
User’s Guide
May 1991

CMU/SEI-91-UG-6

Serpent: C Application Developer’s Guide

User Interface Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings should not be construed as an official DoD position. It is published
in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

John Herman
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1991 Carnegie Mellon University

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer
of scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other
U.S.Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense
Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on
ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce,
Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

The Software Engineering Institute is not responsible for any
errors contained in these files or in their printed versions, nor
for any problems incurred by subsequent versions of this
documentation.

Table of Contents

1 Introduction 1
1.1 This Manual 1

 1.1.1 Organization 1
 1.1.2 Typographical Conventions 2

1.2 Other Serpent Documents 2

2 Overview 5
2.1 Serpent Architecture 5
2.2 Shared Database 7
2.3 Application Development 10

3 Specifying the Contract 13
3.1 Defining Shared Data 13
3.2 Data Types and Values 15
3.3 Initialization and Cleanup 18

4 Modifying Information 19
4.1 Sending Transactions 19
4.2 Adding Static Information 20
4.3 Adding Dynamic Information 22
4.4 Modifying Information 25
4.5 Removing Information 26

5 Retrieving Information 28
5.1 Retrieving Transactions 28
5.2 Incorporating Changes 29
5.3 Processing Dynamic Elements 30
5.4 Examining Changes by Component 32

6 Finishing the Application 34
6.1 Error Checking 34
6.2 Recording Transactions 34
6.3 Dialogue Initiated Exit 35
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) i

7 Testing and Debugging 37
7.1 Formatting Recordings 37
7.2 Playback 37

Appendix A Data Structures 39

Appendix B Routines 46

Appendix C Commands for Testing Serpent Applications and
Dialogues 73

Appendix D Spider Example 77

Index 83
ii Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

List of Figures

Figure 2-1 Serpent Architecture 6
Figure 2-2 Shared Database 8
Figure 2-3 Shared Data Instantiation 9
Figure 2-4 Spider Chart Display 11
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) iii

iv Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

List of Examples

Example 3-1 Spider Shared Data Definition File 14
Example 3-2 C Language Header File 14
Example 3-3 Shared Data Definition 15
Example 3-4 Generated C Structure 15
Example 3-5 Serpent Data Type 16
Example 3-6 Assigning Values to String Components 16
Example 3-7 Assigning Values to Integer, Boolean, Real or ID Components 16
Example 3-8 Buffer Structure 17
Example 3-9 Assigning Values to Buffer Components 17
Example 3-10 Setting Component Values to Undefined 17
Example 3-11 Serpent Initialization 18
Example 4-1 Sending Transactions 19
Example 4-2 Adding Information to the Shared Database 21
Example 4-3 Adding Information to the Shared Database 24
Example 4-4 Modifying Information in the Shared Database 26
Example 4-5 Removing Information from the Shared Database 26
Example 5-1 Transaction Processing 29
Example 5-2 Processing Changes to Shared Data Records (Simple Programs)

30
Example 5-3 Processing Changes to Shared Data Records (Large Systems) 31
Example 5-4 Processing Changes to Shared Data Records (Large Systems) 33
Example 6-1 Examining Status 34
Example 6-2 Recording Transactions 35
Example 6-3 Signal Handler for Dialogue Initiated Exit 36
Example 7-1 Formatting the Recording File 37
Example 7-2 Testing the Application 38
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) v

vi Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Introduction
1 Introduction
Serpent is a user interface management system (UIMS) that supports the development and
execution of a user interface of a software system. Serpent supports incremental
development of the user interface from the prototyping phase through production to
maintenance or sustaining engineering. Serpent encourages a separation of functionality
between the user interface functional portions of a software system. Serpent is also easily
extended to support additional user interface toolkits.

1.1 This Manual

This manual describes how to develop applications using Serpent. Readers are assumed to
have read and understood the concepts described in the Serpent Overview, as well as to
have had experience using the C programming language.

1.1.1 Organization

The contents of this guide include:

• Introduction and Overview. This chapter provides a general description of
the role of an application in a software system developed with Serpent. It also
describes a conceptual framework for application development.

• Specifying the Contract. This chapter describes the tasks necessary to define
the type, structure and values of data to be shared between an application
program and Serpent and to establish runtime communications with Serpent.

• Modifying Information. This chapter describes the tasks necessary to add,
modify or remove information to/from the Serpent shared database.

• Retrieving Information. This chapter describes the tasks necessary to define
and retrieve changes to information from the Serpent shared database.

• Finishing the Application. This chapter describes the finishing touches that
should be applied to the application, including error checking and exception
handling.

• Testing and Debugging. This chapter describes utilities available to assist in
the testing and debugging of the application.

• Appendix A: Data Structures. This appendix is a complete reference of all
the constants, types, routines, and other data structures available to Serpent
application developers using the C programming language.
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 1

Introduction
• Appendix B: Routines. This appendix is a complete reference of all the
routines available to Serpent application developers using the C programming
language.

• Appendix C: Commands for Testing Serpent Applications and Dialogues.
This appendix is a reference of commands available to Serpent application
developers from the operating system.

• Appendix D: Spider Example. This appendix is a complete application
example, developed in the C programming language.

1.1.2 Typographical Conventions
Code examples Courier typeface

Code directly related to text Bold, courier typeface

Variables, attributes, etc. Courier typeface

Syntax Courier typeface

Warnings and cautions Bold, italics

1.2 Other Serpent Documents

The purpose of this guide is to provide the information necessary to develop Serpent
applications. The following publications address other aspects of Serpent.

Serpent Overview

Introduces the Serpent system.

Serpent: System Guide

Describes installation procedures, specific input/output file descriptions for intermediate
sites, and other information necessary to set up a Serpent application.

Serpent: Saddle User’s Guide

Describes the language that is used to specify interfaces between an application and
Serpent.

Serpent: Dialogue Editor User’s Guide

Describes how to use the editor to develop and maintain a dialogue.
2 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Introduction
Serpent: Slang Reference Manual

Provides a complete reference to Slang, the language used to specify a dialogue.

Serpent: Ada Application Developer’s Guide

Describes how the application interacts with Serpent. This guide describes the runtime
interface library, which includes routines that manage such functions as timing, notification
of actions, and identification of specific instances of the data.

Serpent: Guide to Adding Toolkits

Describes how to add user interface toolkits, such as various Xt-based widget sets, to
Serpent or to an existing Serpent application. Currently, Serpent includes bindings to the
Athena Widget Set and the Motif Widget Set.
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 3

Introduction
The following figure shows Serpent documentation in relation to the Ser-
pent system:

Dialogue
Editor

Saddle
Processor

Slang
Compiler

Slang
Program

application
program

Transaction
Processing

Library
application

layer
I / O

Toolkits
presentation

layer
dialogue

layer

. .
 .

. .

. .
 .

. .

. .
 .

. .

. .
 .

. .

Saddle
User’s Guide

Serpent
 Overview

Serpent
 System
 Guide

Dialogue Editor
 User’s Guide

 Slang
 Reference
 Manual

 Guide to
 Adding Toolkits

 Application
 Developer’s
 Guide
4 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Overview
2 Overview
A main goal of Serpent is to encourage the separation of a software system into an
application portion and a user interface portion to provide the application developer with a
presentation-independent interface. The application portion consists of those components
of a software system that implement the “core” application functionality of a system. The
user interface portion consists of those components that implement an end-user dialogue.
A dialogue is a specification of the presentation of application information and end-user
interactions.

During the design stage, the system designer decides which functions belong in the
application component and which belong in the user interface component of the system.

2.1 Serpent Architecture

Serpent is implemented using a standard UIMS architecture. This architecture (see Figure
2-1) consists of three major layers: the presentation layer, the dialogue layer, and the
application layer. The three different layers of the standard architecture are viewed as
providing differing levels of end-user feedback.
Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7) 5

Overview
Figure 2-1 Serpent Architecture

The presentation layer consists of various input/output toolkits that have been incorporated
into Serpent. Input/output toolkits are existing hardware/software systems that perform
some level of generalized interaction with the end user. Serpent is being distributed with an
interface to the X Window System, Version 11. Other input/output toolkits can be
integrated with Serpent. See Serpent: Guide to Adding Toolkits for a discussion of how this
can be accomplished.

application
 layer interface

dialogue
manager dialogue

 Toolkits

dialogue layer

presentation layer

interface
6 Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

Overview
One way of viewing the three levels of the architecture is the level of functionality provided
for user input. The presentation layer is responsible for lexical functionality, the dialogue
layer for syntactic functionality, and the application layer for semantic functionality. In
terms of a menu example, the presentation layer has responsibility for determining which
menu item was selected and for presenting feedback that indicates which choice is currently
selected. The dialogue layer has responsibility for deciding whether another menu is
presented and presenting it, or whether the choice requires application action. The
application layer is responsible for implementing the command implied by the menu
selection.

The end user interface for a software system is specified formally as a dialogue. The
dialogue is executed by the dialogue manager at runtime in order to provide an end user
interface for a software system. The dialogue specifies both the presentation of application
information and end user interactions. The Serpent dialogue specification language (Slang)
allows dialogues to be arbitrarily complex.

The application provides the functional portion of the software system in a presentation-
independent manner. It may be developed in C, Ada, or other programming languages. The
application may be either a functional simulation for prototyping purposes or the actual
application in a delivered system. The actions of the application layer are based upon
knowledge of the specific problem domain.

2.2 Shared Database

Serpent provides an active database model for specifying the user interface portion of a
system. In an active database, multiple processes are allowed to update a database. Changes
to the database are then propagated to each user of the database. This active database model
is implemented in Serpent by a shared database that logically exists between the
application and I/O toolkits. The application can add, modify, query, or remove data from
the shared database. Information provided to Serpent by the application is available for
presentation to the end user. The application has no knowledge of the presentation media
or user interface styles used to present this information.

Information in the shared database may be updated by either the application or I/O toolkits.
Figure 2-2 illustrates the use of the shared database in Serpent.
Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7) 7

Overview
Figure 2-2 Shared Database

Serpent allows the specification of dependencies between elements in the shared database
in the dialogue. These dependencies define a mapping among application data,
presentation objects, and end user input. The dialogue manager enforces these
dependencies by operating on the information stored in the shared database until the
dependencies are met. Changes are then propagated to either the application or the I/O
toolkits as appropriate. See the Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) for
a further discussion.

The type and structure of information that can be maintained in the shared database is
defined externally in a shared data definition file. This corresponds to the database concept
of schemas. A shared data definition file is required for each application.

application
shared data

technology
shared data

local
 data

dialogue layer

Application

Athena Widget

Technology “Z”
8 Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

Overview
A shared data definition file consists of both aggregate and scalar data structures. Top-level
data structures become shared data elements that may be instantiated at runtime. Nested
data structures become components that are considered part of the shared data element.
Serpent does not allow nesting of records.

Figure 2-3 Shared Data Instantiation

It is possible to define multiple instances of a single shared data element. Shared data
elements are instantiated by specifying the element name. Each shared data instance is
identified by a unique ID. IDs must be maintained by the application to identify shared data
instances when multiple instances of a single shared data element exist. Figure 2-3 provides
an illustration of shared data instantiation.

Since the dialogue manager, the application, and any toolkits participating in a particular
execution of Serpent are separate system processes that use the shared database, they can
potentially modify the database concurrently, possibly compromising the integrity of the
database. This problem is solved in Serpent through the use of database concurrency
control techniques. Updates to the Serpent shared database are packaged in transactions.
Transactions are collections of updates to the shared database that are logically processed
at one time. Transactions can be started, committed, or aborted. A transaction which has
been started but neither committed nor aborted yet is said to be open. Multiple transactions
may be open at the same time. Committing a transaction causes the updates to be made to
the shared database. Aborting a transaction causes termination of the transaction without
any update of the shared database.

Shared Data Record Instantiation Shared Data Instances

employee:
name:

address:
phone:

end record;

record
string[50];
string[50];
string[13];

John Smith
101 Main Street
(212) 555-1234

Sue Scott
22 Park Avenue

Undefined

Harry Altair
64 Fifth Avenue
(212) 712-6873
Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7) 9

Overview
Communicating with Serpent

The application communicates with Serpent using the shared database model described
earlier in this document. Information added to shared data is available to be presented to the
end user by the dialogue. Changes to application data are automatically communicated
back to the application.

2.3 Application Development

The application, or non-user interface portion of the system, provides the “core”
functionality of a software system developed using Serpent. The application can be written
in Ada, C, or other programming languages and can be either a simulation or an actual
application.

An application may only add information to shared data or it may only retrieve information
from shared data. For example, an application that monitors and displays the status of a
computer network may only need to add information to shared data to update the display.
An application such as an automatic teller machine (ATM) might only need to retrieve data
from the user interface.

All transactions to and from the application are handled explicitly in the application using
the routines and data structures available in the Serpent application interface. This
document describes the usage and definitions of these routines and data structures.

Error Checking and Recovery

Each routine in Serpent sets status on exiting. It is the responsibility of the application
developer to check this status to perform appropriate error recovery. Serpent provides
routines to both check and print the status.

Testing and Debugging

Serpent provides a record/playback feature that can be used in testing and debugging.
Transactions between the application and dialogue manager or between the dialogue
manager and the various toolkits can be recorded, then played back at a later time. This is
useful in isolating problems or in performing regression/stress testing of an application,
dialogue, or toolkit.
10 Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

Overview
Spider Example

The spider application is an example of an application system developed using Serpent.
Figure 2-4 is an illustration of a “spider chart” display that is one possible end-user interface
for the application.

Adapted from a command and control application, the spider application monitors and
displays the status of various sensor sites and their associated communication lines to the
two correlation centers (Figure 2-4).

Figure 2-4 Spider Chart Display
Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7) 11

Overview
The columns of rectangular boxes on the right and left sides of the spider chart display (for
example, GS1, GS2) represent sensor sites. The rectangles in the middle of the display
represent the correlation centers that collect information from the sensors. Each sensor site
communicates with both correlation centers; this is represented by the duplication of sensor
site boxes on both the right and left sides of the display. The lines represent communication
lines between the sensor sites and the correlation centers. The status of sensors is
represented by the shading of the rectangles. On a color display, the status would be
represented using different background colors.

An operator may display detailed information concerning a sensor site by selecting a sensor
site box corresponding to that sensor. This causes a detailed window to appear, displaying
the status of the sensor, the date and time of the last message, the reason for outage (RFO)
and the estimated time to returned operation (ETRO). These fields may be modified by the
operator. Sensors may be in one of three states: operational, impaired, or down. For sensors
that are not fully operational (i.e., the status is yellow) the ETRO is displayed to the outside
of the sensor site box. ETROs are also displayed over communication lines that are not fully
operational. The operator may also dynamically reconfigure the network1 by adding/
deleting sensors to/from the network.

1The capability of dynamically reconfiguring the network does not exist in the spider chart example distributed
with Serpent Version 1.0.
12 Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

Specifying the Contract
3 Specifying the Contract
The first step in creating a software system using Serpent is to apportion system
functionality between the dialogue and the application. This involves creating a contract
between the two components: defining the type and structure of information to be
communicated, or shared, between the two components; establishing the range of values of
this data; and establishing runtime communication between the components.

3.1 Defining Shared Data
Shared data is information that is communicated or shared between the application and
dialogue. Defining shared data involves two steps:

1. Create the shared data definition file.

2. Run the created file through the Saddle processor.

The following is a brief description of each of these two steps. The Serpent: Saddle User’s
Guide contains a more complete description of both these steps.

Step 1: Create the shared data definition file. The shared data definition file defines the
type and structure of information that can be shared between the application and dialogue.
The shared data definition is specified in Saddle. By convention, the file is given the name
of the application, followed by the extension .sdd.

Example 3-1 is an example of a shared data definition file for the spider application. The
content of the shared data definition file is independent of the implementation language
used. Note that these shared data record templates contain only information to define the
application objects; they do not specify how the information is presented to the end user.

<< spiderA >>

spider: shared data

 sensor_sdd: record
 site_abbr: string[3];
 status: integer;
 site: string[32];
 last_message: string[8];
 rfo: buffer[32];
 etro: string[8];
 end record;

 cc_sdd: record
 name: string[3];
 status: integer;
 end record;

 communication line_sdd: record
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 13

Specifying the Contract
 from_sensor: id of sensor_sdd;
 to_cc: id of cc_sdd;
 etro: string[8];
 status: integer;
 end record;

end shared data;

Example 3-1 Spider Shared Data Definition File

The file shown in Example 3-1 contains definitions for the data shared between the
application and the dialogue for the spider application. The first line of the file contains the
name (and possible path information) of the executable image of the application. This
application is automatically executed by the Serpent command at runtime. (Serpent: System
Guide contains a complete explanation of this process.) The three shared data record
templates define the type and structure of the sensor, correlation center, and communication
line application objects.

Step 2: Run the created file through the Saddle processor. Once the shared data has been
defined in the file, it can be processed by Saddle to generate a C language header file. This
file will have the same name as the shared data definition file with a different extension.
For example, the shared data file spiderA.sdd will generate the header file spiderA.h.
This header file can then be included in the C application and used to declare local variables
of the shared data types. The C header file generated by running the shared data definition
file shown in Example 3-1 through the Saddle processor is illustrated in Example 3-2.

#define MAIL_BOX “sss_mailbox”
#define ILL_FILE “sss.ill”

 typdef struct {
 char site_abbr[4];
 int status;
 char site[33];
 char last_message[9];
 char rfo[33];
 char etro[9];
 } sensor_sdd;

 typedef struct {
 char name[4];
 int status;
 } cc_sdd;

 typedef struct {
 id_type from_sensor; /*ID of sensor */
 id_type to_cc; /*ID of correlation center */
 char etro[9];
 int status;
 } line_sdd;

Example 3-2 C Language Header File
14 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Specifying the Contract
In Example 3-2, the first two lines in the file define two well-known constants: MAIL_BOX
and ILL_FILE. These constants will be used in initializing Serpent. The three structures
correspond to the record templates defined within the shared data definition file.

3.2 Data Types and Values

One output of processing the shared data definition file through the Saddle processor is a C
header file containing corresponding C structures for the shared data records. These C
structures can be used to declare local variables that correspond in size and structure to
shared data records or used as casts. Components of shared data records can be declared as
any of the following types: boolean, integer, real, string, ID or buffer. The C structures
generated from these declarations depend on the type of the components. Example 3-3 is
unrelated to the spider example used throughout this guide but includes a description of a
shared data record that contains an example of each type of component.

employee_sdd: record
 name: string[32];
 salary: integer;
 exempt: boolean;
 experience: real;
 job_desc: buffer;
 self: id of employee_sdd;
end record;

Example 3-3 Shared Data Definition

Example 3-4 shows the C structure that is generated when the employee_sdd record is
processed by Saddle processor.

typedef struct {
 char name[33];
 int salary;
boolean exempt;
double experience;
 buffer job_desc;
 id_type self;
} employee_sdd;

Example 3-4 Generated C Structure

Although each shared data component is now represented using a C language specific type,
there is still a Serpent data type associated with each of them. The Serpent data type can be
determined at runtime using the get_shared_data_type function illustrated in Example
3-5. The serpent_data_type is an enumeration of the different Serpent data types and
is defined in Appendix A.
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 15

Specifying the Contract
serpent_data_type type;
/*
** Get the Serpent type of the employee record salary
** component.
*/
 type = get_shared_data_type(“employee”, “salary”);

Example 3-5 Serpent Data Type

Shared data values specified as strings in the shared data definition file are represented by
character arrays in the C header files generated by the Saddle processor. It is therefore not
necessary to allocate heap memory for these strings, although it is necessary to use the Unix
strcpy function (see Example 3-6) or a similar utility to copy data into the character array.

/*
** Declare a local shared data variable.
*/
 employee_sdd employee;
/*
** Use strcpy to assign a string value.
*/
 strcpy (employee.name, “Harry Alter”);

Example 3-6 Assigning Values to String Components

Shared data components of type integer, boolean, real, or ID can be assigned directly to C
language variables. IDs are returned from a number of Serpent routines and are id_type.
Saddle integers and booleans are actually of C type int and Saddle reals are actually of C
type double. (See Example 3-7.)

#define false 0
#define true 1

/*
** Integer, boolean, real or id components can be set
** directly.
*/
 employee.salary = 45000;
 employee.exempt = false;
 employee.salary = 3.2;

Example 3-7 Assigning Values to Integer, Boolean, Real or ID Components

Buffer is the only dynamic shared data type in that neither the size nor the type of the
information is predefined. Example 3-8 describes the buffer structure. Buffer type is
required and specifies the type of information stored in the buffer. Buffer length is the size
in bytes of the data and is required even if the data is of a well known type (i.e., integer).
Buffer body is a pointer to the actual data. The space used to maintain this data is not part
of the buffer structure and must be managed by the user.
16 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Specifying the Contract
typedef struct {
 serpent_data_types type;
 int length;
 caddr_t body;
} buffer;

Example 3-8 Buffer Structure

Buffers can be used to:

• Share untyped, contiguous data.

• Share large amounts of contiguous data (i.e., large strings).

• Provide variant records.

Example 3-9 contains the example of the employee.site buffer being used as a string.

/*
** This buffer is being used as a string.
*/
 employee.job_desc.type = serpent_string;
 employee.job_desc.length = strlen(“Look busy”)+ 1;
 employee.job_desc.body = malloc(employee.job_desc.length);
 strcpy(employee.job_desc.body, “Look busy”);

Example 3-9 Assigning Values to Buffer Components

Shared data values can also be undefined. All uninitialized components of a shared data
record instance created using the add_shared_data function are initialized by Serpent to
be undefined. On the other hand, components of a local, shared data variable have whatever
values are left by the system—most likely zeros. If this structure is used to initialize the
shared data instance (with the add_shared_data or put_shared_data routines), all the
components of the instance are initialized with these values. Components of local, shared
data variables can be explicitly set to undefined using the set_undefined routine
illustrated in Example 3-10. The is_undefined function can be used to determine if a
component value is undefined.

/*
** The set_undefined function is used to set the value of
** a component to undefined.
*/
 set_undefined(serpent_buffer, &employee.job_desc);

Example 3-10 Setting Component Values to Undefined
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 17

Specifying the Contract
3.3 Initialization and Cleanup

The first task of any Serpent application is to initialize the system. Serpent initialization
establishes communication between the application and the dialogue. The final application
task is to clean up the Serpent system environment before exiting. The code segment from
the spider application shown in Example 3-11 illustrates the basic operations necessary for
Serpent initialization and cleanup.

#include “serpent.h” /* serpent interface definition */

main() {
 serpent_init(MAIL_BOX,ILL_FILE);
 serpent_cleanup();
}

Example 3-11 Serpent Initialization

Specification Steps:
1. Include Serpent header file. The serpent.h file contains the external

definition for the Serpent interface.

2. Initialize Serpent. The serpent_init procedure is used to initialize
Serpent. It takes as parameters the MAIL_BOX and ILL_FILE constants
generated by the Saddle processor. This procedure establishes communication
between the application and the dialogue manager.

3. Clean up. The serpent_cleanup routine must be invoked before exiting
the application. It is important to complete this step to release allocated system
resources.
18 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Modifying Information
4 Modifying Information
The application can add, change, or remove information to and from the shared database
using the transaction mechanism described in the introductory chapter of this document.
Together, these are considered modifications to the shared database. The collection of
application data in the shared database is known as the view. This is the information that is
available to the dialogue writer to be presented to the end user. The view can be modified
by either the application or the dialogue.

4.1 Sending Transactions

Before information can be modified in the shared database, it is necessary to start a
transaction. All modifications to the shared database must be performed as part of a
transaction.

It is possible to have multiple transactions open at one time. Each transaction has a unique
transaction handle. Every operation performed on or to a transaction must specify this
transaction handle.

The actual change to the shared database does not occur until the transaction is committed.
Up to this point it is also possible to roll back the transaction so that none of the changes to
shared data occur.

The code segment from the spider application in Example 4-1 shows the operations
necessary for sending transactions. Code and comments directly related to the task are
emphasized in bold type.

#include “serpent.h” /* serpent interface definition */

main() {
 transaction_type transaction; /* transaction handle */

 serpent_init(MAIL_BOX,ILL_FILE);
 transaction = start_transaction();
 commit_transaction(transaction);
 serpent_cleanup();
}

Example 4-1 Sending Transactions

Specification Steps:
1. Declare transaction variable. A local variable of transaction_type can

be used to maintain a transaction handle.
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 19

Modifying Information
2. Start a transaction. The start_transaction function returns a transaction
handle that must be passed to any subsequent commands operating on the
transaction.

3. Commit the transaction. The actual change to shared data does not occur until
the transaction is committed. Up to this point it is also possible to roll back the
transaction using the rollback_transaction routine so that none of the
changes to shared data occur.

4.2 Adding Static Information

This section makes some simplifying assumptions about the application that may in fact
hold true for simple programs. The primary assumption is that the application will create
only a fixed number of shared data instances so that the IDs of these instances can be
maintained in local variables. A secondary assumption is that the application will create no
more than one instance of each shared data element.

At any given moment, there can be up to three different versions of any given shared data
instance. First, there is a local copy in the application. Second, there can be a copy that is
part of an open transaction. Third, there is a copy in the shared database. Depending upon
whether the shared data instance has been last modified by the application or by the end-
user, the more current copy could be either the local application or shared database copy.
A shared data instance that is part of an open transaction is the delta from the more current
to less current copy of the shared data instance. The shared data copy being affected by any
given operation should be apparent from the context.

Variables of generated shared data types are referred to as shared data variables. The first
step in adding information to shared data is to assign values to these shared data variables.
The method for doing this is based on the Serpent types of the components and is explained
in detail in Section 3.2. These variables can then be used to initialize a record instance,
either a component at a time or the entire record at once.

Once a transaction has been started, you can begin to add, change or remove information
to/from the shared database as part of this transaction. These changes are made as part of
the transaction and are not applied to the shared database until the transaction is committed.
20 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Modifying Information
The code segment from the spider application in Example 4-2 illustrates the operations
involved in adding information to the shared database. Code and comments directly related
to the task are emphasized in bold type.

#include “serpent.h” /* serpent interface definition */
#include “spiderA.h” /* application data structures */
#define GREEN_STATUS 0
#define YELLOW_STATUS 1
#define RED_STATUS 2

main() {
 transaction_type transaction; /* transaction handle */
 cc_sdd cmc; /* shared data variables */
 sensor_sdd gs1; /* shared data variables */
 id_type cmc_id,gs1_id; /* object instances */

 serpent_init(MAIL_BOX,ILL_FILE);
/*
** Initialize shared data variables.
*/
 strcpy(cmc.name, “CMC”);
 cmc.status = GREEN_STATUS;

 gs1.status = RED_STATUS;
/*
** Start a transaction to be sent to the dialogue.
*/
 transaction = start_transaction();
/*
** Create an instance of the correlation center shared data
** record in the transaction and initialize using the shared
** data variable.
*/
 cmc_id = add_shared_data(
 transaction,“correlation_center”, NULL, &cmc
);
/*
** Create an instance of the sensor shared data record but
** this time update only the name component.
*/
 gs1_id = add_shared_data(
 transaction,“sensor”, “name”, &gs1.name
);

 commit_transaction(transaction);

 serpent_cleanup();
}

Example 4-2 Adding Information to the Shared Database

Specification Steps:
1. Include Saddle generated header file. This file (spiderA.h in the example)

defines the structure of the shared data. The file serpent.h must be included
before spiderA.h because spidera.h uses types defined in serpent.h.
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 21

Modifying Information
2. Define constants. The spider example contains three constants:
GREEN_STATUS, YELLOW_STATUS, and RED_STATUS. These constants are
not required but help increase the clarity of the example.

3. Define shared data variables. Variables cmc and gs1 are both instances of
generated shared data structures. These variables are used to initialize
instances of shared data in the shared database.

The variables cmc_id and gs1_id are used to store the ids of the created
shared data instances. These variables are declared to be of id_type. The ids
are necessary to perform further operations on these instances in the shared
database.

4. Assign values to shared data variables. The mechanism for accomplishing this
task depends on the component types. This is explained in detail in Section 3.2.

5. Add information to the shared database. The add_shared_data routine
creates a shared data instance as part of the specified transaction and returns
the ID of the instance. The routine allows you to initialize a single component
of the instance by specifying the name of the component and providing a
pointer to the initial value. Any uninitialized fields of the instance are left
undefined. It is also possible to initialize the entire instance by providing a
pointer to the structure and specifying NULL for the component name.

4.3 Adding Dynamic Information

In larger, more complex software systems it is not always practical to declare a fixed
collection of variables to represent data. The management of dynamically created data
structures is often radically different from that of static variables. The purpose of this
section is to reexamine how the application can create and manage shared data in this more
complex environment. To do this, the spider chart example has been modified to display n
sensors, where n is defined in an external file along with the sensor data.

The code segment from the spider application in Example 4-3 illustrates the operations
involved in adding dynamic information to the shared database. Code and comments
directly related to the task are emphasized in bold type.

#include “serpent.h” /* serpent interface definition */
#include “spiderA.h” /* application data structures */

main() {
 transaction_type transaction;
 HASH id_table;/* hash of id’s of all shared data in view */
 sensor_sdd *sensor;

 FILE *fp; /* file pointer to the data file */
 int i = 0; /* counter used for loading sensors */
 int sensor_count; /* number of sensors */
22 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Modifying Information

 serpent_init(MAIL_BOX,ILL_FILE);
/*
** Create an id hashtable. This table contains the ids of
** all the shared data instances in the shared database at
** any given time.
*/
 id_table = make_hashtable(
 MAX_HASH, sss_hash_id, sss_match_id
);
/*
** Start a transaction.
*/
 transaction = start_transaction();
/*
** Sensor data is stored in an external file.
*/
 fp = fopen(“sdata”, “r”);
/*
** The first field in the file contains the number of sensors.
*/
 fscanf(fp, “%d”, &sensor_count);
/*
** Read in each sensor and put into shared data.
*/
 i = 0;
 while (i++ < sensor_count) {/* while sensor’s left */
/*
** Create shared data record instance.
*/
 sensor = (sensor_sdd *)make_node(sizeof(sensor_sdd));
/*
** Read in sensor data into shared data record instance.
** Note: ‘&’ address operators are omitted from most
** components because they are arrays and are already passed
** by reference.
*/
 fscanf(
 fp, “%s%d%s%s%s%s”,
 sensor->site_abbr,
 &sensor->status,
 sensor->site,
 sensor->last_message,
 sensor->rfo,
 sensor->etro
);
/*
** Put sensor into shared data.
*/
 sensor->self = add_shared_data(
 transaction, “sensor_sdd”, NULL, NULL
);

 put_shared_data(
 transaction,sensor->self, “sensor_sdd”, NULL, sensor
);
/*
** Add shared data instance to id table.
*/
 add_to_hashtable(id_table, sensor, sensor->self);

 } /* end while file not empty */
/*
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 23

Modifying Information
** Close the data file.
*/
 fclose(fp);
 commit_transaction(transaction);
 serpent_cleanup();
}

Example 4-3 Adding Information to the Shared Database

Specification Steps:
1. Add self component to shared data record templates. The self component is

used to store the ID of a shared data instance directly in the shared data
structure. This field of the structure is used in the example to identify the
particular shared data instance. The self component is of type id. To add this
component to the shared data record template, it is necessary to modify the
shared data definition file and then repeat the steps described in Section 3.1.

2. Include Saddle generated header file. The spiderA.h header file contains the
shared data structures for the spider example. This file must be included after
serpent.h since serpent_A.h uses types defined in this other file.

3. Define local variables. The next preliminary step is to define local variables.
The sensor variable declared in Example 4-4 is no longer an instance but a
pointer to the sensor_sdd structure. This variable will be used to reference
dynamically allocated local instances of the sensor structure.

The id_table variable is a hash table that is used to store and access local
instances of sensor data. The hash table has proven to be a very effective data
structure for accomplishing this since the lookup can be done using ID values,
which are unique. An implementation of hash tables, as well as other abstract
data structures, are included in the C-programmer’s toolkit that is distributed
with Serpent.

4. Create local data structures. A local shared data instance is created (allocated
from memory) for each sensor in the file. These instances are stored in a hash
table that must also be created.

5. Initialize local shared data instances. Each local shared data value must then
be initialized. In Example 4-4, this is accomplished by reading the data directly
into the sensor structure from the file.
24 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Modifying Information
6. Add information to the shared database. Once a transaction has been started
and the data initialized, information can be added to the shared database. In
Example 4-4, this is a two-step procedure. An uninitialized sensor instance is
created with the add_shared_data function. The resulting id is assigned to
the self component of the local shared data instance. The sensor instance is
then initialized using the put_shared_data procedure that behaves much
like the add_shared_data function but operates on an existing shared data
instance.

7. Update the local database. The last step is to add the local shared data instance
to the hash table using the ID of the shared data instance. This ID can later be
used as an identifier in updating changes to shared data in local data.

4.4 Modifying Information

Shared data instances in transactions or in the shared database can be modified using the
put_shared_data procedure. This procedure takes as a parameter the ID of the shared
data instance.

It is possible to modify any single component of a shared data record instance, or the entire
record. Unmodified components in the transaction are marked as unchanged and maintain
their current values. This is different from components that are explicitly set to undefined,
which is actually a value.

The code segment from the spider application in Example 4-4 illustrates the operations
involved in adding dynamic information to the shared database. Code and comments
directly related to the task are emphasized in bold type.

#include “serpent.h” /* serpent interface definition */
#include “spiderA.h” /* application data structures */

main() {
 transaction_type transaction;
 sensor_sdd gs1; /* shared data variables */
 id_type cmc_id,gs1_id; /* object instances */

 serpent_init(MAIL_BOX,ILL_FILE);
 transaction = start_transaction();
/*
** Update the name component of the sensor using a
** string constant.
*/
 put_shared_data(
 transaction, gs1_id, “sensor”, “status”, “GS1”
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 25

Modifying Information
);
 commit_transaction(transaction);
 serpent_cleanup();
}

Example 4-4 Modifying Information in the Shared Database

Specification Task

Modifying information in the shared database. The put_shared_data routine modifies
the values of shared data instances that have already been created and are part of a
transaction. This routine works in an identical manner to the add_shared_data call
except that it takes an extra parameter, the ID of the shared data instance to be modified.
The put_shared_data routine in Example 4-5 is used to assign a value (a string) to the
name component of the first shared data instance.

4.5 Removing Information

Shared data instances in transactions or in the shared database can be removed using the
remove_shared_data procedure. It is not possible to remove components of shared data
record instances.

The code segment from the spider application in Example 4-5 illustrates the operations
involved in removing information from the shared database. Code and comments directly
related to the task are emphasized in bold type.

#include “serpent.h” /* serpent interface definition */
#include “spiderA.h” /* application data structures */

main() {
 transaction_type transaction;
 sensor_sdd gs1; /* shared data variables */
 id_type cmc_id,gs1_id; /* object instances */

 serpent_init(MAIL_BOX,ILL_FILE);
 transaction = start_transaction();
/*
** Update the name component of the sensor using a
** string constant.
*/
 remove_shared_data(transaction, “sensor_sdd”, gs1_id);
 commit_transaction(transaction);
 serpent_cleanup();
}

Example 4-5 Removing Information from the Shared Database
26 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Modifying Information
Specification Task

Removing information from the shared database. The remove_shared_data procedure
is used to remove a shared data instance from either the transaction or the shared database.
The procedure takes a transaction handle, the element name, and the ID of the shared data
instance to be deleted as parameters.
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 27

Retrieving Information
5 Retrieving Information
Serpent implements an active database model from the perspective of the application
interface. This means that changes to application data resulting from end-user interactions
with the system are automatically communicated back to the application, using the same
transaction mechanism described in Section 4.3.

Transactions from the dialogue to the application consist of a list of changed shared data
instances. The following assumptions are true about incoming transactions:

• Incoming transactions are guaranteed to have at least one changed shared data
instance since empty transactions are automatically discarded by the interface.

• Changed shared data elements appear in random order in the transaction.

• Transactions remain unmodified in memory until the transaction is purged. This
allows the application developer, for example, to reexamine changed instances.

5.1 Retrieving Transactions

The code segment from the spider application shown in Example 5-3 illustrates the basic
operations of retrieving information from the shared database.

Specification Steps:
1. Get the transaction. The Serpent interface provides both synchronous and

asynchronous calls for getting information from the shared database. The
get_transaction routine waits until a transaction is available and then
returns a handle for this transaction. The get_transaction_no_wait
routine returns not_available when no transaction is available.

2. Get each changed shared data instance. The
get_first_changed_element routine returns the first changed shared data
element instance in the transaction and marks it as the current element. The
get_next_changed_element routine returns the element directly
following the current element and marks it as current. The null_id is returned
if there is no next element instance on the list.

3. Purge the transaction. Once the transaction has been fully processed, it
should be purged from the system. This frees system resources that could
otherwise run out.

Code and comments directly related to the task are emphasized in bold type.

28 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Retrieving Information
main() {
 boolean done = false;
 id_type id;
 transaction_type transaction;

 serpent_init(MAIL_BOX,ILL_FILE);

:
/*
** Retrieve information from shared database.
*/
 while (!done) {

 transaction = get_transaction()

 id = get_first_changed_element(transaction);
/*
** Get each changed instance in the transaction.
*/
 while (id != null_id) {
 id = get_next_changed_element(transaction);
 }

 purge_transaction(transaction);

 }

 return();
}

Example 5-1 Transaction Processing

5.2 Incorporating Changes

Changed element instances from the dialogue need to be processed for any changes in the
application domain to be affected. The Serpent application interface provides several
routines for the purpose of processing changed shared data elements.

This section makes some simplifying assumptions about the application that may in fact
hold true for simple programs. The primary assumption is that the application has created
only a fixed number of shared data instances so that the IDs of these instances can be
maintained as static, local variables. A secondary assumption is that the application has
created no more than one instance of each shared data record.

The code segment from the spider application in Example 5-2 illustrates the operations
involved in incorporating changes to shared data elements in static, local variables. Code
and comments directly related to the task are emphasized in bold type.

main() {

 id_type id;
 transaction_type transaction;
 string element_name;

:
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 29

Retrieving Information
 id = get_first_changed_element(transaction);
/*
** Get each changed record instance in the transaction.
*/
 while (id != null_id) {

 element_name = get_element_name(transaction, id);
/*
** If the record is a correlation center then this must
** be the cmc shared data variable.
*/
 if (strcmp(element_name, “cc_sdd”) == 0) {
 incorporate_changes(transaction, id, &cmc);
 }
/*
** Otherwise, this must be the gs1 variable.
*/
 else {
 incorporate_changes(transaction, id, &gs1);
 }

 id = get_next_changed_element(transaction);
 }

:
 return();
}

Example 5-2 Processing Changes to Shared Data Records (Simple Programs)

Specification Steps:
1. Get the element name. This is a simple call that returns a pointer to the element

name. For simple programs that have no more than one instance of a particular
shared data record, the element name can be used to identify the shared data
instance. In larger, more complex systems it is often useful in determining a
class of shared data instances.

2. Update local database. Shared data variables can be updated using the
incorporate_changes routine. This routine directly incorporates changes
in the shared data instance into the local variable. Components of the shared
data record that have not been changed are left untouched. By continually
incorporating changes into the initial shared data variable, the application
developer is guaranteed that application data remains consistent with user
input.

5.3 Processing Dynamic Elements

In larger systems, it is often necessary to dynamically create shared data records, or
instantiate multiple instances of a single shared data record. This section describes how
changed shared data record instances can be managed in these situations.
30 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Retrieving Information
In the dialogue, it is also possible to create, modify, or remove instances of application
shared data as a result of input from the end user. This is known as the change type. Each
shared data record instance in a transaction has an associated change type.

These steps are illustrated in Example 5-3 taken from the spider chart example. Code and
comments directly related to the task are emphasized in bold type.

main() {

 id_type id;
 transaction_type transaction;
 sensor_sdd *sensor;

 change_type change;

:
 id = get_first_changed_element(transaction);
/*
** Get each changed record instance in the transaction.
*/
 while (id != null_id) {

 change = get_change_type(transaction, id);
/*
** Update the local database based on the change type.
*/
 switch(change) {

 case create:
 sensor = get_shared_data(transaction, id, NULL);
 add_to_hashtable(id_table, sensor, id);
 break;

 case modify:
 sensor = get_from_hashtable(id_table, id);
 incorporate_changes(transaction, id, sensor);
 break;

 case remove:
 sensor = delete_from_hashtable(id_table, id);
 free(sensor);
 break;
 } /* end switch */

 id = get_next_changed_element(transaction);
 }

:
 return();
}

Example 5-3 Processing Changes to Shared Data Records (Large Systems)

Specification Steps:
1. Determine the change type. The change type can be obtained using the

get_change_type function.
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 31

Retrieving Information
2. Update the local database based on the change type. The exact type of
processing required to update the local database is based primarily on the
change type. If this is a new shared data element (e.g., the change type is
create) the get_shared_data function can be used to create a copy of the
record instance. The memory required for this copy is automatically allocated
from process memory using the make_node function provided in the C
Toolkit memoryPack utility distributed with Serpent. This copy can then be
added to the hash table.

If the change type is modify, the local shared data instance can be obtained from the hash
table. The incorporate_changes routine can then be used to update the contents of this
instance with changed component values.

If the shared data record instance in the shared database has been deleted, the application
developer may want to delete it from the local database as well. Memory allocated by the
get_shared_data function should be freed using the free_node procedure provided in
the C Toolkit memoryPack utility.

5.4 Examining Changes by Component

The Serpent application programmer’s interface provides routines that allow the
application developer to examine each changed component in a changed record
individually.

The operations are illustrated in Example 5-4, taken from the spider chart example. Code
and comments directly related to the task are emphasized in bold type.

main() {

 id_type id;
 transaction_type transaction;
 sensor_sdd sensor;
 string element_name;

 serpent_data_types type;
 id_type *id_data;
 string component_name;
 LIST changed_components;

:
 id = get_first_changed_element(transaction);
/*
** Get each changed record instance recording the transaction.
*/
 while (id != null_id) {

 changed_components = create_changed_component_list(
 transaction,id
);

32 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Retrieving Information
 loop_through_list(
 changed_components, component_name, string
) {

 type = get_shared_data_type(
 element_name, component_name
);
 if (type == serpent_id) {
 id_data = (id_type *)get_shared_data(
 transaction, id, component_name
);
 } /* endif id type */

 } /* end loop through list */

 free_list(changed_components, NOT_NODES);

 id = get_next_changed_element(transaction);
 }

:
 return();
}

Example 5-4 Processing Changes to Shared Data Records (Large Systems)

Specification Steps:
1. Get the list of changed components. A list of changed components can be

obtained by using the create_changed_component_list function.

2. Loop through the list. The listPack contained in the C toolkit distributed with
Serpent provides a number of routines that can be used for processing the
elements on a list.

3. Examine the type and/or data. The Serpent application programmer’s
interface provides routines to examine both the type and the data at the
component level. The get_shared_data_type returns a
serpent_data_type. The get_shared_data routine can also be used to
return the component value instead of the element instance value by specifying
the name of a component. Serpent automatically allocates the storage for the
component value but it is the application programmer’s responsibility to free
this storage (using the free_node procedure available in the C toolkit
memoryPack).

4. Destroy the changed component list. The changed component list can be
destroyed using the free_list routine from the C toolkit listPack.
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 33

Finishing the Application
6 Finishing the Application
Other than sending and retrieving data, the application can determine errors from the use of
Serpent, record communication between the application and Serpent and exit according to
a signal received from the dialogue.

6.1 Error Checking

Each routine in Serpent sets status on exit. It is good software engineering practice to check
status after every call to make sure that the routine has executed correctly, and provide
appropriate recovery actions if it has not. Example 6-1 illustrates the routines provided by
Serpent for examining the status.

transaction = start_transaction();
if(get_status() != ok) {
 print_status(“error during start_transaction”);
 serpent_cleanup();
}

Example 6-1 Examining Status

The first of these routines is get_status, which returns an enumeration of status codes.
Valid statuses returned by each routine in Serpent are defined in Appendix B. Successful
execution (or “OK”) is always set to zero; hence, it is possible to make a simple boolean
comparison for bad status.

The print_status routine prints a user-defined error message and the current status.

6.2 Recording Transactions

Transactions between the application and the dialogue can be recorded using the
start_recording and stop_recording procedures available in the Serpent
application programmers interface. After the call to start_recording is made,
transactions may be sent across the interface. Any number of transactions containing any
type or amount of data can be sent. Once start_recording has been called, all
transactions and associated data will be written to the specified file until the
stop_recording routine is invoked.

Transactions can be examined using the format command described in Section 7.1. This
is useful in debugging since it allows the examination of information flow across the
interface. Transactions can also be played back to simulate either application or dialogue
functionality using the playback command described in Section 7.2.
34 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Finishing the Application
Before testing the application or the dialogue, first record the transactions to be used in
testing. Example 6-2 illustrates the basic operations for recording transactions.

 transaction_type transaction;
:

/*
** Start recording.
*/
 start_recording(“recording”, “test data: 5.7.3");
/*
** Send test data.
*/
 transaction = start_transaction();

:
 commit_transaction(transaction);

 transaction = start_transaction();

:
 commit_transaction(transaction);

 transaction = start_transaction();

:
 commit_transaction(transaction);

/*
** Stop recording.
*/
 stop_recording();

:
}

Example 6-2 Recording Transactions

Specification Steps:
1. Start recording. The start_recording routine takes as parameters both the

name of the file in which to save the recording and a message to help identify
the recording.

2. Send transactions. After the call to start_recording is made, transactions
may be sent across the interface.

3. Stop recording. The stop_recording function closes the current recording
file.

6.3 Dialogue Initiated Exit

The dialogue can terminate at any time using the exit command available to the dialogue
specifier. The exit command sends a SIGINT signal to the application. This signal will
cause the application to exit immediately, unless a signal handler has been registered with
the operating system.
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 35

Finishing the Application
The signal handler describes the steps to be taken when the dialogue initiates an exit.
Typically, this involves saving data structures out to permanent storage and exiting the
system.

The code segment in Example 6-3 taken from the spider chart illustrates the operations
necessary to handle dialogue initiated exit. Code and comments directly related to the task
are emphasized in bold type.

#include <signal.h> /* UNIX signal handling */

void spider_signal_handler()
{
 serpent_cleanup();
 exit (0);
}

main ()
{
 signal(SIGINT, spider_signal_handler);

 serpent_init(MAIL_BOX, ILL_FILE);

:
 serpent_cleanup();
}

Example 6-3 Signal Handler for Dialogue Initiated Exit

Specification Steps:
1. Include Unix signal handling. The signal.h include file contains the

external definitions for signal processing.

2. Write the signal handler. The signal handler describes the steps to be taken
when the dialogue initiates an exit. Remember to invoke serpent_cleanup
before exiting.

3. Register the signal handler. The signal handler must be associated with the
SIGINT signal. This is accomplished using the Unix signal function.
36 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Testing and Debugging
7 Testing and Debugging
The recording capability discussed in Chapter 3 provides a mechanism to assist in testing
and debugging.

7.1 Formatting Recordings

Application recordings are saved in a binary format file. The format command distributed
with Serpent converts this file into a formatted, easy-to-read report. The information in the
file can be useful in isolating problems to either the application or the dialogue.

% format recording
FORMATTING JOURNAL FILE: recording

HEADER:
 dialogue name:
 message: no comment at this time
OWNER:
 ill file name: se.ill
 mailbox name: SE_BOX

PARTICIPANT:
 ill file name: se.ill
 mailbox name: DM_BOX

TRANSACTION:
 Fri Jan 25 15:17:13:800 1991
 Sender: SE_BOX
 Receiver: DM_BOX
 Element name: dialogue_sdd Change type: create ID: 955
 shared_data buffer UNDEFINED_BUFFER
 termination buffer UNDEFINED_BUFFER
 macros buffer UNDEFINED_BUFFER
 externs buffer UNDEFINED_BUFFER
 initialization buffer UNDEFINED_BUFFER
 count integer 0
 name string UNDEFINED_STRING
 prologue buffer UNDEFINED_BUFFER
%

Example 7-1 Formatting the Recording File
Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7) 37

Testing and Debugging
7.2 Playback

Once you have made a recording, it is possible play back the recording to simulate one or
more of the Serpent processes. To simulate the spider application, for example, you would
run the playback command provided with Serpent specifying the name of the recording
file and the mailbox of the process to be simulated, as illustrated in Example 7-2.

% app-test recording SPIDERA_BOX
Playing back journal file: recording
Message: regression test data, 5.7.3
Playback completed successfully
% _

Example 7-2 Testing the Application
38 Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

Data Structures
Appendix A Data Structures
This appendix presents in alphabetical order the type and constant definitions that are used
in the C language interface to the Serpent system. The following is a list and short
description of each of these types and constants. A more complete description immediately
follows:

Type/Constant Description
buffer used to define the structure of a shared data buffer
change_type defines the type of modification made for an element
id_type used to uniquely identify shared data elements
null_id defines the null value for the id_type
serpent_data_types an enumeration of defined Serpent data types
transaction_type used to define transaction handles
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 39

Data Structures
TYPE

buffer

Description The buffer type allows the communication of n bytes of application data
along with an indication of the type. Buffer is the only dynamic shared
data type in that neither the size nor the type of the information is predefined.
Buffers can be used to: share untyped, contiguous data; share large amounts
of contiguous data (i.e., large strings); provide variant records.

Definition typedef struct {

 int length;
 caddr_t body;
 serpent_data_type type;
} buffer;

Components length Size in bytes of the data. This field is required even
if the data is of a well known type (i.e., integer).

body A pointer to the actual data. The space used to
maintain this data is not part of the buffer structure
and must be managed by the user.

type The type of information stored in the buffer. This
field is also required.
40 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Data Structures
TYPE

change_type

Description The change_type defines the type of modification made for an element.

Definition typedef enum change_type {

 no_change = -1,

 create = 0,

 modify = 1,

 remove = 2,

 get = 3

} change_type;

Components no_change Not changed or invalid change.
remove Existing shared data instance removed.
create New shared data instance created.
modify Existing shared data instance modified.
remove Existing shared data instance removed.
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 41

Data Structures
TYPE

id_type

Description The id_type is used to uniquely identify shared data elements.

Definition typedef private id_type;
42 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Data Structures
CONSTANT

null_id

Description The null_id constant defines the null value for the id_type. This
constant can be used to test for null ID values.

Definition #define null_id(iid_id_type)-1
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 43

Data Structures
TYPE

serpent_data_type

Description The serpent_data_type type is an enumeration of defined Serpent data
types.

Definition typedef enum data_type {

 serpent_null_data_type =-1,

 serpent_boolean =0,

 serpent_integer =1,

 serpent_real =2,

 serpent_string =3,

 serpent_record =4,

 serpent_id =5,

 serpent_buffer =6,

 serpent_undefined =7

} serpent_data_type;
44 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Data Structures
TYPE

transaction_type

Description Variables of transaction_type are used to define transactions.
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 45

Routines
Appendix B Routines
This appendix presents in alphabetical order the functions and procedures that make up the
C language interface to Serpent. These routines can be categorized as follows:

Initialization/Cleanup
• serpent_init
• serpent_cleanup

Transaction Processing
• start_transaction
• commit_transaction
• rollback_transaction
• get_transaction
• get_transaction_no_wait
• purge_transaction

Sending and Retrieving Data
• add_shared_data
• put_shared_data
• remove_shared_data
• get_first_changed_element
• get_next_changed_element
• get_shared_data
• incorporate_changes
• create_changed_component_list
• get_change_type
• get_element_name
• get_shared_data_type

Undefined Values
• set_undefined
• is_undefined

Record/Playback
• start_recording
• stop_recording
46 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Routines
Checking Status
• get_status
• print_status
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 47

Routines
FUNCTION

add_shared_data

Description The add_shared_data routine creates an instance for the specified
shared data element and returns a unique ID. The shared data instance may or
may not be initialized.

Syntax id_type add_shared_data(

 /* transaction : in transaction_type */

 /* element_name : in string */

 /* component_name : in string */

 /* data : in caddr_t */

);

Parameters transaction The transaction for which this operation is defined.
element_name The name of the shared data element.
component_name The name of a specific component to be initialized

with the data, or null if the data corresponds to the
entire element.

data Data or null pointer if non-initialized.

Returns The ID of the newly created shared data instance.

Status ok, out_of_memory, null_element_name, overflow
48 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Routines
ROUTINE

commit_transaction

Description The commit_transaction procedure is used to commit a transaction to
the shared database.

Syntax void commit_transaction(

 /* transaction: in transaction_type */

);

Parameters transaction Existing transaction ID.

Status ok, out_of_memory, invalid_transaction_handle
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 49

Routines
FUNCTION

create_changed_component_list

Description The create_changed_component_list function accepts an instance
ID as a parameter and creates a list of changed component names. This
component list is managed using the C Toolkit listPack distributed with
Serpent.

Syntax LIST create_changed_component_list(

 /* id: in id_type */

);

Parameters id Existing data instance ID.

Returns The list of changed component names associated with a data instance, or
NULL if none.

Status ok, invalid_id, out_of_memory, element_not_a_record
50 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Routines
FUNCTION

get_change_type

Description The get_change_type function accepts an instance ID as a parameter
and returns the associated change type.

Syntax change_type get_change_type(

 /* id : in id_type */

);

Parameters id Existing shared data ID.

Returns Element name associated with the shared data instance ID.

Status ok, invalid_change_type,invalid_transaction_handle,

invalid_id
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 51

Routines
FUNCTION

get_element_name

Description The get_element_name function accepts an instance ID as a parameter
and returns the associated element name.

Syntax string get_element_name(

 /* id : in id_type */

);

Parameters id Existing shared data ID.

Returns Element name associated with the shared data instance ID.

Status ok, invalid_id
52 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Routines
FUNCTION

get_first_changed_element

Description The get_first_changed_element function used to get the ID of the
first changed element in a transaction.

Syntax id_type get_first_changed_element(

 /* transaction_type : in transaction */

);

Parameters transaction Existing transaction ID.

Returns The handle of the first changed element.

Status ok, invalid_transaction_handle, out_of_memory
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 53

Routines
FUNCTION

get_next_changed_element

Description The get_next_changed_element function is used to get the ID of the
next changed element on a transaction list or return null_id if the
transaction list is empty.

Syntax id_type get_next_changed_element(
 /* transaction_type : in transaction */
);

Parameters transaction Existing transaction ID.

Returns The handle of the next changed element.

Status ok, invalid_transaction_handle, out_of_memory
54 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Routines
FUNCTION

get_shared_data

Description The get_shared_data function allocates process memory, copies
shared data into process memory, and returns a pointer to the data.

Warning: Record components may not have been specified and,
therefore, would not contain valid data.

Syntax caddr_t get_shared_data(

 /* transaction : in transaction_type */

 /* id : in id_type */

 /* component_name : in string */

);

Parameters transaction Transaction in which to find the shared data ID.
id Existing shared data ID.
component_name Name of component for which to retrieve data, or

entire element if NULL.

Returns A pointer to changed data.

 Status ok, invalid_id, out_of_memory, incomplete_record
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 55

Routines
FUNCTION

get_shared_data_type

Description The get_shared_data_type function is used to get the type associated
with a shared data element.

Syntax serpent_data_types get_shared_data_type(

 /* element_name: in string */

 /* component_name: in string */

);

Parameters element_name The name of the shared data element.

component_name The name of the shared data component, or NULL.

Returns The type of the shared data element or record component.

Status ok, null_element_name
56 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Routines
FUNCTION

get_status

Description The get_status function returns the current system status.

Syntax isc_status get_status();

Parameters None.

Returns The current status.

Status None.
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 57

Routines
FUNCTION

get_transaction

Description The get_transaction function is used to synchronously retrieve the ID
for the next completed transaction.

Syntax transaction_type get_transaction();

Parameters None.

Returns The transaction ID for a completed transaction.

Status ok, system_operation_failed
58 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Routines
FUNCTION

get_transaction_no_wait

Description The get_transaction function is used to asynchronously retrieve the
ID for the next completed transaction.

Syntax transaction_type get_transaction_no_wait();

Parameters None.

Returns The transaction ID for a completed transaction.

Status ok, system_operation_failed, not_available
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 59

Routines
PROCEDURE

incorporate_changes

Description The incorporate_changes procedure is used to incorporate changes
into local process memory without destroying unchanged information.

Syntax void incorporate_changes(

 /* transaction : in transaction_type */

 /* id : in id_type */

 /* data : in out caddr_t */

);

Parameters transaction Existing transaction ID.
id Existing shared data ID.
data Pointer to the local data structure to be updated.

Status ok, invalid_id
60 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Routines
FUNCTION

is_undefined

Description The is_undefined function evaluates a data value of a specified type and
determines if the value is undefined. The is_undefined function cannot
be used with an entire shared data record at once.

Syntax boolean is_undefined(

 /* type : in serpent_data_type */

 /* data : in caddr_t */

);

Parameters type The type of the shared data component.
data Pointer to the value being examined.

Returns True if data is undefined; false otherwise.

Status ok, operation_undefined_type
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 61

Routines
PROCEDURE

print_status

Description The print_status procedure prints out a user-defined error message and
the current status.

Syntax void print_status(

 /* error_msg : in string */

);

Parameters error_msg User-defined error message.

Status None.
62 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Routines
PROCEDURE

purge_transaction

Description The purge_transaction procedure is used to remove a received
transaction once the contents of the transaction have been examined and acted
upon.

Syntax void purge_transaction(

 /* transaction : in transaction_type */

);

Parameters transaction Existing transaction ID.

Status ok, invalid_id, illegal_receiver
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 63

Routines
PROCEDURE

put_shared_data

Description The put_shared_data call is used to put information into shared data.

Syntax void put_shared_data(

 /* transaction : in transaction_type */

 /* id : in id_type */

 /* element_name : in string */

 /* component_name : in string */

 /* data : in caddr_t */

);

Parameters transaction The transaction to which the shared data should be
put.

id Shared data ID.
element_name The name of the shared data element.
component_name The name of the shared data component.
data Shared data.

Status ok, undefined_shared_data_type, null_element_name,

invalid_id
64 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Routines
PROCEDURE

remove_shared_data

Description The remove_shared_data procedure is used to remove a specified
shared data instance from the shared database.

Syntax void remove_shared_data(
 /* transaction : in transaction_type*/
 /* element_name : in string */
 /* id : in id_type */
);

Parameters transaction Transaction from which to remove the shared data
element.

element_name Name of element to be removed.
id Existing shared data ID.

Status ok, out_of_memory, null_element_name, invalid_id
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 65

Routines
PROCEDURE

rollback_transaction

 Description The rollback_transaction procedure is used to abort a given
transaction and to delete the associated transaction buffer.

Syntax void rollback_transaction(
 /* transaction : in transaction_type */
);

Parameters transaction Existing transaction ID.

Returns A handle to a newly-created element

Status ok, invalid_transaction_handle
66 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Routines
PROCEDURE

serpent_init

Description The serpent_init procedure performs necessary initialization of the
interface layer.

Syntax void serpent_init(
 /* mailbox : in string */
 /* ill_file : in string */
);

Parameters mailbox MAIL_BOX constant defined in Saddle-generated
include file.

ill_file ILL_FILE constant defined in Saddle-generated
include file.

Status ok, out_of_memory, null_mailbox_name,

null_ill_file_name, system_operation_failed
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 67

Routines
PROCEDURE

serpent_cleanup

Description The serpent_cleanup procedure performs necessary cleanup of the
interface layer.

Syntax void serpent_cleanup();

Parameters None.

Status ok
68 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Routines
PROCEDURE

set_undefined

Description The set_undefined procedure sets the value of the data pointed to by
value to undefined. The set_undefined procedure cannot be used with
an entire shared data record at once.

Syntax void set_undefined(

 /* type : in serpent_data_type */

 /* data : in caddr_t */

);

Parameters type The type of the shared data component.

data Pointer to the value being set to undefined.

Status ok, operation_undefined_type
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 69

Routines
PROCEDURE

start_recording

Description The start_recording procedure enables recording. Once
start_recording has been called, all transactions and associated data
will be saved out to the specified file until the stop_recording
procedure is invoked.

Syntax void start_recording(
 /* file_name : in string */
 /* message : in string */
);

 Parameters file_name File to which to write recording.

message Recording description.

Status ok, io_failure, already_recording
70 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Routines
FUNCTION

start_transaction

Description The start_transaction function is used to define the start of a series
of shared data modifications.

Syntax transaction_type start_transaction();

Parameters None.

Returns A unique transaction ID.

Status ok, out_of_memory, overflow
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 71

Routines
PROCEDURE

stop_recording

Description The stop_recording procedure causes the current recording to be
stopped.

Syntax void stop_recording();

 Parameters None.

Status ok, io_failure, invalid_process_record
72 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Commands for Testing Serpent Applications and Dialogues
Appendix C Commands for
Testing Serpent Applications and
Dialogues

This appendix contains definitions of commands provided with Serpent to assist in testing
Serpent applications and dialogues. The following is a list and short description of each of
these commands. A more complete description immediately follows:

Command Description
format converts a recording file into an easy-to-read report
playback used to play back a recording file
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 83

84 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Commands for Testing Serpent Applications and Dialogues

format
COMMAND

format

Description The format command converts a binary Serpent transaction log to a
formatted, easy-to-read report. The report is written to standards output.

Definition format recfile

Parameters recfile The transaction log to be converted.

Returns 0 ok
Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

playback
COMMAND

playback

Description The playback command can be used to reenact a session based on a
recording file.

Definition playback recfile host_mailbox correspondents

Parameters recfile The name of the file containing the recording to be
played back.

host_mailbox The mailbox for the process to be simulated.
correspondents List of correspondents (the default is “all”).

Returns 0 ok

1 dialogue not found
2 playback file not found
3 error during playback
86 Serpent: Ada Application Developer’s Guide (CMU/SEI-91-UG-7)

Spider Example
Appendix D Spider Example
/*--
----------*\
|
| Name: Spider Example
|
| Description:
| Creates a spider chart for two well known correlation
centers and n
| sensors defined in an external data file.
|
*---------------------- Copyright 1987 CMU ----------------
----------*/

#define memoryPack

#include <signal.h> /* UNIX signal handling */
#include <string.h> /* C string functions */
#include “serpent.h” /* serpent interface definition */
#include “hashPack.h”
#include “spiderA.h” /* application data structures */
#include “shared.h” /* defs shared with dialogue */

#define SDATA “sdata”
#define MAX_HASH 257

typedef struct {
 id_type self;
} generic_sdd;

boolean done = false; /* main loop condition */

/*--
----------*\
| Routine: sss_handle_interrupt
|
| Description:
| Routine to handle the interrupt signal. Very UNIX
specific.
*--
----------*/
void sss_handle_interrupt()
{
 fprintf(stderr, “spiderA.main interrupted. Exiting.\n”);
 fflush(stderr);
 serpent_cleanup();
 check_status(“sss_handle_interrupt:bad status from
serpent_cleanup.”);
 exit(0);
}

/*--
----------*\
| Routine: sss_match_id
|
| Description:
| Routine to compare an identifier with the id in a shared
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 77

Spider Example
data record.
*--
----------*/
int sss_match_id(id, shared_data)
iid_id_type id;
generic_sdd *shared_data;
{ /* local type definitions */
 set_status(ok); /* begin */

 return(shared_data->self == id);
} /* end sss_match_id */

/*--
----------*\
| Routine: sss_hash_id
|
| Description:
| Internal function which will convert an id used to index
| in the array of hash lists.
*--
---------*/
int sss_hash_id(id)
iid_id_type id;
{ /* local type definitions */
/*
** Initialize.
*/
 set_status(ok); /* begin */
/*
** Return a value in the right range.
*/
 return((int)id % MAX_HASH);
} /* end sss_hash_id */

/*--
----------*\
| Test spiderA.main
|
| Description:
| Performs a write operation using ids.
*--
----------*/
main()
{ /* local variables */
 transaction_type transaction;
 id_type id;

 communication_line_sdd *communication_line;
 sensor_sdd *sensor;

 int i; /* random counter */
 int sensor_count; /* number of sensors */

 HASH id_table; /* hash of id’s of all shared
data in view */
 FILE *fp; /* file pointer to the data file */

 generic_sdd *shared_data_element;/* generic shared data
element ptr */
/*
** Initialize.
*/

78 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Spider Example
 signal(SIGINT, sss_handle_interrupt);

/*
** Initialize Serpent
*/
 serpent_init(MAIL_BOX, ILL_FILE);
 check_status(“spiderA.main: bad status from
serpent_init.”);
/*
** Create an id hashtable. This table contains the ids of
all the shared
** data elements in the “view” at any given time.
*/
 id_table = make_hashtable(MAX_HASH, sss_hash_id,
sss_match_id);
 check_null(
 id_table,
 “dea.main: out of memory.\n”,
 out_of_memory
);
/*
** Open the data file.
*/
 fp = fopen(SDATA, “r”);
 check_null(
 fp,
 “spiderA.main: could not open ill file.\n”,
 system_operation_failed
);
/*
** Get the number of sensors from the data file.
*/
 fscanf(fp, “%d”, &sensor_count);
/*
** Start a transaction. Then, read in each sensor and
corresponding
** communication lines and put into shared data.
*/

 transaction = start_transaction();
 check_status(“spiderA.main: bad status from
start_transaction.”);
 i = 0;
 while (i++ < sensor_count) {/* while sensor’s left */
/*
** Create shared data record.
*/
 sensor = (sensor_sdd *)make_node(sizeof(sensor_sdd));
 check_null(
 sensor,
 “spiderA.main: out of memory during make_node
sensor_sdd.\n”,
 out_of_memory
);
/*
** Read in sensor data into shared data record. Note: ‘&’
address
** operators are omitted from certain structure elements
because they are
** arrays and are already passed by reference.
*/
 fscanf(
 fp,
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 79

Spider Example
 “%s%d%s%s%s%s”,
 sensor->site_abbr,
 &sensor->status,
 sensor->site,
 sensor->last_message,
 sensor->rfo,
 sensor->etro
);
/*
** Put sensor into shared data and add to id table.
*/
 sensor->self = add_shared_data(
 transaction, “sensor_sdd”, NULL, NULL
);
 check_status(“spiderA.main: status from
add_shared_data.”);

 put_shared_data(
 transaction, sensor->self,“sensor_sdd”, NULL, sensor
);
 check_status(“spiderA.main: status from
put_shared_data.”);

 add_to_hashtable(id_table, sensor, sensor->self);
/*
** Create communication line shared data element.
*/
 communication_line = (communication_line_sdd *)make_node(
 sizeof(communication_line_sdd)
);
 check_null(
 communication_line,
 “spiderA.main: out of memory creating
communication_line_sdd.\n”,
 out_of_memory
);
/*
** Read in communication line data into shared data element.
Note: ‘&’
** operator is omitted from the ‘etro’ structure field since
it is an
** array and is already passed by reference.
*/
 fscanf(
 fp, “%d%s”, &communication_line->status,
communication_line->etro
);

/*
** Set from_sensor and to_cc fields.
*/
 communication_line->from_sensor = sensor->self;
 communication_line->to_cc = CMC_CODE;
/*
** Put communcation line into shared data and add to id table.
*/
 communication_line->self = add_shared_data(
 transaction, “communication_line_sdd”, NULL, NULL
);
 check_status(“spiderA.main: status from
add_shared_data.”);

 put_shared_data(
80 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Spider Example
 transaction,
 communication_line->self,
 “communication_line_sdd”,
 NULL,
 communication_line
);
 check_status(“spiderA.main: status from
put_shared_data.”);

 add_to_hashtable(
 id_table, communication_line, communication_line->self
);
/*
** Create communication line shared data element.
*/
 communication_line = (communication_line_sdd *)make_node(
 sizeof(communication_line_sdd)
);
 check_null(
 communication_line,
 “spiderA.main: out of memory creating
communication_line_sdd.\n”,
 out_of_memory
);
/*
** Read in communication line data into shared data element.
Note: ‘&’
** operator is omitted from the ‘etro’ structure field since
it is an
** array and is already passed by reference.
*/
 fscanf(
 fp, “%d%s”, &communication_line->status,
communication_line->etro
);
/*
** Set from_sensor and to_cc fields.
*/
 communication_line->from_sensor = sensor->self;
 communication_line->to_cc = OFT_CODE;
/*
** Put communcation line into shared data and add to id table.
*/
 communication_line->self = add_shared_data(
 transaction,
 “communication_line_sdd”,
 NULL,
 communication_line
);
 check_status(“spiderA.main: status from
add_shared_data.”);

 add_to_hashtable(
 id_table, communication_line, communication_line->self
);
 } /* end while file not empty
*/
/*
** Close the data file.
*/
 fclose(fp);
/*
** Commit transaction.
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 81

Spider Example
*/
 commit_transaction(transaction);
 check_status(“spiderA.main: bad status from
commit_transaction.”);
/*
** Go into wait loop for new transactions.
*/
 while (!done) { /* do while not done */

 transaction = get_transaction();
 check_status(“spiderA.main: bad status from
get_transaction.”);

 id = get_first_changed_element(transaction);
 check_status(“reader.main: bad status from
get_first_changed_elem.”);
/*
** Process the elements in the transaction.
*/
 while (id != null_id) {/* while more changed elements
*/

 shared_data_element = (generic_sdd *)get_from_hashtable(
 id_table, id
);
 check_null(
 shared_data_element,
 “spiderA.main: element not found in id_table
hashtable.\n”,
 not_found
);

 incorporate_changes(transaction, id,
shared_data_element);
 check_status(“spiderA.main: bad status from
incorporate_changes.”);

 id = get_next_changed_element(transaction);
 check_status(“spiderA.main: bad status from
get_next_chngd_elem.”);

 } /* end while more changed elements */

 } /* end while not done */
/*
** Cleanup and return.
*/
 serpent_cleanup();
 check_status(“spiderA.main: bad status from
serpent_cleanup.”);

 return;
}

82 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

Index
Index

A
add_shared_data 17, 21, 23, 25, 46, 48

B
Buffer 16

body 16
length 16

buffer 40
Buffers 40

C
C header files 16
C language header file 14
commit_transaction 19, 46, 49
create_changed_component_list 46, 50

E
Error Checking 10

G
get_change_type 46, 51
get_element_name 46, 52
get_first_changed_element 46, 53
get_next_changed_element 46, 54
get_shared_data 46, 55
get_shared_data_type 16, 46, 56
get_status 47, 57
get_transaction 46, 58
get_transaction_no_wait 46, 59

I
IDs 16
ILL_FILE 14, 15, 18
incorporate_changes 46, 60
is_undefined 46, 61

M
MAIL_BOX 14, 15, 18
Modifications 19

P
playback 75
print_status 47, 62
purge_transaction 46, 63
put_shared_data 23, 25, 46, 64

R
record/playback 10
Recovery 10
remove_shared_data 26, 46, 65
rollback_transaction 20, 46, 66

S
serpent.h 24
serpent_cleanup 18, 46, 68
serpent_init 18, 46, 67
set_undefined 17, 46, 69
shared data definition file 13
shared data variables 20
start_recording 46, 70
start_transaction 19, 21, 46, 71
status 10
stop_recording 46, 72

T
testing 10
transaction_type 19
Transactions 9

starting
committing

aborting 9

U
unchanged 25
undefined values 17

V
View 19
Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6) 83

84 Serpent: C Application Developer’s Guide (CMU/SEI-91-UG-6)

13a. TYPE OF REPORT

Final

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr., Mo., Day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (City, State and ZIP Code)

ESD/AVS
Hanscom Air Force Base, MA 01731

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003

8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

FIELD SUB. GR.GROUP

SEI

ESD/AVS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

63752F N/A N/A N/A

8c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

CMU/SEI-91-UG-6 CMU/SEI-91-UG-6

Serpent: C Application Developer’s Guide

May 1991 ~90

Serpent, UIMS, user interface management system, user inter-
face generators, C, application development

User Interface Project
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Serpent is a user interface management system (UIMS) that supports the development and imple-
mentation of user interfaces, providing an editor to specify the user interface and a runtime system
that enables communication between the application and the end user. This manual describes how
to develop applications using Serpent. Readers are assumed to have read and underabstood the
concepts described in the Serpent Overview, as well as to have had experience using the C program-
ming language.
UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

John S. Herman, Capt, USAF

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22c. OFFICE SYMBOL

ESD/AVS (SEI
22b. TELEPHONE NUMBER (Include Area Code)

(412) 268-7630

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

(please turn over)

ABSTRACT —continued from page one, block 19

	User’s Guide
	Serpent: C Application Developer’s Guide
	Software Engineering Institute
	Table of Contents

	1 Introduction 1
	1.1 This Manual 1
	1.1.1 Organization 1
	1.1.2 Typographical Conventions 2
	1.2 Other Serpent Documents 2

	2 Overview 5
	2.1 Serpent Architecture 5
	2.2 Shared Database 7
	2.3 Application Development 10

	3 Specifying the Contract 13
	3.1 Defining Shared Data 13
	3.2 Data Types and Values 15
	3.3 Initialization and Cleanup 18

	4 Modifying Information 19
	4.1 Sending Transactions 19
	4.2 Adding Static Information 20
	4.3 Adding Dynamic Information 22
	4.4 Modifying Information 25
	4.5 Removing Information 26

	5 Retrieving Information 28
	5.1 Retrieving Transactions 28
	5.2 Incorporating Changes 29
	5.3 Processing Dynamic Elements 30
	5.4 Examining Changes by Component 32

	6 Finishing the Application 34
	6.1 Error Checking 34
	6.2 Recording Transactions 34
	6.3 Dialogue Initiated Exit 35

	7 Testing and Debugging 37
	7.1 Formatting Recordings 37
	7.2 Playback 37
	Appendix A Data Structures 39
	Appendix B Routines 46
	Appendix C Commands for Testing Serpent Applications and Dialogues 73
	Appendix D Spider Example 77

	Index 83
	List of Figures
	Figure 2-1 Serpent Architecture 6
	Figure 2-2 Shared Database 8
	Figure 2-3 Shared Data Instantiation 9
	Figure 2-4 Spider Chart Display 11

	List of Examples

	1 Introduction
	1.1 This Manual
	1.1.1 Organization
	1.1.2 Typographical Conventions

	1.2 Other Serpent Documents

	2 Overview
	2.1 Serpent Architecture
	Figure 2-1 Serpent Architecture

	2.2 Shared Database
	Figure 2-2 Shared Database
	Figure 2-3 Shared Data Instantiation

	2.3 Application Development
	Figure 2-4 Spider Chart Display
	3 Specifying the Contract

	The first step in creating a software system using Serpent is to apportion system functionality between the dialogue and the application. This involves creating a contract between the two components: defining the type and structure of informa...
	3.1 Defining Shared Data
	1. Create the shared data definition file.
	2. Run the created file through the Saddle processor.

	The following is a brief description of each of these two steps. The Serpent: Saddle User’s Guide contains a more complete description of both these steps.
	Step 1: Create the shared data definition file. The shared data definition file defines the type and structure of information that can be shared between the application and dialogue. The shared data definition is specified in Saddle. By conve...
	Example 3-1 is an example of a shared data definition file for the spider application. The content of the shared data definition file is independent of the implementation language used. Note that these shared data record templates contain onl...
	Example 3-1 Spider Shared Data Definition File

	The file shown in Example 3-1 contains definitions for the data shared between the application and the dialogue for the spider application. The first line of the file contains the name (and possible path information) of the executable image o...
	Step 2: Run the created file through the Saddle processor. Once the shared data has been defined in the file, it can be processed by Saddle to generate a C language header file. This file will have the same name as the shared data definition ...
	Example 3-2 C Language Header File

	In Example 3-2, the first two lines in the file define two well-known constants: MAIL_BOX and ILL_FILE. These constants will be used in initializing Serpent. The three structures correspond to the record templates defined within the shared da...
	3.2 Data Types and Values

	One output of processing the shared data definition file through the Saddle processor is a C header file containing corresponding C structures for the shared data records. These C structures can be used to declare local variables that corresp...
	Example 3-3 Shared Data Definition

	Example 3-4 shows the C structure that is generated when the employee_sdd record is processed by Saddle processor.
	Example 3-4 Generated C Structure

	Although each shared data component is now represented using a C language specific type, there is still a Serpent data type associated with each of them. The Serpent data type can be determined at runtime using the get_shared_data_type functi...
	Example 3-5 Serpent Data Type

	Shared data values specified as strings in the shared data definition file are represented by character arrays in the C header files generated by the Saddle processor. It is therefore not necessary to allocate heap memory for these strings, a...
	Example 3-6 Assigning Values to String Components

	Shared data components of type integer, boolean, real, or ID can be assigned directly to C language variables. IDs are returned from a number of Serpent routines and are id_type. Saddle integers and booleans are actually of C type int and Sad...
	Example 3-7 Assigning Values to Integer, Boolean, Real or ID Components

	Buffer is the only dynamic shared data type in that neither the size nor the type of the information is predefined. Example 3-8 describes the buffer structure. Buffer type is required and specifies the type of information stored in the buffer...
	Example 3-8 Buffer Structure

	Buffers can be used to:
	Example 3-9 contains the example of the employee.site buffer being used as a string.
	Example 3-9 Assigning Values to Buffer Components

	Shared data values can also be undefined. All uninitialized components of a shared data record instance created using the add_shared_data function are initialized by Serpent to be undefined. On the other hand, components of a local, shared da...
	Example 3-10 Setting Component Values to Undefined
	3.3 Initialization and Cleanup

	The first task of any Serpent application is to initialize the system. Serpent initialization establishes communication between the application and the dialogue. The final application task is to clean up the Serpent system environment before ...
	Example 3-11 Serpent Initialization
	1. Include Serpent header file. The serpent.h file contains the external definition for the Serpent interface.
	2. Initialize Serpent. The serpent_init procedure is used to initialize Serpent. It takes as parameters the MAIL_BOX and ILL_FILE constants generated by the Saddle processor. This procedure establishes communication between the application an...
	3. Clean up. The serpent_cleanup routine must be invoked before exiting the application. It is important to complete this step to release allocated system resources.

	4 Modifying Information

	The application can add, change, or remove information to and from the shared database using the transaction mechanism described in the introductory chapter of this document. Together, these are considered modifications to the shared database...
	4.1 Sending Transactions

	Before information can be modified in the shared database, it is necessary to start a transaction. All modifications to the shared database must be performed as part of a transaction.
	It is possible to have multiple transactions open at one time. Each transaction has a unique transaction handle. Every operation performed on or to a transaction must specify this transaction handle.
	The actual change to the shared database does not occur until the transaction is committed. Up to this point it is also possible to roll back the transaction so that none of the changes to shared data occur.
	The code segment from the spider application in Example 4-1 shows the operations necessary for sending transactions. Code and comments directly related to the task are emphasized in bold type.
	Example 4-1 Sending Transactions
	Specification Steps:
	1. Declare transaction variable. A local variable of transaction_type can be used to maintain a transaction handle.
	2. Start a transaction. The start_transaction function returns a transaction handle that must be passed to any subsequent commands operating on the transaction.
	3. Commit the transaction. The actual change to shared data does not occur until the transaction is committed. Up to this point it is also possible to roll back the transaction using the rollback_transaction routine so that none of the change...

	4.2 Adding Static Information

	This section makes some simplifying assumptions about the application that may in fact hold true for simple programs. The primary assumption is that the application will create only a fixed number of shared data instances so that the IDs of t...
	At any given moment, there can be up to three different versions of any given shared data instance. First, there is a local copy in the application. Second, there can be a copy that is part of an open transaction. Third, there is a copy in th...
	Variables of generated shared data types are referred to as shared data variables. The first step in adding information to shared data is to assign values to these shared data variables. The method for doing this is based on the Serpent types...
	Once a transaction has been started, you can begin to add, change or remove information to/from the shared database as part of this transaction. These changes are made as part of the transaction and are not applied to the shared database unti...
	The code segment from the spider application in Example 4-2 illustrates the operations involved in adding information to the shared database. Code and comments directly related to the task are emphasized in bold type.
	Example 4-2 Adding Information to the Shared Database
	Specification Steps:
	1. Include Saddle generated header file. This file (spiderA.h in the example) defines the structure of the shared data. The file serpent.h must be included before spiderA.h because spidera.h uses types defined in serpent.h.
	2. Define constants. The spider example contains three constants: GREEN_STATUS, YELLOW_STATUS, and RED_STATUS. These constants are not required but help increase the clarity of the example.
	3. Define shared data variables. Variables cmc and gs1 are both instances of generated shared data structures. These variables are used to initialize instances of shared data in the shared database.
	4. Assign values to shared data variables. The mechanism for accomplishing this task depends on the component types. This is explained in detail in Section 3.2.
	5. Add information to the shared database. The add_shared_data routine creates a shared data instance as part of the specified transaction and returns the ID of the instance. The routine allows you to initialize a single component of the inst...

	4.3 Adding Dynamic Information

	In larger, more complex software systems it is not always practical to declare a fixed collection of variables to represent data. The management of dynamically created data structures is often radically different from that of static variables...
	The code segment from the spider application in Example 4-3 illustrates the operations involved in adding dynamic information to the shared database. Code and comments directly related to the task are emphasized in bold type.
	Example 4-3 Adding Information to the Shared Database
	Specification Steps:
	1. Add self component to shared data record templates. The self component is used to store the ID of a shared data instance directly in the shared data structure. This field of the structure is used in the example to identify the particular s...
	2. Include Saddle generated header file. The spiderA.h header file contains the shared data structures for the spider example. This file must be included after serpent.h since serpent_A.h uses types defined in this other file.
	3. Define local variables. The next preliminary step is to define local variables. The sensor variable declared in Example 4-4 is no longer an instance but a pointer to the sensor_sdd structure. This variable will be used to reference dynamic...
	4. Create local data structures. A local shared data instance is created (allocated from memory) for each sensor in the file. These instances are stored in a hash table that must also be created.
	5. Initialize local shared data instances. Each local shared data value must then be initialized. In Example 4-4, this is accomplished by reading the data directly into the sensor structure from the file.
	6. Add information to the shared database. Once a transaction has been started and the data initialized, information can be added to the shared database. In Example 4-4, this is a two-step procedure. An uninitialized sensor instance is create...
	7. Update the local database. The last step is to add the local shared data instance to the hash table using the ID of the shared data instance. This ID can later be used as an identifier in updating changes to shared data in local data.

	4.4 Modifying Information

	Shared data instances in transactions or in the shared database can be modified using the put_shared_data procedure. This procedure takes as a parameter the ID of the shared data instance.
	It is possible to modify any single component of a shared data record instance, or the entire record. Unmodified components in the transaction are marked as unchanged and maintain their current values. This is different from components that a...
	The code segment from the spider application in Example 4-4 illustrates the operations involved in adding dynamic information to the shared database. Code and comments directly related to the task are emphasized in bold type.
	Example 4-4 Modifying Information in the Shared Database
	Specification Task

	Modifying information in the shared database. The put_shared_data routine modifies the values of shared data instances that have already been created and are part of a transaction. This routine works in an identical manner to the add_shared_d...
	4.5 Removing Information

	Shared data instances in transactions or in the shared database can be removed using the remove_shared_data procedure. It is not possible to remove components of shared data record instances.
	The code segment from the spider application in Example 4-5 illustrates the operations involved in removing information from the shared database. Code and comments directly related to the task are emphasized in bold type.
	Example 4-5 Removing Information from the Shared Database
	Specification Task

	Removing information from the shared database. The remove_shared_data procedure is used to remove a shared data instance from either the transaction or the shared database. The procedure takes a transaction handle, the element name, and the I...
	5 Retrieving Information

	Serpent implements an active database model from the perspective of the application interface. This means that changes to application data resulting from end-user interactions with the system are automatically communicated back to the applica...
	Transactions from the dialogue to the application consist of a list of changed shared data instances. The following assumptions are true about incoming transactions:
	5.1 Retrieving Transactions

	The code segment from the spider application shown in Example 5-3 illustrates the basic operations of retrieving information from the shared database.
	Specification Steps:
	1. Get the transaction. The Serpent interface provides both synchronous and asynchronous calls for getting information from the shared database. The get_transaction routine waits until a transaction is available and then returns a handle for ...
	2. Get each changed shared data instance. The get_first_changed_element routine returns the first changed shared data element instance in the transaction and marks it as the current element. The get_next_changed_element routine returns the el...
	3. Purge the transaction. Once the transaction has been fully processed, it should be purged from the system. This frees system resources that could otherwise run out.

	Code and comments directly related to the task are emphasized in bold type.
	Example 5-1 Transaction Processing
	5.2 Incorporating Changes

	Changed element instances from the dialogue need to be processed for any changes in the application domain to be affected. The Serpent application interface provides several routines for the purpose of processing changed shared data elements.
	This section makes some simplifying assumptions about the application that may in fact hold true for simple programs. The primary assumption is that the application has created only a fixed number of shared data instances so that the IDs of t...
	The code segment from the spider application in Example 5-2 illustrates the operations involved in incorporating changes to shared data elements in static, local variables. Code and comments directly related to the task are emphasized in bold type.
	Example 5-2 Processing Changes to Shared Data Records (Simple Programs)
	Specification Steps:
	1. Get the element name. This is a simple call that returns a pointer to the element name. For simple programs that have no more than one instance of a particular shared data record, the element name can be used to identify the shared data in...
	2. Update local database. Shared data variables can be updated using the incorporate_changes routine. This routine directly incorporates changes in the shared data instance into the local variable. Components of the shared data record that ha...

	5.3 Processing Dynamic Elements

	In larger systems, it is often necessary to dynamically create shared data records, or instantiate multiple instances of a single shared data record. This section describes how changed shared data record instances can be managed in these situations.
	In the dialogue, it is also possible to create, modify, or remove instances of application shared data as a result of input from the end user. This is known as the change type. Each shared data record instance in a transaction has an associat...
	These steps are illustrated in Example 5-3 taken from the spider chart example. Code and comments directly related to the task are emphasized in bold type.
	Example 5-3 Processing Changes to Shared Data Records (Large Systems)
	1. Determine the change type. The change type can be obtained using the get_change_type function.
	2. Update the local database based on the change type. The exact type of processing required to update the local database is based primarily on the change type. If this is a new shared data element (e.g., the change type is create) the get_sh...

	If the change type is modify, the local shared data instance can be obtained from the hash table. The incorporate_changes routine can then be used to update the contents of this instance with changed component values.
	If the shared data record instance in the shared database has been deleted, the application developer may want to delete it from the local database as well. Memory allocated by the get_shared_data function should be freed using the free_node ...
	5.4 Examining Changes by Component

	The Serpent application programmer’s interface provides routines that allow the application developer to examine each changed component in a changed record individually.
	The operations are illustrated in Example 5-4, taken from the spider chart example. Code and comments directly related to the task are emphasized in bold type.
	Example 5-4 Processing Changes to Shared Data Records (Large Systems)
	Specification Steps:
	1. Get the list of changed components. A list of changed components can be obtained by using the create_changed_component_list function.
	2. Loop through the list. The listPack contained in the C toolkit distributed with Serpent provides a number of routines that can be used for processing the elements on a list.
	3. Examine the type and/or data. The Serpent application programmer’s interface provides routines to examine both the type and the data at the component level. The get_shared_data_type returns a serpent_data_type. The get_shared_data routine ...
	4. Destroy the changed component list. The changed component list can be destroyed using the free_list routine from the C toolkit listPack.

	6 Finishing the Application

	Other than sending and retrieving data, the application can determine errors from the use of Serpent, record communication between the application and Serpent and exit according to a signal received from the dialogue.
	6.1 Error Checking

	Each routine in Serpent sets status on exit. It is good software engineering practice to check status after every call to make sure that the routine has executed correctly, and provide appropriate recovery actions if it has not. Example 6-1 i...
	Example 6-1 Examining Status

	The first of these routines is get_status, which returns an enumeration of status codes. Valid statuses returned by each routine in Serpent are defined in Appendix B. Successful execution (or “OK”) is always set to zero; hence, it is possible...
	The print_status routine prints a user-defined error message and the current status.
	6.2 Recording Transactions

	Transactions between the application and the dialogue can be recorded using the start_recording and stop_recording procedures available in the Serpent application programmers interface. After the call to start_recording is made, transactions ...
	Transactions can be examined using the format command described in Section 7.1. This is useful in debugging since it allows the examination of information flow across the interface. Transactions can also be played back to simulate either appl...
	Before testing the application or the dialogue, first record the transactions to be used in testing. Example 6-2 illustrates the basic operations for recording transactions.
	Example 6-2 Recording Transactions
	Specification Steps:
	1. Start recording. The start_recording routine takes as parameters both the name of the file in which to save the recording and a message to help identify the recording.
	2. Send transactions. After the call to start_recording is made, transactions may be sent across the interface.
	3. Stop recording. The stop_recording function closes the current recording file.

	6.3 Dialogue Initiated Exit

	The dialogue can terminate at any time using the exit command available to the dialogue specifier. The exit command sends a SIGINT signal to the application. This signal will cause the application to exit immediately, unless a signal handler ...
	The signal handler describes the steps to be taken when the dialogue initiates an exit. Typically, this involves saving data structures out to permanent storage and exiting the system.
	The code segment in Example 6-3 taken from the spider chart illustrates the operations necessary to handle dialogue initiated exit. Code and comments directly related to the task are emphasized in bold type.
	Example 6-3 Signal Handler for Dialogue Initiated Exit
	Specification Steps:
	1. Include Unix signal handling. The signal.h include file contains the external definitions for signal processing.
	2. Write the signal handler. The signal handler describes the steps to be taken when the dialogue initiates an exit. Remember to invoke serpent_cleanup before exiting.
	3. Register the signal handler. The signal handler must be associated with the SIGINT signal. This is accomplished using the Unix signal function.

	7 Testing and Debugging
	7.1 Formatting Recordings
	% format recording FORMATTING JOURNAL FILE: recording HEADER: dialogue name: message: no comment at this time OWNER: ill file name: se.ill mailbox name: SE_BOX PARTICIPANT: ill file name: se.ill mailbox name: DM_BOX TRANSACTION: Fri Jan 25 15...
	Example 7-1 Formatting the Recording File

	7.2 Playback
	Example 7-2 Testing the Application

	Appendix A Data Structures
	TYPE
	buffer

	TYPE
	change_type

	TYPE
	id_type

	CONSTANT
	null_id

	TYPE
	serpent_data_type

	TYPE
	transaction_type

	Appendix B Routines
	Initialization/Cleanup
	Transaction Processing
	Sending and Retrieving Data
	Undefined Values
	Record/Playback
	Checking Status
	FUNCTION
	add_shared_data

	ROUTINE
	commit_transaction

	FUNCTION
	create_changed_component_list

	FUNCTION
	get_change_type

	FUNCTION
	get_element_name

	FUNCTION
	get_first_changed_element

	FUNCTION
	get_next_changed_element

	FUNCTION
	get_shared_data

	FUNCTION
	get_shared_data_type

	FUNCTION
	get_status

	FUNCTION
	get_transaction

	FUNCTION
	get_transaction_no_wait

	PROCEDURE
	incorporate_changes

	FUNCTION
	is_undefined

	PROCEDURE
	print_status

	PROCEDURE
	purge_transaction

	PROCEDURE
	put_shared_data

	PROCEDURE
	remove_shared_data

	PROCEDURE
	rollback_transaction

	PROCEDURE
	serpent_init

	PROCEDURE
	serpent_cleanup

	PROCEDURE
	set_undefined

	PROCEDURE
	start_recording

	FUNCTION
	start_transaction

	PROCEDURE
	stop_recording

	Appendix C Commands for Testing Serpent Applications and Dialogues
	COMMAND
	format

	COMMAND
	playback

	Appendix D Spider Example
	Index
	A
	B
	C
	E
	G
	I
	M
	P
	R
	S
	T
	U
	V

