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Abstract

This report presents a description of architecture-centric system development. In an architec-
ture-centric process, a set of architecture requirements is developed in addition to functional 
requirements. This report describes the source of these architecture requirements and how they 
are elaborated into a design. In addition to design, the documentation, evaluation, realization, 
and maintenance of an architecture are also described.
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1 Introduction

The development of a software architecture is a critical step in the development of large soft-
ware-intensive systems. A software architecture is fundamental for the development of soft-
ware produce lines where multiple systems with different functionality are created from the 
same basic architecture. Even with this emphasis on architecture, the process of defining and 
maintaining an architecture remains vague. For example, there is an architecture-development 
process from the object-oriented community based on the analysis of a collection of “use 
cases” [Jacobson 92]. This process is designed to identify the objects that exist within a system 
and their interaction. However, it does not provide a clear method for defining an architecture. 
There is another process from the architecture community that proposes basing an architecture 
on architectural styles with known properties without discussing how to move beyond the 
information gathered from the styles [Shaw 96]. While neither description of the architecture 
development process is incorrect, they are not totally correct either. Furthermore, neither of 
these processes accurately reflect the process that architects actually use to design architec-
tures. In this report, we present a process for deriving an architecture that comes from our 
work with large systems and, specifically, with the architects of these systems.

Our experience is based on working closely with architects who have designed systems for 
large civilian corporations and military contractors. All of the systems that we examined were 
larger than 100 KSLOC (thousand source lines of code). Although none of the architects has 
used exactly the process that we describe in this report, it is an abstraction to which we believe 
all of them would subscribe.

The process described in this report includes the following steps: 

1. Elicit the architectural requirements.

2. Design the architecture.

3. Document the architecture.

4. Analyze the architecture.

5. Realize the architecture.

6. Maintain the architecture.
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Each of these steps includes

• inputs, including the means of collecting this information

• constructive activities 

• validation activities 

• outputs

In this report, we describe the steps of this process as show in Figure 1-1. The steps of design, 
documentation, and analysis form an iterative portion of the process. Once an acceptable 
architecture is achieved, then it is realized and then must be maintained. In Sections 2-7, we 
provide a notional picture of each step, its iteration, and the artifacts and people that provide 
input into the steps.

Figure 1-1: Steps of the Architecture-Based Development Process

Design the Document the 

Analyze the 
Architecture

Realize the 

Maintain the
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2 Requirements

Figure 2-1 provides an overview of the requirements elicitation process. It shows that architec-
tural requirements are created by the developing organization and are influenced by the techni-
cal environment and the architect’s own experience. We will discuss the inputs into the process 
in subsequent sections. There are three outputs from the process: an enumeration of functional 
requirements made concrete by use cases, an enumeration of specific architectural require-
ments, and an enumeration of a collection of quality scenarios that provide concrete tests for 
the architectural requirements.

The requirements can be subdivided into those related to the functions of the system and those 
related to the architecture. Since this report focuses on the architectural aspects of the design, 
we will not pursue organizing the functional requirements. Note, however, that the functional 
requirements tend to be very numerous, can be organized into different levels of abstraction, 
and are made concrete by the expression of use cases. We will assume that a relatively small 
list of classes of functionality is available for a subsequent step, so one of the organization’s 
steps should be to generate this list. We will first discuss architectural requirements explicitly, 
and then address how they can be made concrete.

2.1 Architectural Requirements
It is typically possible to identify a small number of “architectural drivers” for a system to be 
designed. An architect experienced in a domain can look at a requirement that the architecture 

Figure 2-1: Eliciting the Architectural Requirements

Requirements

Developing Organization

Customer/End Users

Technical Environment

Architect’s Experience

Architecture 
Design
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must be suitable for a product line, for example, and identify four or five different architectural 
variation points that are important for the kind of systems that will be developed in the product 
line. An architect can look at a requirement that the system to be designed use the organiza-
tion’s database experts, and know that the system will have a database and will probably use 
the standard three-tier database architectural style. The first step in defining architectural 
requirements is to identify the architectural drivers.

The next step is to enumerate the architectural requirements. The requirements are an enumer-
ation of the consequences of the architectural drivers and bring in other important architectural 
requirements. In the example where the driver is the desire for a product line, the requirements 
might be an enumeration of the architecture variation points and an enumeration of perfor-
mance and reliability requirements. In the database example, the requirements would be an 
enumeration of variation (or fixed points) in the database management system being used and 
an enumeration of the types of modifications that might be made to the system and some per-
formance requirements.

Architectural requirements derive from one of three sources: the quality goals for the system, 
the business goals for the system, or the business goals for the people who will work on the 
system. An example of the latter requirement comes from an organization that wishes to build 
a cadre of personnel familiar with C++ graphical user interface (GUI) development, where the 
requirement might be to use C++.

Architectural requirements are not as numerous as functional requirements; there should be a 
maximum of approximately 20 architectural requirements.

2.2 Quality Scenarios
The design process is based on the premise that the architectural requirements of a system or a 
collection of systems are as important as the behavioral requirements. Both types of require-
ments are made concrete in terms of scenarios or use cases. A variety of different types of sce-
narios are used. Normal use cases are used for the behavioral requirements for single products. 
Abstract scenarios, described in Section 2.2.1, are used for the behavioral requirements for 
product lines. 

The quality-based architectural requirements, described below, are expressed via quality-spe-
cific scenarios, which are described in Section 2.2.2. The quality-specific scenarios are change 
scenarios in the case of modifiability, threat scenarios in the case of security, response-time 
scenarios in the case of performance, and error-handling or degradation scenarios in the case 
of reliability or availability. 

However, even quality-specific scenarios have an impact on multiple qualities. For example, 
consider the following change scenario: “Change the system to add a cache to the client.” It is 
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not only legitimate, it is mandatory, to ask about the effect of this change on performance, 
security, or reliability. Although one quality may be used to motivate a scenario, the impact of 
that scenario on other qualities needs to be considered.

Furthermore, the requirements come from many stakeholders. Why is this? No single stake-
holder represents all the ways in which a system will be used. No single stakeholder will 
understand the future pressures that a system will have to withstand. Each of these concerns 
must be reflected by the scenarios that we collect. 

We now have a complex problem however. We have multiple stakeholders, each of whom 
might have multiple scenarios of concern. They would rightly like to be reassured that the 
architecture satisfies all of these scenarios in an acceptable fashion. And some of these scenar-
ios will have implications for multiple system qualities, such as maintainability, performance, 
security, modifiability, and availability. 

We need to reflect these scenarios in the architectural structures that we document and the 
architectures that we build. In addition, we must be able to understand the impacts of the sce-
narios on the software architecture. We further need to trace the connections from a scenario to 
other scenarios, to the analytic models of the architecture that we construct, and to the archi-
tecture itself. As a consequence, understanding the architecture’s satisfaction of the scenario 
depends on having a framework that helps us to ask the right questions of the architecture.

To use scenarios appropriately, and to ensure complete coverage of their implications, we typ-
ically consider three orthogonal dimensions, as shown in Figure 2-2.

Scenario Q 1  Q 2 . . .  Q N

.

.

.

St 1
St 2

Sc 1

Sc 2

Sc 3

Sc N

St N
..

Figure 2-2: A Scenario-Elicitation Matrix

Sc 4

Quality

Stakeholder
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The entries in the matrix are the specific scenarios. This characterization allows us to manage 
the scenarios not only for specifying the requirements, but also for subsequently validating the 
architecture that is designed. The initial use of a quality-specific scenario might be considered 
during the design step, but the impact of that quality scenario on other qualities is also impor-
tant during the analysis step.

2.2.1 Abstract Scenarios

In product lines, the architecture is the central reusable asset shared among the systems that are 
instances of the product line. Requirements for product lines are different from those tradition-
ally collected for single-use systems. Consider the following example scenario: Database 
updates are propagated to clients within a bounded amount of time.

This scenario—propagating database updates to clients—embodies a requirement that can be 
specified only in an oblique fashion (i.e., a bounded amount of time). This lack of specificity is 
necessary because the scenario applies to a family of systems, rather than a single system, and 
so few assumptions can be made about the hardware platform, the environment in which the 
system is running, other tasks competing for resources, and so forth. Given the variability 
inherent in a family of systems, the stakeholders must resort to a generic requirement, repre-
sented by an abstract scenario. Traditional requirements of the form “the system shall do such 
and such” are frequently inappropriate for families of systems. They are replaced with abstract 
scenarios that represent entire classes of system-specific scenarios, with appropriate parame-
ters. The use of abstract scenarios has several important implications:

• The architecture for a product line must identify infrastructure mechanisms for ensuring 
that this scenario can be met in general. For example, mechanisms to ensure that perfor-
mance requirements are met may include performance monitoring, task scheduling (and 
potentially the support of multiple scheduling policies), as well as the ability to prioritize 
and preempt tasks. These mechanisms are necessary in a product-line architecture, 
because other forms of meeting performance deadlines that are appropriate in a single sys-
tem (such as manual performance optimization) do not scale up to a family of systems.

• Tracing abstract scenarios from their original statement, through a specific version for a 
specific realization of the architecture, to a single realized system is much more complex 
than the equivalent tracing activity for a traditional single-use architecture. However, we 
need to maintain the scenario at this level of abstraction because it is only here that the 
requirement becomes a constraint on the architecture as a reusable asset rather than a sys-
tem-specific goal that might be met, in a single-use architecture, through more traditional 
means such as code optimization or manual load balancing.
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2.2.2 Quality-Specific Scenarios

The quality requirements for a product line are embodied in the quality scenarios. Qualities, in 
general, are too abstract for direct use in design. That is, every system is easy to modify for a 
certain class of changes and difficult to modify for others, so a statement requiring that a sys-
tem “shall be modifiable,” as is commonly included in requirements documents, is meaning-
less. 

We make the quality requirements concrete by expressing them as quality-specific scenarios. 
As we mentioned above, quality-specific scenarios have implications for qualities other than 
the motivating one, but they are generated by the initial consideration of a specific quality. The 
qualities we typically consider are

• modifiability. In this case, the scenario is a change scenario. Since we are developing an 
architecture for a product line of systems, there is a natural variation already considered 
within the architecture, but many classes of changes will not be considered within the vari-
ation. For example, replacing the operating system or object request broker might not be 
considered within the abstract scenarios.

• performance. In this case, the scenario is a specification of the workload and the latency or 
throughput requirement. The form of the specification will depend on the type of system. 
In an interactive system, the form of the specification might be an abstract specification of 
the number of users and a deadline for response; in an embedded real-time system, the 
form of the specification might be a characterization of the input events and an associated 
deadline.

• security. In this case, the scenario is a particular type of threat and the response of the sys-
tem to this threat. For example, an unauthorized user attempts to use the system; this 
should result in some sort of message. Another example is that an unauthorized user 
attempts to bypass the authentication system; this should also result in an intrusion alert 
being generated.

• reliability. In this case, the scenario is an exception or failure scenario together with the 
required system behavior. For example, if a particular type of failure occurs, then the sys-
tem should be able to operate in a degraded mode.

2.3 Validation
The validation of a set of scenarios is accomplished through (1) scenario brainstorming with a 
wide group of stakeholders to ensure breadth and (2) mapping the scenarios onto the architec-
ture requirements and then onto the business and human goals for the system to ensure cover-
age. Subsequently, the scenarios are used in the validation process for the architecture design.
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3 Design the Architecture

An architect develops a design by making some collection of design decisions and then rea-
soning about these decisions through consideration of different architectural structures and 
views. Architectural requirements are used to motivate and justify design decisions, the differ-
ent views are used to express information pertinent to achieve the quality goals, and the quality 
scenarios are used to reason about and validate the design decisions. Design decisions are fre-
quently initiated by a knowledge of architectural styles [Shaw 96], design patterns [Bus-
chmann 96], or the use of particular tools [sockets, remote procedure call (RPC), Common 
Object Request Broker Architecture (CORBA), etc]. Figure 3-1 provides an abstraction of the 
architecture design step.

Architecture design is an iterative process with some collection of decisions being made and 
reasoned about, then reconsidered and remade until closure on a design is reached. We discuss 
it by describing how the requirements feed into the consideration of the different structures 
and views and how the scenarios are used to reason about the various qualities. The concept 
that the architect is iterating through decisions and using multiple views simultaneously is dif-
ferent from the methods described by Kruchten [Kruchten 95], and Soni, Nord, and Hofmeis-
ter [Soni 95] who propose more of a sequential use of views. Their methods use one view to 
get a particular aspect of the architecture correct, at which point they move on to another view 
to get a different aspect correct. Our observation is that architects simultaneously use all of the 
views to refine their design, although they may defer serious consideration of some views until 
more of the architecture has been defined.

Architecture
Design

Quality scenarios

Architectural 

Design Patterns

Architectural Requirements

Figure 3-1: Architecture Design

Styles/ABASs
Architecture
Documentation
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3.1 Architectural Structures and Views
A structure in software architecture is a set of like-type nodes connected by relations. When 
describing architectures, the nodes are commonly termed “components” and the relations are 
termed “connectors.” These components and connectors are annotated with other information 
that we call “properties.” Properties are used to differentiate between different types of com-
ponents, different types of connectors, and to provide information useful for various architec-
tural analyses (such as performance, security, or reliability analysis). 

While there are many potentially interesting software structures, there are five canonical or 
foundational structures that together completely describe an architecture. Note that we have 
not yet defined precisely what we mean by the terms “view” or “structure.” Architectural 
structures are foundational representations of architectural information, representing the base 
artifacts that we design and code: classes, functions, objects, files, libraries, and so forth. 
Views are derived representations, arrived at by selecting a subset of a structure or by fusing 
information from multiple structures. These canonical structures may be elaborated in a vari-
ety of orders depending on the context of development. In Section 3.2, we provide a particular 
process that can be used to elaborate these structures. The five structures that we present here 
are derived from those presented by Kruchten [Kruchten 95].

The five canonical architectural structures are described below.

1. Functional structure is concerned with the decomposition of the functionality that the sys-
tem needs to support. Components are functional (domain) entities, and the connectors are 
“uses” or passes-data-to. This structure is useful for understanding the interactions 
between entities in the problem space, for planning functionality, and for understanding 
the domain variability and hence the possibilities for creating a product line.

2. Code structure is concerned with the realization of the key code abstractions from which 
the system is built. Components can be packages, classes, objects, procedures, functions, 
methods, etc., all of which are vehicles for packaging functionality at various levels of 
abstraction. Relations include passes-control-to, passes-data-to, shares-data-with, calls, 
uses, is-an-instance-of, etc. This structure is crucial for understanding the maintainability, 
modifiability, reusability, and portability of the system. For example, how is the code bro-
ken down into subsystems and interfaces among them? How does the use of middleware 
affect this allocation? 

3. Concurrency structure is concerned with logical concurrency. The components of this 
structure are units of concurrency that ultimately are refined to processes and threads. 
Relations include synchronizes-with, is-higher-priority-than, sends-data-to, can’t-run-
without, can’t-run-with, etc. Properties relevant to this structure include priority, preempt-
ability, and execution time. This structure is key in understanding performance and is also 
important for reliability and security. Examples of the information contained in this view 
are the number, execution times, and priorities of the system’s threads and/or processes.
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4. Physical structure is concerned with hardware including central processing units (CPUs), 
memory, buses, networks, and input/output (I/O) devices. Properties relevant to this struc-
ture include availability, capacity, and bandwidth. For example, is there any provision for 
redundant hardware and networks?

5. Developmental structure is concerned with files and directories. This structure is impor-
tant for managing and ensuring administrative control of the system as it grows and is 
fleshed out, including the division of work into teams and configuration management.

One reason why architects use multiple views simultaneously is that each view exposes some 
information and hides other information. Thus, for example, when reasoning about the func-
tions of the system and the modifiability of the system, distribution issues are not the primary 
concern. The code structure abstracts away distribution issues. On the other hand, when rea-
soning about performance, distribution is primary and the function of the system becomes sec-
ondary, so a concurrency structure is more appropriate.

Table 3-1 summarizes some of the relationships between architectural structures and the quali-
ties for which they support reasoning.

3.2 A Development Process
The development context will determine the appropriate development process. If the system 
being developed can derive much from existing systems, then a development process that 
assumes the views for the existing system is appropriate. In this section, we present a process 
for a green-field development. That is, we assume that the system being developed is not con-
strained to use pre-existing components. The design may (and probably will) assume the use 
of available components, so we assume that the use of particular components is not a con-
straint to the design. Any components that are to be used are the choice of the architect and are 
not prespecified. Furthermore, at the initial design stages, the development and code structures 
are not specified since the units of design have not yet been decided.

Quality Useful Structures

Performance Concurrency, Physical

Security Concurrency, Code

Reliability/
Availability

Concurrency, Physical

Modifiability/Maintainability Functional, Code, Development

Table 3-1:   Views Useful for Different Qualities
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We begin by assuming that we have a list of architectural requirements and a list of classes of 
functionality derived from the functional requirements. The goal of the first step is to develop 
a list of candidate subsystems. All of the classes of functionality that are derived from the 
functional requirements are automatically candidate subsystems. We derive the other candi-
date subsystems from the architectural requirements.

For each architectural requirement, we enumerate possible architecture choices that would sat-
isfy that requirement. For example, if the requirement is to allow for the change of operating 
systems, then an architectural choice to satisfy that requirement is to have a virtual operating 
system adaptor. Some architectural requirements may have multiple possible choices for satis-
faction, while others may have a single choice. This enumeration comes from a consideration 
of design patterns, architectural styles, and the architect’s experience.

From this list of possible choices, a selection is made so that all of the architecture require-
ments are potentially satisfied, the list of choices is consistent, and the list is minimized. By 
minimizing the list of choices, we mean that if one choice will satisfy two requirements (even 
if less than optimally), then that choice should be preferred over two different choices. Fewer 
choices mean fewer components, less work in implementation and maintenance, and, in gen-
eral, fewer possibilities for error. Each of the choices is added to the list of candidate sub-
systems.

The next step in the process is to choose the subsystems. Each candidate subsystem will be 
categorized as an actual subsystem, a component in a larger subsystem, or expressible as a pat-
tern to be used by the actual subsystems. We then record the actual subsystems in the func-
tional structure. 

Once a list of actual subsystems is generated, the next step is to populate the concurrency 
structure. This structure is populated by reasoning about units of distribution and units of par-
allelism with respect to the subsystems. Each subsystem may be distributed over several phys-
ical nodes, in which case the units of distribution are identified as components belonging to 
that subsystem. Units of parallelism are identified by reasoning about threads and synchroni-
zation of threads within the subsystem. The threads are “virtual threads” in that they identify 
elements of parallelism if all of the subsystems were to reside on a single processor. When the 
physical structure is considered, it is possible to identify the places where the virtual threads 
turn into physical threads and the necessary network messages derived from this transforma-
tion.

At the end of this design step, the subsystems and their concurrency behavior have been iden-
tified. This step is then validated and the subsystems are refined, the concurrency behavior 
again identified, other structures populated, and so forth. Of course, the validation step may 
cause decisions to be revisited and so the actual process is highly iterative between decisions 
and validation.
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3.3 Validation
The quality scenarios are used as the primary validation mechanism. The proposed structures 
are examined via the quality scenarios to see if the scenarios are achievable at the current level 
of design. If they are, then the next refinement of the design can proceed; if not, then the 
design at the current level of refinement must be reconsidered. 

Each of the iterations described in this report is actually performing a mini-architecture analy-
sis. The scenario-based reasoning can be used for design, as we have described, or in an evalu-
ative setting. The scenarios structure the analysis, describing and operationalizing the 
performance threads, operational failures, security threats, and anticipated changes to the sys-
tem. The mapping of these scenarios onto the appropriate architecture structures and views 
tells us what to analyze. For example, one typically does not want to analyze system perfor-
mance as a whole—it is too vague and there are far too many things that could be measured. 
We typically want to predict average throughput or worst-case response time or some similar 
measure, as derived from and motivated by particular usage scenarios.

Once the architecture has been designed, it is useful to have an architectural evaluation carried 
out by a group external to the developers. An external analysis makes the results of the design 
process visible to management and forces the documentation of the architecture. 
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4 Document the Architecture 

An architecture’s documentation is designed to support the needs of the programmers and ana-
lysts. It can be a tremendous vehicle for enhancing communication among the stakeholders 
and for eliciting architectural requirements from them. Creating and maintaining the architec-
tural documentation, as graphically depicted in Figure 4-1, is a critical success factor in a long-
lived software architecture.

Most architectural constructs are abstract, consisting of groupings of components that (ideally) 
have conceptual integrity. For example, the concept of a layer does not exist in any program-
ming language, and one of the major uses of software architecture is as a communication 
device among the system’s stakeholders. So, we claim that an architecture for a software sys-
tem does not really exist except in its documentation [Kazman 99a]. Thus the completeness 
and quality of the documentation is a crucial factor in the success of the architecture. An archi-
tecture should be documented, at a minimum, according to the structures detailed in Section 
3.1.

Below are our major recommendations for the documentation of a software architecture.

1. The documentation should be complete and navigable. That is, a skilled software engineer 
with some domain knowledge but no prior knowledge of this architecture should be able 
to read the documentation and navigate through it. There should be an obvious starting 
point, portraying the system as a collection of interconnected subsystems. The subsystems 
should be named, their responsibilities and functionality identified, and the nature of their 

Architecture
Documentation

Communication among 

Figure 4-1: Architecture Documentation

Stakeholders

Analysis

Architecture
Analysis
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interconnections identified. Pointers there should direct the reader to more detailed docu-
mentation of subsystems, and then components. At every stage, the nature of the connec-
tions among the parts shown should be clearly identified: sub-class, data flow, control 
flow, parallel process, etc.

The documentation, at this point, is not likely to be complete in terms of every aspect 
addressed in detail. However, the concepts, top-level structure, and important lower-level 
details should be complete. It may still change, but it should be a complete design with 
respect to the above-mentioned areas. Areas of incompleteness should be clearly identi-
fied so that a user knows what information to expect when the documentation is finished. 

This means that the documentation must be presented as a “big-picture” reference archi-
tecture that “wires together” the various subsystems, as well as showing how subsystems 
are wired together internally.

2. The infrastructure—the architecture’s set of mechanisms for communication and coordi-
nation—must be documented as an integral part of the architecture. If the software archi-
tecture is for a product line, the infrastructure is the one constant (any of the functionality 
that lives on top of the infrastructure could change in the future) and provides the means 
for predicting, measuring, and ensuring the system’s quality attributes once the specific 
functionality is determined. The infrastructure is also reused by all of the subsystems, 
including those that are unique to the target system, in the sense that these subsystems 
comply with, and are derivable from, the abstractions in the infrastructure.

Because the infrastructure is reused by all the subsystems, it is not enough to know about 
logical data and control flow such as would be found in message sequence charts (that do 
not include the infrastructure as part of their sequencing). We need to see how these logi-
cal relations are realized through use of the infrastructure. For example, a message 
sequence chart might indicate that A sends a message to B. We need to know how that 
message is transmitted: via RPC, event/notification, hypertext transfer protocol (HTTP), 
etc., and which infrastructure components are responsible for effecting the transaction. 

3. As part of the architecture documentation, a number of use cases must be mapped onto the 
architectural representation to a sufficient detail that a software engineer can understand 
how the system will implement the functionality (in terms of processing, data flow, and 
control flow through the infrastructure components). These scenarios represent the major 
uses of the system and will demonstrate the leverage obtained from a small number of 
infrastructure components satisfying a large number of application needs. 

4. The architecture and its use in target systems must be bound by a set of constraints on 
mechanisms for communications, management of resources for data distribution, time 
management, and other infrastructure services. There should be a prespecified application 
framework for the infrastructure and a prespecified minimal number of communication 
mechanisms. Any part of the architecture that does not use either the application frame-
work or the specified communication mechanism should include a justification pointing to 
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an analysis of performance, fault tolerance, maintainability, security, or some other quality 
that argues against the use of the standard mechanism. The point here is that without a 
consistent set of design constraints, it is difficult to make measurements of these system 
qualities to determine if an alternative offers the required improvements.

5. All the documentation should be made publicly available to all stakeholders.

The development of architectural structures and views, and the mapping of both use cases and 
quality scenarios onto the various views, involves a tremendous amount of detailed informa-
tion. Tool support is vital for managing this information, keeping the various views consistent, 
and keeping the documentation up to date. In Chapter 5, we describe considerations with 
respect to tool support.
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5 Analyze the Architecture

The design, documentation, and mini-architecture analyses are iterated until the major archi-
tectural decisions have been made. At that point, there should be a major architecture evalua-
tion involving external reviewers. The purpose of the evaluation is to analyze the architecture 
to identify potential risks and to verify that the quality requirements have been addressed in 
the design. The reason for having external reviewers is to ensure that the design is examined 
with impartiality and to create credibility for the results of the evaluation with the management 
of the organization that is building the system. Figure 5-1 shows an abstraction of the analysis 
process. 

A variety of different types and styles of architecture evaluations exist. Some organizations 
such as AT&T/Lucent have been doing architecture evaluations for 10 years, and evaluations 
are increasingly being required for large, risky systems. Architecture evaluations provide the 
benefit of forcing documentation of the architecture (for those systems not following the pro-
cess we give here), early detection of risk areas, and improved architectures. We discuss archi-
tecture evaluations in general, and then we discuss a type of evaluation designed to evaluate 
for the particular qualities of modifiability, performance, reliability, and security.

5.1 Architecture Evaluations 
When performing an architecture evaluation, there are two issues that are of importance: who 
participates in the evaluation and review how the evaluation is performed. We discuss these 
issues in Section 5.1.1 and Section 5.1.2. 

Architecture
Analysis

Figure 5-1: Architecture Analysis

Stakeholders

Quality requirements

Outside evaluators
Architecture
Realization
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5.1.1 Participants

Clearly, the architect must participate in any architecture evaluation. The architect should be 
supported by as many members of the design team as appropriate. For a large system, partici-
pants should include the lead designers of the major subsystems, but possibly also the testers, 
maintainers, integrators, system administrators, end users, customers, and managers. In short, 
anyone who has a stake in the system’s success should be a potential attendee. 

The evaluation team is another set of participants that must be planned. The evaluation team 
should be external to the development team for impartiality and a fresh perspective. It must 
have people expert in architectural issues and also people expert in the domain of the system 
being reviewed. 

Finally, the evaluation should include representatives of the stakeholders. Some of the issues 
that arise at a review involve process and requirement issues. The stakeholders’ input is vital 
to determining appropriate responses to these issues; the evaluation team cannot hope to 
understand all of the details of the application domain and all of the business issues. The team 
relies on the stakeholders to provide this information. The stakeholders also bring the perspec-
tive of possible changes in either requirements or the environment that might affect the archi-
tecture. Questions such as “What is the impact of a 20% budget cut?” are generated by the 
appropriate stakeholders.

5.1.2 Evaluation Techniques

Evaluation techniques are either question based or quantitative analysis based. Question based 
reviews operate from a list of questions or scenarios either generated during the evaluation or 
based on prior experience. An organization may have a list of questions that pertain to a partic-
ular type of system such as “How are you handling a fault caused by a divide by 0?”, “How do 
you do a live switch between copies of the database?”, or “How will the system respond under 
the following peak operator load assumptions?” These questions should be provided to the 
development team during the design process since they represent the accumulated organiza-
tional wisdom with respect to the problems that arise during the development of a particular 
type of system. Other questions are generated during the evaluation by the stakeholders and 
are specific to the system being developed. An organization can accumulate the questions 
developed during reviews and use them as the basis for the questionnaires provided prior to 
the review.

The second type of evaluation technique is quantitative based and is based on the analysis of a 
particular attribute and the existence of models for these attributes. Performance, for example, 
has been well studied; there is a collection of information that will enable the building of a per-
formance model, and knowing the model and its requirements enables eliciting the informa-
tion necessary to instantiate the model. Other attributes that have models useful in analysis are 
reliability, security, liveness, and reachability.
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5.2 Architecture Tradeoff Analysis Method (ATAM)
In this section we describe a particular architecture evaluation method, called the Architecture 
Tradeoff Analysis Method (ATAM). The problem with evaluating an architecture is the 
reverse of the design problem. The evaluators must understand the architecture, recognize the 
architectural parameters that were used, know the implications of these architectural parame-
ters with respect to quality attributes, and then compare these implications to the requirements 
for the system. A further problem is that the documentation for both the requirements and the 
architecture are often incomplete with respect to the needs of an evaluation.

Since an architecture evaluation is intended to be performed on an architecture and not on an 
existing system, the output is, inherently, imprecise. The results of an architecture evaluation, 
then, are used as an indication to the architect of problem areas in the architecture and as a risk 
reduction mechanism by management. The problem areas identified, in ATAM are called “sen-
sitivity points” and “tradeoff points.” A sensitivity point is a collection of components in the 
architecture that are critical for the achievement of a particular quality attribute. A tradeoff 
point is a sensitivity point that is critical for the achievement of multiple attributes.

Given the problems enumerated, ATAM uses the following elements to determine the sensitiv-
ity and tradeoff points:

• Quality scenarios (both expected and unexpected) are used as a manifestation of the qual-
ity attribute requirements.

• Stakeholders are used as the generators of the quality scenarios.

• Quality scenarios and use cases are used as an elicitation technique for the architecture.

• The architect is used as the interpreter of the quality scenarios and the use cases.

• Quality attribute taxonomies are used to provide the evaluators with a catalog of architec-
tural parameters and the appropriate stimuli.

An ATAM is typically planned to take three full days where each day consists, in some mea-
sure, of 

• scenario elicitation

• architecture elicitation 

• mapping of scenarios onto the architecture representation 

• analysis



22 CMU/SEI-99-TR-007

During days 1 and 2, there is more emphasis on the early steps of the method (scenario elicita-
tion, architecture elicitation, and scenario mapping). During days 2 and 3, there is more 
emphasis on the later steps of the method (model building and analysis, sensitivity point iden-
tification, tradeoff point identification). Graphically, we see the relationship of the three activ-
ities with respect to time as shown in Figure 5-2. 

In Figure 5-2, the width of the polygon at each activity shows the amount of anticipated activ-
ity within that activity at that time (i.e. on day 1 we expect relatively little analysis to take 
place, and on day 3 we expect most of the activity to be taken up with scenario mapping and 
analysis).

5.3 The Steps of the ATAM
The steps of the ATAM are presented in Section 5.3.1 and Section 5.3.2. These steps are 
divided into three days of activities but the division is not a hard-and-fast one. Sometimes 
there must be dynamic modifications to the schedule to accommodate the availability of per-
sonnel or architectural information. 

The ATAM is not a waterfall process. There will be times when an analyst will return briefly to 
an earlier step, jump forward to a later step, or iterate among steps, as the need dictates. The 
importance of the steps is to clearly delineate the activities involved in ATAM along with the 
outputs of these activities. What is more important than the particulars of the schedule is the 
set of dependencies among the outputs of the steps, as indicated in Figure 5-3.

Scenario elicitation

Architecture elicitation
& scenario mapping

Analysis

time

Figure 5-2: The Activities of ATAM and Their Relative Importance Over Time
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5.3.1 Day 1 Activities

On day 1, the ATAM team meets the team being evaluated, perhaps for the first time. This 
meeting has two concerns: the organization of the rest of the analysis activities and informa-
tion collection. Organizationally, the manager of the team being evaluated needs to make sure 
that the right people attend the meetings, that the people are prepared, and that they come with 
the right attitude (i.e., a spirit of non-adversarial teamwork). The information-collection aspect 
of day 1 is meant to ensure that the architecture can truly be evaluated, meaning that it is rep-
resented in sufficient detail. Also, some initial scenario collection and analysis may be done on 
day 1, as a way of understanding the architecture, understanding what information needs to be 
collected and represented, and understanding what it means to generate scenarios. The follow-
ing steps take place on day 1.

Step 1 - Lead evaluator presents ATAM. In this step the ATAM is presented to the 
assembled stakeholders (typically managers, customer representatives, and architects). This 
step sets the context and expectations for the remainder of the activities.

Step 2 - Manager/Customer presents system overview. The system to be evaluated 
needs to be understood by all participants in the evaluation. This understanding has several 
facets. The system itself must be presented, initially at a high level of abstraction. This presen-
tation typically describes the system’s major functions, requirements, constraints, business 

Figure 5-3: Dependencies Among ATAM Outputs
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goals, and context. Also, when describing the system, all of the system’s stakeholders need to 
be identified, so that they can be invited to contribute to later steps of the ATAM.

Step 3 - Architect describes important attribute-specific requirements. The archi-
tect needs to explain the driving architectural requirements, in terms of performance, modifi-
ability, security, reliability, and so forth. These attribute-specific requirements shape the 
architecture, much more than its functional requirements.

Step 4 - Architect presents architecture. The architecture is presented in as much detail 
as is currently documented. This is an important step, as the amount of architectural informa-
tion available and documented will directly affect the analysis that is possible, and its quality. 
Frequently the evaluator will have to specify additional architectural information that must be 
collected and documented before proceeding to days 2 and 3 of the ATAM.

Step 5 - Architect presents attribute-specific architectural approaches. For each 
of the attribute-specific requirements presented in Step 3, the architect presents the architec-
tural approach that is intended to meet the requirement. These approaches will be important to 
analyze in days 2 and 3, since they represent the major architectural decisions intended to meet 
the major quality-attribute requirements.

Step 6 - Evaluator elicits “seed” use cases and scenarios. Scenarios are the motor 
that drives the ATAM. Generating a set of “seed” scenarios (and use cases) has proven to 
greatly facilitate discussion and brainstorming during days 2 and 3, when greater numbers of 
stakeholders are gathered to participate in the ATAM. These “seed” scenarios serve as models 
to the stakeholders by defining the nature and scope of appropriate scenarios for evaluation.

Step 7 - Architect maps seed use cases onto architecture. In this step, the architect 
walks through a selected set of the seed use cases and scenarios, showing how each affects the 
architecture (e.g., for modifiability) and how the architecture responds to it (e.g., for quality 
attributes such as performance, security, and availability).

Step 8 - Evaluators build initial skeleton analysis. As a result of presenting attribute-
specific architectural approaches and mapping seed scenarios and use cases on to the architec-
ture, the evaluators should now be able to build initial models of each important quality 
attribute. These will likely not be formal models at this point, but rather informal models. For 
example, informal models will include the known strengths and weaknesses of a particular 
approach and sets of questions that help identify these strengths and weaknesses. Such models 
will guide the evaluators in the later stages of the ATAM in probing for more precise and 
detailed information.

Step 9 - Evaluators determine action items. A number of needs have typically become 
evident at this point in the evaluation. For example, as stated above, the architectural docu-
mentation is often insufficient to support a complete evaluation and this must be remedied as 
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an action item. A set of stakeholders must be contacted and meeting dates for days 2 and 3 
must be determined. In addition, any action item may become a go/no-go decision for the con-
tinuation of the ATAM. 

5.3.2 Day 2 Activities

During day 2, the main analysis activities begin. At this point, it is assumed that the architec-
ture has been documented in sufficient detail to support analysis, that the appropriate stake-
holders have been gathered and have been given advanced reading materials so that they know 
what to expect from the ATAM, and that the seed scenarios have been collected and distributed 
to the stakeholders. The following steps take place on day 2.

Step 1 - Lead evaluator presents ATAM. Since there will be a different set of stakehold-
ers attending day 2, and since a number of days or weeks may have transpired between days 1 
and 2, it is useful to recap the steps of the ATAM, so that all attendees have the same under-
standing and expectations of the day’s activities.

Step 2 - Evaluators brainstorm scenarios/use cases with stakeholders. The stake-
holders now undertake two related activities: brainstorming use cases (representing the ways 
in which the stakeholders expect the system to be used) and scenarios (representing the ways 
in which the stakeholders expect the system to change in the future). The scenarios are further 
subdivided into two categories: growth scenarios and exploratory scenarios. Growth scenarios 
represent ways in which the architecture is expected to accommodate growth and change: 
expected modifications, changes in performance or availability, porting to other platforms, 
integration with other software, and so forth. Exploratory scenarios, on the other hand, repre-
sent extreme forms of growth: ways in which the architecture might be stressed by changes, 
dramatic new performance or availability requirements (order of magnitude changes, for 
example), major changes in the infrastructure or mission of the system, and so forth. Growth 
scenarios are a way of showing the strengths and weaknesses of the architecture with respect 
to anticipated forces on the system. Exploratory scenarios are an attempt to find sensitivity 
points and tradeoff points. Identifying these points helps us assess the limits of the system with 
respect to the models of quality attributes that we build.

The seed scenarios created in day 1 help facilitate this step by providing stakeholders with 
examples of relevant scenarios.

Step 3 - Evaluators prioritize scenarios/use cases with stakeholders. Once the use 
cases and scenarios have been collected, they must be prioritized. We prioritize each category 
of use case/scenario separately. We typically do this via a voting procedure where each stake-
holder is allocated a number of votes equal to 30% of the number of scenarios within the cate-
gory, rounded up. So, for instance, if there were 18 use cases collected, each stakeholder 
would be given 6 votes. These votes can be allocated in any way that the stakeholder sees fit: 
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all 6 votes allocated to 1 scenario, 2 votes to each of 3 scenarios, 1 vote to each of 6 scenarios, 
etc. This can be an open or a secret balloting procedure. Once the votes have been made, they 
are tallied, and the use cases and scenarios are prioritized by category. A cutoff is typically 
made that separates the high-priority use cases from the lower ones, and only the high-priority 
ones are considered in future evaluation steps. For example, a team might only consider the 
top 5 use cases.

Step 4 - Architect maps important use cases onto architecture. The architect, con-
sidering each high-priority use case in turn, maps the use cases onto the architecture. In map-
ping these use cases, the architect walks through the actions that the use case initiates, 
highlighting the areas of the architecture that participate in realizing the use case. This infor-
mation can be documented as a set of components and connectors, but it should also be docu-
mented with a pictorial representation that shows the flow of responsibility among the 
components and connectors. The choice of which documentation vehicle to use depends in 
part on the granularity of information required, the perceived risk implied by the scenario, and 
the stage of the architecture’s development. For a mature project and/or high-risk project, it 
may be possible and important to trace through behavior diagrams. For a less mature or less 
risky project, use case maps might be appropriate. The evaluators can use this walkthrough of 
the use case to ask attribute-specific questions (such as performance or reliability questions) 
and to annotate the architectural representation. In doing so, the evaluators will record a set of 
issues, sensitivity points, and trade-off points.

Step 5 - Architect maps important growth scenarios onto architecture. As with 
step 4, the architect considers each high-priority growth scenario in turn and maps each of 
these onto the architecture. Since growth scenarios imply a change to the system, the architect 
identifies all changed components and connectors. In addition to understanding and document-
ing the modifications to the system, the evaluators probe for the issues, sensitivities, and 
tradeoffs uncovered by this scenario since they affect quality attributes such as performance, 
security, and reliability.

Step 6 - Evaluators build skeleton analyses of each quality attribute. Using a set 
of organization-wide screening questions and qualitative analysis heuristics, the evaluators are 
now in a position to begin building more complete models of each quality attribute under scru-
tiny. Building a model of even a single quality attribute can be a daunting task in a complex 
system; there is simply too much information to assimilate. Our solution to this information 
overload problem is to use screening questions and qualitative analysis heuristics. The screen-
ing questions serve to limit the portion of the architecture under scrutiny. The qualitative anal-
ysis heuristics suggest questions for the evaluator to ask of the architect that help in identifying 
common architectural problems. If these questions do uncover potential problems, then the 
analyst can begin to build a more comprehensive model of the quality-attribute aspect under 
scrutiny.
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5.3.3 Day 3 Activities

Step 1 - Brainstorm exploratory scenarios with selected stakeholders. As was 
done on day 2, day 3 begins with the brainstorming of scenarios, in this case exploratory sce-
narios. The difference here is that the stakeholder group on the third day has now been pared 
down to just the lead architects and key developers. These scenarios, as with all scenario 
brainstorming, are examined in light of the quality attributes that they cover (to ensure that all 
important attributes are represented fairly) and the stakeholders whose concerns they address.

Step 2 - Prioritize exploratory scenarios. As was done on day 2, we then prioritize the 
newly captured exploratory scenarios. This setting of priorities can proceed exactly as it did on 
day 2 (if the group of stakeholders is of moderate size), or it can be done informally if the 
stakeholder group is small (say, fewer than six). 

Step 3 - Map important exploratory scenarios onto relevant architectural views. 
The highest priority scenarios are now mapped onto the relevant architectural view or views, 
as on day 2. Once again, attribute-specific questions will be asked during this mapping pro-
cess, and the answers will be recorded in the appropriate documentation template.

Step 4 - Build the analyses using screening questions and qualitative analysis 
heuristics. The skeleton analyses that were created on day 2 are further fleshed out during 
this stage. Once again, we need to use the screening questions and qualitative analysis heuris-
tics to limit the scope of the investigation. However, building on the models from day 2, we 
can begin to explore areas that appear to be potential locales of issues, sensitivities, and global 
tradeoffs.

Step 5 - Debriefing. By the end of three days of analysis, the analysts have amassed a sub-
stantial amount of information on the system under scrutiny. The analysts have also begun to 
form models of the important quality attributes.

It should be noted that this has been just a brief sketch of the steps of the ATAM process. More 
details and examples can be found in [Kazman 99a].
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6 Realize the Architecture

When turning an architecture into code, all of the usual software engineering and project man-
agement considerations must be taken into account: doing detailed design, implementation, 
testing, configuration management, and so forth. One thing that is specific, however, to archi-
tecture-based development is the structure of the organization. In particular, the organizational 
structure of the development team must be easily mapped onto the software architecture, and 
vice versa. 

Conway eloquently expressed the necessity for this mapping over 30 years ago [Conway 68]:

Take any two nodes x and y of the system. Either they are joined by a branch or 
they are not. (That is, either they communicate with each other in some way 
meaningful to the operation of the system or they do not.) If there is a branch, 
then the two (not necessarily distinct) design groups X and Y which designed the 
two nodes must have negotiated and agreed upon an interface specification to 
permit communication between the two corresponding nodes of the design orga-
nization. If, on the other hand, there is no branch between x and y, then the sub-
systems do not communicate with each other, there was nothing for the two 
corresponding design groups to negotiate, and therefore there is no branch 
between X and Y.

Conway was describing how to assess organizational structure (at least in terms of the pres-
ence or absence of communication paths) from the structure of a system. However, the rela-
tionship between organizational structure and system structure is bidirectional, and necessarily 
so.

The impact of an architecture upon the development organizational structure is clear. Once an 
architecture for the system under construction has been agreed upon, teams are allocated to 
work on the major components and a work breakdown structure is created that reflects those 
teams. Each team then creates its own internal work practices (or a system-wide set of prac-
tices is adopted). For large systems, the teams may belong to different subcontractors. The 
work practices will include items such as bulletin boards and Web pages for communication, 
file naming conventions for files, and the version control system that is adopted. All of these 
may be different from group to group, again especially for large systems. Furthermore, quality 
assurance and testing procedures will be set up for each group and each group will need to 
establish liaisons and coordinate with the other groups.
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So, the teams within an organization work on components. Within the team there needs to be 
high-bandwidth communications: a large amount of information in the form of detailed design 
decisions is being shared constantly. Between teams, low-bandwidth communications are suf-
ficient. (This is, of course, assuming that the system has been designed with appropriate sepa-
ration of concerns.) Systems of high complexity result when these design criteria are not met. 
In fact, team structure and controlling team interactions often turn out to be the largest single 
factor affecting a large project’s success. If interactions between the teams need to be complex, 
it means either that the interactions between the components they are creating are needlessly 
complex, or that the requirements for those components were not sufficiently “hardened” 
before development began. In this case, there is a need for high-bandwidth connections 
between teams, not just within teams, requiring substantial negotiations and often rework of 
components and their interfaces. Teams, like software systems, should strive for loose cou-
pling and high cohesion.
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7 Maintain the Architecture

We have now discussed how to design, document, analyze, and realize a software architecture, 
as well as its relationship to quality attributes. However, just having a software architecture is 
not the same as having an architecture that is well documented, well disseminated, or well 
maintained. If any of these activities are not done, then the architecture will inevitably drift 
from its original precepts. This is a risk; if the architecture drifts in multiple ways (because of 
changes by multiple developers) that are not mutually consistent, or which do not follow the 
original rationale for design decisions, then the achievement of quality attributes that had been 
so carefully designed and analyzed in the original system will be compromised. So, how can 
we ensure that the architecture of the as-designed system and the architecture of the as-built 
and as-maintained system remain congruent? 

Manually assessing the conformance of an architecture to its design is a dreary and error-prone 
task. So, one technique that has been gaining popularity over the past five years is to use tools 
to extract the architecture of the as-built system and check it for conformance to the as-
designed system. 

However, this technique, even with tool support, is not straightforward for several reasons:

• Software architectures are seldom documented in practice.

• When they are documented, they are often not maintained.

• When they are documented, the documentation is often ambiguous.

This last point is worth some attention. Many architectural constructs have no realization in 
the development artifacts that programmers actually create and maintain. Nowhere in the code 
and header files of a typical source repository will we find a layer, a subsystem, a functional 
grouping, or a class category. These concepts typically exist only within the minds of the 
architect and a select group of programmers, and their mapping to development artifacts is 
unclear. Hence, architectural reconstruction typically has an interpretive aspect, where the 
architect associates certain naming conventions, file or directory structures, or structural con-
straints with an architectural construct. For example, a layer might be realized as any function 
that directly accesses the database. A subsystem might be defined by all of the files in the IO 
directory, or by all subclasses of the PrimitiveOp class. Yet these abstractions are useful and 
we want to be able to support their existence and enforce their continued existence throughout 
a system’s lifetime.
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There are other reasons for wanting to extract the software architecture of an existing system 
than simply for redocumentation:

• An organization may want to reengineer an existing system so it needs to know what 
assets it is currently working with to plan the reengineering effort, or to decide that the 
existing assets are not worth reusing.

• An organization may want to mine its existing assets to form a reuse library or the core of 
a product line, so it needs to know what dependencies on those assets exist in the system.

• An organization may want to analyze its existing system with respect to its future pros-
pects, growth potential, suitability for integration with other systems, or scalability. For 
each of these analyses, an accurate representation of the architecture is a crucial prerequi-
site.

Tools, such as the Dali workbench [Kazman 99b] have been developed to aid an analyst in 
extracting information from an existing system. The extracted information can be wide rang-
ing in scope: its code, build files, execution traces, results of instrumentation, file structure, 
etc. The analyst then needs to work with the architect defining the patterns that describe such 
mappings. Typically, this is an iterative, interpretive process. The patterns are defined, applied 
to the extracted artifacts, and viewed by the architect, potentially resulting in a redefinition of 
the patterns. Once such patterns have been defined and suitably refined, they become the set of 
rules that define the architecture and against which the as-built architecture can be assessed for 
conformance. 

These rules are then typically applied to the extracted artifacts, and any remaining anomalies 
can be manually or automatically noted. Based upon the results of this extraction and conform-
ance activity, three possible outcomes may result: the documentation might be updated to 
reflect the reality of the existing code base; the code base may be brought into conformance 
with the architectural rules that have been explicitly defined (perhaps for the first time); or the 
anomalies might simply be recorded as anomalies with no further action for the time being. 
Whichever of these options is chosen, the result is increased understanding and hence intellec-
tual control over the system and its future uses. This activity is thus a crucial step in a com-
plete view of the architectural life cycle: the architecture must be documented and maintained 
just as any other system asset is maintained.

A complete discussion of architectural reverse engineering and conformance testing is beyond 
the scope of this report. For more information, the interested reader is encourage to investigate 
[Kazman 99b] and the references cited therein.
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8 Conclusions

In this report, we have discussed a set of steps for doing architecture-based development. This 
process differs from traditional development in that it concentrates on driving design and 
maintenance from the perspective of a software architecture. The motivation for this change of 
focus is that a software architecture is the placeholder for system qualities such as perfor-
mance, modifiability, security, and reliability. The architecture not only allows designers to 
maintain intellectual control over a large, complex system but also affects the development 
process itself, suggesting (even dictating) the assignment of work to teams, integration plans, 
testing plans, configuration management, and documentation. In short, the architecture is a 
blueprint for all activities in the software development life-cycle. As such, the development 
process surrounding software architecture needs to be scrutinized.
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