
Building Blocks for
Achieving Quality of
Service with
Commercial Off-the-
Shelf (COTS)
Middleware
Andreas Polze

May 1999

TECHNICAL REPORT
CMU/SEI-99-TR-001

ESC-TR-99-001

Pittsburgh, PA 15213-3890

Building Blocks for
Achieving Quality of
Service with
Commercial Off-the-
Shelf (COTS)
Middleware
CMU/SEI-99-TR-001
ESC-TR-99-001

Andreas Polze

Unlimited distribution subject to the copyright.

May 1999

COTS-Based Systems

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in
the interest of scientific and technical information exchange.

FOR THE COMMANDER

Mario Moya, Maj, USAF
SEI Joint Program Office
This work is sponsored by the U.S. Department of Defense and by Humboldt University. The Software En-
gineering Institute is a federally funded research and development center sponsored by the U.S. Department
of Defense.

Copyright © 1999 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document should
be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATE-
RIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER IN-
CLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANT-
ABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-pur-
pose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the copyright license under the clause at
52.227-7013.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark
holder.

This document is available through Asset Source for Software Engineering Technology (ASSET): 1350
Earl L. Core Road; PO Box 3305; Morgantown, West Virginia 26505 / Phone: (304) 284-9000 or toll-free
in the U.S. 1-800-547-8306 / FAX: (304) 284-9001 World Wide Web: http://www.asset.com / e-mail:
sei@asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For in-
formation on ordering, please contact NTIS directly: National Technical Information Service, U.S. Depart-
ment of Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides
access to and transfer of scientific and technical information for DoD personnel, DoD contractors and po-
tential contractors, and other U.S. Government agency personnel and their contractors. To obtain a copy,
please contact DTIC directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman
Road / Suite 0944 / Ft. Belvoir, VA 22060-6218 / Phone: (703) 767-8274 or toll-free in the U.S.: 1-800
225-3842.

CMU/SEI-99-TR-001

Table of Contents
1 Introduction 1

2 Composite Objects: Making Tradeoffs Explicit 3

3 Real-Time Case Studies 7
3.1 Java Interface to a Soft Real-Time Legacy 7
3.2 Producer/Consumer/Viewer Example 11

3.2.1 Version A: Composite Object as CORBA
Client; Viewer as CORBA Server 12

3.2.2 Version B: Composite Object as CORBA
Server; Viewer as CORBA Client 14

4 Fault-Tolerance Case Studies 17
4.1 Observable Objects: A Technique for Robust

CORBA Clients 17
4.2 Consensus-Based Responsive Services 19

5 Related Work 23
5.1 Real-Time CORBA 23
5.2 Fault-Tolerant CORBA 24

6 Conclusions and Future Work 25
i

ii CMU/SEI-99-TR-001

CMU/SEI-99-TR-001

List of Figures
Figure 1-1 Bridging Middleware and QoS-Sensitive
Services with Composite Objects 2

Figure 2-1 Structure of a Composite Object 4

Figure 2-2 Consistency Protocol and Communication
Inside a Composite Object 5

Figure 2-3 Overheads Imposed by Composite Ob-
jects 6

Figure 3-1 Balancing Robots Simulation 7

Figure 3-2 Communication Structure of the Balanc-
ing Robots 8

Figure 3-3 Java Controller: Execution Scheme with
Fallback Procedure 9

Figure 3-4 Execution of Java Controller Versus Sim-
ulation’s Period 10

Figure 3-5 Screen Dump of Java Components for the
Balancing Robots 10

Figure 3-6 Producer/Consumer/Viewer: Overall Sce-
nario 11

Figure 3-7 How CORBA Affects a Client Application’s
Timing Behavior 13

Figure 3-8 Decoupling CORBA and the Application
via a Composite Object 14

Figure 3-9 Minimizing Data Accesses: Effects of
Caching 15
iii

Figure 3-10 Restricting the ORB: Call Admission via
Scheduling Server 16

Figure 4-1 Observable Object Interface: CORBA IDL
18

Figure 4-2 Primary/Backup Monitored by Observer
19

Figure 4-3 Labyrinth Search: A Responsive Service
21
iv CMU/SEI-99-TR-001

Abstract

To date, most of the fault-tolerant, real-time systems have been implemented in embedded set-
tings, and there is an urgent need to open up this type of computing technology to a larger
number of people who use heterogeneous distributed computing environments. Today’s trans-
portation, manufacturing, and communication systems require the integration of multiple
embedded real-time control systems with standard distributed computing environments in a
predictable fashion. Humboldt University has developed the concept of composite objects as a
filtering bridge between standard middleware platforms and software frameworks providing
services with certain quality-of-service (QoS) guarantees. Current research focuses on the
Common Object Request Broker Architecture (CORBA) middleware platform; however, com-
posite objects are also applicable to platforms like the Distributed Component Model (DCOM)
and distributed computing environments (DCEs). Key concepts in Humboldt’s approach are
analytic redundancy, noninterference, interoperability, and adaptive abstraction. These con-
cepts originated in SEI work on the Simplex architecture and have been reapplied to extend
the reach of commercial off-the-shelf (COTS) software technologies into demanding applica-
tion settings (such as those found in military and industrial applications). Here, we discuss
building blocks and techniques for fault-tolerant, real-time applications based on CORBA.
CMU/SEI-99-TR-001 v

vi CMU/SEI-99-TR-001

1 Introduction

Most of the fault-tolerant, real-time systems have been implemented in embedded settings,
and there is an urgent need to open up this type of computing technology to a larger number of
people who use heterogeneous distributed computing environments [Soley 98].

The Object Management Group's (OMG) Common Object Request Broker Architecture
(CORBA) is an important and popular technology that supports the development of object-
based, distributed applications. The benefits of abstraction promised by CORBA (location
transparency, heterogeneity, dynamic configuration, etc.) are appealing in many application
domains, including those that satisfy real-time and fault-tolerance requirements (such as man-
ufacturing, process control, and transport systems). However, CORBA is focused on facilitat-
ing general computing environments, and the specification of timing behavior and quality-of-
service (QoS) parameters, such as communication latency and acceptable processor utiliza-
tion, is beyond the scope of the latest version of CORBA.

The Computer Architecture and Organization Group at Humboldt University is studying
numerous aspects relating to responsive computing (in particular, techniques for timely deliv-
ery of computing results even in the face of faults). In the context of this work, the Responsive
CORBA Unified Environment (RESCUE) Project is developing a CORBA-based distributed
framework for responsive (fault-tolerant, real-time) services, which exploits consensus for
synchronization, reliable communication, and fault diagnosis among replicated server objects.
The technical foundation for RESCUE is provided by composite objects, which act as a filter-
ing bridge (see Figure 1-1) between CORBA (which does not provide quality-of-service guar-
antees) and responsive services (which do provide such guarantees). Composite objects
provide CORBA clients with higher predictability regarding timely and reliable method exe-
cution.

Here, we present the composite objects approach for predictable integration of CORBA with
real-time requirements. We discuss data replication and weak memory consistency as the key
concepts for implementing the composite objects approach. We evaluate the timing behavior
of composite objects and demonstrate the value of our technique in a number of proof-of-con-
cept scenarios.
CMU/SEI-99-TR-001 1

Figure 1-1: Bridging Middleware and QoS-Sensitive Services with Composite Objects

The rest of this report is organized as follows: Section 2 discusses the composite objects
approach for predictable integration of CORBA and real-time fault-tolerant computing. Sec-
tion 3 presents the problems of the producer/consumer/viewer and the “unstoppable robots”
models and evaluates their timing behavior. In Section 4, we outline our key concepts for
CORBA-based fault-tolerant computing and present example scenarios for fault-tolerant
Netscape and the Java-based fault-tolerant maze. In Section 5, we summarize related work
with the objective of extending CORBA with real-time and fault-tolerance capabilities.
Finally, we present our conclusions and some directions for future work in Section 6.

Composite Object

CORBADCOMDCE

FT
RT

Security
2 CMU/SEI-99-TR-001

2 Composite Objects: Making Tradeoffs
Explicit

The composite objects approach allows the programmer to make an explicit tradeoff between
an application's predictable resource utilization and its communication latency. Therefore,
composite objects make implementation details that are usually hidden and abstracted away by
CORBA visible and explicit.

The implementation of the composite objects approach follows three basic design rules:

1. noninterference: General-purpose computing and responsive computing should not bur-
den each other.

2. interoperability: Services exported by general-purpose computing objects and by respon-
sive computing objects can be used by each other.

3. adaptive abstraction: Lower level information and scheduling details are available for
real-time objects, but are transparent to non-real-time objects.

Since composite objects provide functionality to react on CORBA method invocations, they
can be seen as descendants of a class that implements object adaptor functionality (_skel in
many implementations). On the other hand, composite objects have the capability to create
real-time programming abstractions such as prioritized threads and real-time communication
channels. As depicted in Figure 2-1, they can be seen as descendants of a class that imple-
ments real-time servers.

Composite objects consist of a real-time part and a non-real-time part. Design time and run-
time guarantees can be given for execution of real-time methods. In contrast, methods in the
non-real-time part are executed following a best-effort approach. Composite objects establish
timing firewalls [Polze 97] between real-time and non-real-time (CORBA) computing, so that
the non-real-time part cannot violate the real-time scheduling rules that are needed by the real-
time part [Sha 94].
CMU/SEI-99-TR-001 3

.

Figure 2-1: Structure of a Composite Object

Data replication is the key to independent data access from real-time and non-real-time threads
inside a composite object. We split an object’s data into two parts: one that is statically locked
in memory to fulfill real-time scheduling assumptions (RT data), and another that is treated
like a standard non-real-time user’s process data (NRT data) and is subject to memory man-
agement such as paging. A pair of RT/NRT variables can be viewed as a replicated variable.
Composite objects implement a consistency protocol to update both replicas and create the
impression of a shared variable.

The consistency protocol for shared RT/NRT variables as well as resource allocation [central
processing unit (CPU) cycles, memory] and call admission for CORBA clients are crucial for
implementing the concept of composite objects. Based on the Mach (NeXTSTEP 3.3) and
rtLinux [Barabanov 97] operating systems, we have used pipes, shared buffers, and message
queues (Mach IPC) for our implementation of the composite objects approach as shown in
Figure 2-2.

Figure 2-2 describes the data flow during read/write accesses to a composite object’s vari-
ables. read requests in both parts of the composite object are always satisfied by accessing the
local copy of a replicated, shared RT/NRT variable. In contrast, write requests not only result
in updating the local copy, but the value is also stored in an interprocess communication (IPC)
data structure (i.e., pipes, rt-fifos). Handler threads periodically copy values out of the IPC
data structures into the local replica of the shared RT/NRT variable. The update rate for those
handler threads is programmable.

Composite Object

CORBA-threads

public NRT data

shared RT/NRT
variables

RT-threads

public RT data

shared RT/NRT
variables

consistency

protocol

communication/execution
without QoS guarantees

QoS guarantees
predictable execution

BOAImpl
class

 RT-class
(POSIX 1003.21)

- priorities
- timers
- RT-scheduling
- memory managementIIOP

RT-comm
4 CMU/SEI-99-TR-001

Figure 2-2: Consistency Protocol and Communication Inside a Composite Object
Alternatives to the implementation outlined here include use of shared memory or message
passing (Mach IPC) for data transfer between the CORBA part and real-time part of the com-
posite object. In our experiments, we have evaluated implementations of the composite objects
approach based on pipes and shared memory.

Another design alternative is an event-triggered consistency protocol in contrast to the time-
triggered, periodic protocol described above. In that case, a write operation would include sig-
naling the arrival of a new data value to the handler thread on the opposite side of the compos-
ite object. We have implemented consistency protocols following both schemes.

To evaluate the overhead introduced by the composite objects approach, we have investigated
a scenario where a real-time data source is accessed by a CORBA client through a composite
object that implements an event-triggered consistency protocol.

Figure 2-3 shows communication delays for the described scenario. The lower, dotted curve
represents the latency of real-time communication between the composite object and the data
source (Mach Interprocess Communication). The middle curve shows the time needed for the
consistency protocol inside the composite object plus real-time communication. The distance
between the lower and middle curves represents the overhead imposed by our implementation
of the composite objects approach. It is roughly 1 ms (millisecond) (10% of the overall com-
munication latency). One should notice that both curves are fairly stable, indicating that intro-
duction of a composite object as a mediator will not disturb an application’s predictable timing
behavior.

Composite Object

CORBA-threads

public NRT data

shared RT/NRT
variables

RT-threads

public RT data

shared RT/NRT
variables

consistency protocol
pipe, rt-fifo

pipe, rt-fifo

handler thread handler thread

write write

read read
CMU/SEI-99-TR-001 5

.

Figure 2-3: Overheads Imposed by Composite Objects

In contrast, the curve at the top of the diagram, which represents the overall communication
delay including CORBA, shows clearly visible peaks. Although the average CORBA commu-
nication latency is around 12 ms (the client was run remotely), even in the unloaded case it
varies occasionally by one order of magnitude. This indicates that the direct execution of
CORBA calls from within a time-critical application will significantly disturb the applica-
tion’s predictability.

0

40

80

120

160

0 100 200 300 400

t i
n

m
s.

number of experiments

overall comm.
consistency prot.

RT-comm.

Composite Object - overhead
6 CMU/SEI-99-TR-001

3 Real-Time Case Studies

3.1 Java Interface to a Soft Real-Time Legacy
 Application

As a proof-of-concept vehicle, we have created a responsive service by extending a CORE/
SONiC (COncensus for REsponsiveness/Shared Objects Net-interconnected Computer) soft
real-time legacy application with CORBA interfaces that are accessed by two Java applets.

The “balancing robots” [Werner 96] (shown in Figure 3-1) simulate the following scenario:
Robots are moving on top of a plate that is kept in unstable balance. Robots are constantly
using energy and, therefore, occasionally have to visit a fuel station, which is located outside
of the plate’s center. Consensus among robots is achieved prior to every move, with robots that
have high levels of fuel acting as a counterbalance to those moving toward the fuel station.
Collision avoidance is also implemented by consensus.

Figure 3-1: Balancing Robots Simulation

The application demonstrates tolerance of the robots’ and controllers’ crash, omission, and
computation faults. Control is subject to soft real-time constraints. Calculations of the control-
lers’ and robots’ moves are executed with a frequency of 4 Hz. The application of composite
objects in a scenario with more stringent timing requirements is given in Section 3.2.

Using the composite objects technique, we have modified two of the application’s interfaces to
use CORBA. Using the Java language binding for CORBA, one applet has been implemented
CMU/SEI-99-TR-001 7

to monitor the soft real-time simulation and periodically obtain status information. Another
applet implements the robots’ control algorithm in Java and interacts with the real-time simu-
lation’s native controllers during consensus rounds. These interactions have fixed deadlines
(inner control loop) that must be met despite CORBA’s and Java’s variations in communica-
tion latency and execution times. Both Java applets are connected to the “balancing robots” via
gateways implemented as composite objects. Figure 3-2 shows the communication structure of
the complete application.

Figure 3-2: Communication Structure of the Balancing Robots

Problematic in our scenario is the potentially varying number of clients (Java applets) access-
ing the service. This may result in an unacceptably high load on the real-time system and, in
turn, missed deadlines (indicated by stopped/crashed robots that ran out of fuel). To circum-
vent these problems, we use the following three strategies inside the composite objects bridg-
ing between CORBA and the soft real-time application:

1. caching: Due to the periodic operation of the soft real-time system, it is sufficient to read
status information once per period. Thus, the composite object serves as a data cache,
whose contents are valid for a limited time (the length of one period). This results in a
bounded load for the soft real-time simulation.

2. call admission: Even when using the caching approach mentioned above, incoming
CORBA requests place some load on the real-time system (e.g., scheduling overheads,
processing of network protocols). To bound these loads, the CORBA ORB’s dispatch rou-

controller

NeXTSTEP

1st World Display

simulation
environment

NeXTSTEP

controller

NeXTSTEP

controller

NeXTSTEP

gateway #2
Composite Object
controller

NeXTSTEP

Java-based
controller

Windows NT

2nd World
Java-based Display

Windows NT

gateway #1
Composite Object

NeXTSTEP

consensus
algorithm

robot
control

CORBA
IIOP

CORBA
IIOP
8 CMU/SEI-99-TR-001

tine can be executed under control of the scheduling server [Polze 97] effectively restrict-
ing its percentage of CPU usage. We have used this technique to implement call admission
within the composite objects used by the application in our examples.

3. fallback procedures: The Java-based controller allows the interactive user to forward
input to the real-time simulation. However, variations in communication and execution
times due to CORBA and Java affect the soft real-time simulation’s inner control loop and
may result in missed deadlines. We have used the technique of fallback procedures
depicted in Figure 3-3 to deal with those cases. In our approach, the fallback procedure is
invoked simultaneously with the CORBA invocation of the Java control algorithm. In the
case of a late reply, the fallback procedure’s result is used instead of the Java algorithm’s.
However, in contrast to the Java algorithm, the fallback procedure’s resource requirements
and execution times are known and, therefore, can be factored into the real-time applica-
tion’s scheduling analysis.

.

Figure 3-3: Java Controller: Execution Scheme with Fallback Procedure

In Figure 3-4, we compare the latency of CORBA requests sent to the Java-based controller
with the “balancing robots” simulation’s period. We see that when an unloaded system runs
the Java controller, CORBA latency is well below the real-time simulation’s period in most
cases. Even on occasional delayed calls, the result is available before the simulation’s next
period begins.

In contrast, when a loaded system runs the Java controller, execution results are often late.
Without applying a fallback procedure, the “balancing robots” behavior would have been sig-
nificantly disturbed. However, our experiments indicate stable behavior of the simulation and
demonstrate the ability of our technique to deal with variations in communication and execu-
tion times typical for middleware-based distributed computing environments.

Java applet

control
algorithm

Composite
Object fallback

procedure

soft real
time
simulation

deadline

NRT exec RT exec

IIOP Mach IPC
CMU/SEI-99-TR-001 9

The “balancing robots” Web-service has been implemented on top of the Mach-based NeXT-
STEP 3.3 operating system. On NeXTSTEP we have used the Inter-Language Unification
(ILU) 2.0 alpha 12 CORBA implementation, whereas the Java-applet connecting to our Web
service has been implemented based on the Java object request broker (ORB) of OmniBroker
[OOC 99]. Figure 3-5 shows screen dumps of the Java components.

Figure 3-4: Execution of Java Controller Versus Simulation’s Period

Figure 3-5: Screen Dump of Java Components for the Balancing Robots

0

50

100

150

200

0 50 100 150 200 250 300 350 400 450 500

number of experiments

Real time part
CORBA part

t in msec

0

50

100

150

200

0
50 100 150 200 250 300 350 400 450 500

number of experiments

CORBA part
Real time part

t in msec

unloaded Windows NT
system running external controller

loaded Windows NT
system running external controller
10 CMU/SEI-99-TR-001

3.2 Producer/Consumer/Viewer Example
 Application

In this section, we describe the effects and applicability of the composite objects approach in a
minimal application setting. Our producer/consumer example studies the timing behavior of
two threads that communicate via shared memory. Both threads are scheduled according to the
fixed-priority scheduling policy available on the NeXTSTEP operating system. The example
can be seen as a generic real-time application, where processor and resource requirements are
known.

The producer/consumer application scheduled with fixed priority is a good example to study
CORBA’s impact on the predictability of an application’s behavior. Both the producer and
consumer run periodically and go through several phases. Both threads do some real work
(produce/consume data for periods Tp/Tc, respectively), then both threads try to access the
shared memory buffer (read/write for periods Tr/Tw, respectively), and finally they sleep (for
period Ts) until their next invocation. In our example, the theoretical execution times for both
producer and consumer are 60 ms per invocation.

Access to the shared memory buffer is guarded by a mutex. Since the buffer is bounded, two
condition variables are used to synchronize the producer and consumer. The resource require-
ments and timing behavior of both the producer and consumer are simulated by computation-
intensive for-loops, while waiting for the next invocation to be implemented using the select()
system call. Figure 3-6 shows the overall scenario and gives the theoretical parameters for the
threads’ execution times.

Figure 3-6: Producer/Consumer/Viewer: Overall Scenario

shared memory
 buffer

write
produce - Tp = 32.5ms
write to buffer - Tw = 13ms

sleep - Ts = 14.5ms
read from buffer - Tr = 6.5ms
consume - Tc = 32.5ms

sleep - Ts = 21ms

Producer

Consumer

Composite Object

CORBA
threads

RT-thread

 Viewer
acting as
CORBA Server
 (version A)

 Viewer
acting as
CORBA Client
 (version B)

pipe

pipe

read

read

CORBA call

CORBA

 call
CMU/SEI-99-TR-001 11

In addition to producer and consumer, Figure 3-6 depicts two variants of a third component—
the viewer. We assume that the data which are communicated by the producer and consumer
are of interest to some kind of graphical display, which is connected via a composite object
and CORBA. In all experiments, the viewer component has been run remotely.

In general, there are two approaches to attach new CORBA components to a legacy applica-
tion: (1) The application may either hand out data on request (i.e., act as a CORBA server, ver-
sion A in Figure 3-6), or (2) it may actively send data to the CORBA components (i.e., act as a
CORBA client, version B in Figure 3-6). In the first case, resource problems resulting from
varying numbers of clients requesting data may show up. We want to study both cases and
evaluate the timing behavior of our original application. We measure predictability of our
application in terms of changes in the producer’s and consumer’s periodicity. Ultimately, we
are going to demonstrate how the composite objects technology may keep the producer/con-
sumer’s behavior predictable—despite of and without changes to CORBA.

For our experiments, we have used the Mach-based NeXTSTEP 3.3 operating system run on a
Hewlett-Packard (HP) 715/50 computer as host for producer and consumer. We have run the
viewer process remotely on a SparcStation~2 computer with the Solaris 2.6 operating system.
On the NeXTSTEP side, we have used the XEROX PARC Inter-Language Unification (ILU
2.0 alpha12) implementation, which provides most features specified in the CORBA standard
and is interoperable with CORBA-compliant object request brokers. We have used Object Ori-
ented Concept’s (OOC’s) OmniBroker 2.02 CORBA implementation on the Solaris system.

3.2.1 Version A: Composite Object as CORBA Client; Viewer
as CORBA Server

In this scenario, the viewer component acts as CORBA server, and our “legacy” real-time
application sends data via CORBA. Figure 3-7 compares variation in the producer/consumer’s
periodicity in the initial case and for a naive solution, where the consumer directly calls the
viewer (without the intermediate composite object).

The right-hand diagram in Figure 3-7 demonstrates CORBA’s varying communication laten-
cies under changing loads. In our experiments we have run multiple computation-intensive
processes on the viewer’s host computer to simulate a slow CORBA server on a loaded sys-
tem. However, even in the case of a fast, unloaded CORBA server, one may notice substantial
variations in the producer/consumer’s periodicity, which are caused by CORBA. Therefore,
we have introduced a composite object as a mediator between the producer/consumer and
viewer+CORBA.
12 CMU/SEI-99-TR-001

Figure 3-7: How CORBA Affects a Client Application’s Timing Behavior

The variation coefficient is given in all diagrams as a measure for our test application’s stable
timing behavior. All diagrams have been normalized to allow easy comparison with the initial
unloaded test run presented in Figure 3-7. In all CORBA-related diagrams, we compare the
case of an unloaded remote computer running the CORBA server (fast server) against a loaded
remote computer (slow server).

Figure 3-8 compares two implementations of the composite objects approach. First, we have
used shared memory for internal communication inside the composite object (left diagram in
Figure 3-8). In contrast, the right diagram in Figure 3-8 shows the application’s timing behav-
ior when pipes are used to implement the composite object’s shared RT/NRT variables. In this
case, the producer thread directly writes data onto a shared RT/NRT variable of the composite
object and, simultaneously, into the pipe.

Both diagrams in Figure 3-8 represent a timing behavior for the producer/consumer applica-
tion, which is quite similar to the original unloaded case shown in the previous figure. Thus,
using the composite objects technique, we were able to decouple CORBA communication
with the viewer component from the original real-time application and to save the applica-
tion’s timing behavior. Further studies will compare results achieved on Mach
(NeXTSTEP3.3) with a similar setting on the rtLinux operating system.

Initial version - no CORBA, no Viewer thread CORBA calls executed directly by consumer

Producer/Consumer/Viewer - direct communication via CORBA

Variance: 0.056666 Variance: (fast Server) 0.101054
(slow Server) 1.161594

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400 450 500

’producer’s period

t i
n

m
s.

number of executions

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400 450 500

’fast_Server’
’slow_Server’

t i
n

m
s.

number of executions
CMU/SEI-99-TR-001 13

Figure 3-8: Decoupling CORBA and the Application via a Composite Object

3.2.2 Version B: Composite Object as CORBA Server;
Viewer as CORBA Client

Now we want to study the effects of CORBA clients requesting data from the producer/con-
sumer application. Again, we compare different techniques for decoupling CORBA and the
application’s timing behavior. Since varying numbers of CORBA clients sending requests to
our producer/consumer application may impose unacceptably high loads, we must develop a
scheme for call admission, which controls the behavior of the object request broker’s dis-
patcher.

A first solution to the potential burstiness problem of CORBA requests is the introduction of a
data cache between the CORBA server and the producer/consumer application.1 In our case,
the composite object’s shared RT/NRT variables, with its weak memory consistency, and the
periodic handler thread implement exactly as such a data cache. We should mention that cach-
ing does not completely solve the problem of bursty CORBA requests: sufficiently high num-
bers of clients still can create unacceptably high loads on the server’s system.

In Figure 3-9, we compare the initial case where the CORBA server directly accesses the
shared memory buffer used by the producer/consumer with a variant where the composite
object performs caching. We have run our experiments for different numbers of CORBA cli-
ents. Figure 3-9 depicts the cases of one, two, and five CORBA clients sending requests with a
frequency of 10 Hz.

1. In this report, the term “burstiness” is used to refer to the pattern of incoming CORBA requests.

Producer/Consumer/Viewer - Composite Object & CORBA

Internal communication via pipeInternal communication via shared memory & separate thread
Variance: (fast Server) 0.061454

(slow Server) 0.063903
Variance: (fast Server) 0.044531

(slow Server) 0.056601

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400 450 500

’fast_Server’
’slow_Server’

t i
n

m
s.

number of executions

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400 450 500

’fast_Server’
’slow_Server’

t i
n

m
s.

number of executions
14 CMU/SEI-99-TR-001

Figure 3-9: Minimizing Data Accesses: Effects of Caching

In the left diagram of Figure 3-9, the producer/consumer’s periods change with the number of
active CORBA clients. In contrast, as shown in the right diagram, caching in the composite
object lowers the variations, but introduces some overhead and a slight, constant increase to
the producer/consumer’s periods. This demonstrates how the composite objects approach can
be used to make an explicit tradeoff between an application’s predictability and its communi-
cation performance and overall execution time.

The scheduling server [Polze 96], as developed earlier in context of the SONiC project [Polze
98], represents another way to implement call admission for a composite object acting as a
CORBA server. Using fixed-priority scheduling and dynamic changes to the priority of a cli-
ent’s tasks, the scheduling server implements sharing of CPU resources on an a priori known
basis. The scheduling server’s quantum is adjustable.

For the diagrams shown in Figure 3-10, we have used the scheduling server to restrict the CPU
cycles available to the main loop of the CORBA object request broker. In contrast to the left
diagram, where the ORB is not restricted in its CPU usage, the middle and right diagrams
show cases where a 10 ms quantum is allocated to CORBA, once every 50 ms (middle dia-
gram), or once every 80 ms (right diagram). Thus, the remainder of the scheduling server’s
period of 40 ms (middle diagram) and 70 ms (right diagram) are left as undisturbed phases for
the producer/consumer application on the otherwise unloaded computer.

Data Caching - Communication via shared memory

Initial - no caching Caching on CORBA side of Composite Object
Variance: (1 client) 0.067232

(2 clients) 0.089120
(5 clients) 0.128861

Variance: (1 client) 0.069507
(2 clients) 0.077423
(5 clients) 0.086160

80

120

160

200

0 50 100 150 200 250 300 350 400 450 500

’1_Client’
’2_Clients’
’5_Clients’

number of executions

t i
n

m
s.

80

120

160

200

0 50 100 150 200 250 300 350 400 450 500

’1_Client’
’2_Clients’
’5_Clients’

number of executions

t i
n

m
s.
CMU/SEI-99-TR-001 15

.

Figure 3-10: Restricting the ORB: Call Admission via Scheduling Server

The scheduling server’s effect is quite obvious. In contrast to the first case, where the pro-
ducer/consumer’s periodicity varies largely with changing CORBA loads, the latter two cases
show much more stable behavior. Again, we see a tradeoff between predictable behavior and
communication latency; the length of the producer/consumer’s period increases when we do
not restrict the ORB in its CPU usage.

Since the scheduling server suspends the object request broker’s main loop, our approach
implements true call admission. Even high numbers of CORBA clients and high burstiness of
traffic hardly affect the producer/consumer’s timing behavior. The application of both the
composite objects approach and scheduling server concept did not require any changes to the
implementation of the CORBA object request broker nor the operating system’s kernel.

Call Admission via Scheduling Server - Communication via pipes

Period: 50ms, CORBA: 10ms quantum Period: 80ms, CORBA: 10ms quantuminitial - no Scheduling Server
Variance: (1 client) 0.072025

(2 clients) 0.091340
(5 clients) 0.146772

Variance: (1 client) 0.077117
(2 clients) 0.077483
(5 clients) 0.088174

Variance: (1 client) 0.074085
(2 clients) 0.056264
(5 clients) 0.059500

80

120

160

200

0 50 100 150 200 250 300 350 400 450 500

’1_Client’
’2_Clients’
’5_Clients’

t in ms.

number of executions

80

120

160

200

0 50 100 150 200 250 300 350 400 450 500

’1_Client’
’2_Clients’
’5_Clients’

t in ms.

number of executions

80

120

160

200

0 50 100 150 200 250 300 350 400 450 500

’1_Client’
’2_Clients’
’5_Clients’

t in ms.

number of executions
16 CMU/SEI-99-TR-001

4 Fault-Tolerance Case Studies

4.1 Observable Objects: A Technique for Robust
CORBA Clients

We have developed the Observable Object/Observer technique for fault tolerance. Following a
primary/backup approach our technique allows observation, saving of state, and automatic
restart of (distributed) applications. The Observable Object base class can be seen as a generic
interface for supervision of critical applications. Derived classes may implement observation
of a program using special, application-dependent programming interfaces. We have applied
our Observable Object/Observer technique to the Netscape Navigator Web browser to create a
fault-tolerant Web client.

The Observable Object/Observer architecture is based on CORBA. Non-CORBA legacy
applications may take advantage of our framework by using a wrapper approach. To encapsu-
late a non-CORBA application in a wrapper, the application must offer a communication or
programming interface [e.g., UNIX signals, stdin/stdout, IPC, or different X11 mechanisms
(e.g., properties)] accessible to the wrapper.

Our architecture implements a generic mechanism for monitoring CORBA objects. This
mechanism is used for increasing the reliability of the monitored objects. The Observer can
tolerate two classes of faults: crash faults of the computer nodes and crashes of the monitored
objects. The Observer starts monitored objects on different computation nodes in a replicated
manner according to the primary/backup principle. The Observer checks the replies of primary
and backup instances to periodic ALIVE messages. The primary instance regularly saves its
state on stable storage. When the primary fails, the Observer selects a backup for reconfigura-
tion as a new primary. It does so by reading the last saved state.

To take advantage of our Observable Object/Observer approach, a CORBA object has to
implement the observable object interface shown in Figure 4-1.

The Observer checks availability of all registered observable objects by calling their state()
methods in user-specified intervals. The object reference of a crashed object becomes invalid.
In this case, the CORBA run-time system raises an exception. Thus, the Observer can detect
an Observable Object’s failure by catching this exception.
CMU/SEI-99-TR-001 17

.

Figure 4-1: Observable Object Interface: CORBA IDL

Factory objects are used to create new backup instances of our service in case of crashes. A
factory’s interface, Observable Factory, is derived from Observable Object. Thus, the
Observer can monitor factory objects. Factories are assumed to be well tested and reliable;
therefore an exception resulting from an invalid reference to a factory object is interpreted as
an indication of a node (computer) failure.

We have used the Observable Object/Observer architecture to increase the reliability of the
Netscape Navigator Web browser. In addition to a graphical user interface, most browsers
offer a programming interface for controlling the browser by external programs [Zawinski 94].
This functionality is used by a wrapper, which implements the observable object interface. A
Web browser is then monitored by the Observer by checking the availability of its wrapper.
Additionally, the state of the browser (current URL) is determined by the wrapper. If a browser
crashes, the wrapper terminates itself. From the Observer’s viewpoint, a browser has failed if
its wrapper is no longer available. We assume that the wrapper will not fail while the browser
it encapsulates continues to run. This assumption is sound, because a wrapper is a small pro-
gram that can be tested thoroughly.

Figure 4-2 depicts the communication structure in a scenario where two Observable Objects
acting as wrappers for Netscape Navigator processes are monitored by our system. Both pri-
mary and backup are connected to the same X11 display. However, the backup’s window is
unmapped and becomes visible only when there is a crash fault of the primary.

The Observable Object/Observer concept is not limited to CORBA. It can be adopted for other
middleware platforms such as distributed computing environments (DCEs) or the Distributed
Component Model (DCOM).

interface ObservableObject {
short state();
short id();
void become_primary(in short o_id);
oneway void shutdown(in short o_id);

};
18 CMU/SEI-99-TR-001

.

Figure 4-2: Primary/Backup Monitored by Observer

4.2 Consensus-Based Responsive Services
In many cases, it is desirable to predict the behavior of remote services invoked via CORBA.
Unfortunately, the specification of parameters for service execution such as fault models,
acceptable processor utilization, and timing behavior is beyond the scope of CORBA. We pro-
pose an extension of our previously developed CORE/SONiC framework [Malek 95], [Polze
98] for responsive computing by CORBA interfaces using composite objects as filtering
bridges.

In the CORE/SONiC model, several parallel tasks may run on a number of interconnected
computing units. SONiC implements an object-based distributed shared memory system to
allow for communication between tasks. COnsensus for REsponsiveness (CORE) provides
protocols, services, and scheduling strategies at the microkernel level for real-time parallel
computing, even in the presence of faults. Consensus protocols are used to detect faults and to
establish a system-wide global view at certain points of program execution. This serves as the
basis for decisions about re-execution and coarse-grained scheduling.

CORE provides a reliable communication subsystem to SONiC, using the services of the
underlying Mach microkernel operating system. The CORE/SONiC scheduling server [Polze
97], [Richling 97] provides predictable access to workstation resources and can be used to

Manager

Observer

Factory

Wrapper App: primary
(netscape)

Factory

Wrapper
App: backup
(netscape)

computer
boundaries

create

create

alive ?

alive ?

X
Display

X11 connection

CORBA
communi-
cation
CMU/SEI-99-TR-001 19

implement real-time scheduling policies such as rate monotonic scheduling or “earliest dead-
line first” on a standard operating system. Composite objects provide a method for creating
objects that interface to CORBA and are simultaneously capable of real-time method execu-
tion. We use the composite objects approach to rebuild the concept of CORE/SONiC in a
CORBA-based environment. A group of composite objects distributed over the nodes of a
workstation cluster forms the execution environment for responsive services. CORBA
requests are the basic units of replication and scheduling in our environment.

Search algorithms benefit highly from parallelization and load partitioning in distributed envi-
ronments. Here, we present a distributed labyrinth search as an example application. Our
application demonstrates structuring of a responsive service and employs consensus (group
membership) for fault tolerance. Composite objects are used to implement timely behavior of
the consensus protocol.

The scenario depicted in Figure 4-3 shows a client (Java based) that generates tasks—mazes
with one entry and one exit point in our case—with different structures. These tasks are repli-
cated and sent to four worker nodes. Each worker searches a subportion of the maze. Load par-
titioning is done statically. Each search step is reported to the client and displayed on screen,
using different colors for different nodes.

A group membership protocol is run among the worker nodes. Each node communicates with
its two left neighbors and sends periodic alive messages. The timing behavior of the protocol
is ensured by executing it within real-time threads of composite objects. The scheduling server
is used to allocate a fixed percentage of CPU cycles (guarantee slots) to the search processes.
Our responsive service tolerates crash faults of search processes and processing nodes. The
crash fault of a search process or node is detected by missing alive messages. In this case, the
communication structure is reconfigured. Furthermore, a crashed node’s left neighbor re-exe-
cutes the crashed node’s task. This scheme implements graceful degradation; a solution to the
labyrinth search is found if a single node survives.

To demonstrate the behavior described above, the client application provides a user interface
to send kill-messages to a particular worker node. The labyrinth search service demonstrates
responsiveness (i.e., a high probability to deliver a timely solution under a given load and fault
hypothesis) even in the presence of faults.
20 CMU/SEI-99-TR-001

Figure 4-3: Labyrinth Search: A Responsive Service

Composite Object

Composite Object

Composite Object

Composite Object

consensus
protocolJava Frontend

Client

• task generator
• display

task

search engine

search engine

search engine

search engine

partial solutions

Consensus

periodic

IIOP

IIOP

Mach IPC

broker object
(transparent)

Responsive Service

FT
Maze
CMU/SEI-99-TR-001 21

22 CMU/SEI-99-TR-001

5 Related Work

The composite objects technique can be used as a bridge between CORBA’s client/server
model and execution models for replicated, fault-tolerant, real-time services. Related work
describes the idea of providing real time as an additional feature in a CORBA-compliant
object request broker (ORB) implementation. This approach has been proposed by the OMG
Real-Time Special Interest Group.

The observable object interface allows for implementation of robust CORBA clients following
the primary/backup approach to fault tolerance. Related work describes two other approaches
toward a fault-tolerant CORBA:

1. special ORB implementations, which may take advantage of underlying fault-tolerant
hardware

2. application of special CORBA services for fault tolerance

5.1 Real-Time CORBA
The Object Management Group (OMG) founded a Real-Time CORBA Special Interest Group
(SIG) in 1996. Since then OMG has solicited technology for a real-time object request broker
(ORB) that consists of fixed-priority scheduling, control over ORB resources for end-to-end
predictability, and flexible communications. The request for proposal (RFP) for the fixed pri-
ority version of Real-Time CORBA 1.0 was announced in September 1997 [OMG 97].

Work at the University of Rhode Island and the MITRE Corporation deals with syntactical
extensions to the CORBA interface description language (IDL) to express timing constraints
[Thuraisingham 96], [Wolfe 95]. “Timed distributed method invocations” are identified as one
necessary feature in a real-time distributed computing environment as well as a “global time
service,” “real-time scheduling of services,” a “global priority service,” and “bounded mes-
sage latency.” The “affected set priority ceiling protocol” as a combination of semantic lock-
ing and priority ceiling techniques has been proposed for concurrency control in real-time
object-oriented systems [Squadrito 98].

TAO is an innovative work on Real-Time CORBA, where fixed-priority real-time scheduling
is tightly integrated into the system [Schmidt 97], [Schmidt 98]. The main goal of this work is
to provide end-to-end quality of service for CORBA-based applications. A list of requirements
CMU/SEI-99-TR-001 23

for object request broker implementations is presented; among them are resource reservation
protocols, optimized real-time communication protocols, and a real-time object adapter. TAO,
however, focuses on completely new CORBA-based real-time systems, rather than interfacing
existing real-time systems with CORBA.

5.2 Fault-Tolerant CORBA
The idea of providing fault tolerance as an additional feature to CORBA implementations has
been the focus for several research activities within the last few years. With the request for
proposal issued in April 1998 [OMG 98], OMG is seeking to incorporate existing approaches
for software fault tolerance into future versions of CORBA.

Electra is a CORBA ORB implementation for reliable, distributed services [Maffeis 94]. Elec-
tra extends the CORBA specification and provides group communication mechanisms, reli-
able multicasts, and object replication. The Electra-ORB uses services from the underlying
ISIS systems [Birman 93], [Renesse 94].

ORBIX+ISIS is an extension of the commercial ORBIX [IONA] ORB implementation that
introduces concepts such as object groups and group communication based on the ISIS toolkit
[Birman 93]. Again, the CORBA standard has been extended to allow for introduction of
fault-tolerance measures. The programmer must use special coding techniques to use the fault-
tolerance features of ORBIX+ISIS.

Phoinix [Chang 97] allows for implementation of server objects following the primary/backup
approach for fault tolerance. In contrast to changing the ORB, Phoinix defines a new service
as part of the Object Management Architecture (OMA). Using this service, a primary object’s
state can be periodically transferred into the corresponding backup object. Clients communi-
cate solely with the primary object and have to detect failures themselves. Extended skeletons,
stubs, and libraries are provided to make those fault-tolerance services accessible.
24 CMU/SEI-99-TR-001

6 Conclusions and Future Work

There is an urgent need to support heterogeneity and openness in today’s COTS-based distrib-
uted computing environments and to enhance the computing environments by quality-of-ser-
vice attributes such as responsiveness. Although CORBA is a good candidate for support of
heterogeneity and openness, it does not allow specification of resource, scheduling, and timing
requirements; fault models; or measures. Based on the composite objects approach, we have
developed building blocks that integrate proven techniques for predictable computing with
CORBA.

We have discussed the composite objects approach for the integration of CORBA with real-
time computing. Data replication and weak memory consistency have been discussed as key
concepts for implementing this approach and for decoupling CORBA and real-time comput-
ing. We have described implementation alternatives for the composite objects approach and
have presented measurements for the overhead imposed by our implementation of this
approach.

The producer/consumer/viewer and “balancing robots” example scenarios study the effects of
bridging legacy applications to CORBA via composite objects. Our measurements indicate
that the composite objects approach provides a promising way to retain an application’s pre-
dictable timing behavior, even when communicating via CORBA. Furthermore, using the
scheduling server developed earlier, we have discussed and demonstrated how call admission,
as a technique for bounding the ORB’s resource utilization, can be implemented without
changes to the CORBA implementation and the operating system’s kernel.

We have presented the CORBA-based observer approach, a generic solution for implementing
reliable applications (fault-tolerant Netscape Web client in our case). Bridging the gap
between (legacy) real-time fault-tolerant computing systems and CORBA-based clients is a
major precondition for remote operations in many application domains such as banking, medi-
cine, manufacturing, and booking systems.

The composite objects approach represents a viable technique to make CORBA-based cluster
computing predictable in its resource utilization and timing behavior. Future work will include
detailed studies of alternative implementations for composite objects on the operating systems
rtLinux, Solaris, and Windows NT.
CMU/SEI-99-TR-001 25

26 CMU/SEI-99-TR-001

References

[Barabanov 97] Barabanov, M. & Yodaiken, V. “Introducing Real-Time Linux.”
Linux Journal 34, an SSC Publication (February 1997). Available
WWW <URL: http://www.ssc.com/ lj/issue34/0232.html>.

[Birman 93] Birman, K. P. “The Process Group Approach for Reliable Distrib-
uted Computing.” Communications of the ACM 36, 12
(Dec.1993): 37-53.

[Chang 97] Chang, Y.S.; Liang, D.; Lo, W.; Sheu, G.-W.; & Yuan, S.-M.
“Fault-Tolerant Object Service on CORBA.” Proceedings of
International Conference on Distributed Computing Systems
(ICDCS’97). Baltimore, MD, May 1997.

[IONA] IONA. Orbix: Overview. Dublin, Ireland: IONA Technologies.
Available WWW <URL: http://www.iona.ie/info/products/orbix/
index.html>.

[Maffeis 94] Maffeis, S. “Flexible System Design to Support Object Groups
and Object-Oriented Distributed Programming.” Proceedings of
ECOOP’93, Lecture Notes in Computer Science 791, 1994.

[Malek 95] Malek, M.; Polze, A.; & Werner, M. “Framework for Responsive
Parallel Computing in Network-Based Systems,” 335-343. Pro-
ceedings of International Workshop on Advanced Parallel Pro-
cessing Technologies. Bejing, China, September 1995.

[OMG 97] OMG. Responses to Real-Time CORBA RFP (OMG Document
orbos/97-06-01). Available WWW <URL:http://www.omg.org>.

[OMG 98] OMG. Fault Tolerant CORBA Using Entity Redundancy RFP
(OMG Document orbos/98-04-01). Available WWW <URL:
http://www.omg.org>.
CMU/SEI-99-TR-001 27

[OOC 99] Object Oriented Concepts, Inc. Orbacus C++/Java: An Open
Architecture for Distributed Solutions. Available WWW <URL:
http://www.ooc.com/ob/> (1999).

[Polze 96] Polze, A. “How to Partition a Workstation.” Proceedings of Eight
IASTED/ISMM International Conference on Parallel and Dis-
tributed Computing and Systems. Chicago, IL, Oct. 16-19, 1996.

[Polze 97] Polze, A.; Fohler, G.; & Werner, M. “Predictable Network Com-
puting,” 423-431. Proceedings of International Conference on
Distributed Computing Systems (ICDCS’97). Baltimore, MD,
May 1997.

[Polze 98] Polze, A. & Malek, M. “Network Computing with SONiC.”
Journal on System Architecture (the Euromicro Journal) 44
(1998): 169-187. Elsevier Science B. V., Netherlands.

[Renesse 94] van Renesse, R. & Birman, K.P. “Fault-Tolerant Programming
Using Process Groups,” in Distributed Open Systems, Brazier, F.
& Jones, D. (eds.). Computer Society Press, 1994.

[Richling 97] Richling, J. & Polze, A. “Scheduling Server for Predictable Com-
puting: An Experimental Evaluation,” 130-137. Proceedings of
IEEE Workshop on Middleware for Distributed Real-Time Sys-
tems and Services (held in conjunction with Real-Time Systems
Symposium). San Francisco, CA, Dec. 2-5 1997.

[Schmidt 97] Schmidt, D. C.; Gokhale, H.; Harrison, T. H.; & Parulkar, G.
“High-Performance End System Architecture for Real-Time
CORBA.” IEEE Communications Magazine 14, 2 (February
1997).

[Schmidt 98] Schmidt, D. C.; Levine, D.; & Mungee, S. “The Design and Per-
formance of Real-Time Object Request Brokers.” Computing
Communications 21, 4 (April 1988).

[Sha 94] Sha, L.; Rajkumar, R.; & Sathaye, S. S. “Generalized Rate-
Monotonic Scheduling Theory: Framework for Developing Real-
Time Systems.” Proceedings of the IEEE 82, 1 (January 1994).
28 CMU/SEI-99-TR-001

[Soley 98] Soley, R. M. “Are Real-Time Objects Ready for Prime Time”
(keynote speech). Proceedings of First IEEE International Sym-
posium on Object-Oriented Real-Time Distributed Computing.
Kyoto, Japan, April 1998.

[Squadrito 98] Squadrito, M.; Esibov, L.; DiPippo, L. C.; Wolfe, V. F.; Cooper,
G.; Thuraisingham, B.; Krupp, P.; Milligan, M.; & Johnston, R.
“Concurrency Control in Real-Time Object-Oriented Systems:
The Affected Set Priority Ceiling Protocols,” 96-105. Proceed-
ings of First IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC). Kyoto, Japan, April
1998. IEEE Comp. Soc. Press, ISBN 0-8186-8430-5.

[Thuraisingham 96] Thuraisingham, B.; Krupp, P.; & Wolfe, V. “On Real-Time Exten-
sions to Object Request Brokers” (position paper). Proceedings
of Second Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS). Laguna Beach, CA, February 1996. IEEE
Comp. Soc. Press, ISBN 0-8186-7570-5.

[Werner 96] Werner, M. & Malek, M. The Unstoppables: Responsiveness by
Consensus (HUB Informatik-Berichte No.: 90/97, ISSN 0863-
095 90). Berlin, December 1996.

[Wolfe 95] Wolfe, V. F.; Black, J. K.; Thuraisingham, B.; & Krupp, P. “Real-
Time Method Invocations in Distributed Environments.” Pro-
ceedings of the International High Performance Computing Con-
ference. December 1995.

[Zawinski 94] Zawinski, Jamie. Remote Control of UNIX Netscape. Mountain
View, CA: Netscape Communications Corporation. Available
WWW <URL: http://www.home.netscape.com/newsref/std/
x-remote.html> (Dec. 1994).
CMU/SEI-99-TR-001 29

30 CMU/SEI-99-TR-001

ll

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

May 1999

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Building Blocks for Achieving Quality of Service with Commercial Off-the-
Shelf (COTS) Middleware

5. FUNDING NUMBERS

C — F19628-95-C-0003

6. AUTHOR(S)

Andreas Polze
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-99-TR-001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-99-001

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.b DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

To date, most of the fault-tolerant, real-time systems have been implemented in embedded settings, and
there is an urgent need to open up this type of computing technology to a larger number of people who use
heterogeneous distributed computing environments. Today’s transportation, manufacturing, and
communication systems require the integration of multiple embedded real-time control systems with
standard distributed computing environments in a predictable fashion. Humboldt University has developed
the concept of composite objects as a filtering bridge between standard middleware platforms and software
frameworks providing services with certain quality-of-service (QoS) guarantees. Current research focuses on
the Common Object Request Broker Architecture (CORBA) middleware platform; however, composite
objects are also applicable to platforms like the Distributed Component Model (DCOM) and distributed
computing environments (DCEs). Key concepts in Humboldt’s approach are analytic redundancy,
noninterference, interoperability, and adaptive abstraction. These concepts originated in SEI work on the
Simplex architecture and have been reapplied to extend the reach of commercial off-the-shelf (COTS)
software technologies into demanding application settings (such as those found in military and industrial
applications). Here, we discuss building blocks and techniques for fault-tolerant, real-time applications based
on CORBA.

14. SUBJECT TERMS

commercial off-the-shelf (COTS) software, Common Object Request
Broker Architecture (CORBA), composite objects, Distributed Component
Model (DCOM), distributed computing environment, fault-tolerant
systems, real-time systems

15. NUMBER OF PAGES

35
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

	1 Introduction
	2 Composite Objects: Making Tradeoffs Explicit
	3 Real-Time Case Studies
	3.1 Java Interface to a Soft Real-Time Legacy
	3.2 Producer/Consumer/Viewer Example
	3.2.1 Version A: Composite Object as CORBA Client; Viewer as CORBA Server
	3.2.2 Version B: Composite Object as CORBA Server; Viewer as CORBA Client

	4 Fault-Tolerance Case Studies
	4.1 Observable Objects: A Technique for Robust CORBA Clients
	4.2 Consensus-Based Responsive Services

	5 Related Work
	5.1 Real-Time CORBA
	5.2 Fault-Tolerant CORBA

	6 Conclusions and Future Work

