
 Technical Report

CMU/SEI-95-TR-015
ESC-TR-95-015
October 1995

The Unified Information Security (INFOSEC)
Architecture

Fred Maymir-Ducharme

P.C. Clements

Kurt Wallnau

Robert W. Krut, Jr.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report

CMU/SEI-95-TR-015
ESC-TR-95-015

October 1995

The Unified Information Security (INFOSEC) Architecture

Fred Maymir-Ducharme
P.C. Clements

Kurt Wallnau
Robert W. Krut, Jr.

Application of Software Models

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1995 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / 8725 John J. Kingman Road / Suite 0944 / Ft. Belvoir, VA
22060-6218. Phone: (703) 767-8222 or 1-800 225-3842.]

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

CMU/SEI-95-TR-015 i

Table of Contents

1 Introduction 1

1.1 Background of Collaboration 2
1.2 Collaboration Objectives 3
1.3 Purpose of the Report 4
1.4 Structure of the Report 4

2 The UIA Automated Reuse Assistant 5

2.1 The UIA Gadfly 5
2.2 Development of the Environmental Context Knowledge Base 7

2.2.1 Understanding the Security Analysis Process 7
2.2.2 Applying FODA to Capture the INFOSEC System Design

and Security Analysis Activities 8

3 The UIA Gadfly Demonstration 11

4 Lessons Learned 13

4.1 UIA Gadfly Recommendations 13
4.2 Extending the Gadfly Approach 14

5 Conclusions 17

Appendix A Milestone Chart 19

Appendix B The CARDS System Composer 21

Appendix C The Black Box Gadfly Assistant 23

Appendix D Feature-Oriented Domain Analysis 25

D.1 Introduction 25
D.2 Foundations of the FODA Methodology 25
D.3 FODA Process and Products 26

D.3.1 Context Analysis 26
D.3.2 Domain Analysis 28

D.4 Applying the Results of Domain Analysis 30

Appendix E Examples of FODA Models for Security Analysis 31

E.1 Overview 31
E.1.1 Identifying the Domain: Organizational Missions, Functions,

and Assets 31
E.1.2 Taxonomy of Scenarios 32

ii CMU/SEI-95-TR-015

E.1.3 Leading Agents in the Scenarios 34
E.1.4 Type of System 35

E.2 Examples of FODA Models 35
E.2.1 Scoping the Domain 35
E.2.2 Understanding the Domain 37

Appendix F UIA Topic Areas 43

Appendix G Information Security (INFOSEC) Demonstration Script 47

G.1 Introduction 47
G.2 Terminology 47
G.3 Structural View of the Demo 48
G.4 The Demo Script 48

Appendix H Domain Specific Software Architectures (DSSA) 59

References 61

CMU/SEI-95-TR-015 iii

List of Figures

Figure 2-1:

The Black-Box Gadfly 6

Figure 2-2:

The UIA Gadfly 6

Figure 4-1:

A Generalized Gadfly 16

Figure B-1:

Elements of the CARDS System Composer 21

Figure C-1:

Integration of Horizontal and Vertical Domain Models 24

Figure D-1:

Components of the Context Model 27

Figure D-2:

An Illustration of the Three Components of the Domain Model 28

Figure E-1:

Identifying the Domain: Organizational Missions, Functions,
and Assets to Perform Security Analysis 33

Figure E-2:

Characterizing Security Analysis Scenarios 33

Figure E-3:

FODA Modeling Activities 35

Figure E-4:

Context Diagram for Security Analysis Activities 36

Figure E-5:

Structure Diagram for Security Analysis Activity 37

Figure E-6:

Information Model for Security Analysis 38

Figure E-7:

Context Features Model for Security Analysis 39

Figure E-8:

Operational Features Model for Security Analysis 40

Figure E-9:

Operational Model for Security Analysis of a New System 41

Figure G-1:

INFOSEC Analysis Main Menu 50

Figure G-2:

Sample Threats List 54

Figure G-3:

Report Configuration Screen 56

Figure G-4:

Threats Report Screen 57

Figure H-1:

A Spectrum of Architecture Selection Technology 59

Figure H-2:

An Application Generator 60

iv CMU/SEI-95-TR-015

CMU/SEI-95-TR-015 v

List of Tables

Table A-1:

UIA Gadfly Proof of Concept Milestone Chart 19

Table E-1:

Lead Agents in Scenarios, as a Function of System State
and Organization’s Role 34

Table F-1:

Structure of Information Security Knowledge Base 43

Table F-2:

Threats and Threat Consequences 44

Table F-3:

Security Objectives, Services, and Techniques 46

vi CMU/SEI-95-TR-015

CMU/SEI-95-TR-015 1

The Unified Information Security (INFOSEC)
Architecture (UIA) Gadfly Project

Abstract:

This report captures the development, lessons learned, and future
recommendations from a collaborative research and development activity
between the Air Force sponsored Comprehensive Approach to Reusable
Defense Software (CARDS) Program, the Department of Defense (DoD), and
the Software Engineering Institute (SEI). This activity explored innovative but
practical techniques for formalizing and applying (i.e., reusing) models of
information security (INFOSEC) concepts to the development of information
systems.

1 Introduction

Information Security (INFOSEC) technical concepts and best practices have emerged through
many years of developing secure information systems, but the management, transmission,
and application of this knowledge is informal. To capture and organize this knowledge in the
form of models, and support the systematic application (i.e., reuse) of this knowledge to the
design of secure information systems, the Department of Defense (DoD) developed a struc-
tured body of knowledge, called the Unified INFOSEC Architecture (UIA), and sought to apply
this domain expertise in the design, redesign, evaluation, and maintenance of information sys-
tems.

The DoD wanted to demonstrate the practical application of the UIA. Since INFOSEC princi-
ples are most effective when they are designed into an application rather than retrofitted, it
made sense to apply the UIA to high-level application designs (i.e.,

architectures

). Therefore,
a practical application of the UIA would demonstrate a mapping between UIA models and ap-
plication-specific information system architectures (such as command centers).

1

 Such a map-
ping might consist of online assistance in the application of UIA principles during system
design, or, alternatively, might consist of tools to enable

post hoc

 evaluation of system designs
from a UIA perspective.

To demonstrate the practical application of the UIA, a collaborative research and development
activity was established between the Air Force sponsored Comprehensive Approach to Reus-
able Defense Software (CARDS) Program, the DoD, and the Software Engineering Institute
(SEI). Specifically, this collaboration was established to explore innovative but practical tech-
niques for the formalization and application of the UIA concepts to software architectures.

1.

“Architecture” is used to mean different things in UIA and application-specific information system architectures.
In the former, the term refers to a body of knowledge. In the latter, it refers to a high-level design for a family
of systems.

2 CMU/SEI-95-TR-015

The remainder of this introductory section describes the background of the collaboration (Sec-
tion 1.1), the collaborative objectives (Section 1.2), the purpose of this report (Section 1.3),
and the structure of this report (Section 1.4).

1.1 Background of Collaboration

The DoD INFOSEC System Engineering Process addresses principles of access control, in-
tegrity, and assurance of security. The DoD developed UIA are conceptual models of INFOS-
EC principles and processes for applying these principles to the design of secure information
systems. The DoD desired to define more clearly the structure and content of these INFOSEC
models, and to define technically sound and repeatable methods for applying these models to
select and analyze architectures for the design of secure information systems. CARDS and
the SEI view this problem primarily from a reuse perspective; that is, they understand the prob-
lem to be one of

•

formally representing expertise in the INFOSEC domain in models

•

using these models during the specification and design (or evaluation of
designs) of information systems from a security point of view

•

providing an enactable process for reusing the models (i.e., tool-support)

This kind of high-level reuse is consistent with the model-based approach espoused by the
SEI, CARDS, and others. The challenges addressed by this research effort are

1. To use domain analysis methods to model the process followed by security
analysts in developing or evaluating the security attributes of a system.

2. To understand the relationship between the UIA and software architectures
for secure systems. In addition to modeling INFOSEC principles, this required
formally modeling what was meant by software architecture (an

abstract

model), how specific designs instantiate these models (a

concrete

 model),
and how INFOSEC knowledge can be mapped to both abstract and concrete
models.

3. To develop tools to model the relationship and support decision making dur-
ing specification and design.

The DoD, CARDS, and the SEI agreed to work collaboratively to develop a proof of concept

automated reuse assistant

 to map the UIA to abstract and concrete models of software archi-
tecture; i.e., to demonstrate the application of UIA principles to the creation and/or evaluation
of security concerns within domain-specific software architectures. This UIA reuse assistant is
referred to as the

UIA Gadfly

.

CMU/SEI-95-TR-015 3

1.2 Collaboration Objectives

To meet the overall objectives of this collaboration, the DoD, CARDS, and the SEI agreed to
apply and extend model-based technologies developed by the SEI and the CARDS program.
These technologies will demonstrate how software models and tools can aid system security
architects in the process of generating candidate architectures that provide reusable INFOS-
EC solutions to information systems.

In particular, INFOSEC models and software architectures can be used to help system secu-
rity architects analyze threats to a system or component, and produce recommendations on

•

missing threat information they need to be concerned about (but did not
specify)

•

lists of primary & supporting security “services” to counter threats

•

discovering the complex interrelationships between various threats, threats
and services, and when they can be combined. The ultimate goal is to form
lattices of primary and supporting security services to counter all threats.

The specific objectives of this collaboration were to

1. Investigate and illustrate the utility of an INFOSEC domain model to support
INFOSEC system development and analysis.

2. Apply

Feature-Oriented Domain Analysis

 (FODA)

1

 [Kang 90] to formalize the
process of security analysis using UIA models.

3. Develop the UIA automated reuse assistant from existing CARDS model-
based technology.

To accomplish these objectives, a collaboration team was composed of representatives from
the DoD, the SEI, and the CARDS program. Significant responsibilities in providing domain
expertise and knowledge encoding would fall to the DoD participants; additionally, DoD would
provide critical input to scenario definition and overall system concept definition. The SEI
would provide guidance on the use of FODA, and would provide critical review of the overall
technology effort, especially as it relates to the products of the domain analysis effort and the
application of these products to the development of automated reuse tools. CARDS would pro-
vide expertise and guidance on knowledge encoding principles, perform detailed system de-
sign, and lead in the proof of concept development efforts.

Team members worked from their own geographically dispersed locations, but met for regu-
larly scheduled Technical Interchange Meetings (TIMs),

2

 and working meetings to determine
initial scenarios and share status on the proof of concept demonstration.

1.

Feature-Oriented Domain Analysis is an SEI-developed domain analysis technique.

2.

See Appendix A for milestone chart.

4 CMU/SEI-95-TR-015

1.3 Purpose of the Report

The purpose of this report is to provide an overall summary of the UIA Gadfly effort. Specifi-
cally, this report

•

presents the basis of the collaboration

•

presents the key technical concepts

•

describes the approach taken

•

describes the proof of concept demonstration produced

•

provides lessons learned

•

provides recommendations for future work

1.4 Structure of the Report

This report is structured as follows: Section 2 describes the approach taken for the develop-
ment of the UIA automated reuse assistant. This section includes a description of a previously
developed automated reuse assistant, a description of how these previous design concepts
can be applied to the UIA domain, and a description of the method employed to define and
capture the security analysis process. Section 3 provides an overview of the UIA Gadfly dem-
onstration. Section 4 briefly describes the lessons learned and provides recommendations for
future directions and extensions of the Gadfly approach. Finally, Section 5 provides the report
conclusions.

CMU/SEI-95-TR-015 5

2 The UIA Automated Reuse Assistant

The CARDS program has explored various ways to exploit the knowledge captured and the
assets stored in model-based repositories such as the CARDS’ Generic Command Center Li-
brary (GCCL). The CARDS library uses the Reuse Library Framework (RLF) [STARS 92,
STARS 93a, STARS 93b, Wallnau 88] as the mechanism to encode information about building
software systems for command centers.

1

 In the Command Center Library, information about
building command centers is represented by RLF as a structured inheritance network. A
CARDS prototype system composition tool was developed to assist a designer in composing
command center systems from components stored in the library. This System Composition
Tool (or composer), written in CLIPS [Giarratano 93, NASA 93a, NASA 93b, NASA 93c], is a
forward chaining, rule based system, that ‘walks’ the network, assisting the user in making ap-
propriate selections while composing a new system.

2

 This automated, RLF-based, reuse as-
sistant, for system composition, became the primary technology for exploiting RLF-encoded
domain models.

2.1 The UIA Gadfly

Recently, the RLF-based reuse assistant has been extended to support the integration of, and
reasoning from, separately modeled and maintained RLF knowledge bases.

3

 This effort inte-
grated a black-box test generation knowledge base with an Ada abstract data type knowledge
base to assist Ada programmers in developing black-box testing plans for Ada packages. This
assistant is known as the “Black Box Gadfly” (Figure 2-1).

4

For the UIA Gadfly, the RLF-based assistant was initially created by the integration of, and
reasoning from, the INFOSEC knowledge base and the CARDS Command Center knowledge
base. However, these knowledge bases lacked information crucial to the assistant. They
lacked information about the environmental context of the application (i.e., they lacked infor-
mation about understanding the security analysis process). In order to develop the environ-
mental context knowledge base, FODA was used to help develop and expand several
scenarios that highlighted relevant information. This enabled the team to develop a good mod-
el of the features of the security analysis domain that were relevant to the goal of the UIA Gad-
fly project.

1.

The DoD used the RLF to encode a model of INFOSEC.

2.

Appendix B provides a description of the CARDS System Composer.

3.

A knowledge base is a set of models that represent the domain knowledge.

4.

Appendix C provides a description of the Black Box Gadfly.

6 CMU/SEI-95-TR-015

Once the environmental context knowledge base was created to elicit concept of operations
and environment, it was linked to the existing Command

Center and INFOSEC knowledge
bases to form the UIA Gadfly (Figure 2-2).

The following subsection provides the rationale for, and development of, the environmental
context knowledge base.

Black-box
test generation

knowledge base

Abstract data
types

knowledge base

expert system

Abstract data type
black-box testing

Figure 2-1: The Black-Box Gadfly

Information
security

knowledge base

Command
center

knowledge base

expert system

Secure command
center

Figure 2-2: The UIA Gadfly

Environmental
context

knowledge base

CMU/SEI-95-TR-015 7

2.2 Development of the Environmental Context Knowledge Base
The environmental context knowledge base was developed to provide an understanding of the
security analysis process. The initial information was captured as part of the “FODA Models
for INFOSEC System Design” workshop. This workshop was designed to establish a frame-
work of information that captures the INFOSEC system design and security analysis activities
in a domain model. The environmental context knowledge base was developed from the initial
workshop information and follow-up elicitation of security analysis domain experts. The results
of this effort provided a knowledge base used to elicit users about the context and environment
of an application.

2.2.1 Understanding the Security Analysis Process
Security analysis supports the development of applications that are secure from [Gulachenski
94]

• an individual or entity gaining access to information they are not authorized
to receive

• any circumstance or event that may result in an authorized individual or entity
receiving false information that is believed to be true

• any circumstance or event that interrupts or prevents the correct operation of
system services and functions

• any circumstance or event that results in the control of system services or
functions by an unauthorized individual or entity

This analysis must consider a system’s security in terms of either what the system must be
protected against or what type of protection the system is expected to provide. The security
analyst must understand the system’s security objectives, security threats, and particular
types of protection the system uses to counter the threats. By describing a system’s security
needs from the INFOSEC perspective, the analyst gains an understanding of the high-level
threats that need to be considered when assessing a system’s security needs, as well as the
security services that can be used to satisfy these needs.

The UIA captures INFOSEC principles and processes for applying these principles to the de-
sign of secure information systems. The UIA models do not capture the process followed by
a security analyst in developing or evaluating the security attributes of a system; however, this
process must be captured to demonstrate how software models can aid system security ana-
lysts in the process of generating reusable INFOSEC solutions to information systems.

8 CMU/SEI-95-TR-015

Security analysts follow a set of procedures to access security related attributes of a system.
Developing a reusable process for these analysts would require

• understanding inputs to process and products of security analysis

• defining the operations followed by the analyst

• modeling the issues and concerns

• understanding when and how the process may be modified (e.g., Has the
system been built and is security to be retrofitted?)

• modeling the process

A domain analysis of the process can yield these results.

The domain analysis methodology employed to understand the security analysis process was
FODA.1 The artifact of discussion is a scenario. FODA was used to help develop and expand
scenarios under which a subscriber solicits the help of the organization to design or field a sys-
tem that satisfies its security requirements; or solicits the help of the organization to assess
the security fidelity of an already designed or fielded information system.

2.2.2 Applying FODA to Capture the INFOSEC System Design and Security
Analysis Activities

Appendix E provides examples of the use of FODA to understand the security analysis pro-
cess for the activity of the DoD branch that provides security analysis of information systems
under the INFOSEC security model. These examples were a result of the context analysis
phase of FODA, which defines the extent (or bounds) of a domain for analysis, and the domain
analysis phase of FODA, which provides a description of the problem space in the domain.
The context analysis phase captures such information as the inputs and outputs of the process
of security analysis. Inputs include information about the system to be analyzed (mission con-
straints, threats), the intent of the effort (problem definition), and ongoing infrastructure con-
straints (policy), while the outputs include the security recommendations and relative risks.
The domain analysis phase captures information such as the entities, capabilities (features),
and operations involved in security analysis (e.g., what are threats, services, and mecha-
nisms; what are the capabilities of a threat or vulnerability analysis; what are the types of
threats to a system; what are the functions involved in security analysis).

1. Appendix D provides a brief description of FODA.

CMU/SEI-95-TR-015 9

The environmental context knowledge base consisted mostly of rule-based information de-
signed to capture the security analysis process and link this information to INFOSEC system
design. Of particular interest to this effort was the feature model produced by FODA and as-
sociated knowledge about the interpretation and application of this feature model to the design
of applications. The features model

• Describes various kinds of semantic relationships among features (e.g.,
mutual exclusion, aggregation, specialization).

• Captures rationale for the selection of features under different
circumstances.

Features describe the context of domain applications, the needed operations and their at-
tributes, and representation variations; thus, features and the features model represent the
link to variations and decisions (i.e., rules) within the environmental context knowledge base
and to the UIA model. The UIA topic areas, such as those provided in Appendix F, form the
basis for the rules that tie the UIA model to the environmental context knowledge base.

The environmental context knowledge base and its links to the Command Center and INFOS-
EC knowledge bases were developed from

• the FODA information

• additional elicited security analysis domain information

10 CMU/SEI-95-TR-015

CMU/SEI-95-TR-015 11

3 The UIA Gadfly Demonstration

The following sections describe the UIA Gadfly demonstration and lessons learned.

The UIA Gadfly demonstration1 shows how a software component for a secure system could
be configured, while taking into account information relevant to the security of the system. The
specific software component used for the demonstration is a message-processing unit in a
command and control system, which operates in an environment of communication with out-
side, mobile personnel such as those used by law enforcement personnel in a drug raid.

Appendix G provides detailed information about the major parts of the demonstration and the
information provided by and reported to the user. The following provides a brief look at a ses-
sion with the UIA Gadfly. In general, a session would proceed as follows:

1. Questions are asked to determine with which of the possible threat conse-
quences (e.g., “disclosure”) and specific threat actions (e.g., “disclosure via
interception via wiretapping”) the application engineer is concerned.

2. Questions are asked about the type of command center the application engi-
neer wishes to build; components are selected from the command center do-
main knowledge base, and the architecture for a command center system is
assembled.

3. Security risks are associated with each of the components in the command
center domain library. For example, if the command center is physically dis-
tributed along communication lines, then it is inherently vulnerable to disclo-
sure of various sorts. If the application engineer is concerned about disclo-
sure of information, then the Gadfly infers ways in which the chosen architec-
ture is inherently vulnerable to disclosure threat actions, whether or not the
engineer lists them specifically.

4. The lists of threats (stated by the application engineer and inferred by the
Gadfly) is compiled.

5. A set of appropriate security measures is suggested to counter the applicable
threats.

6. The application engineer can review his or her choices, assemble a different
command center architecture, and investigate how alternative choices affect
the information security of the planned application.

1. All work and the demonstration was done on Sun SPARC stations running SunOS and Unix. The CLIPS ver-
sion used was CLIPS 6.0 for the Unix platform.

12 CMU/SEI-95-TR-015

CMU/SEI-95-TR-015 13

4 Lessons Learned

The following section provides the lessons learned from the UIA Gadfly demonstration. Includ-
ed in this section are recommendations for both extending the UIA Gadfly proof of concept and
the Gadfly approach.

The UIA Gadfly demonstration was very informative; the most important lessons learned are
summarized below, followed by recommendations for future Gadfly efforts.

The most valuable lesson learned from the demonstration is that it is feasible to develop an
assistant such as that proposed. The assistant enforces the process defined during the initial
domain analysis effort. It draws on both a product/system model (GCCL) and an INFOSEC
model to provide information about the security of a proposed software system. This demon-
stration shows how the two models can be linked together, with knowledge drawn from both,
to produce the final system. Thus the proof of concept was highly successful.

On a long-term basis it would be desirable to provide a system that would

1. allow the user could look at a threat

2. choose a security mechanism

3. re-prioritize remaining threats within the context of that mechanism

This would involve both lowering the priority of some threats because the mechanism deals
partially or wholly with the threat, and increasing the priority of others (and even adding new
threats) because of side effects of the security mechanism. In essence, a desirable assistant
feature would “configure” a secure software system, and interactively modify the remaining
threats as security features are added.

Another long-term goal is to have a system that allows the user to see the impact on security
of choosing specific domain components, and to modify the choices as appropriate. If request-
ed, the UIA Gadfly system will now report on inferred threats before a choice is made, so in a
single step we have reached this goal. To implement it for the entire system, however, requires
the ability to change earlier choices. This would require adding an UNDO capability to the sys-
tem (or the mutual exclusion rules from the domain model features).

4.1 UIA Gadfly Recommendations
A number of additional areas were identified as valuable extensions that are beyond the scope
of this proof of concept, but would be appropriate for additional work. This subsection address-
es these proof of concept extensions.

14 CMU/SEI-95-TR-015

The major recommendation is to extend the proof of concept to a prototype and eventually to
a full system. Recommendations for additions to the proof of concept include:

• re-casting environment rules into structured knowledge representation

• increasing depth of INFOSEC and environment knowledge bases

• configuring a security solution, taking into account which mechanisms
address which threats. For this capability, the highest priority threat would be
addressed by appropriate mechanisms, and then these mechanisms would
be applied to the remaining list of threats, noting which ones were also
addressed. These additional threats would not need further consideration.

• distinguishing between unclassified and classified users, and providing
reports at appropriate clearance levels

• checking for inconsistencies in user answers

• allowing the user to re-prioritize threats before we begin analysis of
mechanisms

• providing an “undo” capability, so a user can change an answer

• improving user interface1

• investigating numerous applications with other DoD organizations (e.g.,
other horizontal domains beyond INFOSEC: COMSEC, COMPSEC, etc.)

4.2 Extending the Gadfly Approach
The application of model-based expert system technology to configure a software system that
ensures certain characteristics outside the software domain itself, such as security or other
quality aspects, and the linking of independently developed models to accomplish this task, is
an exciting development. This subsection presents the theory behind this type of extension to
a Gadfly effort.

The Gadfly approach is an innovative technique that provides guidance to a developer who is
concerned about building a system in a particular domain and engineering certain quality at-
tributes into that system at the architectural stage. It works by combining separately-devel-
oped knowledge bases about the application domain and about the quality attributes of
interest.

Software architecture is the focus of a flurry of recent interest in software engineering, the
overall intent of which is to elevate it from the craft stage towards a more comprehensive en-
gineering discipline. Two parallel investigations seek to exploit its potential, and the Gadfly ap-
proach discussed here resides at the intersection of these two investigations. The first, domain
specific software architectures (DSSA),2 is an attempt to engineer a family of related products,

1. Currently underway (under contract).

2. Section Appendix H provides a brief overview of DSSA.

CMU/SEI-95-TR-015 15

all based on common architectural constructs. For example, codifying and supporting the ar-
chitecture found in many avionics systems should enable more rapid and reliable production
of future avionics systems which differ from their predecessors only in details and not in their
fundamental composition. The second investigation is into the relationship of quality attributes
(such as maintainability or security) and software architectures. In particular, what attributes
must the architecture possess in order for the full system to achieve the desired qualities?

Viewed in the abstract, the UIA Gadfly approach produces an expert system whose questions
and rules are a function of independent and separately-developed knowledge bases, one of
which concerns software quality, the other of which concerns an application domain. In the two
instantiations, the software qualities have been black-box testing and information security; the
application domains have been abstract data types and command centers.

It is not difficult to imagine extending this scheme to include other quality attributes and appli-
cation domains that are understood well enough that rules for application can be codified. The
same schema can be used for other quality attributes as was used for information security:

• What are the possible consequences to the system if the desired software
quality is not well enough engineered?

• What are the scenarios by which these consequences could occur?

• What objectives must we have in order to counter or preclude these
consequences?

• What are the mechanisms necessary to realize the objectives?

Figure 4-1 shows the components of a generalized quality/domain Gadfly assistant. Knowl-
edge bases on the left contain information corresponding to the above schema for different
quality attributes. Knowledge bases on the right contain reusable architectures and composi-
tion rules about specific application domains.

Future extensions to the Gadfly approach would attempt to populate the schema (and hence
propose embryonic knowledge bases) of, for example, the quality attributes of availability and
performance.

16 CMU/SEI-95-TR-015

System advisor

Quality attribute knowledge bases Domain knowledge bases

Information
security

knowledge

Command
center

knowledge
base base

Performance
knowledge

Avionics
system

knowledge base base

Availability
knowledge

Database
mgt. system
knowledge base base

Maintain-
ability

knowledge

Command
center

knowledge
base base

...
...

Figure 4-1: A Generalized Gadfly

CMU/SEI-95-TR-015 17

5 Conclusions

CARDS and the SEI advocate a model-based approach to reuse. This approach is predicated
on an understanding software reuse as derived from disciplined engineering practices. The
feature of the engineering discipline that is of relevance to the following discussion is that such
disciplines make use of a publicly-held collection of engineering models. These models are
taught at the university level; are the basis for various engineering standards; and are an in-
tegral component of engineering problem-solving and design processes. It is the public dispo-
sition of these models, and the formal means of transmitting these models (e.g., through
university training and handbooks) which distinguishes an engineering discipline from a craft.

A useful advisor/analyst application can be developed. Thus the basic concept has indeed
been proven. Interest in the proof of concept demonstration has been strong, and it is recom-
mended that development of a full prototype and system get underway. To improve the assis-
tant, additional knowledge is needed to extend both the CARDS GCCL domain model and
INFOSEC (UIA) models. While the knowledge is sufficient for a proof of concept, development
of a full system will require additional modeling in both the software domain and the INFOSEC
domain.

The Feature-Oriented Domain Analysis methodology introduced by SEI was helpful in extend-
ing the existing models and formulating the overall picture. In particular, it was helpful to add
the knowledge about concepts of operation and environment. This information is lacking in the
current INFOSEC and CARDS models, and is a critical part of the knowledge used by analysts
in carrying out their activities. The proof of concept effort included developing a small part of
this knowledge base in CLIPS rules, for rapid prototyping. A full prototype of Gadfly must in-
clude substantial additional information.

CLIPS rules were used to model the concepts of operation and environment information, as
well as the links between software components and threats. Because rules are very flexible,
can readily be developed incrementally, and have a low initial effort needed in the knowledge
engineering, they provided the optimal way to develop a proof of concept. Now that the domain
is better understood, it would be preferable to develop a more complete model in structured
representation such as RLF. One aspect of developing the prototype should be the creation
of an RLF model for this area to add/complement the UIA model.

18 CMU/SEI-95-TR-015

CMU/SEI-95-TR-015 19

Appendix A Milestone Chart
The following table provides the project milestones for the UIA Gadfly proof of concept.

∆ - planned start, planned finish
▲ - started, completed

Table A-1: UIA Gadfly Proof of Concept Milestone Chart

Task/Month 4/94 5/94 6/94 7/94 8/94 9/94 10/94 11/94 12/94

Task 1:

Prelim UIA scenario ▲ ▲

Prelim Gadfly Design ▲

Detailed Gadfly Design &
Scenario

▲--- ▲

UIA Model Evolution ▲- ----- ----- ----- ---▲

Develop & test UIA Gadfly ▲--- ----- ---▲

UIA Gadfly POC demo ▲

Report and Recommenda-
tions

 ▲-- ---- ---- ---▲

20 CMU/SEI-95-TR-015

CMU/SEI-95-TR-015 21

Appendix B The CARDS System Composer
The CARDS system composer is a tool that permits reuse library users to compose alternative
systems from components held within the library.1 Valid compositions are described by a mod-
el of the application architecture, i.e., by a model of the major application components and
connections among these components. The current operational system composer supports
the packaging of composed systems for extraction from the reuse library; it also supports the
creation of load images and interactive demonstration of composed systems. The system
composer is described in detail in [CARDS 94]. The following description focuses on the major
components (models and computational strategies) employed by the composer, and introduc-
es the terminology used to describe these components.

1. A library is a model-based repository such as the CARDS Generic Command Center Library (GCCL).

‘Elicitor’

‘Harvester’

Front-End

Back-End

generic concepts

individual concepts

rule bases

generic

architecture

composed

system

user

requirements

Figure B-1: Elements of the CARDS System Composer

inferencer

model

interactive
demonstrations

extractable
components

22 CMU/SEI-95-TR-015

Figure B-1 illustrates the major elements of a CARDS-style model-based reuse assistant. At
the top level, there are models and inferencers. Models describe some kind of domain knowl-
edge, which inferencers use to engage in dialogues with library users. The most central kind
of knowledge model employed in CARDS libraries is the software architecture. We denote this
as a knowledge model, rather than merely a system model, because the model describes not
just a single system, but a family of systems that can be composed through a design refine-
ment process. That is, the model contains a number of decision points which the user must
pass to reach a solution; the process of successively traversing decision points leads to a
gradually refined model, and ultimately results in the selection and composition of compo-
nents. The refinement process is represented in the models through the individuation of a ge-
neric model, i.e., individual concepts and connections are created from a model of generic
concepts and connections.

The inferencers perform the computational processes that drive the user dialogue and refine-
ment. Inferencers are, essentially, intelligent agents that can traverse the models, interpret
their meaning, and mediate a dialogue between the user and the model to achieve some end
result. Inferencers can employ a variety of reasoning techniques and exploit the integration of
production-style (i.e., rule-based) reasoning with structured reasoning. For example, a version
of the Elicitor inferencer, depicted in Figure B-1, traverses the RLF semantic network1 that en-
codes the structural relationships of the Air Force Generic Command Center Architecture (GC-
CA).2 At various nodes of the structural model, the Elicitor will consult localized rule bases,
and engage in a forward-chaining “Think-about-the-model, Ask-the-user, Update-the-model”
(TAU) inference cycle. This inference cycle will in turn result in new questions to the user, re-
sult in changes to the semantic network (e.g., individuation of generic concepts), and, possi-
bly, change the focus of the Elicitor to another node in the structural model where the TAU
process will be repeated.

The composer represents just one kind of reuse service that can be centered on a formal mod-
el of an application architecture. The UIA provides additional opportunities for developing ar-
chitecture-based reuse services. However, unlike the composer service, which provides a
service based solely on an architectural model (e.g., the GCCA), the UIA service involves the
integration of two models, i.e., integration of the UIA, for security properties, with some archi-
tectural model (or set of models) for a domain such as command centers.

This integration of, and reasoning from, separately modeled and maintained RLF knowledge
bases was first developed for the Black Box Gadfly. Appendix C briefly describes this original
Gadfly application. This application served as a starting point for the UIA Gadfly.

1. The knowledge encoded in the semantic network consists of both structural and rule-based models. The struc-
tural model provides an understanding of how elements fit together (i.e., the structure of the semantic network).
The rule-based model provides an understanding of the issues and/or rules associated with the elements (i.e.,
the questions asked at each node of the semantic network)

2. The GCCA is implicitly captured in a domain model within the GCCL.

CMU/SEI-95-TR-015 23

Appendix C The Black Box Gadfly Assistant
The first RLF-based reasoning assistant was named Gadfly.1,2 Gadfly was a black-box test
plan generator assistant that engaged an Ada programmer in a Socratic dialogue (i.e., it asked
probing questions about the programmer’s assumptions about operations (functions and pro-
cedures) that comprised a specific Ada package specification, and then generated black-box
test plans to confirm these assumptions). For example, a procedure that has as an argument
of type FILE_TYPE might trigger a sequence of questions concerning assumptions in the sub-
program about file permissions, whether the file handle had been initialized prior to use, device
capacity, etc. In each case, Gadfly would ask about these assumptions, then ask about the
expected behavior of the program given a violation of these assumptions. Given assumptions
and expected behavior, a black-box test plan would be generated.

The scenario is necessarily truncated and oversimplified. However, the underlying principle is
that some level of expertise about the nature of black-box testing was encoded in a structured
conceptual model. This structured model described various types of black-box testing ap-
proaches (e.g., error guessing, boundary testing, and robustness testing). Each type of testing
would result in a different style of dialogue and, ultimately, a different test plan strategy. The
black-box testing knowledge was then applied to a separately-developed model of Ada sub-
programs and packages. These models were separately developed since it was clear that
black-box knowledge could be applied equally well to Ada, C, and a number of other formal-
isms.

Figure C-1 illustrates how Gadfly in effect integrated horizontal domain knowledge (black box
testing) with vertical domain knowledge (Ada).3 First, the generic model of Ada units is indi-
viduated to the specific unit under investigation. In the Gadfly prototype this individuation net-
work was created automatically by an Ada parser. This individuation model was input to the
Gadfly inferencer (not illustrated in Figure C-1); additional input comes from the user, as di-
rected by the black-box testing model. For example, the black-box model would provide the
user with a set of testing strategies from which the user would select; given a testing strategy,
the Gadfly inferencer would traverse the appropriate, strategy-specific black-box test plan
models, consulting the Ada unit model to ask questions appropriate to both the Ada unit and
selected testing strategy. As a by-product of the dialogue, a specific test plan would be indi-
viduated, and linked to the Ada unit.

1. For the development of the Gadfly, Unisys was the prime contractor for the CARDS contract.

2. “Gadfly” was a derisive nickname given to Socrates by ancient Greeks who became frustrated (fatally so) with
his knack of asking irritating but ultimately critical questions about prevailing philosophies.

3. Testing is considered horizontal because it would apply equally well to many different programming language
formalisms; the Ada model is considered vertical in this context because it reflects a specific kind of program-
ming formalism.

24 CMU/SEI-95-TR-015

Gadfly could be used to generate test plans from already existing Ada specifications; it could
also be used “in reverse;” that is, by programmers prior to the development of a specification
(or implementation of a given specification). These two kinds of uses reflected different roles
for such an assistant: as an aid in independent test and evaluation, and as a design aid. In the
latter case, Gadfly could be used in the formulation of better-designed abstract data types.

model of black-box
testing domain

model of Ada units,
types and interfaces

Figure C-1: Integration of Horizontal and Vertical Domain Models

➀ Ada model is
“individuated” to unit
under investigation

② Ada unit model is
traversed and black
box testing model
is consulted.

Specific test
plan is
individuated
and linked
to Ada unit.

③

CMU/SEI-95-TR-015 25

Appendix D Feature-Oriented Domain Analysis

D.1 Introduction

The Software Engineering Institute (SEI) developed Feature-Oriented Domain Analysis (FO-
DA) methodology resulting from an in-depth study of other domain analysis approaches. Suc-
cessful applications of various methodologies pointed towards approaches that focused on
the process and products of domain analysis. The FODA feasibility study [Kang 90] estab-
lished methods for performing a domain analysis, described the products of the domain anal-
ysis process, and established the means to use these products for application development.

D.2 Foundations of the FODA Methodology

The FODA methodology was founded on a set of modeling concepts and primitives used to
develop domain products that are generic and widely applicable within a domain. The basic
modeling concepts are abstraction and refinement. Abstraction is used to create domain prod-
ucts from the specific applications in the domain. These generic domain products abstract the
functionalities and designs of the applications in a domain. The generic nature of the domain
products is created by abstracting away “factors” that make one application different from oth-
er related applications. The FODA method advocates that applications in the domain should
be abstracted to the level at which no differences exist between the applications.

Refinements are used to both refine the generic domain products and to refine the domain
products into applications. Once the abstraction of the applications in the application domain
is completed, the factors that make each application unique are incorporated into the generic
domain products as refinements of the abstractions. Specific applications in a domain may be
developed as further refinements of the domain products by using the general abstraction as
a baseline and selecting among alternatives and options to develop the application (i.e., those
factors that have been abstracted away must be made specific and reintroduced).

Abstracting the applications in the application domain is accomplished by using the modeling
primitives of: aggregation/decomposition, generalization/specialization, and parameterization.
The FODA method applies the aggregation and generalization primitives to capture the com-
monalities of the applications in the domain in terms of abstractions. Differences between ap-
plications are captured in refinements. An abstraction can usually be refined (i.e.,
decomposed or specialized) in many different ways depending on the context in which the re-
finements are made. Parameters are defined to uniquely specify the context for each specific
refinement. The result of this approach is a domain product consisting of a collection of ab-
stractions and a series of refinements of each abstraction with parameterization. Understand-
ing what differentiates applications in a domain is most critical since it is the basis for
abstractions, refinements, and parameterization.

26 CMU/SEI-95-TR-015

The feature-oriented concept of FODA is based on the emphasis placed by the method on
identifying prominent or distinctive user-visible features within a class of related software sys-
tems. These features lead to the conceptualization of the set of products that define the do-
main.

The FODA methodology has been well defined and documented in both the window manager
and movement control domains [Kang 90, Cohen 92, Krut 93]. Numerous documents have
captured FODA’s evolution conceptually and in the representation and use of the methodolo-
gies products. The following section provides a brief overview of the FODA process and the
models that are produced from the process.

D.3 FODA Process and Products

The FODA feasibility study [Kang 90] defined a process for domain analysis and established
specific products for later use. The basic phases that characterize the FODA process are:

1. Context Analysis, which defines the extent (or bounds) of a domain for anal-
ysis.

2. Domain Analysis, which provides a description of the problem space in the
domain.

The following subsections provide a textual overview of the context analysis and domain mod-
eling phases. Each of these analyses uses modeling techniques to create an abstract repre-
sentation of the domain.

D.3.1 Context Analysis
Context analysis defines the scope of a domain that is likely to yield useful domain products.
During the context analysis of a domain, the relationships between the “domain of interest”
and the elements external to it are established and analyzed for variability. The kinds of vari-
ability to be accounted for are, for example, different data requirements and/or operating en-
vironments among applications in the domain. The results of the context analysis, along with
other factors such as availability of domain expertise, domain data, and project constraints,
are used to limit the scope of the domain.

The product resulting from the context analysis is the context model. This model includes a
structure diagram and a context diagram (Figure D-1). The structure diagram for a domain is
an informal block diagram in which the domain is placed relative to higher, lower, and peer
level domains. Higher level domains are those of which the domain under analysis is a part of
the domain to which it applies. Lower level domains (or subdomains) are those within the
scope of the domain under analysis, but are well understood. Any other relevant domains (i.e.,
peer domains) must also be included in the diagram.

CMU/SEI-95-TR-015 27

The context diagram is a data flow diagram showing data flows between a generalized appli-
cation within the domain and the other entities and abstractions with which it communicates.
One thing that differentiates the use of data flow diagrams in domain analysis from other typ-
ical uses is that the variability of the data flows across the domain boundary must be account-
ed for with either a set of diagrams or text describing the differences.

These products provide the domain analysis participants with a common understanding of

• the scope of the domain

• the relationship to other domains

• the inputs/outputs

• stored data requirements (at a high level) for the domain

Context
Model

Structure Diagram Context Diagram

Figure D-1: Components of the Context Model

28 CMU/SEI-95-TR-015

D.3.2 Domain Analysis
Domain analysis identifies and models the commonalities and differences that characterize
the applications within the domain. The product resulting from the domain analysis is the do-
main model. The domain analysis (or domain modeling phase) consists of three major activi-
ties. Figure D-2 illustrates the three components of a domain model.

A brief description of each activity and its results are given below:

1. Information Analysis captures and defines the domain knowledge and data
requirements that are essential for implementing applications in the domain.
Domain knowledge typically is information deeply embedded in the software
and it is often difficult to trace. Those who maintain or reuse software need
this information in order to understand the problems the domain addresses.

The information model may take the form of an entity-relationship (ER) model
[Kang 90], a semantic network [Cohen 92], or other representations such as
object modeling [Rumbaugh 91].

The information model is used primarily by the requirements analyst and the
software designer to ensure that the proper data abstractions and
decompositions are used in the development of the system. The information
model also defines data that is assumed to come from external sources.

Domain

Information Model Features Model Operational Model

Context Features Operational Features Representation Features

 Model

Figure D-2: An Illustration of the Three Components of the Domain Model

CMU/SEI-95-TR-015 29

2. Features Analysis captures a customer’s or end user’s understanding of the
general capabilities of applications in a domain.1 For a domain, the common-
alities and differences among related systems of interest were designated as
features and are depicted in the features model. These features, which de-
scribe the context of domain applications; the needed operations and their at-
tributes; and representation variations, are important results because the fea-
tures model generalizes and parameterizes the other models produced in this
domain analysis.

Features in the features model may be defined as alternative, optional, or
mandatory. The mandatory features represent the baseline features of an
application and the relationships between those features. The alternative and
optional features represent the specialization of more general features.

The features model development initially partitions features into context,
representation, and operational features.

– The context features are those that describe the overall mission or usage
patterns of an application.

– The representation features are those features that describe how
information is viewed by a user or produced for another application (i.e.,
what sort of input and output capabilities are available).

– The operational features are those features that describe the active
functions carried out (i.e.,what the application does).

The features model is the chief means of communication between the
customers and the developers of new applications. The features are
meaningful to the end users and can assist the requirements analysts in the
derivation of a system specification that will provide the desired capabilities.
The features model provides end users with a complete and consistent view
of the domain.

3. Operational Analysis identifies the control and data flow commonalities and
differences of the applications in a domain. This activity abstracts and then
structures the common functions found in the domain and the sequencing of
those actions into a model. Common features and information model entities
form the basis for the abstract operational model. The control and data flow
of an individual application can be instantiated or derived from the operational
model with appropriate adaptation.

The operational model is the foundation upon which the software designer
begins the process of understanding how to provide the features and make
use of the entities selected.

The domain modeling process also produces an extensive Domain Dictionary of terms and/or
abbreviations that are used to describe the features and entities in the model and a textual
description of the features and entities themselves.

1. A user may be a human user or another system with which applications in a domain typically inter-
act.

30 CMU/SEI-95-TR-015

The domain dictionary has been one of the most useful products of a domain analysis. The
dictionary helps to alleviate a great deal of miscommunication by providing the domain infor-
mation users with

• a central location to look for terms and abbreviations that are completely new
to them

• definitions of terms that are used differently or in a very specific way within
the domain

D.4 Applying the Results of Domain Analysis

FODA defines a method for performing domain analysis and describes the products (context
models, domain models) of an analysis. A system developer works with the domain analyst
and these products to define requirements for a system. The three steps in the process are

1. The developer and domain analyst use the features model as a vehicle for
communicating system needs. The domain analyst will turn these needs into
a selection of features. In addition, composition rules among features will au-
tomatically add specific features to the new system.

2. The domain analyst uses the information model to explain the objects that
comprise a system. This helps the system developer understand the data re-
quirements and other systems and data structures with which the system
must interoperate.

3. The operational model is then used to describe commonality and differences
in data and control flow resulting from differing combinations of features.

The operational model supports feature selection as well as architectural development. Fea-
ture selection will parameterize the operational model, thus establishing the dynamics of inter-
acting system capabilities. A system developer will utilize this information to make choices that
will affect both system control and operations. For example, a choice of features may affect
the sequence of operations or eliminate those operations altogether. Another important aspect
of this model is the definition of data flow resulting from these operations. The system dynam-
ics necessary to meet the desired system capabilities may depend on specific feature selec-
tions.

CMU/SEI-95-TR-015 31

Appendix E Examples of FODA Models for
Security Analysis

E.1 Overview

This appendix provides rationale for and examples of domain analysis for the activity of the
DoD branch (the organization) providing security analysis of information systems under the IN-
FOSEC security model. The artifact of discussion is a scenario, under which a subscriber so-
licits the help of the organization to design or field a system that satisfies its security
requirements, or solicits the help of the organization to assess the security fidelity of an al-
ready-designed or -fielded information system.

The goal of this appendix is to provide domain analysis examples than can be reviewed by
INFOSEC domain experts to produce a complete domain analysis of INFOSEC system design
and security analysis activities. In turn, the goals of that domain analysis are

• Support organizational activities to evaluate, recommend, and/or provide
solutions to security deficiencies in candidate systems.

• Provide a common language for recommendation, correction, and evaluation
activities.

• Build a capability in the evaluation/recommend activities to combine services
and mechanisms to fulfill mission behavior.

E.1.1 Identifying the Domain: Organizational Missions, Functions, and
Assets

Figure E-1 establishes the domain of interest by delineating the goals and missions of the or-
ganization, the functions that the organization performs in order to satisfy those goals and mis-
sions, and the assets that the organization can use to perform the functions.

32 CMU/SEI-95-TR-015

E.1.2 Taxonomy of Scenarios
The scenarios under which security analysis is performed may be categorized by the following
criteria:

• The stage that the subject system is in when the organization becomes
involved in its development.

• Whether or not security has been considered in the design and development
of the system to date.

• The role of the organization when becoming involved with the system: what
result is being attempted?

These three criteria, shown in Figure E-2, define an enumeration of ordered triples that togeth-
er characterize all of the scenarios under which the organization is asked to participate and
assist in providing security to information systems. Not all triples are valid; for instance, the
organization will never be asked to “correct” the security design of a “new” system, which by
definition has no security design. Hence, no triple of the form (New, Correct, *)1 represents a
valid scenario.

1. “*” refers to any option. For example, (New, Correct, *) means (New, Correct, Yes) or
(New, Correct, No).

CMU/SEI-95-TR-015 33

SIGINT
Trusted computer base

Networks and network services
E

va
lu

at
e

A
rc

hi
te

ct

D
es

ig
n

Evaluate

Recommend

Provide

Organization’s
Missions

Assets

Organization
functions

Threat handbook

Standard security services
Standard security mechanisms

Policy handbooks

Trusted path technology

Figure E-1: Identifying the Domain: Organizational Missions, Functions,
and Assets to Perform Security Analysis

Evaluate
Recommend

Correct/Provide

Y
es

N
o

New

Designed

Implemented

System stage

Role

Security
considered
already?

Figure E-2: Characterizing Security Analysis Scenarios

34 CMU/SEI-95-TR-015

E.1.2.1 Roles played by the organization

The three roles that the organization takes on in the scenarios are as follows:

• Evaluation: Either (1) compare security properties of a system against
criteria, including a threat analysis, or (2) determine if behavior of the system
is compromisable.

• Recommendation: Suggest a range of options or solutions for design
refinement.

• Correct/Provide: Refine and deliver an implementation of a solution.

Sometimes a recommendation may be requested, but cannot be provided because a specific
recommendation might reveal classified approaches or techniques used to compromise the
system. In such cases, the organization will provide an evaluation of the system instead.

E.1.2.2 System stages

A system brought to the organization for scrutiny will be in one of three stages:

• New: The development is beginning with a problem definition. No design or
implementation work has been performed.

• Designed: Some or all design has been done. This is evidenced by
documentation such as a refined performance specification, or perhaps
complete component specifications.

• Implemented: The system exists, and is now to be upgraded.

E.1.3 Leading Agents in the Scenarios
The type of individual agents involved for each security analysis scenario are given in the table
below. The agent roles are:

• SA: Security architect. This is a systems engineer with security expertise.

• DD: Detailed designer. This person is a hardware or software engineer with
security experience.

• EV: Evaluator. This person has a range of expertise, including
communications and computer security.

Table E-1: Lead Agents in Scenarios, as a Function of System State and Organization’s
Role

Type of system Evaluation Recommend
Correct/
Provide

New SA SA SA/DD

Designed EV SA DD

Implemented EV DD DD

CMU/SEI-95-TR-015 35

E.1.4 Type of System
The type of system also plays an important role in determining the course of the scenario. For
example, knowing that the system is a command and control system establishes a basic con-
text for the questions that the agents ask, background assumptions they make, and the seg-
ment of the security infrastructure (e.g., communications security) that they primarily bring to
bear on the problem.

E.2 Examples of FODA Models

The domain analysis methodology used to capture security analysis information during the
workshop was FODA. The FODA methodology is founded on a set of modeling concepts and
primitives (Appendix D). These concepts and principles are used to develop domain products
that are generic and widely applicable within a domain. As part of the “FODA Models for IN-
FOSEC System Design” workshop, examples of domain products were generated that cap-
tured the INFOSEC system design and security analysis activities. During the FODA
workshop, examples were generated for both Scoping the domain and Understanding the do-
main, respectively. This is represented by Figure E-3.

E.2.1 Scoping the Domain
The following subsections each provide an example(s) of models generated in scoping and
understanding the domain. Appendix D provides the definitions and usage of each of these
models.

FODA

Scoping Understanding

What it is
What it does

How it behaves

Figure E-3: FODA Modeling Activities

36 CMU/SEI-95-TR-015

Context analysis defines the scope of a domain. The product resulting from the context anal-
ysis is the context model. This model includes a context diagram and a structure diagram.
These products provide the domain analysis participants with a common understanding of

• the scope of the domain

• the relationship to other domains

• the inputs/outputs to and from systems in the domain

• stored data requirements (at a high level) for the domain

The following figure provides an example of a context diagram for Security Analysis. Its inputs
include information about the system to analyzed (mission constraints, threats), the intent of
the effort (problem definition), and ongoing infrastructure constraints (policy). Its outputs in-
clude information about security recommendations and relative risks.

The following figure provides an example of a structure diagram for security analysis. Security
analysis may be compared with safety analysis, fault tolerance analysis, and similar activities
that evaluate a system with respect to one or more quality attributes. It relies on certain areas
of experience, expertise, and analysis of similar problems.

Security
analysis

Problem definition
(define, design, implement)

Mission constraints,
cost

Policy

Specific threats Relative risk

Solution description
- security recommendatio
 (range of options,

- evaluation
- implementation

Security
expertise

 solutions)Type of system
(e.g., C3)

System
environment

Figure E-4: Context Diagram for Security Analysis Activities

CMU/SEI-95-TR-015 37

E.2.2 Understanding the Domain
Domain analysis identifies and models the commonalities and differences that characterize
the applications within the domain. The product resulting from the domain analysis is the do-
main model, which consists of three components. The information model represents what the
applications are in terms of the entities; the features model captures what the applications do,
both in terms of operations and context; and the operational model relates the information
model and features model to the behavior and function of the applications.

The information model captures and defines the domain knowledge and data requirements
that are essential for implementing applications in the domain. The information model may
take the form of an entity-relationship (ER) model, a semantic network, or other representa-
tions such as object modeling. The example information model in Figure E-6 is an ER diagram.
This diagram decomposes the security analysis domain into entities of threats, services,
mechanisms, etc. In this figure, threats could be further decomposed (populated) to include
information about the threat consequences and security objectives defined in Appendix F.

Underlying technology

Software
design
expertise

Pre-existing
security solutions

UIA model

Mission
domain
model

Systems
expertise

User applications
with specific quality factors

Security
analysis

Safety
analysis

Fault
tolerance
analysis

services

mechanisms

. . .

Figure E-5: Structure Diagram for Security Analysis Activity

38 CMU/SEI-95-TR-015

Information model

Risk,
vulnerability Threats

Certification

Policy

Services

Mechanisms Service
requestor

Name Identity

Biometric What requestor carries

What requestor knows

Adversarial

Malice

Mischief

Neglect

Accidental

Acts of

Statistical models
Economic modelsType

to confidentiality

to integrity to availability

Solution description

Structure Interactions

nature Human

Name
Source
Frequency of occurrence
Likelihood of detection
Impact

Figure E-6: Information Model for Security Analysis

CMU/SEI-95-TR-015 39

The features model captures a customer’s or end user’s understanding of the general capa-
bilities of applications in a domain. The features model partitions features into context, repre-
sentation, and operational features:

• The context features are those that describe the overall mission or usage
patterns of an application.

• The operational features are those features that describe the active functions
carried out (i.e.,what the application does).

• The representation features are those features that describe how information
is viewed by a user or produced for another application (i.e., what sort of input
and output capabilities are available). 1

Figure E-7 is an example of a context features model for security analysis. Each of these fea-
tures address ways in which a security analyst would “look at” or use an application. Figure E-
8 is an example of an operational features model for security analysis. This model helps its
users understand that

• The threat analysis could consist of anything from calculating the risk to
defining methods to over come the risk.

• The solution proposal may consist of evaluating, recommending, and/or
providing.

Each of these operational features correlates to functionality and behavior that exists in some
or all of the applications in a domain.

1. The representation features model was not covered in the workshop.

40 CMU/SEI-95-TR-015

Context

Type of threat to system

Skill level of DoD lead agent

Problem class / Stage of system

Role of DoD

Accidental

New
Designed
Implemented

Evaluation
Recommendation
Providing

Evaluator
System security architect
Detailed designer

Adversarial
Malice
Neglect
Mischief

Human
Acts of nature

Figure E-7: Context Features Model for Security Analysis

CMU/SEI-95-TR-015 41

The operational model identifies the control and data flow commonalities and differences of
the applications in a domain. The development of an operational model abstracts and then
structures the common functions found in the domain and then sequences of those actions
into a model. Common features and information model entities form the basis for the abstract
operational model. The control and data flow of an individual application can be instantiated
or derived from the operational model with appropriate adaptation.

The example operational model in Figure E-9 represents a high-level operational view of the
organization’s activities when it is asked to design a new system. Figure E-9 represents the
sequence of steps (or the security analysis process), and the inputs and products of each step.
The model is quite similar for the (design, new, *) scenario and the (provide, new, *) scenario.

The operational model for the (evaluate, designed, *) scenario is also similar, except that un-
derstanding the system would then require understanding its given design.

The operational models for the (*, implemented, *) scenarios are yet to be determined.

Identify
risk

Operational
features

Threat
analysis

System
understanding

Policy
analysis Vulnerability

analysisSolution
proposal

Method to
overcome

risk

Risk
calculation Evaluating

Recommending

Providing

Reading,
interviewing

Context Information

User classes SSN Data

Volume Freq. of
transactions

Features

Privacy Act
requirements

Storing,
forwarding

of info.

RulesSemantic
rep’n.

Figure E-8: Operational Features Model for Security Analysis

42 CMU/SEI-95-TR-015

Perform
threat, risk
analysis

Idle
Study

description

Understand
system:

Derive Security:

mechanisms

Project
arrives

New

Designed

Implemented

Obtain user classes,
how data is stored, forwarded,

legal responsibilities,
frequency,

etc.

threat info

system knowledge,
mission needs,

interviews,
system doc’n.

Map services to

security policy,
set of services,

set of mechanisms,
handbook,

interoperability n
budget/resource
 constraints

Key:

data

condition

- data required or
produced by a step

- control flow

standards

Recommendations for
security design refine

Generic designs,
architectures

Domain
model

Figure E-9: Operational Model for Security Analysis of a New System

CMU/SEI-95-TR-015 43

Appendix F UIA Topic Areas
The following provides examples of information that was used to formed the basis for the rules
that tied the UIA model to the concept of operations model (i.e., environmental context knowl-
edge model). In the UIA Gadfly, the information security knowledge base was structured in the
following fashion:

This structure follows a defined terminology and model of INFOSEC threats and services
[Gulachenski 94]. Threat consequences are the end result (to a computer/information system)
of any threat, general or specific. Threat consequences “define the negative affect that a threat
may have on the secure operation of an information system.” The major threat consequences
(disclosure, deception, disruption, usurpation) are respectively countered by the four major se-
curity services (confidentiality, integrity, availability, authenticity). These security services are
described as principal security services. Each principal security service is defined by a protec-
tion objective, subordinate security services that refine and clarify the objectives, and potential
implementation techniques. Table F-2 catalogs the threat consequences and threat actions;
Table F-3 describes the countering principal security service objectives, services, and tech-
niques.

Table F-1: Structure of Information Security Knowledge Base

Threats Services

Most
general

Threat consequence: the nega-
tive consequence that a threat
may have on the secure opera-
tion of an information system

Security objective: a counter-
ing force to a specific threat
consequence

General threat action: a group
of related scenarios, each of
which could cause the associ-
ated threat consequence

Security service: a type of pro-
tection that may be provided by
an information system to
enhance the system’s ability to
securely satisfy its intended mis-
sion

Most
specific

Specific threat action: an indi-
vidual scenario

Security technique: an imple-
mentation technique that pro-
vides a security service

44 CMU/SEI-95-TR-015

Table F-2: Threats and Threat Consequences

Threat consequences General threat actions Specific threat actions

Disclosure Exposure Hardware/software errors
Human errors
Deliberate disclosure
Scavenging

Interception Wiretapping
Eavesdropping
Emanations analysis

Inference Signals intelligence
Traffic analysis
Database query analysis

Intrusion Trespass
Penetration
Reverse engineering
Cryptanalysis

Deception Masquerade Spoof
Malicious logic

Falsification Substitution
Insertion

Repudiation False denial of origin
False denial of receipt

Disruption Incapacitation Malicious logic
Physical destruction
Hardware/software errors
Human errors
Natural disaster

Corruption Hardware/software errors
Human errors
Tampering
Malicious logic

Obstruction Interference
Overload

CMU/SEI-95-TR-015 45

Usurpation Misappropriation Theft of service
Theft of functionality
Theft of data

Misuse Malicious logic
Tampering
Violation of permissions

Table F-2: Threats and Threat Consequences

Threat consequences General threat actions Specific threat actions

46 CMU/SEI-95-TR-015

Table F-3: Security Objectives, Services, and Techniques

Security objectives Security services Techniques

Confidentiality Data
Emanations
Traffic
Signals

Access control
Object reuse
Encryption
TEMPEST techniques
Separation of components
Administrative procedures

Integrity System
Data

Access control
Checksums
Digital signatures
Recovery mechanisms
Non-volatile memory
Deterrence
Configuration control
Secure maintenance of components
Inspection of hardware/software/firmware
Comparison with known correct components

Availability Resistance
Recovery

Physical access controls
Redundancy
Information backup
Dispersion
Anti-tamper mechanisms
Anti-jam mechanisms
Hardening (EMP)
Modular components
Survivable design
Mobility
Operations security

Authenticity Authentication
Nonrepudiation

Physical access controls
Biometric devices
User login via ID/password
Digital signatures
Other crypto techniques

CMU/SEI-95-TR-015 47

Appendix G Information Security (INFOSEC)
Demonstration Script

G.1 Introduction

The purpose of this demo is to show how software tools can aid System Security Architects in
the process of generating candidate architectures that provide Information Security (INFOS-
EC) solutions to reusable software components.

In particular, models of Information Security and software architectures can be tied to a “con-
text model” to help System Security Architects analyze threats to a system or component and
get recommendations on

• Missing threat information they should be concerned about (but did not
specify).

• Lists of primary and supporting security “services” to counter threats.

• Discovery of the complex ‘interrelationships’ between various threats and
services, and when they can/should be combined. The ultimate goal is to
form lattices of primary and supporting security services to counter all
threats.

G.2 Terminology

This demo follows the MITRE terminology and model of INFOSEC “threats” and “services.”
“Threats” are broken down as follows:

THREAT CONSEQUENCE --> GENERAL THREAT -> SPECIFIC THREAT

Threat “consequences” are the end result (to a computer/information system) of any threat,
general or specific. “Services” are functions that counter threats. Services can be of type ‘pri-
mary’ or ‘supporting,’ where a primary service may or may not need a supporting service to
ensure complete threat countering ability.

The original idea was to present the system with a scenario centered around the Drug En-
forcement Agency (DEA) and its efforts to conduct quick, efficient raids on various individu-
als/organizations to combat the drug trade. For this, a command and control system is used;
this system must stand up to various security threats, since many drug groups are highly so-
phisticated. The demo then, proceeds with the idea that a mobile group will conduct a raid and
need a Command/Control system (via mobile phone, etc.) to receive instructions from the
main site. The CARDS ‘message_processing’ component could be used, if the threats to it are
considered acceptable for such a raid. This demo shows how to analyze threats in such as
context.

48 CMU/SEI-95-TR-015

G.3 Structural View of the Demo

This demo has four major parts. The user must specify

1. Which threat(s) are most important to safeguard the entire information secu-
rity system and/or (reusable) software component they have chosen. (For this
step, the INFOSEC LMDL model is queried. Questions presented are gener-
ated from this model.)

2. In what “context” or operating environment will the component/system oper-
ate, i.e., are guards present, etc. (For this step, a Knowledge Base of CLIPS
questions is dynamically loaded, along with inference rules coupled with this
“context” model.)

3. A particular configuration of the software component chosen.The component
can be tailored in several forms, each with different threat priorities impor-
tance. (For this step, the component’s LMDL model is queried to generate
questions.)

4. A report is generated in the end, detailing:

a. What the user specified in each of the three steps above (a reminder).

b. Sets of new, “inferred” threats that the user should have specified in
Step 1 but did not. This helps fill in holes in the user’s choice of
threats/priorities.

c. A set of “primary services” that helps counter threats discovered.

d. A set of “supporting services” needed when a primary service has
been inferred.

G.4 The Demo Script

The INFOSEC analysis system has three major components:

• Specify system wide threats of most concern.

• Specify context/concept of operations under which the system will operate.

• Choose a particular configuration of the current component.

Once all three of these components have been executed, the system will generate a report.
This script shows one path through the components and report:

1. Invoke the CARDS launcher screen and move to the “message_processing”
node at the bottom.

2. Choose “message_processing,” “Launch_Message_Processing_Model,”
and “OK.”

3. Choose “Search” and enter “message_processing.” Click on it, then “apply.”

4. Choose “message_processing,” then “Perform Action,” then “InfoSec Sys-
tem.”

CMU/SEI-95-TR-015 49

5. Press [Return] at the introduction screen.

Note: The Knowledge Base choice screen will appear.

The demo is currently capable of running 2 knowledge bases. To see what each does, choose
“help” or enter the choice at the prompt. Separate knowledge bases (KBs) allow the demo to
analyze threats to the same reusable component (i.e, message_processing system) in various
“contexts,” or modes of operations. Each KB represents a different set of circumstances that
may generate an entirely different set of threats/services that the Security Architect should be
concerned about when integrating this component into the entire INFOSEC system.

For now, we’ll choose the most recent/updated KB, DoD_KB_Ver_1.1.

6. Choose “DoD_KB_Ver_1.1” and press Return.

You’ll see the system dynamically loading in KB files, and querying the INFOSEC Library Mod-
el Description Language (LMDL) model for the names of the threat consequences and specific
threats. The system is dynamically building a set of questions to ask the user regarding con-
sequences/threats to the current component.

50 CMU/SEI-95-TR-015

The “Main Menu” will appear (see Figure G-1).

Even though we can choose these steps in any order, let’s do Step 1 first, ‘Specify system-
wide threats of most concern.’ This step asks us to specify which consequences and specific
threats are most relevant to counter for our entire INFOSEC system, as well as for the com-
ponent chosen. We must also specify how important it is to counter each threat (on a scale of
1 to 3, where 3 is highest) because some threats are often far more important than others to
counter.

7. Choose 1 ‘Specify system-wide threats of most concern.’

Say we are concerned about 3 main threat consequences -- Deception, Disclosure (of infor-
mation) and Disruption (of our system). Just assume we are not all that worried about some-
body ‘usurping’ our system.

Figure G-1: INFOSEC Analysis Main Menu

CMU/SEI-95-TR-015 51

8. Choose the threats by entering 1, 4, 7, 10, then press Return. Where 1,4, 7 and
10 are
1 deception via falsification
4 disclosure via exposure
7 disclosure via intrusion
10 disruption via obstruction

Assume we are really worried about disruption/interference, so we will choose number 1
(we’re worried about excessive noise on our communication cables interfering with the sys-
tem).

9. Choose 1 for ‘1 interference -- high threat.’

Assume we area bit concerned about system overloading and reverse engineering from an
outsider.

10. Choose 6 and 8 for
6 penetration — low threat
8 reverse engineering— medium threat

We are worried about somebody within our group deliberately disclosing information, since
this project has high visibility, and we are also worried that somebody will “scavenge” the sys-
tem looking for tidbits of information.

11. Choose 1 and 10 for
1 deliberate disclosure — high threat
10 scavenging — high threat

And finally we are concerned somebody will “insert” false code/data into our system and/or
“substitute” code/data in to deceive us in our operation.

12. Choose 1 and 6 for
1 insertion — high threat
6 substitution — low threat

Note: The Main Menu will reappear.

We see that Step 1 has been completed, and we should now go to Step 2 to specify how and
in what context our software system/component will operate.

13. Choose 2 ‘Specify context/concept of operations the system will operate un-
der.’

We need to have one outside site in our system with which to communicate.

14. Choose 2 for ‘Yes -- 1 site.’

Our external site will take commands from us.

15. Choose 2 for ‘No -- sites(s) not treated independently.’

This project is high visibility, and the public perceives that the operation we are conducting is
countering a big problem in society.

52 CMU/SEI-95-TR-015

16. Choose 1 for ‘High visibility.’

Our external site needs to be mobile.

17. Choose 3 for ‘Mobile.’

Our remote site needs high visibility.

18. Choose 1 for ‘The REMOTE site is: high visibility.’

The main facility is located in the US.

19. Choose 1 for ‘Yes -- facility in continental US location.’

We are going to choose an existing site.

20. Choose 1 for ‘Yes -- an existing facility will be used as primary site.’

Since we have part of the system that is mobile, and they can/tend to be prone to natural in-
terference (lightning, etc.).

21. Choose 2 for ‘Natural hazards are of some concern.’

We are somewhat concerned about services and their proximity.

22. Choose 2 for ‘Proximity for support services are of medium concern.’

Few sites that are of mixed security can guarantee that the system will be guarded.

23. Choose 1 for ‘Yes -- the system will have unattended time intervals.’

We can not afford redundant storage.

24. Choose 2 for ‘No -- redundant storage capabilities are NOT implied.’

SYSHIGH site is expensive and not in the budget, and most sites require contractors who are
not SYSHIGH.

25. Choose 2 for ‘Personnel are mixed SYSHIGH and SYSLOW.’

Limiting personnel access to sensitive information is required.

26. Choose 1 for ‘Yes -- sensitive information access is a concern’.

Yes, we need a secure communication link to our remote/mobile site.

27. Choose 1 for ‘Yes -- secure communications links ARE needed.’

Yes, we may need to pass info on to other government agencies about our mission if needed.

28. Choose 1 for ‘Yes -- links to other systems ARE needed.’

No special hardware aspects are needed.

29. Choose 2 for ‘No -- special communications hardware is NOT needed.’

CMU/SEI-95-TR-015 53

No special software is needed.

30. Choose 2 for ‘No -- special communications software is NOT needed.’

No, crypto needs are not required.

31. Choose 2 for ‘No -- crypto needs do NOT exist for communications.’

We are concerned about emanations/signals coming from our building.

32. Choose 1 for ‘Yes -- classified signals/emanations ARE of concern.’

We do not have an emanations security officer.

33. Choose 2 for ‘No -- NO emanations security officer is present.’

No, TEMPEST countermeasures are not necessary.

34. Choose 2 for ‘No -- TEMPEST countermeasures are NOT necessary.’

Note: Answers to #32 and #34 suggest an inconsistency. This would
be detected by an extension suggested in Section 5.1.

Since outside sites need classified data, we SHOULD separate/compartmentalize data.

35. Choose 1 for ‘Yes -- separation is necessary.’

Note: The Main Menu will reappear.

36. Choose 3 ‘Choose a particular configuration of the current component.’

37. Press Return to acknowledge.

Now we must choose/instantiate a particular configuration of the message processing system
we’ve decided to reuse. Many configurations are possible, and each has a unique set of
threats given to it.

54 CMU/SEI-95-TR-015

For example, if we choose ‘help,’ we can see which particular threats are associated with the
choices available. Figure G-2 shows an example threats list for this demo.

Choose ‘None’ for now. We may not want to include these threats since they are optional.

38. Choose 2 for ‘None.’

The message processing system can have 1 of 2 types of “message generators.” ‘BB’ means
bit-based. Again, we could examine the threats on each and determine which one would best
suit our needs. For this demo, let’s select ‘ASCII_PRISM_msg_gen.’

39. Choose 1 for ‘ASCII_PRISM_msg_gen.’

The windowing system may not be of importance to us, so we can choose whichever we want.
Choose mwm for this demo.

40. Choose 1 for ‘mwm.’

The version of X-windows, however, can make a BIG difference of threats. Choose X11_R5,
since it is more up to date the R4.

41. Choose 2 for ‘X11_R5.’

Figure G-2: Sample Threats List

CMU/SEI-95-TR-015 55

This screen asks us which kind of ‘messages’ we want our system to process. Since we are
concerned about DEA issues; choose 1, 2, and 4.

42. Choose 1, 2, and 4 for
1 DEA_interdiction_ok
2 inform_of_mechanism
4 suspect_intercept

And finally, we do not need Interprocess Communication for our system, so choose None.

43. Choose 5 for ‘None.’

44. Press Return at “END OF COMPONENT TRAVERSAL” screen.

Note: The Main Menu will reappear.

We are now at a point where we can get a report about the threats to our configuration of the
message processor we want to reuse.

45. Choose 4 for ‘Create report and exit system.’

56 CMU/SEI-95-TR-015

Note: The report configuration screen will now appear (Figure G-3).

We would like to see everything in our report.

46. Choose 7 for ‘All of the above.’

47. Press [Return].

Figure G-3: Report Configuration Screen

CMU/SEI-95-TR-015 57

Note: The report screen will now appear (see Figure G-4).

Look at the report. The first parts are simply reminders of which choices we made during the
demo, i.e., on threats, components, and environment/context.

The last 3 sections, starting with ‘THREATS INFERRED FROM CONTEXT’ are of most im-
portance. This section shows us new, additional threats that the user should be worried about,
given the context of operation; the general threat worries stated; and the component involved.
Reasons are given for each new inference.

If the user has chosen a threat consequence as important (along with 1 or more specific
threats in that group), then an average value for that consequence group is applied as the
‘threat value’ for the inferred threat.

Below this section, labelled ‘Lists of primary services for each component you chose’ is the
list(s) of primary services to counter each threat found for the components we have chosen in
the message processing system.

Figure G-4: Threats Report Screen

58 CMU/SEI-95-TR-015

Finally, the last section, ‘The following new primary and/or supporting service(s)’ shows any
new primary and/or supporting services inferred to help form a security lattice network accord-
ing to context. In our example, only 1 additional primary service was found. Other paths in this
demo may show several, or none of each kind, depending on choices made.

Security architects can use this report to significantly bolster any security holes in the systems
they design. The report offers a window into the threats/services available to each reusable
component, therefore speeding development and reducing costs, etc.

CMU/SEI-95-TR-015 59

Appendix H Domain Specific Software
Architectures (DSSA)

Domain specific software architectures have arisen out of a desire to reuse previous design
decisions, and the observation that very few development efforts are involved in completely
novel applications or approaches. Applications that used to be novel (e.g., avionics systems)
are now becoming quite commonplace, and are ripe for technological solutions to decrease
the risk associated with building them. No production development would construct a compiler
today from scratch without regard to the structure, components, or solution strategies used in
other modern compilers. Nobody would build such a compiler without employing a parser gen-
erator at the very least, and perhaps optimizer generators as well. Similarly, in a domain where
once-novel applications have been fielded often enough, a body of engineering knowledge
has arisen about them. Part of that corpus is the software architecture of a set of successful
members of that application family. Domain specific software architectures are, fundamental-
ly, an exercise in knowledge reuse.

Technology to support domain specific software architectures occurs along a spectrum,
sketched in Figure H-1. At the lowest productivity end of the spectrum, designers create the
architecture for each new system on an ad hoc basis, without regard for lessons learned from
previous, similar development efforts. Above this, in the reuse-without-automation realm, do-
main analysts have assembled architectures that represent many of the members of the do-
main; the reusable assets are documents that describe or represent those architectures. A
designer of a new system consults this “library” of architectures and takes advantage of the
design decisions, represented by those architectures, that were resolved in the building of pre-
vious systems in the family.

ad hoc
architectural

models

model-based
component

libraries

libraries
with

generators

pure
application
generators

low high
productivity productivity

some reuse,
low automation

considerable reuse,
some automation

high automation,
high reuse

Figure H-1: A Spectrum of Architecture Selection Technology

60 CMU/SEI-95-TR-015

Somewhat farther up the spectrum occur architectures whose components are instantiated in
the library. A new designer can take advantage of the architecture, plus import actual copies
of the components (typically, modules in the form of source code). Ideally, the components are
well-suited for the new application; typically, however, they require modification. The neces-
sary modification to the checked-out components may be made by hand, or (in a more sophis-
ticated library environment) the components may be parameterized. Modifications can then be
represented by instantiating the parameters.

Application generators represent the high end of the technology spectrum. These are systems
that allow a user1 to specify all relevant characteristics of the desired application. The archi-
tecture for the application family, as well as the components (or the ability to create the com-
ponents) reside in the generator. The generator instantiates the components that, taken
together, satisfy the requirements imposed by the application engineer. Figure H-2 illustrates
the process from the application engineer to the developed application. Examples of this tech-
nology include the GenVoca-based [Batory 94a] application generators such as Genesis [Ba-
tory 86, Batory 94b].

1. To avoid confusion with the end user of the application, we will call the builder of the system (or the user of the
application generator) an application engineer.

User preferences,
system parameters

Application

Composer

Components

Application generator

Application engineer

Figure H-2: An Application Generator

CMU/SEI-95-TR-015 61

References

[Batory 86] Batory, D.; Barnett, J.; Garza, J.; Smith, K.; Tsukuda, K.; Twichell,
B.; & Wise, T.Genesis: A Reconfigurable Database Management
System (TR-86-07). Austin, TX: University of Texas at Austin, 1986.

[Batory 94a] Batory, D.; Singhal, V.; Thomas, J.; Dasari, S.; Geraci, B.; & Sirkin,
M. “The GenVoca Model of Software-System Generators.” IEEE
Software 11,5 (September 1994): 89-94.

[Batory 94b] Batory, D.; Thomas, J.; Sirkin, M. “Reengineering a Complex Appli-
cation Using a Scalable Data Structure Compiler,” 111-120. Pro-
ceedings of the Second ACM SIGSOFT Symposium on Founda-
tions of Software Engineering. New Orleans, LA, December 6-9,
1994. New York, NY: ACM Press, 1994.

[CARDS 94] Central Archive for Reusable Defense Software. Technical Con-
cepts Document (STARS-VC-B009/001/00). January 1994.

[Cohen 92] Cohen, Sholom G.; Stanley Jr., Jay L.; Peterson, A. Spencer; & Krut
Jr., Robert W. Application of Feature-Oriented Domain Analysis to
the Army Movement Control Domain (CMU/SEI-91-TR-28,
ADA256590). Pittsburgh, PA: Software Engineering Institute, Carn-
egie Mellon University, 1992.

[Giarratano 93] Giarratano, Joseph C. CLIPS User’s Guide, Version 6.0. Clear
Lake, TX: NASA, Lyndon B. Johnson Space Center, Information
Systems Directorate, Software Technology Branch, 1993.

[Gulachenski 94] Gulachenski, B. & Costa, M. Taxonomy of Threats and Security
Services for Information Systems (Working paper: Project
No.:8353Z, Contract No.:DAAB07-94-C-H601). Bedford, MA: Mitre
Corporation, January 18, 1994.

62 CMU/SEI-95-TR-015

[Kang 90] Kang, K.; Cohen, S.; Hess, J.; Novak, R.; & Peterson, S. Feature-
Oriented Domain Analysis (FODA) Feasibility Study (CMU/SEI-90-
TR-21, ADA235785). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University,1990.

[Krut 94] Krut Jr., Robert W. Integrating 001 Tool Support into the Feature-
Oriented Domain Analysis Methodology (CMU/SEI-93-TR-11).
Pittsburgh, PA:Software Engineering Institute, Carnegie Mellon
University,1993.

[NASA 93a] National Aeronautics and Space Administration. CLIPS Reference
Manual Volume I Basic Programming Guide, CLIPS Version 6.0.
Clear Lake, TX: Lyndon B. Johnson Space Center, Information Sys-
tems Directorate, Software Technology Branch, June 2, 1993.

[NASA 93b] National Aeronautics and Space Administration. CLIPS Reference
Manual Volume II Advanced Programming Guide, CLIPS Version
6.0. Clear Lake, TX: Lyndon B. Johnson Space Center, Information
Systems Directorate, Software Technology Branch, June 2, 1993.

[NASA 93c] National Aeronautics and Space Administration. CLIPS Reference
Manual Volume III Interfaces Guide, CLIPS Version 6.0. Clear
Lake, TX: Lyndon B. Johnson Space Center, Information Systems
Directorate, Software Technology Branch, June 2, 1993.

[Rumbaugh 91] Rumbaugh, James, et al. Object-Oriented Modeling and Design.
Englewood Cliffs, NJ: Prentice Hall, 1991.

[STARS 92] Software Technology for Adaptable, Reliable Systems. RLF Graph-
ical Browser User’s Manual (STARS-TC-04046/005/00). July
1,1992.

[STARS 93a] Software Technology for Adaptable, Reliable Systems. RLF Model-
er Tutorial (STARS-UC-05156/020/00). February 1993.

[STARS 93b] Software Technology for Adaptable, Reliable Systems. RLF User’s
Manual, Version 4.1 (STARS-UC-05156/013/00). March 1993.

CMU/SEI-95-TR-015 63

[Wallnau 88] Wallnau, K. “Construction of Knowlegde-Based Components and
Application in Ada,” 3/1-21. Proceedings of AIDA-88, Fourth Annual
Conference on Arificail Intelligence and Ada. Fairfax, VA, Nov. 15-
16, 1988. Fairfax, VA: George Mason University, 1988.

64 CMU/SEI-95-TR-015

	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Background of Collaboration
	1.2 Collaboration Objectives
	1.3 Purpose of the Report
	1.4 Structure of the Report

	2. The UIA Automated Reuse Assistant
	2.1 The UIA Gadfly
	2.2 Development of the Environmental Context Knowledge Base

	3. The UIA Gadfly Demonstration
	4. Lessons Learned
	4.1 The UIA Gadfly Recommendations
	4.2 Extending the Gadfly Approach

	5. Conclusions
	Appendix A Milestone Chart
	Appendix B The CARDS System Composer
	Appendix C The Black Box Gadfly Assistant
	Appendix D Feature-Oriented Domain Analysis
	D. 1 Introduction
	D.2 Foundations of the FODA Methodology
	D.3 FODA Process and Products
	D.4 Applying the Results of Domain Analysis

	Appendix E Examples of FODA Models for Security Analysis
	E.1 Overview
	E. 2 Examples of FODA Models

	Appendix F UIA Topic Areas
	Appendix G Information Security (INFOSEC) Demonstration Script
	G.1 Introduction
	G.2 Terminology
	G.3 Structural View of the Demo
	G.4 The Demo Script

	Appendix H Domain Specific Software Architectures (DSSA)
	References

