
TECHNICAL REPORT
CMU/SEI-99-TR-005

ESC-TR-99-005

An Introduction to
Software Engineering
Practices Using
Model-Based
Verification

David P. Gluch
Jared Brockway

April 1999

Pittsburgh, PA 15213-3890

An Introduction to
Software Engineering
Practices Using
Model-Based
Verification
CMU/SEI-99-TR-005
ESC-TR-99-005

David P. Gluch
Jared Brockway

April 1999

Dependable Systems Upgrade

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Mario Moya, Maj, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 1999 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

Please visit http://www.sei.cmu.edu/publications/pubweb.html for information about ordering paper copies of this document.

CMU/SEI-99-TR-005 i

Table of Contents

Acknowledgments v

Abstract vii

1 Introduction 1

2 Using Models for Verification 3
2.1 Formal Models 3
2.2 Essential Models 4

3 Model-Based Verification Paradigm 7
3.1 Building Essential Models 8

3.1.1 Scope 9
3.1.2 Perspective 9
3.1.3 Formalism 9
3.1.4 Abstraction 10

3.2 Analyzing Models (Model Checking) 10
3.3 Compiling Defects 12
3.4 Modifying and Extending Models 12

4 Model-Based Verification in Peer Review
Processes 13
4.1 Reviews and Formalism 13
4.2 Integration of Processes 13

4.2.1 Planning 15
4.2.1.1 Methods of Partitioning 16

4.2.2 Coordination 17
4.2.2.1 Impact on Roles 17
4.2.2.2 Outcomes 17

4.2.3 Preparation 18
4.2.3.1 Impact on Roles 19
4.2.3.2 Outcomes 19

4.2.4 Meeting 19
4.2.4.1 Coordination 19
4.2.4.2 Modeler Role 20
4.2.4.3 Outcomes 20

ii CMU/SEI-99-TR-005

4.2.5 Rework and Follow-up 20
4.2.5.1 Roles 21
4.2.5.2 Outcomes 21

4.2.6 Comparison of Activities and Roles 21
4.2.7 Summary of Modifications 22
4.2.8 Integration Issues 22

4.3 Alternative Approaches 23
4.3.1 Autonomous Activity 23
4.3.2 Other Formalized Processes 23

5 Summary 25

References 27

CMU/SEI-99-TR-005 iii

List of Figures

Figure 1: Model-Based Verification Activities 1
Figure 2: The Model-Based Verification Paradigm 7
Figure 3: Interplay of the Dimensions 8
Figure 4: Model Checking 11
Figure 5: Four-Step “Process-Formal” Inspection or

Review 14
Figure 6: Sequential Partitioning of an Artifact 16
Figure 7: Modular Partitioning of an Artifact 16
Figure 8: A Comparison of the Roles of Modeler and

Other Reviewers 18
Figure 9: Four-Step Review Process and Its

Outcomes 21
Figure 10: Comparison of Responsibilities 22

iv CMU/SEI-99-TR-005

CMU/SEI-99-TR-005 v

Acknowledgments

The authors would like to thank Chuck Buhman, Chuck Weinstock, and Dave Zubrow for
their insightful comments and suggestions on this document. We also would like to acknowl-
edge the contributions of William Thomas in helping us to prepare the final manuscript. Fi-
nally, we extend our thanks to the members of the technical staff within the Dependable Sys-
tem Upgrade initiative for their suggestions on defining model-based verification practices.

vi CMU/SEI-99-TR-005

CMU/SEI-99-TR-005 vii

Abstract

This is an introductory report on the use of model-based verification techniques within soft-
ware development and upgrade practices. It presents the specific activities and responsibili-
ties that are required of engineers who use the model-based verification paradigm and de-
scribes proposed approaches for integrating model-based verification into an organization’s
software engineering practices. The approaches outlined in this report are preliminary con-
cepts for the integration of model building and analysis techniques into software engineering
review and inspection practices. These techniques are presented as both practices within peer
review processes and as autonomous engineering investigations. The objective of this report
is to provide a starting point for the use of model-based verification techniques and a frame-
work for their evaluation in real-world applications. It is expected that the results of pilot
studies that employ the preliminary approaches described here will form the basis for im-
proving the practices themselves and software verification generally.

viii CMU/SEI-99-TR-005

CMU/SEI-99-TR-005 1

1 Introduction

Model-based verification is a systematic approach to finding and correcting defects (errors)
in software requirements, designs, or code [Gluch 98]. While it is based upon formal meth-
odologies, the approach uses formalism to provide a disciplined and logical analysis practice,
rather than for “proof” of correctness. This focused application of formalism is used to iden-
tify and correct errors in the artifacts of software that is being developed or upgraded and to
define testing throughout the life cycle.

The practice of generating formal models early in the development or upgrade of software
establishes a systematic software verification practice for understanding a system and identi-
fying errors. The results of these error detection activities can then be used as the basis for
testing by defining test strategies, test cases, and critical areas that require focused or more
extensive testing. A high-level overview of these activities is shown in Figure 1.

drivesGeneration and
Analysis of Models Testing

Concept Target system

Source codeRequirements Design(s)Design(s) Source code

Figure 1: Model-Based Verification Activities

Model-based verification relies on formal models to establish a precise way of thinking about
the meaning of a software product while providing the foundation for a systematic process
for its review. In particular, the targeted use of formalism in the form of reduced complexity
formal representations, or essential models, brings a common and unambiguous language,
consistency, precision, and structure into the verification process.

An earlier technical report [Gluch 98] outlined the foundations of model-based verification.
This report focuses on the engineering practices associated with the implementation of
model-based verification. This report should be considered a preliminary presentation of the
concepts associated with the introduction of model-based verification into an organization.
The practices described will form the basis for real-world investigations of the techniques. It

2 CMU/SEI-99-TR-005

is expected that the details of these practices will evolve based on the results of these investi-
gations. Subsequent publications will extend and modify the practices introduced here.

Section 2 discusses the use of models and, in particular, formal essential models in model-
based verification. Section 3 describes the responsibilities and activities expected of a soft-
ware engineer, acting as a modeler within model-based engineering practices. In Section 4, an
approach for integrating model-based verification practices into an organization’s peer re-
view/inspection processes is presented. The report is summarized in Section 5.

CMU/SEI-99-TR-005 3

2 Using Models for Verification

Model-based verification is a two-step practice of model building (creation) and model
checking (analysis) for finding errors in software artifacts. These practices combine estab-
lished software modeling methods with promising techniques emerging from academic and
corporate research communities. These practices have also been used successfully in other
engineering domains, such as commercial microprocessor design. The choice of a technical
approach for a particular situation is based upon the critical—i.e., important or risky—aspects
and the type of system being analyzed. Because most of these techniques involve the selec-
tive, focused use of formalism, they have been termed lightweight formal methods [Jackson
96].

Many of the models that are employed within model-based verification encompass a variety
of mathematically based techniques that are not classified as formal methods, while others
are founded upon rigorous formal methodologies. Model-based verification also includes
models that address the diverse and potentially problematic technical aspects of complex
systems. For example, Generalized Rate Monotonic Analysis [Klein 93] models can be em-
ployed for the analysis of real-time systems.

2.1 Formal Models
In model-based verification, the term model, adapted from Jackson [Jackson 95], refers to a
representation that has

• some degree of inherent formalism (logic)

• rules for manipulating components

• important properties shared with the modeled artifact

A simple example that demonstrates these characteristics is the mathematical equation E =
mc2. This equation is a highly abstracted model of how energy and matter are related. It
shows how much energy can be generated from a given amount of mass. It is a formal state-
ment where the mathematics provides a formalism (logic) that prescribes how elements of the
model can be manipulated. In this case, the mathematical rules associated with equations en-
ables the re-expression of mass in terms of the energy, m = E/c2. This expression shows ex-
plicitly the amount of mass that can be formed from a given amount of energy. Note that this
is a highly abstracted representation of what happens in a nuclear reaction, focusing only on
one aspect of the complex dynamics involved. There are a multitude of other factors that
could have been considered (e.g., the momentum spread, or radiation produced).

4 CMU/SEI-99-TR-005

It is important to note that what makes this a model is the identification of each of the terms
of the equation with something in the real world. In this case m is identified with mass, E
with energy, and c with the speed of light. This model states that the linear relationship be-
tween the symbol E and the symbol m that is explicit in the mathematics, is also the same as
the relationship between the physical quantities of energy and mass. Not only do the proper-
ties of a valid mathematical model mirror the static characteristics of the represented system,
but the manipulation of the mathematical symbols associated with that model reflects the be-
havior of the system as well.

Many of the models used for software engineering are formal and involve a variety of dis-
crete mathematical and logical formalisms. A common model of a software system is a finite
state machine model. In finite state models the complex aspects of a system are represented
as a finite set of distinct states. For example, the states of a flight control system model may
include take-off, cruise, landing, and ground operations.

In contrast to the examples cited above, a simple narrative description of a system or a sketch
is not a model that is useful in model-based verification. Generally, software specifications
are descriptions written in English prose. The prose, and hence the specification, is only con-
strained by the rules of syntax and conventional usage. These natural language specifications
lack a formal logic that states how to manipulate the elements of the specification.

2.2 Essential Models
A central concept in model-based verification is to create simplified models of the critical
(important and risky) parts of a system rather than detailed models of the complete system.
These simplified models are termed essential models. The E = mc2 model discussed earlier is
an essential model of a nuclear reaction, focused on a critical aspect of performance: energy
transitions. Thus, essential models are targeted, reduced-complexity portrayals of the system
to be verified. They are distinct from other engineering artifacts and are analyzable. By judi-
ciously choosing what parts to model, what perspective(s) to take, and what detail to apply,
essential models can provide insight into the critical static and dynamic properties of a
system.

The number, level of detail, and formalism of the models, and the view used in model-based
verification, are adjusted to meet the particular objectives of the verification activity and the
complexity of the system. In some cases only a handful of models that focus on only one or
two different perspectives, or only models of minimal formalism, are required. In others,
more rigorous formal models would be developed that can be analyzed using automated
tools. The range of formalism can extend from using a basic state machine model to em-
ploying a complete axiomatic formal system with accompanying syntax, semantics, and in-
ference rules. The foundations and the processes for making these decisions are based upon a
core set of engineering principles and formal techniques that can be integrated into existing
software engineering review processes.

CMU/SEI-99-TR-005 5

In describing the integration of model-based verification practices into peer review processes,
it is useful to partition peer reviews into two levels of activity:

• Individual level. The individual level is made up of the activities of a software engineer
participating in the review—the model-based verification paradigm. At this level the
details of the engineering decisions and practices required of individual participants are
defined.

• Team level. The team level encompasses practices involving multiple individuals,
organizations, and teams. It deals with the impact of model-based verification on the
procedural aspects of conventional reviews.

6 CMU/SEI-99-TR-005

CMU/SEI-99-TR-005 7

3 Model-Based Verification Paradigm

The model-based verification paradigm consists of the engineering techniques and practices
employed by a software engineer for verifying software requirements, design specifications,
or code, through the building and analysis of essential models. Shown as ovals in Figure 2,
the activities of the paradigm are

• build; systematically build essential models of the system

• analyze; analyze those models, often using model-checking techniques and tools

• compile; gather detailed information on errors and potential correction actions

• modify and extend; modify and update the essential models

build
modify &
extend

analyze

essential
models

defect &
correction

records
compile end

begin

Figure 2: The Model-Based Verification Paradigm

Each of these activities has a specific focus and variable duration. Within the paradigm, they
are non-sequential, iterative, and interdependent. At the center of all of the activities are es-
sential models. The connections between the activities represent the information exchanged
among them and the interdependent control interactions. The control interactions start, sus-
pend, reorder, skip, or terminate an activity. For example, during the modeling process itself,
an error may be identified in an artifact. Perhaps an incomplete definition is identified. This
situation would require the engineer (modeler) to record the defect, seek clarification, and
perhaps modify, reanalyze, extend, or completely replace portions of the model.

A fundamental premise of the paradigm is that building models and analyzing models are
complementary activities, where aspects of each result in improving both. For example,
through model building a greater understanding of the details of a system is achieved, helping
to further focus the analysis on the system’s more important or difficult aspects. By analyzing
a model developers gain greater insight into its weaknesses and limitations, which helps to
guide their subsequent model-building and modification activities. This interplay is facilitated

8 CMU/SEI-99-TR-005

by an iterative process of building a small portion and analyzing a small portion. A small-
scale iteration cycle enables a separation of concerns and helps to reduce complexity, sim-
plify analysis, and limit the scope of the impact of mistakes made in the modeling process.

3.1 Building Essential Models
Building essential models is a creative engineering enterprise. It involves addressing several
perspectives and finding simplified representations that faithfully portray a system. To ac-
complish this simplification, the model building process involves engineering choices (trade-
offs) along four distinct dimensions:

• Scope. What parts of the system need to be modeled?

• Perspective. What modeling views of the system are required?

• Formalism. What formalism should be applied?

• Abstraction. What level of detail is needed?

As shown in Figure 3, these dimensions are not mutually exclusive; rather there is interplay
among them. For example, deciding scope and perspective may involve a tradeoff between
modeling the whole system from a single perspective or only critical parts of the system from
multiple perspectives.

Formalism

Scope

Abstraction Perspective

Figure 3: Interplay of the Dimensions

The context or nature of the problem domain is particularly influential in the choices
among these competing dimensions. This tradeoff process can be viewed as one of optimal
matching between domain complexity and model fidelity. In these decisions the four dimen-
sions provide a framework in which to evaluate the alternatives based upon what is important
and what is risky, rather than simply providing mutually exclusive choices (i.e., choosing
only one particular perspective). In the sections that follow, each of these dimensions is
summarized.

CMU/SEI-99-TR-005 9

3.1.1 Scope
The scope of the model defines how much or what portion of a system is to be modeled. In
some cases, it is important to model all of the system at a high level of abstraction consider-
ing one perspective (e.g., model and analyze the fault response of the entire system). In other
cases it is necessary to model a specific part of the system in greater detail (e.g., model and
analyze the communication module). These choices are largely driven by the critical (impor-
tant and/or risky) aspects of the system and its development, including both programmatic
and technical issues. For example, in reviewing the design specification for a networked sys-
tem, the protocol design is identified as critical. It then becomes the focus of the modeling
effort and a formal state machine technique is used to analyze its behavior. In practice these
decisions should be viewed as operational ones, such that as the model is built and analyzed,
adjustments are made based upon the results of the analysis processes.

3.1.2 Perspective
The modeling perspective is the context for representing the behavior and characteristics of a
system. A perspective could be the user’s view of a system or it may be a representation of a
specific feature, function, or capability of a system. For example, in looking at an aircraft fly-
by-wire computer system, one perspective would be to characterize (model) the system from
a fault response perspective. This might involve a model that describes states of the system in
terms of the number or types of faults that may occur (e.g., the no fault state, single fault
state, loss of roll attitude information, etc.). An alternative perspective might be to consider
the flight modes of the system (e.g., takeoff, climb out, cruise, landing, etc.).

3.1.3 Formalism
Formalism relates to the level and type of mathematical rigor used for an essential model.
The level of mathematical formalism required for effectively modeling a particular system
involves decisions that often relate to programmatic as well as a technical issues. A high level
of formalism is generally very costly and the potential benefits must be assessed relative to
the risks and criticality of a system. While extensive formalism is appropriate for high assur-
ance and safety-critical systems, the cost-effective application of formalism in most system
development and upgrade efforts entails an impact assessment of cost and criticality. The
choice of the type of formalism results from a consideration of the technical characteristics.
Depending upon the nature of an individual problem and the critical aspects of the system,
some techniques are more effective and efficient than others. For example, consider a net-
worked financial records management system for general office use. The critical aspects of
this system are judged to be data integrity and the complexity associated with multiple con-
current accesses. If there is an error in either, the financial losses may be significant. In this
situation, formalized automated model checking would be employed to analyze both data
integrity and system concurrency. The analysis of data integrity issues would likely involve
mathematical sets and relationships, whereas a state machine model would likely be em-
ployed to analyze the system’s concurrency.

10 CMU/SEI-99-TR-005

3.1.4 Abstraction
Abstraction is the process of focusing on the important details and ignoring, or abstracting
away, those details that are less important. While abstraction is used throughout a development
effort, the focus on simplification required for building essential models contrasts with the
extensive detail that is needed in the development of requirements, design specifications, or
code.

In the development of a system, details and redundancy of representations can be useful, espe-
cially if they involve different perspectives. In abstracting essential models, the detailed repre-
sentations created in the development process must be streamlined into concise, accurate, and
less complex models that faithfully represent a system’s properties and behavior. Some repre-
sentative abstraction techniques that can be employed by a modeler include

• Systematically decompose the system into components that can be viewed as distinct
interacting parallel processes. For example, a large process control system implemented
in software on a single processor can be modeled as five separate modules. Each module
would have a distinct responsibility.

• Strip away parts of the system that are not relevant to the properties to be demonstrated
or proven. For example, it may be the case that variable C depends on variable B and
ultimately variable A. If an objective of the model is to understand how variable A affects
variable C, it is possible to eliminate variable B from the model by representing the
relationship only between A and C.

• Replace a variable with an abstracted or simplified one. This can be viewed as an
approach of approximating complex data types with simpler ones. For example, a flight
control system specification may contain statements such as “if the airspeed is less than
or equal to 200 mph then the gain variable, k = 2.1; if the airspeed is between 200 and
400 mph then k =2.3, and if the airspeed is equal to or greater than 400 mph then k =
2.8.” In this case rather than represent the airspeed as a real number, an abstracted
representation is used, where airspeed is enumerated as {low, medium, high}.

• Explicity reduce the size of the system by reducing the number of "equivalent"
components. For example, if a distributed networked client-server system has twenty
clients and five servers, the system may be modeled as three clients and two servers.

• Use nondeterminism to model unpredictable or unknown inputs to the system. If a model
must accept any of a set of events in any order at any time, do not try to model these
explicitly. Instead, leave enumeration of possible circumstances to the model checking
tool’s ability to express nondeterministic behavior.

3.2 Analyzing Models (Model Checking)
Analyzing an essential model involves a systematic assessment of its properties and behavior.
The analysis criteria are developed from the system requirements, the specification or code,
its antecedent specifications, and the involvement of domain experts. This involvement can
include interviews with users, customers, or domain engineers or their direct participation in
defining these criteria. Analysis criteria are often expressed as expected properties of the
system, are focused upon the critical aspects of the system, and include domain specific and
technical considerations. For example, consider the analysis of an essential model of a weap-

CMU/SEI-99-TR-005 11

ons launch control system. The analysis would likely include confirming that a weapon
would be launched when ready and commanded to do so and could not be launched if it is not
ready. In addition, technically detailed criteria like the absence of starvation, livelocks, and
deadlocks in the software design would be included in the analysis.

While manual analysis of models can provide insight into many aspects of the system, a more
effective approach, especially for complex or concurrent systems, is to employ automated
analysis, or model checking [Clarke 96]. Figure 4 shows the model-checking process where
an essential model of a system is “checked” against the analysis criteria, expressed as ex-
pected properties. The output of the model checker is either a confirmation of the validity of
each expected property or a non-confirmation. In most cases if the property is not confirmed
by the model checker, a counter example is provided.

Essential
model

Expected
properties

Model
checker

confirmed

not confirmed

Counter
examples

OR

+

Figure 4: Model Checking

Model-checking approaches include a variety of techniques and tools [Clarke 96]. Most
model checkers (model-checking tools) require the essential model to be a finite state ma-
chine. During automated analysis, a model checker “explores” a model’s state space to de-
termine the validity of the expected properties relative to the model.

One of the major challenges associated with model checkers is the state explosion problem—
the extraordinarily large number of states that result from complicated models. The size of
this state space can number in the hundreds of billions of states, exceeding the storage capac-
ity of even the largest computers and requiring decades of computation time. Thus, essential
models are vital for analyzing software systems using model checkers. In building essential
models, it is important to recognize both the capabilities and limitations of model checking.

A second and equally important challenge in model checking involves expressing the ex-
pected properties of the model. The language for stating expected properties is dependent
upon the particular model checker. Many state machine model checkers use temporal logic
statements. While temporal logic itself is not difficult to understand, temporal logic expres-
sions can be arcane. Working with them requires a sound understanding of the idiosyncrasies

12 CMU/SEI-99-TR-005

of the particular temporal logic representation. For example in the Symbolic Model Checker
(SMV), a property that any request for service will result in that request eventually being ac-
knowledged is expressed as:

AG(request-> AF acknowledged).

3.3 Compiling Defects
Compiling defects consists of recording the defects that are identified both in the artifact be-
ing reviewed and in the models themselves, and integrating these defects into the larger set
associated with the overall verification process. As noted, this is an activity that pervades all
aspects of the paradigm. During the building and extending of models, defects in the artifact
are uncovered and recorded. Throughout the analysis, the identified defects and related
counter examples are included in the set of defect logs for the system.

No specific procedure or defect recording format is required for the model-based verification
paradigm. A general standard format or one unique to an organization can be employed. What
is critical is that the results are integrated into the overall verification process for the project
and the larger organization.

3.4 Modifying and Extending Models
As defects and uncertainties are identified, their resolution may require additional or alterna-
tive modeling activities. The increased insight into the system resulting from modeling ac-
tivities also provides a basis for more focused modeling efforts. For example, consider the
model-based verification of a client-server networked database system. In modeling the cli-
ent-to-server message exchange protocol, subtle interdependencies among individual compo-
nents within the client software are uncovered. This realization is then used as the foundation
for exploring the interdependencies throughout the entire system.

CMU/SEI-99-TR-005 13

4 Model-Based Verification in Peer Review
Processes

In general, it is possible to integrate model-based verification practices into existing proc-
esses. This section outlines an approach for integrating model-based verification practices
into peer reviews. It is believed that with minor modifications this approach can be used with
most peer review styles.

4.1 Reviews and Formalism
Peer reviews of software requirements and design specifications have been shown to be ef-
fective in detecting errors in the early phases of software development [Wheeler 96]. Many of
these are informal (e.g., design or code walkthroughs). Others are more formal (e.g., formal
inspections), where the term formal refers to administrative and procedural aspects, not to a
foundation of mathematical formalism. These “process-formal” reviews involve checklists
(general and specialized), defined roles and responsibilities, well defined outputs, process
metrics, and expected behaviors [Fagan 76, Fagan 86, Humphrey 97, Gilb 93, STR 96,
Wheeler 96]. A notable exception to these reviews are the mathematically formal verification
reviews used in the cleanroom method [Mills 87].

The purpose of walkthroughs, peer reviews, and inspections is to improve the quality of the
artifact under review by removing defects. A fundamental premise of peer reviews is that oth-
ers will find defects that the creator of the artifact overlooked. Review of the artifact by
someone other than its creator can involve an individual or a group of peers.

Through facilitated group interaction processes, it is believed that more defects will be un-
covered than through reviews by a single reviewer or by multiple individual reviewers whose
efforts are not coordinated. Even with several individuals working together on a problem, the
effectiveness of peer review processes is limited by a human’s ability to analyze complex
problems. Model-based verification attempts to improve a review team’s ability to deal
within complexity by supplementing the “process formality” of facilitated group interactions
with selective mathematical formality—formal modeling practices.

4.2 Integration of Processes
In this section, a four-step generic peer review process is used as a framework for discussing
the integration of model-based verification practices into a peer review process. This generic
process is shown in Figure 5. It represents a “process-formal” review that is similar to the

14 CMU/SEI-99-TR-005

inspection processes proposed by a number of authors (e.g., the IEEE standard for software
reviews and audits (1028-1988) [IEEE, Gilb 93, Fagan 76, Wheeler 96]. The overall process
is abstracted into the four principal process steps of planning, preparation, meetings, and re-
work and follow-up. In this representation it is assumed that there may be multiple cycles of
preparation and meetings, as shown by the dotted arrow in Figure 5. The multiple cycles are
to ensure that a large artifact is reviewed in smaller partitions. An important result of this
partitioning is that an inspection (group) meeting is no more than two hours long.

The major inputs to the process are the artifact to be reviewed—requirements or design
specifications—or code, checklist(s), guidelines, and related materials for use in the review
process. The general set of outputs of a review include detailed and summary listing of the
defects, a report on the results of the inspection with process metrics, and related data.

Artifact

Specifications

Checklist

Planning

Preparation

Inspection
Meeting

Rework &
Follow-up

Inspection Report

Defect Summary

Defect List

Figure 5: Four-Step “Process-Formal” Inspection or Review

The process depicted in Figure 5 is a team activity where each participant assumes a particu-
lar role and associated set of responsibilities as defined by the specific method. For example,
one participant assumes the role of scribe in the Fagan method of inspection. The inclusion of
model-based verification practices introduces a new role, a modeling specialist (modeler). A
modeler is expert in the application of a variety of modeling techniques. There may be one or
more members of the team that are assuming this role. This addition of the modeler into the
peer review process requires that the overall process accommodate the new role. In particular,
this addition requires that other inspectors coordinate (both in timing and substance) their
activities with those of the modeler. This coordination is the dominant consideration in the
integration of model-based verification practices.

While the specifics of an implementation of this style of peer review will vary, the four-step
characterization of the process outlined above will be used as a framework to discuss the in-
tegration of model-based verification practices into peer review processes. In the next four
sections the potential impact of the use of model-based verification techniques in each of the
major steps is addressed. The focus of each section is on the effects that model building and
analysis have on the processes, rather than a detailed explanation of the activities involved in

CMU/SEI-99-TR-005 15

each step. These impacts may relate directly to modeling and analysis or to modifying check-
lists and other elements of the conventional review process.

4.2.1 Planning
The initial step in conventional reviews consists of planning activities that define the objec-
tives, approaches, and plans for execution of the review. When including model-based verifi-
cation practices in reviews, outcomes of the initial planning step should include

• which aspects of the system should be modeled

• which modeling techniques are appropriate

• what properties of the system must be verified

Critical aspects of the system should be used as the bases for these decisions. The amount of
risk involved as well as the importance of relevant requirements determine which aspects are
critical. Since generally it is not feasible to model all of the system in detail, the choice of
these critical aspects requires substantial domain knowledge as well as knowledge about the
relevant implementation details of the system. To be effective in these decision processes it is
imperative that either the leader of the review team or the modeler—and preferably both—
have this broad understanding of the system's requirements, design, and environment. If this
is not the case, a knowledgeable individual with this perspective should be included in the
planning activities.

Knowledge of the capabilities of the various modeling techniques is vital to making the right
choice. In general, decisions on specific modeling techniques should include considerations
of the characteristics of the system being modeled, the efficacy of the modeling technique
when applied to those characteristics, the complexity of the model being generated, and the
risks associated with the system. In particular, the risks can help to determine the level of
formality at which a system should be analyzed (e.g., a highly formalized model would be
appropriate for a safety-critical system). High assurance often implies high cost, however,
and these types of tradeoffs should be considered when choosing a modeling technique.

The planning activity should also produce a preliminary set of key expected properties to be
used in the analysis of the essential models of the system. This preliminary set is one that
should evolve throughout the review process, incorporating modifications as additional in-
sight into the system is developed. The expected properties as well as the results of the mod-
eling effort can also be used to modify checklists that are used by the other reviewers.

The decisions on scope and techniques are interleaved with other factors, including the level
of formality, perspective of the modeling effort, and abstraction levels that may be required.
The techniques on how to address these engineering decisions is part of the Model-Based
Verification Paradigm that is described in Section 3. The issues relating to the risky aspects
often involve knowledge of development issues (e.g., awareness that a particular model

16 CMU/SEI-99-TR-005

turned out to be far more difficult to design than originally planned) as well as formal soft-
ware engineering expertise.

4.2.1.1 Methods of Partitioning

In a review of a complex software system, it is often necessary to partition the artifact that is
being reviewed. This partitioning is accomplished to ensure that each part can be effectively
reviewed within a two-hour time limit for an inspection meeting. The method used to parti-
tion the artifact can affect how model-based verification is integrated into the process.

Two possible partitioning approaches, as shown in Figure 6 and Figure 7, are sequential and
modular. Sequential partitioning divides the artifact into sections according to its physical
organization—by page number for example. Modular partitioning breaks the work product
into general conceptual areas, or modules, that reflect the system’s structure (e.g., design
modules or functional areas in a requirements specification).

Lorem ipsum defect
dolor sit amet,
consectetuer
adipiscing elit, sed
diem no nummy
parvus defect
tincidunt ut lacreet
dolore magna defect
erat volutpat. Ut wisis
enim Lorem ipsum
dolor sit.

Lorem ipsum defect
dolor sit amet,
consectetuer
adipiscing elit, sed
diem no nummy
parvus defect
tincidunt ut lacreet
dolore magna defect
erat volutpat. Ut wisis
enim Lorem.

selected
software
artifact

Lorem ipsum defect
dolor sit amet,
consectetuer adipiscing
elit, sed diem no nummy
parvus defect tincidunt
ut lacreet dolore magna
defect erat volutpat. Ut
wisis enim Lorem ipsum
dolor sit ametaliguam
erat volutpat. Lorem
defect ipsum dolor sit
amet, consectetuer
adipiscing.

Sections 1-5 Sections 6-10 Sections 11-15

Lorem ipsum defect
dolor sit amet,
consectetuer adipiscing
elit, sed diem no nummy
parvus defect tincidunt
ut lacreet dolore magna
defect erat volutpat. Ut
wisis enim Lorem ipsum
dolor sit ametaliguam
erat volutpat. Lorem
defect ipsum dolor sit
amet, consectetuer
adipiscing.

Lorem ipsum defect
dolor sit amet,
consectetuer adipiscing
elit, sed diem no nummy
parvus defect tincidunt
ut lacreet dolore magna
defect erat volutpat. Ut
wisis enim Lorem ipsum
dolor sit ametaliguam
erat volutpat. Lorem
defect ipsum dolor sit
amet, consectetuer
adipiscing.

Meeting 1 Meeting 2 Meeting 3

Figure 6: Sequential Partitioning of an Artifact

Lorem ipsum defect
dolor sit amet,
consectetuer adipiscing
elit, sed diem no nummy
parvus defect tincidunt
ut lacreet dolore magna
defect erat volutpat. Ut
wisis enim Lorem ipsum
dolor sit ametaliguam
erat volutpat. Lorem
defect ipsum dolor sit
amet, consectetuer
adipiscing.

Lorem ipsum defect
dolor sit amet,
consectetuer
adipiscing elit, sed
diem no nummy
parvus defect
tincidunt ut lacreet
dolore magna defect
erat volutpat. Ut wisis
enim Lorem ipsum
dolor sit.

Lorem ipsum defect
dolor sit amet,
consectetuer
adipiscing elit, sed
diem no nummy
parvus defect
tincidunt ut lacreet
dolore magna defect
erat volutpat. Ut wisis
enim Lorem.

Selected
software
artifact

Lorem defect ipsum
dolor sit amet

sed diem no nummy
parvus defect tincidunt
ut lacreet dolore magna
defect erat volutpat.

Module A

Module B

Figure 7: Modular Partitioning of an Artifact

CMU/SEI-99-TR-005 17

4.2.2 Coordination
It is important that the activities of the modeler and those of the other reviewers are coordi-
nated. Coordination allows the modeler to participate in the inspection meetings. The mod-
eler benefits from coordination by gaining insight into the details of the system. The other
reviewers benefit by seeing the additional defects identified through the modeler’s activities.
All benefit from cross-checking the work done by the others. In general a modular partition-
ing can facilitate this coordination, but through appropriate planning, the sequential method
can also be structured to enable effective coordination of all of the reviewers.

In structuring the plan for the review, timing issues also affect the coordination activities.
Planning for adequate time during the preparation steps and between meetings ensures that
meaningful modeling and analysis can be completed. The input of the modeler and the use of
historical metrics on the time and resources required to complete modeling and analysis ef-
forts are vital for developing a sound plan for the review. Currently the data on modeling in
software systems is limited [Srinivasan 98] but as model-based verification practices mature
the quantity and quality of these data will improve.

4.2.2.1 Impact on Roles

The modeler’s role in the planning stage is more extensive than that of other reviewers. Both
the modeler and the other reviewers must become familiar with the work product. In addition,
the modeler must participate in the planning activity by contributing to the decisions on par-
titioning the artifact, establishing the scope, defining the techniques, and developing the basic
plan for building and analyzing the essential models of the system.

The integration of model-based techniques into the planning activity also requires the review
team leader to have some familiarity with model-based verification practices. Detailed
knowledge of how to employ a specific technique on the part of the leader is not required.
The leader must understand the general capabilities and limitations of each modeling tech-
nique. This knowledge will allow the leader to contribute to decisions on the choices of scope
and modeling technique.

4.2.2.2 Outcomes

In summary, the outcomes of the planning step that are affected by the integration of model-
based verification techniques are

• Review plan. This is a normal outcome of a review process. When model-based
verification techniques are employed in the review process, the plan includes
modifications that reflect the additional outcomes and that integrate the activities of the
modeler with the rest of the review team.

• Modeling plan. This plan establishes the modeling-specific activities and captures the
results of the decisions on modeling scope, techniques, and perspective. In addition, it
includes a description of the expected properties that will be used in the analyses of the
models.

18 CMU/SEI-99-TR-005

4.2.3 Preparation
The preparation stage is the time when individual reviewers, working alone, analyze the arti-
fact as they seek to understand the system and identify defects. In doing so, they rely on pro-
cedures, the responsibilities of their assigned role, and generally, a checklist or guideline as
the basis for identifying defects. While also working independently, modelers are focusing on
the building of models as the basis for analyzing the artifact under review and, as appropriate,
analyzing those models manually or with model-checking tools. The difference between the
activities of a modeler and a reviewer is depicted in Figure 8.

A reviewer in most conventional reviews relies on a checklist or guidelines to facilitate the
identification of defects. In contrast, modelers rely on the rigor and formalism required of a
particular modeling technique to guide and facilitate their efforts in uncovering defects dur-
ing the building of the models. As shown in Figure 8 both the analysis activity of a modeler,
as well as the process of building the models result in the identification of defects. In building
a model, the need imposed by the formalism to specify exactly and completely the range of
legal values for a variable can uncover hard-to-detect errors in a specification, such as the
use of greater than (>) rather than greater than or equal to (��. The value of simply building
a model was demonstrated in a recent research project. This project involved assessing the
use of modeling and model checking techniques in the analysis of the Traffic Alert and Colli-
sion Avoidance System (TCAS II). As the model was being built from the requirements
specification, an error was found. This error involved the use of greater than (>) rather than
less than or equal to (�� [Anderson 96]. During the analysis process (model checking), the
expected properties of the system are used as the basis to check the models. Depending on the
particular model-checking technique used, automated analysis efforts can provide guidance in
correcting the defects, while also identifying defects.

Checklists

Defects

Expected
Properties

Defects

build

inspect

Models

analyze

Reviewer Modeler

Figure 8: A Comparison of the Roles of Modeler and Other Reviewers

CMU/SEI-99-TR-005 19

4.2.3.1 Impact on Roles

The modeler’s role in the preparation stage has the same purpose as that of a reviewer—
finding defects. But while the other inspectors are looking for defects by visually inspecting
the work product, the modeler builds and analyzes models to assess the expected properties
of the system identified in the planning stage. The activities associated with the other
reviewer roles are generally not affected by the work of the modeler.

4.2.3.2 Outcomes

At the end of the preparation stage, the modeler should have completed and analyzed a model
or set of models that cover the essential aspects of the system as determined in the planning
stage. These models, analyses, and any defects identified are presented and logged at the re-
view meeting along with the defects found by the other reviewers.

4.2.4 Meeting
In the meeting step, also known as the logging meeting, all review participants meet to

• record defects found during preparation

• look for additional defects

• present the system models and any defects exposed by the analyses

• determine areas of future work

• address suggestions and questions about the process

Generally, the leader begins the meeting by giving a brief overview of the material that will
be addressed during the meeting and then the reviewers report on defects found in their indi-
vidual preparation activities. Various protocols are used in this meeting, and the interactions
and associated discussions that occur can uncover new defects. As an outcome of this meet-
ing the defects identified individually and as a team are recorded.

4.2.4.1 Coordination

Coordinating the efforts of the modeler and those of the other reviewers is critical to ensuring
effective review meetings. The modeling time estimates, timing for the meetings, and the in-
teractions among the reviewers must be defined clearly during the planning stage. These
plans may include the allocation of a longer time for the modeler to complete the modeling
and analysis effort to enable the modeler to participate in a particular review meeting. Alter-
natively, the review plan may involve limited participation by the modeler in one or more
meetings. For example, if there are five meetings planned to review an artifact, a modeler
may attend one or more meetings with limited involvement. This may include simply noting
defects identified by others or presenting the model as it currently stands. In other cases a
modeler may not attend all of the meetings but rather spend the meeting time modeling and
analyzing the artifact. In these circumstances a modeler would benefit by reviewing the re-
sults of the meeting, including the defects captured to aid in the modeling effort.

20 CMU/SEI-99-TR-005

4.2.4.2 Modeler Role

During the meeting, modelers would participate much as any other reviewer in that they
would present, classify, and record defects. In presenting defects, the modeler would rely on
the results of the modeling and analysis completed to that point. The modeler can use errors
recorded during the meeting to guide subsequent modeling and analysis efforts. These errors
can help identify critical areas of the system that may be high risk or have a high error occur-
rence rate, thereby further focusing the modeling and analysis work. In addition, by working
with the review team leader the modeler can use the results of the modeling and analysis ef-
forts to modify the checklists for the continuing review of the artifact.

One additional but optional responsibility of a modeler is the presentation of the models de-
veloped during the modeling process. In doing so, the modeler presents the system model,
describing its scope, its perspective, and the expected properties used in model checking.
While this presentation is optional, its purpose is to identify errors in the model, errors in the
assumptions made by the modeler, or deficiencies in the analysis. The defects identified in
the model during this presentation should be noted and used to modify and focus future mod-
eling and analysis efforts.

A key aspect of presenting the model or an analysis of a model to the team is the level of
formality of the presentation. In particular, the modeler should not assume a knowledge of
formal methods on the part of the other reviewers. To accomplish this, the modeler should
rely on the abstractions employed in the model rather than focusing on details of the model or
modeling language. Many model-checking tools provide a counterexample when an error is
found, but these are often cryptic. Using a domain-specific scenario can help explain the
steps that led to the error by relating them to a real-world example.

4.2.4.3 Outcomes

The outcome of the meeting step is principally a record of the defects identified by all of the
participants throughout the process—a defect log. As part of this log or as an additional arti-
fact, the errors and issues that involve the models are also captured. This additional informa-
tion regarding the models is used in subsequent review activities and in the rework and fol-
low-up step.

4.2.5 Rework and Follow-up
This last step in the process is a closure activity that involves completing the rework and con-
firming its completion. The rework involves making changes to the artifact based upon the
correction of defects and modifications of the models that may be required. Since the model
is designed to mirror critical aspects of the artifact, it must be kept consistent with changes to
the artifact. Thus, for any rework done on the artifact, it is necessary to determine the impact
on the models. If the models are impacted by the rework, they should be revised to stay con-
sistent with the artifact, and then reanalyzed. By analyzing the reworked models the team can
identify new defects that may have been introduced in the rework.

CMU/SEI-99-TR-005 21

4.2.5.1 Roles

The modeler has the responsibility to rework models and to re-run model analyses as needed.
In addition to the responsibilities normally assumed by the team lead in this step, the lead
also must ensure that the rework on the models is completed.

4.2.5.2 Outcomes

At the completion of the peer review process, there are additional outcomes associated with
model-based verification practices. These include the models themselves and their related
artifacts as shown in Figure 9. This information becomes part of the collective set of artifacts
that should be maintained during a development or upgrade effort. They are especially useful
in providing a high-level basis for subsequent upgrades.

Artifact

Specifications

Checklist

Planning

Preparation

Inspection
Meeting

Rework &
Follow-up

Inspection Report

Defect Summary

Defect List

Models

Figure 9: Four-Step Review Process and Its Outcomes

4.2.6 Comparison of Activities and Roles
In integrating model-based verification techniques into conventional reviews, as represented
by the generic four-step process, modifications to the process focus on coordinating the ac-
tivities of the modeler with those of other members of the review team. Figure 10 summa-
rizes relevant activities and responsibilities and contrasts the role of the reviewers who are
following the conventional process with that of the modeler. The modeler follows a separate
but parallel track that involves explicit coordination in the timing and content of activities at
both the planning and meeting steps. In the planning step, this includes working with the
team leader and others in planning the modeling activities and coordination efforts. In the
review meeting step, this involves a team effort to compile the results of the review
processes.

22 CMU/SEI-99-TR-005

Planning MeetingPreparation Rework & Follow-up

R
ev

ie
w

er
s

M
o

d
el

er
• Assemble

materials
• Select roles

• Become
familiar with
artifact

• Find defects

• Present
defects

• Record
defects

• Author
reworks
artifact

• Rework
models

• Re-run model
analyses

• Present defects
• Present model

and analysis

• Begin
modeling

• Find defects
and problem
areas

• Define scope
and perspective

• Select modeling
approach

C
o

or
di

n
at

io
n

ac
tiv

ity

C
o

or
di

n
at

io
n

ac
tiv

ity

Repeat as necessary

Repeat as necessary

Leader verifies
completion of
rework

Figure 10: Comparison of Responsibilities

4.2.7 Summary of Modifications
The modifications to the generic process required to incorporate model-based verification
techniques are summarized in this section. These modifications include the following steps:

• Planning step. The modeling process is included in the plan for the review. In particular,
decisions must be made on what should be modeled, what modeling techniques to
employ, and what expected properties are to be verified. The other considerations include
choosing a partitioning approach for the artifact. This choice, as well as considerations of
the time and resources required for the review effort, will help the team coordinate
modeling activities with those of the general review process.

• Preparation step. Individual reviewers analyze the artifact under review while modelers
investigate errors by building and analyzing models of the artifact. Modelers rely on the
formal framework of the modeling technique rather than a checklist or other guide.

• Meeting step. Modelers participate much as the other reviewers in the process do,
presenting defects in the group setting. The defects noted can be used to guide
subsequent modeling and analysis efforts. Optionally, the modeler may present the
models to the larger group for its review and comment.

• Follow-up and rework step. The modeler reworks models and reruns analyses as
required. The key is to ensure that the models accurately reflect the revised artifact.

4.2.8 Integration Issues
Integrating model-based verification practices into existing review processes comes with
some potential difficulties. The modeler’s responsibilities in the early stages of review, plan-
ning, and preparation can take longer than other reviewers’ tasks. This is especially true when
a new modeling technique is chosen or the review artifact is complex. Preliminary data show
that model building often takes more time than it takes to prepare for a conventional review,

CMU/SEI-99-TR-005 23

and is also less predictable. Scheduling should account for this and provide the modeler with
sufficient time to build and analyze models.

The concept of combining model-based verification and peer review is still untested. It is
hoped that future pilot studies will provide data with which to compare this conceptual re-
view process with conventional peer reviews.

4.3 Alternative Approaches
A generic four step peer review process was used as a basis for demonstrating how model-
based verification techniques can be integrated into most peer inspection and review meth-
ods. This section discusses alternative ways to integrate model-based verification concepts
and practices into an organization or project. In all of these approaches mathematical formal-
ism is intended to supplement the process formality of inspections and other established peer
review processes.

4.3.1 Autonomous Activity
It is possible to have an autonomous model-based verification activity that involves the use of
individual reviewers who are experts in the model-based technique but are not part of a team
review process. These autonomous reviews may be employed periodically to analyze a com-
plete system, to address a specific issue, or to focus on a particularly important technical as-
pect or requirement involved in the development or upgrade of a system. These activities
would be extensions to existing practices, not substitutes for established peer review proc-
esses. These styles of review may be particularly effective for unanticipated events or as part
of a risk mitigation strategy.

4.3.2 Other Formalized Processes
Formalism is an integral part of the cleanroom method and is a vital component of the verifi-
cation procedures used in that method [Mills 87]. Recently other review approaches, which
are representative of the model-based verification philosophy of relying on formalism to
bring a systematic structure to the review process, have been proposed and investigated. For
example, a comprehensive formal review technique has been defined that includes mathe-
matically formal tabular representations [Parnas 85, Parnas 94]. Also, there are review proc-
esses that attempt to focus the work of individual reviewers relying upon the engineering as-
pects of the system [Porter 95]. In a recent article Johnson [Johnson 98] discusses
reengineering inspection processes, including alternative approaches to enhance the effec-
tiveness and acceptance of process formal reviews.

24 CMU/SEI-99-TR-005

CMU/SEI-99-TR-005 25

5 Summary

Creating and analyzing essential models is a challenging engineering enterprise. The keys to
its effectiveness are

• incremental and iterative modeling techniques

• focus on critical system aspects

• integration with existing processes

• appropriate use of human reviewers and model-checking tools

The model-based verification paradigm relies heavily on the modeler. This person must be
familiar with both system requirements and modeling techniques. Other members of the peer
review group can assist the modeler by offering different perspectives on system require-
ments, helping the modeler determine an appropriate scope and level of abstraction to use
when creating essential models.

Cooperation between the modeler and other reviewers is important. Model-checking tools
can manage complexity that human reviewers cannot, and human activities such as abstrac-
tion and risk assessment help direct the modeling effort. A process that combines model-
based verification with traditional peer reviews leverages the strengths of human reviewers
and model-checking tools by using each appropriately. The strengths of human reviewers are
the ability to

• find different perspectives from which to examine a system

• abstract critical aspects from irrelevant detail

• identify important system properties

These talents help direct the modeler in creating and analyzing models. A model-based veri-
fication effort will involve a set of models of various scopes, perspectives, and levels of ab-
stractions. Creating and analyzing essential models supplement conventional peer review by
providing

• discipline enforced by mathematical formalism

• explicit mathematical rigor

• thorough examination of all possible interactions

• conclusive proof by example when a defect is found

26 CMU/SEI-99-TR-005

The approaches outlined in this report are preliminary and will be the basis for pilot studies
using model-based verification in real-world development efforts. This work represents an
incremental advance in evolving the practice. Establishing guidelines and principles for the
decisions on what to model and to what level is one of the major areas of investigation of the
model-based verification work. Results of these studies will be used to augment the practices
described here and will form the foundation for more detailed guides for the practice of
model-based verification.

CMU/SEI-99-TR-005 27

References

[Anderson 96] Anderson, R. J.; Beam, P.; Burns, S.; Chan, W.; Modugno, F.; Not-
kin, D.; & Reese, J. D. “Model Checking Large Software Specifi-
cations,” 156-166. SIGSOFT ’96, Proceedings of the Fourth ACM
Symposium on the Foundations of Software Engineering. October
1996.

[Clarke 96] Clarke, E. M. & Wing, Jeannette. “Formal Methods: State of the Art
and Future Directions.” ACM Computing Surveys 28, 4 (December
1996): 626-643.

[Fagan 76] Fagan, M. “Design and Code Inspections to Reduce Errors in Pro-
gram Development.” IBM Systems Journal 15, 3 (1976): 182-211.

[Fagan 86] Fagan, M. E., “Advances in Software Inspections.” IEEE Transac-
tions on Software Engineering SE-12, 7 (July 1986): 744-751.

[Gilb 93] Gilb, T. & Graham, D. Software Inspection. Wokingham, England:
Addison-Wesley, 1993.

[Gluch 98] Gluch, D. & Weinstock, C. Model-Based Verification: A Technology
for Dependable System Upgrade (CMU/SEI-98-TR-009,
ADA354756). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 1998.

[Humphrey 97] Humphrey, W. S. Introduction to the Personal Software Process.
SEI Series in Software Engineering, Reading, Mass.: Addison
Wesley Longman, Inc., 1997.

[IEEE 89] ANSI/IEEE Std. 1028-1988. Standard for Software Reviews and
Audits. Software Engineering Standards, Third Edition, 1989.

[Jackson 95] Jackson, M. Software Requirements and Specifications: A Lexicon
of Practice, Principles, and Prejudices. New York: ACM Press,
Addison-Wesley, 1995.

28 CMU/SEI-99-TR-005

[Jackson 96] Jackson, Daniel & Wing, Jeannette. “Lightweight Formal Meth-
ods.” IEEE Computer (April 1996): 21-22.

[Johnson 98] Johnson, P. M. “Reengineering Inspection.” Communications of the
ACM 41, 2 (February 1998): 49-52.

[Klein 93] Klein, M.; et al. A Practitioner’s Handbook for Real-Time Analysis:
Guide to Rate Monotonic Analysis for Real-Time Systems. Boston,
Mass.: Kluwer Academic Publishers, 1993.

[Mills 87] Mills, H.; Dyer, M.; & Linger, R. “Cleanroom Software Engineer-
ing.” IEEE Software 4, 5 (1987):1987.

[Parnas 85] Parnas, D. L. & Weiss, D. M. “Active Design Reviews: Principles
and Practices.” 132-136. Proceedings of the Eighth International
Conference on Software Engineering, August 1985.

[Parnas 94] Parnas, D. L. “Inspection of Safety-Critical Software Using Pro-
gram-Function Tables,” 270-277. Proceedings of IFIP 13th World
Computer Congress, Vol. A-53, Hamburg, Germany, Aug. 28–Sept.
2, 1994. IFIP Transactions A (Computer Science and Technology).

[Porter 95] Porter, A. A.; Votta, L. G. Jr.; & Basili, V. R. “Comparing Detection
Methods for Software Requirements Inspections: A Replicated Ex-
periment.” IEEE Transactions on Software Engineering 21, 6, (June
1995): 563-575.

[Srinivasan 98] Srinivasan, Grama R. & Gluch, D. P. A Study of Practice Issues in
Model-Based Verification Using the Symbolic Model Verifier (SMV)
(CMU/SEI-98-TR-013, ADA358751). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1998.

[STR 96] “Software Inspections.” Software Technology Review [online].
Available WWW: <http://www.sei.cmu.edu/str/descriptions
/inspections_body.html>.

[Wheeler 96] Wheeler, D. A.; Brykczynski, B.; & Meeson, R. N. Jr. Software In-
spection: An Industry Best Practice. Los Alamitos, Calif.: IEEE
Computer Society Press, 1996.

CMU/SEI-99-TR-005 29

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and main-
taining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including sug-
gestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE

April 1999
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

An Introduction to Software Engineering Practices Using Model-Based Verification
5. FUNDING NUMBERS

C — F19628-95-C-0003
6. AUTHOR(S)

David P. Gluch
Jared Brockway

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-99-TR-005

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-99-005

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This is an introductory report on the use of model-based verification techniques within software development and
upgrade practices. It presents the specific activities and responsibilities that are required of engineers who use the
model-based verification paradigm and describes proposed approaches for integrating model-based verification into
an organization's software engineering practices. The approaches outlined in this report are preliminary concepts for
the integration of model building and analysis techniques into software engineering review and inspection practices.
These techniques are presented as both practices within peer review processes and as autonomous engineering in-
vestigations. The objective of this report is to provide a starting point for the use of model-based verification tech-
niques and a framework for their evaluation in real-world applications. It is expected that the results of pilot studies
that employ the preliminary approaches described here will form the basis for improving the practices themselves
and software verification generally.

14. SUBJECT TERMS

model-based verification, model checking, verification, formal reviews,
formal inspections, software engineering practices

15. NUMBER OF PAGES

40

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

	Cover
	Contents
	Figures
	Acknowledgments
	Abstract
	1 Introduction
	2 Using Models for Verification
	2.1 Formal Models
	2.2 Essential Models

	3 Model-Based Verification Paradigm
	3.1 Building Essential Models
	3.1.1 Scope
	3.1.2 Perspective
	3.1.3 Formalism
	3.1.4 Abstraction

	3.2 Analyzing Models (Model Checking)
	3.3 Compiling Defects
	3.4 Modifying and Extending Models

	4 Model-Based Verification in Peer Review Processes
	4.1 Reviews and Formalism
	4.2 Integration of Processes
	4.2.1 Planning
	4.2.1.1 Methods of Partitioning

	4.2.2 Coordination
	4.2.2.1 Impact on Roles
	4.2.2.2 Outcomes

	4.2.3 Preparation
	4.2.3.1 Impact on Roles
	4.2.3.2 Outcomes

	4.2.4 Meeting
	4.2.4.1 Coordination
	.2.4.2 Modeler Role
	4.2.4.3 Outcomes

	4.2.5 Rework and Follow-up
	4.2.5.1 Roles
	4.2.5.2 Outcomes

	4.2.6 Comparison of Activities and Roles
	4.2.7 Summary of Modifications
	4.2.8 Integration Issues

	4.3 Alternative Approaches
	4.3.1 Autonomous Activity
	4.3.2 Other Formalized Processes

	5 Summary
	References

