ellipsoid xTQx  = 1, should we continue using the upgrade controller. This triggered the
safety-switching rule that puts the safety controller back in control. The smaller xTQx

“waves” after the safety controller taking over means that the rod was shaking very little.

Finally, we want to mention the subject of performance monitoring. We should reject an up-
grade controller if it performs poorly even if it stays within the recovery region. A control-
ler’s performance can be tracked during runtime, e.g., as a moving average of the squared of
the error between the reference trajectory and the actual trajectory. If the moving average in-
dicates that the upgrade controller performs worse than the existing one, we can switch con-
trol back to the previous baseline controller.

4.3.4.3 Motion Control of the Overall System

In the previous section, we have described how each pendulum can be controlled and recov-
ered from faulty upgrade controllers. In this section we consider outer loop control, namely,
control of the motion of both pendulums along the track. As described in the specifications,
the pendulums can be commanded to move coordinately or independently; and in either case,
the pendulum motion is controlled by generating a sequence of set points for the pendulum to
follow. Therefore, the outer loop control is basically a set point generator for each moving
objective of the pendulum in both normal and faulty situations.

To describe the system level behavior, we define four modes for the motion of the pendu-
lums. By mode, we mean the type of operation that the system (subsystem) is undertaking. In
our design, the overall system could be in the mode of independent motion, transitioning to
coordinated motion, in coordinated motion, and transitioning to independent motion. Appar-
ently, each mode may require different control strategy to carry out the operation. In the fol-
lowing discussion, we will concentrate on the coordinated motion mode and describe the
outer loop control for both normal and fault tolerant operation.

In the experimental set up, each of the two pendulums’ horizontal positions must be within ±
2 inches of the set point in order not to interfere with each other’s operations. During normal
operation, this is not a problem as long as each of them closely follows the two nearly identi-
cal reference trajectories given by a sequence of set points. However, there are two potential
complications:
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1. How can we ensure that both pendulums will receive the nearly identical destination in-
formation so that each can generate reference trajectories that are nearly identical, giving
that the communication can be jammed?

2. When one of the upgrade controllers is faulty and enters a recovery mode, how can the
other pendulum slow down (or stop) to wait for the other pendulum, given that commu-
nication can be jammed.

The first problem is overcome by a target-generation. Suppose that the current position of
both pendulums is at the center and the operator wants them to go 8 inches to the right. Since
adversary can jam one of the channels, it is possible that only one of them will receive the
new destination command. To avoid the two pendulums having destination commands that
are far apart, a destination command loop is used as follows. The operator station decom-
poses an operator’s target command into multiple increments, for example, 16 steps of 0.5-
inch increments.  Initially, a destination of 0.5 inch to the right is sent to both pendulums. If
acknowledgement from both pendulums is received, the operator station updates the destina-
tion command to 1.0 inch to the right and so on and so forth until the final destination com-
mand 8 inches to the right is sent. This way, no matter when communications are interrupted,
the destination command received by both pendulums can differ at most 0.5 inches. It is im-
portant to note that the destination loop is independent of the physical movement of the pen-
dulums.

Having ensured the error bounds on the target destinations received by both pendulums, we
next consider the bound on the coordination errors during the movement. This is the primary
issue that needs to be addressed in fault tolerance design of the outer loop coordination.
There are two analytically redundant modes of coordinated movements. The baseline mode
will use the trusted baseline controller together with a conservative (slower) reference tra-
jectory generation algorithm. Under this baseline mode, each of the two pendulums must
follow its local reference trajectory closely. Thus, coordinated movements can be ensured
without explicit communication between the two pendulums. This baseline mode is a key to
resist the communication attacks. As long as the target destination is sent to the two pendu-
lums, coordinated motions can be ensured.

When high-performance upgrade controllers control both pendulums, the pendulums can
carry out the coordinated movements in about twice the speed. However, this requires that
both pendulums are using the upgrade controller and both upgrade controllers are working
properly – that is both pendulums are using the upgrade controller and the two pendulums are
in fact moving in close coordination. This is checked every 100 msec by message exchange.
If both pendulums cannot confirm this condition, they switch into the baseline mode to carry
out the last successfully received command.

The Simplex architecture with high-assurance operation mode and high-performance opera-
tion model described above crucially depends on the switching among the safety coordinator,
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the baseline coordinator, and the upgrade coordinator. In the following sections, we describe
the detailed switching rules for the outer loop control in terms of the states of the coordina-
tors and the states of the active coordinator, as well as the state transitions.

4.3.4.3.1 Coordinator States

Each coordinator has states defined as

CoorState = { ALIVE, TERMINATED, DISABLED }
Where

ALIVE – the coordinator is running and its output is enabled;

DISABLED – the coordinator is running but its output is disabled;

TERMINATED – the coordinator is terminated by the user.

A coordinator’s state transition is determined by several factors, such as the user’s com-
mands, the selection of the active coordinator, coordinator’s performance, coordinator’s
safety, and the timing performance of the coordinator. In our design, we make the following
assumptions regarding the state of a coordinator:

1. The user can control the state of a coordinator by issuing one of the commands:

Create / Kill / Enable / Disable the coordinator.

2. The coordination safety, coordinator’s performance, and its timing performance only
affect the state of the coordinator when it is active, namely

• When the coordinator is the active coordinator, it will become disabled if the coordi-
nator is unsafe, does not perform, or/and misses its deadline;

• When the coordinator is not the active coordinator, the coordination safety, the coor-
dinator’s performance and its timing performance have no effect.

Based on these assumptions, the state transition diagram is given by

A_TO_T

T_TO_T

ALIVE

TERMINATED DISABLED

A_TO_D

D_TO_T

D_TO_D
T_TO_A D_TO_A

A_TO_A

Figure 10:  Coordinator State Transition Diagram

Where

• A_TO_D is true if the user disables the coordinator, or it is active and some of the follow-
ing occur: coordination is unsafe, it does not performance, or it misses the deadline;

• A_TO_T is true if the user kills the coordinator;
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• A_TO_A is true if both A_TO_D and A_TO_T are false;

• D_TO_A is true if the user enables the coordinator;

• D_TO_T is true if the user kills the coordinator;

• D_TO_D is true if both D_TO_A and D_TO_T are false;

• T_TO_A is true if the user creates the coordinator;

• T_TO_T is true if T_TO_A is false.

4.3.4.3.2 The States and State Transition of the Active Coordinator

The active coordinator has three states: Safety Coordinator, Baseline Coordinator, and Up-
grade Coordinator. The state transition of the active coordinator is determined by the coordi-
nation safety, the states of the baseline coordinator and the upgrade coordinator. The detailed
state transition diagram is given by:

Safety
Coordinator

Upgrade
Coordinator

Baseline
Coordinator

To_S

To_ETo_B

To_STo_S

To_E

To_B

To_ETo_B

Figure 11:  Active Controller State Transition Diagram

Where

• To_B is true if coordination is safe, the baseline coordinator is ALIVE, and the upgrade
coordinator is either disabled or terminated;

• To_E is true if coordination is safe and the upgrade coordinator is ALIVE;

• To_S is true if coordination is unsafe, or coordination is safe but neither the baseline coor-
dinator or the upgrade coordinator is ALIVE.

4.3.4.3.3 The Safety Coordinator

The safety coordinator has four states corresponding to four control modes. These states are
defined as: No_Com, No_Pen, No_Align, and Transport, with

No_Com – dealing with a communication fault;

No-Pen – dealing with an unsafe pendulum;

No_Align – dealing with an alignment fault;

Transport – transporting when there is no fault and only the safety coordinator is
available.
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The state transition diagram for the safety coordinator is given by

To_No_Pen To_No_Align

To_No_Align

To_No_Align

To_Transport
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No_Pen No_Align

To_No_Com

To_Transport
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Figure 12:  Safety Coordinator State Transition Diagram

Where

• To_No_Com is true if messages are blocked in at least one direction;

• To_No_Pen is true if communication is OK but at least one of the pendulums is under in-
ner loop safety control;

• To_No_Align is true if both communication is OK and the pendulums are safe but the pen-
dulums are out of alignment;

• To_Transport is true if communication is OK, the pendulums are safe and aligned.
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4.3.4.3.4 A State Transition Diagram for the Overall System

We now integrate all the pieces presented above together to complete the design of the over-
all system. The following figure shows a state transition diagram for the overall system,
which is used for implementation of the pendulum motion control.
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Figure 13:  Overall State Transition Diagram
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4.3.5 User Interface
The graphical user interface (GUI) provides a unified view of the Coordinated Prototype
status and a convenient way to send commands to the individual systems from a single con-
sole. This functionality had been provided for other Simplex prototypes, proving a useful
supplement to running individual nodes from local consoles.

The most significant services the user interface provides are commands to initiate (and stop)
coordinated motion and to set movement goals for the maneuver system pendulums. When in
coordinated mode, the interface regulates coordinated motion by sending target locations to
each maneuver system in a series of small increments, waiting for acknowledgement from
both maneuver systems prior to sending the next step. This protocol ensures that the pendu-
lum coordinators do not become unsynchronized due to large differences in their individually
maintained target locations.

4.4 Design Evolution
The Coordinated Prototype extended the application of Simplex technology to a new problem
space of coordinated real-time movement in a hostile communications environment. During
the creation of the prototype, the design changed and evolved, as performance requirements
and implementation limitations were better understood. This section describes evolution of
the design rational in response to changes driven by new requirements and the lessons
learned during the implementation process.

Several prior Simplex prototypes used inverted pendulums and COTS hardware and soft-
ware. These prototypes provided a base from which unique features of the Coordinated Pro-
totype were designed and implemented. The elements from previous Simplex prototypes that
were particularly applicable to the prototype design include the following:

• Replacement units–The replacement unit concept and its implementation were thor-
oughly explored in previous Simplex prototypes. The concept was successfully applied to
the inner control loops with little modification. The replacement unit idiom was also ap-
plicable to the design and implementation of the outer (or coordination) loops used to
synchronize pendulum movements.

• Dtag communications–The prototype used Dtag communications for intra-node and in-
tra-system communications on the maneuver systems to handle connections between pro-
cesses, for both replacement units and static processes. Extensions were made to support
serial communications links and to provide jamming support. The Dtag implementation
also required rework to support changes to the queue semantics in a new release of the
COTS operating system used.
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• Inverted pendulum real-time control software–Although the new pendulum hardware
required new controllers, the existing software provided the basis for designing the new
software.

• GUI–The existing GUIs provided a model for the design of the new interface.

The prototype design was iterative; a series of initial design meetings outlined the overall
goals and requirements for the prototype and an overall design was prepared. Implementation
of the prototype started with a focus on novel and essential features of the prototype. Imple-
mentation provided feedback on the feasibility of the design. The design was then modified
to produce working software.

In parallel with the design modifications driven by implementation considerations, the overall
design was also altered in response to reconsideration of the prototype objectives. The pro-
totype is used as a demonstration vehicle and discussion with demonstration participants,
particularly those with domain expertise served to refocus the prototype design.

The prototype embodies the final design, but incompletely documents the history of the de-
sign. In this section, focus is placed on the way the design evolved as well as the final form
of the design.

4.4.1 System Topology
The Coordinated Prototype uses a set of intercommunicating computers. The relatively large
number of individual computers was not a method of increasing computational power. At the
initial design stage, it was realized that by dedicating individual computers to specific tasks
the general programming of the prototype would be simplified because interaction effects
would be reduced and the individual computers could be tailored to the task (e.g., by varying
the operating system type between systems with stringent real-time requirements and those
with a focus on user interaction).

Similarly, the requirement for using COTS software and hardware has the effect of introduc-
ing components whose resistance to failure is not completely testable. In the prototype, iso-
lating the most vulnerable software on a separate system provided the final protection against
software failure. The communications links provided a way of rigidly isolating the effects of
errors to a single system.

The Coordinated Prototype did not attempt to provide hardware redundancy in the traditional
sense; the focus was on containing and correcting software faults. (Hardware redundant sys-
tems had been previously demonstrated within the Simplex Engineering Framework.)
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4.4.2 Communications
The communications requirements for the prototype design included several novel elements.
In consequence, prototype communications topology and implementation underwent consid-
erable change during the design and implementation of the prototype.

The communications design required are as follows:

• separate “jammable” and “unjammable” communications links

• real-time data transfer between nodes of the maneuver systems for pendulum controls.

• support for replacement units.

• communications attacks

4.4.2.1 Separate Communications Links

The need to allow communications attacks on systems while keeping the internal communi-
cations between a system’s nodes secure lead to the use of separate communications links for
intra- and inter-system communication.

4.4.2.1.1 Intra-system Communication

With network links subject to attack, separate communications links were implemented for
nodes that made up the maneuver systems. Standard serial hardware was used to provide
point-to-point connections between the nodes of the maneuver systems. Software was devel-
oped to support proxy Dtag communications through serial connections.

Use of serial links was planned early in the implementation phase, if the throughput was suf-
ficient. Implementation of the serial links proved challenging, since the serial link data rates
proved insufficient to handle all the inter-node data across a single link. Simply reducing the
data transfer rates did not solve the problem.

On the secure node hardware, a maximum of two serial lines could be supported when the
system was configured with all required hardware. Using two serial connections, throughput
was sufficient, but was less than the theoretical throughput for the equipment. This design,
with adjustments to the data rates was sufficient for a two-node maneuver system. When a
third node was added to the maneuver systems, some command and control data was re-
routed to use network communications and the second serial link was used to connect to the
new node.

4.4.2.1.2 Inter-system Communication

Inter-system communications required software that met the real-time goals of the maneuver
systems, provided for communications attacks and allowed critical functions to be isolated
from the communications attacks. An Ethernet network using the UDP/IP protocol was used
for the inter-systems links. Ethernet hardware and software is not designed for guaranteed
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real-time performance, but prior experience showed that a lightly loaded network could be
used successfully to close real-time control loops for the inverted pendulums used in the
prototype.

Since the Ethernet software was COTS, its detailed structure was unknown and the prototype
design assumed that communications attacks could place a heavy processing burden on any
node connected to the network. This had the potential of interfering with other software on
the system, which in turn might cause missed real-time deadlines.

The original maneuver system design called for a two-node design, with a trusted node han-
dling core real-time functions and an upgrade node that would contain the network connec-
tion and also run upgraded software. The trusted node would use the upgrade node to provide
network links in tunnel mode. However, the untrusted node is intended to run software that
might be unreliable, perhaps even deliberately sabotaged. The possibility of the upgrade node
receiving defective software and the consequent fault model led to the isolation of the trusted
node’s network connection onto a separate node.
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Figure 14:  Evolution of the Maneuver System from Two to Three Nodes

4.4.2.2 Real-time Data Transfer

The Coordinated Prototype depends on the completion of several real-time loops for coordi-
nated motion. Each maneuver system has an inner loop, which handles direct pendulum
movement and an outer loop, which handles coordination between the two pendulums. Both
of these loops span two nodes within the maneuver system. A coordination loop connects the
two maneuver systems, allowing the outer (pendulum coordination) loops to exchange posi-
tion updates and target commands. The user interface provides movement goals as a series of
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discrete steps to each of the maneuver systems; this update loop is timed, but the deadline is
elastic in the sense that the pendulum can compensate by slowing down pendulum move-
ment.

With the isolation of one of the replacement units for each type of controller on a separate
node, communications throughput via the serial connection was a bottleneck to completing
the two real-time maneuver system loops within one cycle. The first approach to this slowed
the outer loop was to reduce communications volume. This did not increase throughput suffi-
ciently and the controllers on the upgrade node were rewritten for a one-cycle lag (i.e., pro-
ducing control output based on the system state projected forward in time).

During the development process, a distinction between the data exchanged in the real-time
loops and commands from the user interface became apparent. When real-time data is lost or
delayed beyond the current deadline, the correct recovery method is to use fresh data. With
commands, sequencing is significant and it is important that the commands eventually be
delivered in the correct order. This distinction was supported by adding an acknowledge/retry
protocol to communications links from the user interface. Support at the Dtag level was con-
sidered, but not implemented in the present implementation.

4.4.2.3 Replacement Unit Support

Inter-component communications when active components are replaced must allow flexible
splitting and redirection of data streams during real-time operation. The prototype uses Dtag
communications to support replacement units. The preexisting Dtag software was enhanced
to allow multiple nodes by adding support for serial links. Some investigation into alternate
real-time networking protocols was performed (e.g. CORBA) but the existing Dtag routines
were viewed as having a lower implementation cost for the prototype.

With the introduction of two real-time loops executing at different but harmonic rates, a vari-
able rate delivery service was added to the Dtag routines. This allowed a subscriber to specify
that it wished to receive 1 of n messages from a port. The primary use of this feature was to
allow the outer loop to receive pendulum position data at a lower rate consistent with it’s
slower execution rate.

4.4.2.4 Communications Attacks

The original communications attack design included two kinds of attacks: message barrages
to consume bandwidth on the network and message blocking to prevent a selected percentage
of messages from passing through a designated link (i.e., network connection to a single
node). As the implementation proceeded, it was decided that blocking messages on a link did
not afford sufficient discrimination and control. Consequently, the message blocking facility
was recast to allow message blocking on individual communications sockets (e.g., rejecting
messages on specific module to module connections).
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4.4.3 Replacement Unit Creation
The term replacement unit is used to designate a “slot” where code may be replaced using
dynamic component binding as well as the modules of code created for overlay into the slots.
The following design and implementation steps have been useful in creating replacement unit
modules

• Modularize the system into functional blocks of code.

• Identify blocks which should be dynamically replaceable. The ideal candidates have a
single purpose, are likely to change frequently, and are “weakly” interconnected with the
rest of the program (exchange relatively small amounts of data in a well understood
manner).

• Define the data interface between the dynamically replaceable block and the rest of the
system. The interface forms, in a sense, a contract between the replacement unit and the
rest of the system with respect to input and output of information. It is useful to divide
data items between required and optional items. Optional items provide for variation in
the dynamic component, but need not be present for system operation.

• Identify the scheduling characteristics of the dynamic component. This requires
determining the maximum resource a dynamic component can use before it is considered
to be faulty.

The prototype design designated the upgrade pendulum controller and coordinator as re-
placement units early in the design process. Although preparation of the actual code proved
challenging, the type and number of replacement units did not require revision.

To provide increased fault resistance while allowing the use of COTS software, one of the
replacement units for the upgrade controller and coordinator was isolated on a separate node.
With a serial communications link isolating the node, communications throughput was a bot-
tleneck to completing the control loop within one cycle. The first approach to this problem
used relaxed timing criteria for the outer coordination loop to reduce communications vol-
ume. This proved insufficient and the controllers on the upgrade node were rewritten for a
one-cycle lag (i.e., to produce output based on the state of the system projected forward in
time). This was sufficient to solve the communications bottleneck.
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Figure 15:  Replacement Units

4.4.4 Graphical User Interface
The Coordinated Prototype GUI  started with a design similar to previous prototype GUIs,
providing a single point for the entry of commands and viewing of status. Use of the GUI
was optional in previous prototypes and failure of the interface would not affect the safe op-
eration of the system. Among the commands required were several related to placing the
prototype system into coordinated movement mode and moving the pendulums to designated
targets. It was realized that the interface now performed a critical function, with safety and
timeliness requirements. The GUI design was modified for greater reliability and fault resis-
tance; the implementation in Java was relatively straightforward.
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5 Demonstration Scenarios

The development of the Coordinated Prototype was used to confirm the applicability of the
Simplex engineering framework to a communications dependent system. The finished proto-
type was used as a demonstration vehicle for Simplex technology. One of several systems
used to demonstrate Simplex, demonstrations tend to focus on the unique features of the
prototype. In this section, the most common prototype demonstrations are briefly described.

5.1 Upgrade Protection
In the upgrade demonstration, a new pendulum controller is introduced which deliberately
attempts to make the pendulum loose balance and fall. The defective controller is placed in
charge as the leader and permitted to run.

Before the pendulum can fall due to erroneous control inputs, the decision and safety module
switches control from the buggy controller to the next controller in the hierarchy of available
controllers

5.2 Denial of Communications
With the prototype running, the network connection for one of the maneuver systems is dis-
connected and left unconnected.

With the pendulum maneuver systems unable to exchange position information, the maneu-
ver systems activate the baseline coordinator and move the pendulums to the last target posi-
tion received by both systems. The pendulums are then held stationary.

When the network connection is restored, the maneuver systems reestablish communications
and again begin to move the pendulums in a coordinated way.

5.3 Message Blocking Attack
Using the communications attack software, the flow of messages between the maneuver sys-
tems is reduced.

The pendulum maneuver systems responds by activating the baseline coordinator and reduc-
ing movement rates to match the rate of position updates received. When the communications
rate increases, the pendulum movement rate is increased.
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5.4 Message Bombardment Attack
Using the communications attack software, spurious messages bombard the maneuver sys-
tems from the attacker.

The pendulum maneuver systems responds by reducing movement rates to match the rate of
position updates received, halting the pendulum if necessary.
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6 Analytical Studies

The Coordinated Prototype has been used as a basis for additional analytical studies. These
“side studies” used the operational prototype along with development team expertise to apply
advanced software engineering techniques to an existing system of tractable size and com-
plexity. For more complete information, consult the references provided for each of the stud-
ies.

6.1 Model Based Verification
The fault response capabilities of the Coordinated Prototype were modeled using the Sym-
bolic Model Verifier (SMV) model-checking tool. The SMV is a model checking tool that
accepts a finite state representation of a system and a set of properties or claims made about
that system in Computational Tree Logic (CTL). The SMV tool checks whether these proper-
ties hold for the model. In most cases, it also provides counterexamples for the properties that
do not hold.

The case study modeled the outer control loop responsible for coordinating the two pendu-
lum’s motion. Detailed information is available in the SEI Technical Report CMU/SEI-98-
TR-013 [Srinivasan 98].

6.2 Model Case Study
A separate modeling effort, focusing on the application semantics and the semantics of ana-
lytically redundant components is also under way. The study focuses on architectural models
and analysis of the configuration consistency using the prototype as the model basis.

In particular, an architectural description language supporting modeling of real-time systems
has been extended to allow capture of application semantics and time sensitive properties that
typically cause hidden side effects. Design time analysis of system models:

• discovers hidden side effects by detecting inconsistencies in application semantics
and schedulability

• identifies inconsistent combinations of component variants, for which the developer
can add runtime monitoring

• determines the impact of a change, supporting the developer in the consistent
propagation of a change

Detailed information is available in the works by Feiler and Li [Feiler 98] and [Li 99].



48 CMU/SEI-99-TR-016



CMU/SEI-99-TR-016 49

7 Lessons Learned

The prototype fulfilled its original goals: the system holds real-time control of the inverted
pendulums in the face of communications flaws and faulty software. Coordinated motion is
maintained. Software can be upgraded and tested online, as well as in a conventional fashion
prior to the system start up.

In creating the prototype, we used a design that split the control and coordination task into
two separate sets of analytically redundant components operating in concert within a single
system. The use of separate control and coordination loops allows for the separate develop-
ment of software, more flexibility in scheduling, and the reuse of existing software compo-
nents. Given the deliberately unreliable communications and dependence on exchanging co-
ordination information between systems, special attention must be paid to ensuring that state
information inconsistencies are detected and compensated, but the problem is tractable with
careful design of the decision software.

The prototype saw the first application of Lyapunov stability theory and Linear Matrix Ine-
quality (LMI) methodology to the development of Simplex safety controllers (see Appendix
C). These techniques provided a mathematical basis for confirming the safety region of the
controller and deriving the safety control laws. Their use was helpful in confirming that the
existing safety controllers were correct and in developing new software.

Of course the Coordinated Prototype is not fully comparable to an operational environment.
We are convinced however, that the design of the prototype is applicable to other systems that
face similar requirements.
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Appendix A: Communications Attack
Modes

The Coordinated Prototype implements communications attacks on inter-system communi-
cations links. Direct attacks are limited to the maneuver systems, while the command system
is affected only by network congestion when the attacker floods the network with messages.
Node to node communications within the maneuver systems utilizes direct serial connections
and is not subject to direct attack.

The prototype communications attacks are denial of service attacks where legitimate mes-
sages are lost or delayed during transmission. Deceptive jamming attacks, where the contents
of messages are altered or syntactically correct but false messages are created, are not al-
lowed.

Inter-system communication is performed on a broadcast media (Ethernet) using UDP/IP
protocol.

The user may initiate and control communications attack from the GUI on the command
system or by using a command line interface on the attacker.

A.1 Message Blocking
In a message blocking attack legitimate messages are lost during transmission.

Message blocking attacks are implemented by adding agent software to the maneuver sys-
tem’s UDP/IP message routines. The agent software receives commands to set up, start and
end communications attacks. The set up command (a “jamming specifier”) sent from the at-
tacker via the network is used to reject a specified percentage of messages directed to or from
a specific socket. As individual messages are transmitted or received, a random number is
computed and the message is either rejected (lost) or delivered. No history is kept, and fol-
lowing messages have exactly the same chance of passing or failing the check.
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A jamming specifier includes the following parameters:

• Hosts affected: Set the target for message blocking. Can affect messages directed to the
secure node of the maneuver system, upgrade node of the maneuver system, or all nodes
of both maneuver systems?

• Ports affected: specified port number or all ports on a system

• Type of message affected: Receiving (incoming), sending (outgoing), or both

• Chance of loss: The percentage chance that a message arriving or leaving the port will be
lost, ranging from 0 to 100%

• Blocking on duration: length of time a jamming specifier will be active, 0-99 seconds

• Blocking off duration: length of time a jamming specifier will sleep before the next
activation, with a range of 0-99 seconds

• Number of blocking events: The numbers of times an attack will be peformed, ranging
from 0-99 with 0 standing for continous exectuion

Multiple jamming specifiers may be set on any socket. The agent software scans the list of
jamming specifiers and applies the first active specifier, which matches the search criteria.
Any additional specifiers in the list are ignored.

A.2 Message Bombardment
In a message bombardment (or “packet barrage”) attack spurious messages are generated and
directed at target communications links.

Message bombardments use ICMP echo packets to create traffic on the network. ICMP echo
packets are normally used to establish the presence of active nodes on a network (ping facil-
ity); consequently receipt of an ICMP causes the IP stack to return an echo reply packet. The
attacker system can direct the bombardment at a specific node using the directed ICMP pack-
ets or attack all nodes using broadcast ICMP packets.

The effect of message bombardment attacks varies according to network topology. When the
network uses a common cable between all nodes4, the return packets affects all nodes. Since a
single broadcast ICMP echo packet generates a response from each node, the amount of net-
work traffic depends on the number of nodes. If a network switch is used, the return packets
affect only the nodes connected to that switched segment. In the prototype, a network switch
with one node per segment was normally used.

Message bombardment is controlled by the following parameters:

• Level: The level of attack, expressed as a percentage, ranging from 0-100

• Duration: length of time the attack will be active, 0-99 seconds

                                                
4 Passive hubs are equivalent to straight cabling between nodes.
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• Gap: length of time between the end of an attack and the next bombardment, with a
range of 0-99 seconds

• Host: System to receive a jamming attack, one of Maneuver System 1, Manuever System
2 or all systems
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Appendix B: Reliability Analysis

In this section, we provide a simple analysis of the reliability and availability of analytically
redundant control systems and compare it with N-Version programming and Recovery
Blocks [Avizienis 95 and Randell 95]. First, we consider N-Version programming. Supposed
that 3 versions of high performance controllers are used and the faults are independent. Sup-
pose that each version has the same reliability r(t). The system reliability of this system is
RN(t) =  r(t)3+ 3r(t)2(1 – r(t)).
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Figure 16:  Plot of High Performance Controller Reliability

To compare N-Version programming with an analytically redundant control system (Simplex
architecture), let’s make the minimal change. We replace one of the three high performance
controllers with a simple high assurance controller with reliability rH(t). Under the Simplex
architecture, the two high performance controllers are configured as primary and standby.
There are two figures of interest. First, the reliability of the high assurance control software is
just rH(t) and we assume that rH(t) >> r(t). Under Simplex architecture, the high performance
control system’s reliability is RH(t) = (r(t)2 + 2r(t)(1 – r(t))) rH(t). First, note that when rH(t)
=  1,  RH(t)  – RN(t) =  r(t)( 1 – r(t))2 ≥ 0.  That is, the reliability of the high performance

control under Simplex architecture is higher than that under 3-version programming, pro-
vided that the high assurance control has perfect reliability.

When the high assurance control reliability is not perfect (i.e., rH(t) < 1) the high perform-
ance controller’s reliability under Simplex is still higher if the high assurance controller has a
very high relative reliability (i.e., RH(t) ≥ RN(t) if rH(t) ≥ ( RN(t) / (r(t)2 + 2r(t)(1 – r(t)) and
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vice versa. Figure 16 plots that for a given value of high performance controller reliability,
r(t), the value of the high assurance controller reliability rH(t) at which the reliability of the
high performance control under Simplex and 3-version programming are equal (i.e., RH(t) =
RN(t)).
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λ
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RH(t), λH = λ/10

RH(t) λH =0

H(t)

Figure 17:  Plot of High Performance Control Reliability Under 3-Version
Programming

Simplex architecture provides not only a high degree of reliability with respect to stability
and controllability but also a higher reliability in high performance control, provided that the
reliability of the high assurance controller is much higher than the high performance control
(i.e., rH(t) >> r(t)). Figure 17 is a plot of the high performance control reliability under 3-
version programming, RN(t), the reliability of the high assurance control, rH(t) when the high
assurance controller has a failure rate λH equals to 1/10 of the failure rate of high perform-
ance controller, λ. In addition, the two dashed lines plot the high performance control reli-
ability under Simplex when 1) λH = 0 and when λH = λ/10. The horizontal axis is λ from 1

to 5 and the duration of mission is normalized to 1.

High reliability translates into longer mean time to failure, MTTF, since MTTF is the integra-
tion of reliability over time. When RH(t) >> r(t), the MTTF of high performance control un-
der simplex is longer than that under 3-version programming. Next, the mean time to repair
MTTR under Simplex is also shorter since the high performance system can be restarted
quickly when the vehicle is able to maintain its stability and controllability under high assur-
ance control. When the high performance control system fails under 3-version programming,
the vehicle loses computer control completely and could become unstable. The “repair time”
to get back to normal control could take much longer. Since availability is equal to
MTTF/(MTTF + MTTR), it follows that the availability of high performance control is higher
under the assumption of RH(t) >> r(t). Note that in the analysis above, the N-Version pro-
gramming idea was incorporated into the Simplex architecture with the use of two different
versions of high performance controllers.
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Finally, we want to comment on the similarities and differences between the Simplex archi-
tecture and recovery blocks from the viewpoint of reliability model structure. Let us config-
ure the two high performance controllers and the high assurance controller in the form of re-
covery blocks. The system reliability is RB(t) = (1 – (1 – r(t))2(1 – rH(t)) rA(t), where rA(t) is
the reliability of the acceptance test. Under the assumption of a perfect acceptance test, rA(t)
= 1, recovery blocks have a higher reliability, that is RB(t)  – rH(t) = r(t)2 (1 – rH(t)) ≥ 0.

Intuitively, this follows from the fact that under Simplex if the high assurance controller fails
the control system fails. However, the control system would not fail as long as one high per-
formance controller still works, even though the high assurance controller fails. It follows
that the reliability of the high performance controller is also higher under recovery blocks,
since as long as any one of the high performance controller works, the system will be under
the control of the working high performance controller, even if the high assurance controller
fails, provided that the acceptance test is perfect. The effect of a near perfect acceptance test
can also be carried out in a way similar to what we have done for the Simplex architecture by
replacing rH(t) with rA(t). The challenge is, however, to write an effective acceptance test.
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Appendix C: Application of Lyapunov
Stability Theory to Safety Controller Design

As one of the critical contributions of the Simplex architecture, tolerance of semantic faults is
accomplished by implementing a safety controller, which runs in parallel with the experi-
mental controller and will take over the control of the physical system once a fault is de-
tected. The success of such a fault tolerant mechanism is highly dependent on the detection of
faults and the design of the safety controller. Lyapunov stability theory provides a foundation
for systematically deriving a criterion in semantic fault detection and developing a safety
controller by formulating a linear matrix inequality (LMI) problem, which can be solved by
the newly developed interior-point optimization algorithms.

A semantic fault can be detected by monitoring the dynamics of the physical system, which is
represented by the state of the system, x(t). In the Simplex architecture, a semantic fault is
defined as causing the physical system to fail (i.e., not being able to carry out its normal op-
eration and eventually failing). To be more precise, we say that a semantic fault will lead the
physical system to an undesired state where no available control can bring it back to normal
operation. In most control systems, the fundamental control issue is to maintain the stability
of the system, and therefore, a state from which no available control can keep the system sta-
ble should by all means be avoided. With respect to stability, a semantic fault is defined as
driving the physical system to instability. To check if a semantic fault occurred during the
operation of the experimental controller, one needs to evaluate the dynamic behavior of the
physical system to see if it will become unstable. We say that the physical system is safe at
time t if it is in a state x(t) from which the available control authority can keep it stable in the
future. As the safety controller will provide protection against semantic faults in the Simplex
architecture, the physical system is required to always be in one of the states from which the
safety controller is able to maintain the stability of the system. In terms of Lyapunov stability
theory, the collection of these states is called the stability region of the safety controller.
Hence, we conclude that the stability region of the safety controller serves as a criterion in
semantic fault detection, namely, a semantic fault has occurred if the state of the physical
system is out of the stability region of the safety controller. Moreover, the stability region of
the safety controller will also be the recoverable region in the Simplex architecture. It should
be noted, however, such a recoverable region is only useful when the stability region of the
safety controller is large enough to cover all the trajectories of the physical system in normal
operation. This issue will be addressed in design of the safety controller.

The stability region of a safety controller can be characterized by a Lyapunov function. In
control systems where stability is a concern, an equilibrium or equilibria can always be found
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as special states of the system, states at which the system will stay forever once it reaches one
of them. In the safety control, we are interested in the so-called asymptotically stable equilib-
rium, to which the system will converge asymptotically if the system starts close to the equi-
librium. Therefore, a stability region is a neighborhood of the equilibrium, from which the
system trajectories will eventually converge to the equilibrium state. Formally, we express
such region as a set of system states given by:

}1)(,1)(:{ <≤= exVxVxS

with ex  the equilibrium state and function V(x) satisfying
the following conditions:

1). ex  is the unique minimum of V(x) in S;

2). The time derivative SxxxV e ∈≠∀< ,0)(& .

Function V(x) is then referred to as a Lyapunov function. As illustrated above, the existence
of a Lyapunov function determines the dynamics of the physical system, namely, the decrease
of the value of the Lyapunov function evaluated along the system trajectory restricts the tra-
jectory such that it will converge to xe asymptotically. During the course of reaching xe, the
trajectory will be bounded by a closed boundary xb given by V(xb) = V(x0) with x0 the initial
state. By thinking of a Lyapunov function as the energy of the system, the dynamics of the
system undergoes an energy dissipation process with the minimum energy at the equilibrium
point. To summarize, we conclude that the stability region of a safety control can be ex-
pressed as a set }1)(:{ ≤= xVxS  with V(x) a Lyapunov function and Sxe ∈ .

To construct a Lyapunov function to represent the stability region, we apply Lyapunov stabil-
ity theory. For the sake of developing a systematic approach, we assume the physical system
is linear time invariant (LTI). While this may not be true in practice, most of the physical
systems can be linearized about the equilibrium state and their dynamics can be approxi-
mately described by LTI systems. For a given LTI system, Lyapunov stability theory states:
the system is asymptotically stable at the equilibrium state xe  if and only if there exists a
quadratic function of the state variables )()()( e

T
e xxPxxxV −−=  with P a positive definite

matrix, that has negative derivatives. This result narrows the search for a Lyapunov function
to finding a positive definite matrix P. As we mentioned earlier, the stability region will be
used as the recoverable region in the Simplex architecture, and hence, an additional require-
ment needs to be imposed in solving for matrix P, that is, the stability region should be as
large as possible. Summarizing all the requirements, we post two optimization problems for
finding the largest stability region:

1) For a given safety controller u = Kx (e.g., a controller that has been used extensively
in the past with an approved record of reliability), find matrix P such that the size of

the stability region }1)()(:{ ≤−−= e
T

e xxPxxxS  is maximized subject to state and

control constraints.
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2) When the safety controller is to be designed, let it be a linear state feedback control u =
Kx with K being the control gain to be determined. Find the matrix P and the control

gain K such that the size of the stability region }1)()(:{ ≤−−= e
T

e xxPxxxS  is

maximized subject to state and control constraints.

Both of these two problems can be formulated as LMI problems and solved by using the
newly developed interior-point optimization approaches. Detailed procedures for deriving the
solutions will be reported elsewhere. In either case, we obtain a safety controller u = Kx with
the largest stability region, or the recoverable region in the Simplex architecture, given by the

set }1)()(:{ ≤−−= e
T

e xxPxxxS .

Implementation of the safety controller and the recoverable region described above is rather
trivial. With the sampled data x(t) in each sampling period, the safety control command is
simply the multiplication of the control gain and the state data. The check for semantic faults

is carried out by computing the quadratic function )()( e
T

e xxPxx −−  to see if it is greater

than constant 1. If this is the case, then a semantic fault has occurred.

In summary, we conclude that, for a LTI system, the recoverable region or semantic fault de-
tection can be systematically derived by establishing a stability region for the safety control-
ler, which can be a given controller or a controller to be designed. The resulting recoverable
region will be the largest with respect to the given safety controller, or the largest in all possi-
ble linear feedback controllers if the safety controller is designed.
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