
Technical Report
CMU/SEI-94-TR-22
ESC-TR-94-022

Software Process Improvement in the NASA
Software Engineering Laboratory

Frank McGarry
Rose Pajerski

NASA/Goddard Space Flight Center

Gerald Page
Sharon Waligora

Computer Sciences Corporation

Victor Basili
Marvin Zelkowitz

University of Maryland

December 1994

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-94-TR-22

ESC-TR-94-022
December 1994

Software Process Improvement
in the NASA Software Engineering Laboratory

Frank McGarry

Rose Pajerski

Gerald Page

Sharon Waligora

Technology Transition Initiatives

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright© 1994 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Suite C201, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218. Phone: (703) 767-8274 or toll-free in the U.S. — 1-800 225-3842).

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Foreword v

Preface vii

1 Background 1
1.1 SEL History 1

1.2 SEL Process Improvement Strategy 2

2 The SEL Organization 5
2.1 Software Development/Maintenance 6

2.2 Process/Product Analysis 7

2.3 Database Support 7

3 The SEL Process Improvement Concept 9
3.1 Bottom-Up Improvement 9

3.2 Measurement 11

3.3 Reuse of Experience 11

4 SEL Experimentation and Analysis 13
4.1 Defining Experiments 13

4.2 Collecting Measures 14

4.3 Analyzing Data 17

4.4 Improving Process 19

5 SEL Experiences: Understanding, Assessing, and Packaging 21
5.1 Understanding 21

5.2 Assessing 27

5.2.1 Studies of Design Approaches 28

5.2.2 Studies of Testing 30

5.2.3 Studies with Cleanroom 31

5.2.4 Studies with Ada and OOD 34

5.2.5 Studies with IV&V 37

5.2.6 Additional Studies 39

5.3 Packaging 40

6 The SEL Impact 43
6.1 Impact on Product 43

6.2 Impact on Process 48

6.3 Cost of Change 49

6.4 Impact on Other Organizations 50
CMU/SEI-94-TR-22 i

7 Summary 53

Appendix A Sample SEL Experiment Plan 55
A.1 Project Description 55

A.2 Key Facts 55

A.3 Goals of the Study 56

A.4 Approach 56

A.5 Data Collection 57

Appendix B FDD Projects 59

References 63
ii CMU/SEI-94-TR-22

List of Figures

Figure 1: The SEL Process Improvement Paradigm 3

Figure 2: SEL Structure 5

Figure 3: Focus of SEL Organizational Components 6

Figure 4: Effort Data Collection Form 15

Figure 5: Defect/Change Data Collection Form 16

Figure 6: SEL Core Measures 18

Figure 7: SEL Baseline (1985-1990) 22

Figure 8: Effort Distribution by Phase and Activity 23

Figure 9: SEL Error Characteristics 25

Figure 10: Error Detection Rate Model 25

Figure 11: Initial SEL Models/Relations 26

Figure 12: More Recent SEL Software Characteristics (late 1980s) 27

Figure 13: Fault Rate for Classes of Module Strength 29

Figure 14: Fault Detection Rate by Testing Method 30

Figure 15: Cost of Fault Detection by Testing Method 31

Figure 16: Results of Cleanroom Experiment 33

Figure 17: Assessing Cleanroom Against Goals and Expectations 33

Figure 18: SEL Ada/Object-Oriented Technology (OOT) Projects 35

Figure 19: Maturing Use of Ada 36

Figure 20: Reuse Shortened Project Duration 37

Figure 21: A Look at IV&V Methodology 39

Figure 22: SEL Packaging: SEL Software Process 41

Figure 23: Early SEL Baseline (1985-1989) 44

Figure 24: Current SEL Baseline (1990-1993) 44

Figure 25: Impact on SEL Products (Reliability) 45

Figure 26: Impact on SEL Products (Cost) 46

Figure 27: Impact on SEL Products (Reuse) 46

Figure 28: Development Error Rates (1979-1994) 47

Figure 29: ROI for Process Improvement in the FDD 50
CMU/SEI-94-TR-22 iii

iv CMU/SEI-94-TR-22

Foreword

This report describes the work of the first winner of the IEEE Computer Society Software Pro-
cess Achievement Award. This award was jointly established by the Software Engineering In-
stitute (SEI) and the IEEE Computer Society to recognize outstanding achievements in
software process improvement. It is given annually, if suitable nominations are received at the
SEI on or before November 1 of any year. To obtain further information about the award, con-
tact the award coordinator at the SEI.

For the 1994 award, a total of 11 nominations were received and evaluated by a review com-
mittee consisting of Vic Basili, Barry Boehm, Manny Lehman, Bill Riddle, and myself. Because
of his intimate involvement with the winning organization, Vic Basili excused himself from the
committee's decisions concerning this organization.

As a result of reviewing the nominations and visiting several laboratories, the committee se-
lected two finalists and the winner. The finalists are the process improvement staff of the Mo-
torola Cellular Infrastructure Group and the software engineering process group of the
Raytheon Equipment Division. The winner is the Software Engineering Laboratory (SEL)
which is jointly operated by the NASA Goddard Space Flight Center, the Computer Sciences
Corporation, and the University of Maryland. As a condition of the award, one or more repre-
sentatives of the winning organization writes an SEI technical report on the achievement. This
is that report.

Many organizations have found that the lack of adequate data on the costs and benefits of
software process improvement is a significant deterrent to their progress. This award thus em-
phasizes both quantitative measures of process improvements as well as their significance
and potential impact. While no single improvement approach will be appropriate for every or-
ganization and while process improvement methods will evolve, the broad availability of such
explicit improvement information should be of broad and general value.

The granting of this award does not imply endorsement of any one improvement approach by
the IEEE Computer Society or the SEI. The award committee does, however, endorse the ex-
cellence of the work described in this technical report. We also feel it is particularly appropriate
that the SEL win this first achievement award. This is both because of the technical signifi-
cance of the SEL's work and because of its long history of leadership in software process re-
search and improvement. The SEL was formed a full 10 years before the SEI was established
and its distinguished record of contribution has had a profound impact on the work of software
process professionals throughout the world.

Watts S. Humphrey
Chairman, Award Committee
CMU/SEI-94-TR-22 v

vi CMU/SEI-94-TR-22

Preface

Since its inception, the SEL has conducted experiments on approximately 120 Flight Dynam-
ics Division (FDD) production software projects, in which numerous software process changes
have been applied, measured, and analyzed. As a result of these studies, appropriate pro-
cesses have been adopted and tailored within the environment, which has guided the SEL to
significantly improve the software generated. Through experimentation and sustained study
of software process and its resultant product, the SEL has been able to identify refinements
to its software process and to improve product characteristics based on FDD goals and expe-
rience.

The continual experimentation with software process has yielded an extensive set of empirical
studies that has guided the evolution of standards, policies, management practices, technol-
ogies, and training within the organization. The impacts of these process changes are evident
in the resulting characteristics of FDD products. Over the period 1987 through 1993, the error
rate of completed software has dropped by 75 percent; the cost of software has dropped by
50 percent; and the cycle time to produce equivalent software products has decreased by 40
percent. Additionally, the SEL has produced over 200 reports that describe the overall soft-
ware process improvement approach and experiences from the experimentation process.

This report describes the background and structure of the SEL organization, the SEL process
improvement approach, and the experimentation and data collection process. Results of
some sample SEL studies are included. It includes a discussion of the overall implication of
trends observed over 17 years of process improvement efforts and looks at the return on in-
vestment based on a comparison of the total investment in process improvement with the
measurable improvements seen in the organization’s software product.

As this report is a summary of many of the activities and experiences of the SEL which have
been reported in more detail elsewhere, some of the material has been taken directly from oth-
er SEL reports. These sources are listed in the Reference section of this document. Individual
copies of SEL documents can be obtained by writing to

Software Engineering Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771
CMU/SEI-94-TR-22 vii

viii CMU/SEI-94-TR-22

Software Process Improvement
in the NASA Software Engineering Laboratory

Abstract: The Software Engineering Laboratory (SEL) was established in
1976 for the purpose of studying and measuring software processes with the
intent of identifying improvements that could be applied to the production of
ground support software within the Flight Dynamics Division (FDD) at the
National Aeronautics and Space Administration (NASA)/Goddard Space Flight
Center (GSFC). The SEL has three member organizations: NASA/GSFC, the
University of Maryland, and Computer Sciences Corporation (CSC). The
concept of process improvement within the SEL focuses on the continual
understanding of both process and product as well as goal-driven
experimentation and analysis of process change within a production
environment.

1 Background

1.1 SEL History
The Software Engineering Laboratory (SEL) was created in 1976 at NASA/Goddard Space
Flight Center (GSFC) for the purpose of understanding and improving the overall software pro-
cess and products that were being created within the Flight Dynamics Division (FDD). A part-
nership was formed between NASA/GSFC, the University of Maryland, and Computer
Sciences Corporation (CSC) with each of the organizations playing a key role: NASA/GSFC
as the user and manager of all of the relevant software systems; the University of Maryland as
the focus of advanced concepts in software process and experimentation; and CSC as the
major contractor responsible for building and maintaining the software used to support the
NASA missions. The original plan of the SEL was to apply evolving software technologies in
the production environment during development and to measure the impact of these technol-
ogies on the products being created. In this way, the most beneficial approaches could be
identified through empirical studies and then captured once improvements were identified.
The plan was to measure in detail both the process as well as the end product.

At the time the SEL was established, significant advances were being made in software de-
velopment (e.g., structured analysis techniques, automated tools, disciplined management
approaches, quality assurance approaches). However, very little empirical evidence or guid-
ance existed for selecting and applying promising techniques and processes. In fact, little ev-
idence was available regarding which approaches were of any value in software production.
Additionally, there was very limited evidence available to qualify or quantify the existing soft-
ware process and associated products, or to aid in understanding the impact of specific meth-
ods. Thus, the SEL staff developed a means by which the software process could be
CMU/SEI-94-TR-22 1

understood, measured, qualified, and measurably improved. Their efforts focused on the pri-
mary goal of building a clear understanding of the local software business. This involved build-
ing models, relations, and empirical evidence of all the characteristics of the ongoing software
process and resultant product and continually expanding that understanding through experi-
mentation and process refinement within a specific software production environment.

1.2 SEL Process Improvement Strategy
As originally conceived, the SEL planned to apply selected techniques and measure their im-
pact on cost and reliability in order to produce empirical evidence that would provide rationale
for the evolving standards and policies within the organization. As studies were performed, it
became evident that the attributes of the development organization were an increasingly sig-
nificant driver for the overall definition of process change. These attributes include the types
of software being developed, goals of the organization, development constraints, environment
characteristics, and organizational structure. This early and important finding provoked an in-
tegral refinement of the SEL approach to process change. The most important step in the pro-
cess improvement program is to develop a baseline understanding of the local software
process, products, and goals. The concept of internally driven, experience-based process im-
provement became the cornerstone of the SEL's “bottom-up” process improvement program.

Incorporating the key concept of change guided by development project experiences, the SEL
defined a standard paradigm to illustrate its concept of software process/product improve-
ment. This paradigm is a three-phase model (Figure 1) which includes the following steps:

1. Understanding: Improve insight into the software process and its products by
characterizing the production environment, including types of software devel-
oped, problems defined, process characteristics, and product characteristics.

2. Assessing: Measure the impact of available technologies and process
change on the products generated. Determine which technologies are bene-
ficial and appropriate to the particular environment and, more importantly,
how the technologies (or processes) must be refined to best match the pro-
cess with the environment.

3. Packaging: After identifying process improvements, package the technology
for application in the production organization. This includes the development
and enhancement of standards, training, and development policies.

In the SEL process improvement paradigm, these steps are addressed sequentially, and itera-
tively, for as long as process and product improvement remains a goal within the organization.

The SEL approach to continuous improvement is to apply potentially beneficial techniques to
the development of production software and to measure the process and product in enough
detail to determine the value of the applied technology within the specific domain of applica-
tion. Measures of concern (such as cost, reliability, and cycle time) are identified as the orga-
nization determines its major short- and long-term objectives for its software product. Once
2 CMU/SEI-94-TR-22

these objectives are known, the SEL staff designs an experiment(s), defining the particular
data to be captured and the questions to be addressed in each experimental project. This con-
cept has been formalized in the goal-question-metric paradigm developed by Basili [Basili 84].

All SEL experiments have been conducted in the production environment of the FDD at
NASA/GSFC, which consists of projects that are classified as mid-sized software systems.
The systems range in size from 10 thousand source lines of code (KSLOC) to over 1.5 million
SLOC. The original SEL production environment had approximately 75 developers generating
software to support a single aspect of the flight dynamics problem. Over the years, the SEL
operation has grown to include more extensive software responsibilities and, consequently, a
larger production staff of approximately 300 developers and analysts. The SEL has been in
continuous operation since 1976, and it will continue to operate as long as process and
product improvement remain a priority within its software domain.

PACKAGE

Infuse improved (verified) process:

• Standards and training

ASSESS
(EXPERIMENT)

GOALS
(e.g., reduce error rates)

Determine improvements to your business:

• What impact does change have?

UNDERSTAND

Know your software business (process and product):

• How do I do business today
(e.g., standards and techniques used, % time in testing, module size)

• What are my product characteristics?
(e.g., error rates, productivity, complexity)

Figure 1: The SEL Process Improvement Paradigm
CMU/SEI-94-TR-22 3

4 CMU/SEI-94-TR-22

2 The SEL Organization

The SEL comprises three partner organizations: the Software Engineering Branch at
NASA/GSFC, the Institute for Advanced Computer Studies and Department of Comput-
er Science at the University of Maryland, and the Software Engineering Operation at
CSC. The total organization consists of approximately 300 persons. These personnel
are divided into 3 functional components, not necessarily across organizational lines.
The 3 functional areas are

• Software development/maintenance
• Process/product analysis
• Database support

The three components (developers, analysts, and database support) are separate, yet inti-
mately related to each other. Each has its own goals, process models, and plans, but they
share an overall mission of providing software that is continually improving in quality and cost
effectiveness. The responsibilities, organizational makeup, and goals of the SEL components
are discussed in the sections that follow. Figure 2 provides a graphic overview of their function
and size, and Figure 3 depicts the difference in focus among the three groups.

Development
measure for
each project

Developers
(Source of Expertise)

Staff 250-275 developers
Typical Project Size 100-300 KSLOC
Active Projects 6-10

(at any given time)
Project Staff Size 5-25 people
Total Projects
(1976-1994)

120

NASA & CSC

Process Analysts
(Package of Experience for Reuse)

Staff 10-15 analysts
Function • Set goals/questions/metrics

– Design studies/experiments
• Analysis/research
• Refine software process

– Produce reports/findings
Products
(1976-1994)

300 reports/documents

NASA & CSC & University of Maryland

Refinements to
development
process

Datatbase Support
(Maintain/QA Experience Information)

Figure 2: SEL Structure

Staff 5-8 support staff

Function • Process forms/data

• Assure quality of all
data

• Record/archive data

• Maintain SEL
database

• Operate SEL library

SEL
Database 160 MB

Forms
Library 220,000

Reports
Library

• SEL reports
• Project documents
• Reference papers

NASA & CSC
CMU/SEI-94-TR-22 5

2.1 Software Development/Maintenance
The FDD development organization, comprising approximately 250–275 professional soft-
ware developers, is responsible for development and maintenance of one segment of the
ground support software used by GSFC. The majority of the software developers are CSC em-
ployees under contract to NASA/GSFC; approximately 35 of the developers are employees of
NASA/GSFC. SEL staff at the University of Maryland do not participate directly in the devel-
opment or maintenance of flight dynamics software.

For a typical project, FDD developers are provided a set of functional requirements for a mis-
sion, from which they design, code, test, and document the software. The systems developed
are primarily FORTRAN, non-real time, non-embedded, ground-based applications, and there
are usually 4 or 5 projects in development at any one time. After the newly developed mission
support software is tested and accepted, another team from this same organization takes over
maintenance of the operational system. Approximately 50 percent of the development staff is
allocated to software maintenance.

The primary task of the development organization is to produce quality software on-time and
within budget. They rely on another element of the SEL to carry out the analysis and packag-

Developers Analysts Database Support Staff

Focus and
Scope

• Specific software project • Domain (multiple projects) • Domain (multiple projects)

Goals • Produce and maintain
software

• Satisfy user requirements

• Analyze development and
maintenance experience
to define improvement
process

• Support developers

• Archive, maintain, and
distribute development
and maintenance
experience

Approach • Use the most effective
software engineering
techniques, as provided
by the analysts

• Assess the impact of
specific technologies

• Produce models,
standards, and training
materials

• Maintain a library of
experiences, models,
and standards

Measure of
Success

• Validate and verify
software products

• Packaging and reuse of
empirical software
experience

• Improved software
products

• Efficient processes for
information retrieval
(data models, reports)

Figure 3: Focus of SEL Organizational Components
6 CMU/SEI-94-TR-22

ing of the process improvement studies. The development organization is not expected to pro-
duce standards, policies, or training; nor are the developers expected to analyze data. The
success of the development organization is measured by their ability to deliver a quality soft-
ware product that meets the needs of the user.

2.2 Process/Product Analysis
The second major function within the SEL is analysis and process improvement. This effort is
supported by personnel from all 3 member organizations: approximately 4 full-time people
from NASA/GSFC; 5-10 individuals, each spending approximately 20 percent of their time,
from the University of Maryland; and approximately 5-8 full-time people at CSC. This team de-
fines studies to be conducted, analyzes process and products generated by the developers,
and packages its findings in the form of updated standards, revised training programs, and
new models specific to this development environment. All of the SEL analysts are experienced
software engineers, many of whom have a number of years of experience in flight dynamics
software development and/or maintenance.

The analysts use information such as development environment profiles, process character-
istics, resource usage, defect classes, and statistics to produce models of products and pro-
cesses, evaluations, and refined development information. Their products include cost and
reliability models, process models, domain-specific architectures and components, policies,
and tools.

The goal of the analysts is to synthesize and package experiences in a form useful to the de-
velopment group. Their success is measured by their ability to provide in a timely way prod-
ucts, processes, and information that can assist the developers in meeting their goals.

2.3 Database Support
The third function within the SEL is the data processing and archiving of the project’s experi-
ences in the SEL’s measurement database. This is supported by approximately three full-time
people at NASA/GSFC and approximately five full-time people at CSC. The database support
staff collect the data that have been defined and requested by the analysts; assure the quality
of those data; organize and maintain the SEL database; and archive the reports, papers, and
documents that make up the SEL library (see Figure 2).

The group includes both professional software engineers, who define and maintain the data-
base, and data technicians, who enter the data, generate reports, and assure the quality of
the information that is submitted to the SEL library. The goal of the database support organi-
zation is to manage the SEL measurement data and analysis products efficiently. Their suc-
cess is measured by the efficient collection, storage, and retrieval of information, conducted
in a way that doesn’t burden the overall organization with unnecessary activities and waiting
periods.
CMU/SEI-94-TR-22 7

8 CMU/SEI-94-TR-22

3 The SEL Process Improvement Concept

The SEL process improvement concept has matured over more than a decade, with the most
significant changes to it being driven by experience at attempts to infuse process change and
improvement within a production organization. The SEL improvement concept has occasion-
ally been called an “experience factory” [Basili 92] and has also occasionally been termed a
“bottom-up” software process improvement approach [McGarry 94]. The organization focuses
on continually using experiences, lessons, and data from production software projects to en-
sure that subsequent development efforts benefit, in terms of improved software products and
processes, from the experience of earlier projects. The underlying principle of this concept is
the reuse of software experiences to improve subsequent software tasks. This reuse of expe-
rience is the driving element for change and improvement in the software process.

3.1 Bottom-Up Improvement
Although the term “process improvement” is the term most commonly used to characterize the
efforts of an organization to improve its software business, the SEL philosophy asserts that
the actual goal of the organization is to improve the software product. The process improve-
ment concept stems from an assumption that an improved process will result in an improved
product. However, if a changed process has no positive impact on the product generated, then
there is no justification for making change. A knowledge of the products, goals, characteristics,
and local attributes of a software organization is needed to guide to the evolutionary change
to process that focuses on the desired change to the product as defined by the goals of the
organization.

Two approaches to software process improvement have been developed and applied in the
industry. The top-down approach (which is based on the assumption that improved process
yields improved product) compares an organization’s existing process with a generally accept-
ed high-quality standard process. Process improvement is then defined as the changes made
to eliminate the differences between the existing process and the standard set of practices.
This approach assumes that after change is made to the process, the generated products will
be improved, or at least there will be less risk in the generation of new software. The most
widely accepted and applied top-down model is the capability maturity model (CMM) [Paulk
93], developed by the Software Engineering Institute (SEI). For the SEL, the CMM provides
an excellent model for assessing process and for selecting potential process changes that
mesh with local goals and needs.

The SEL approach (sometimes called “bottom-up”) assumes that changes must be driven by
local goals, characteristics, and product attributes. Changes are defined by a local domain in-
stead of by a universal set of accepted practices. In this approach, software process change
is driven by the goals of the particular development organization as well as by the experiences
derived from that local organization. For example, an organization whose primary goal is to
CMU/SEI-94-TR-22 9

shorten “time-to-ship” may take a significantly different approach to process change than
would an organization whose primary goal is to produce defect-free software.

The top-down approach is based on the assumption that there are generalized, universal prac-
tices that are required and effective for all software development, and that without these prac-
tices, an organization’s process is deficient. This paradigm has been accepted in many
software organizations that have applied generalized standards, generalized training, and
even generalized methods defined by an external organization (external to the developers) to
all their software. This concept does not take into account the performance issues, problems,
and unique software characteristics of the local organization. The implicit assumption is that
even if an organization’s goals are being met and exceeded, if that organization does not use
the commonly accepted practices, it has a higher risk of generating poor-quality products than
an organization that adheres to the defined processes. The goals and characteristics of the
local organization are not the driving elements of change.

The underlying principle of the SEL approach is that “not all software is the same.” Its basic
assumption is that each development organization is unique in some (or many) aspects. Be-
cause of that, each organization must first completely understand its local software business
and must identify its goals before selecting changes meant to improve its software process. If,
based on that understanding, change seems called for, then each change introduced is guided
by “experience”—not by a generalized set of practices.

Neither the top-down approach nor the bottom-up approach can be effective if used in isola-
tion. The top-down approach must take into consideration product changes, while the bottom-
up approach must use some model for selecting process changes aimed at improving product
characteristics. Each concept plays an important role in the goal of improving the software
business.

The CMM is designed as a framework that can help organizations better understand their soft-
ware process and provide guidance toward reducing risk in software production. It provides an
excellent procedure for identifying potentially beneficial additions to the organization’s software
business practices. The SEL capitalizes on this paradigm to guide efforts at characterizing the
software development process and to identify improvement areas. As a complement to the
CMM (which provides specific approaches to assessing goals, products, and product at-
tributes), the SEL model provides the tools for a complete and effective improvement program.

Both approaches have similar difficulties capturing the image of the “local” software business,
in defining exactly the scope or size of the local organization. Some judgment must be applied
as to the components and boundaries of this single entity. SEL experience has shown that a
smaller defined organization allows for a more detailed process definition and more focused
refinements to the process.
10 CMU/SEI-94-TR-22

3.2 Measurement
The SEL approach uses a detailed understanding of local process, products, characteristics,
and goals to develop insight. This insight forms the foundation of a measurable, effective
change program driven by local needs. Because of this dependence on understanding the
software within the subject environment, measurement is an inherent and vital component of
the SEL approach: measurement of process and product from the start, measurement of the
effect of process change on the product, and measurement of product improvement against
the goals of the organization. The CMM provides guidance in building an understanding of
software process within the development organization, but the SEL paradigm extends this
concept to include product characteristics such as productivity, error rates, size attributes, and
design characteristics.

In the SEL approach, measurement is not viewed as a process element that is added as an
organization matures, but rather as a vital element present from the start of any software im-
provement program. An organization must use measurement to generate the baseline under-
standing of process and product that will form the basis of the improvement program.

The CMM includes the “software process assessment” tool, which is effective for generating
baseline process attributes. The SEL’s bottom-up approach adds to those measures measure-
ment of specific product characteristics, so that change can be effectively guided and observed.

The SEL concept is driven by the principle that each domain or development organization
must develop and tailor specific processes that are optimal for its own usage. Certainly, some
processes and technologies are effective across a broad spectrum of domains (possibly even
universal), but before a development organization settles on a particular process it must take
the critical steps of understanding its software business and determining its goals. From there,
change can be introduced in a structured fashion and its impact measured against the orga-
nizational goals.

3.3 Reuse of Experience
Historically, a significant shortcoming in software development organizations has been their
failure to capitalize on experience gained from similar completed projects. Most of the insight
gained has been passively obtained instead of being aggressively pursued. Software devel-
opers and managers generally do not have the time or resources to focus on building corpo-
rate knowledge or planning organizational process improvements. They have projects to run
and software to deliver. Thus, reuse of experience and collective learning must become a cor-
porate concern like a business portfolio or company assets. Reuse of experience and collec-
tive learning must be supported by an organizational infrastructure dedicated to developing,
updating, and supplying upon request synthesized experiences and competencies. This orga-
nizational infrastructure emphasizes achieving continuous sustained improvement over iden-
tifying possible technology breakthroughs.
CMU/SEI-94-TR-22 11

The SEL represents this type of organizational element. It is focused solely on reuse of expe-
rience and software process improvement with the goal of improving the end product. Be-
cause these activities rely so significantly on actual software development experiences, the
developers, analysts, and database support staff organizations, while separate, are intimately
related to each other. Developers are involved in process improvement activities only to the
extent that they provide the data on which all process change is based. Process/product an-
alysts and database support personnel are dedicated to their process improvement responsi-
bilities and are in no way involved in the production of software product. Additionally, the SEL
research/database support teams have management and technical directors separate from
the development projects. This ensures continuity and objectivity in process improvement ac-
tivities and the availability of resources for building, maintaining, and sustaining the process
improvement program.
12 CMU/SEI-94-TR-22

4 SEL Experimentation and Analysis

Each production project in the FDD is considered an opportunity for the SEL to expand its
knowledge base of process understanding and improvement. There are typically 4 or 5
projects under development at any one time, and an additional 15 to 20 projects in the main-
tenance phase. All of the projects in the FDD environment are considered experiments, and
the SEL has completed over 120 project studies over the years. For each of these projects,
detailed measurements were provided toward the end goal of analyzing the impact that any
change to software process had on the resultant software product.

When research in the production environment is being planned, the following activities occur:
the SEL analysis team defines a set of goals that reflects current goals in process/product im-
provement and writes an experiment plan in which required data are identified and experimen-
tal processes are outlined; a SEL representative is assigned to the project/experiment; and
technology/process training needs are assessed. SEL software development/maintenance
project personnel then provide the requested information (defined in the experiment plan) to
the SEL database support staff who add it to the database for access by the analysts conduct-
ing the experiment. These SEL activities are described in the sections that follow.

4.1 Defining Experiments
SEL analysts identify software process modifications that they hypothesize are likely to im-
prove the resultant product, and then design an experiment to test the hypothesis. As experi-
ments are being defined, the analysts consult the development team to determine if proposed
changes (such as applying a particular technique) could be studied on a project without undue
risk. Even if risk is significant, a team may be willing to try the new process provided a contin-
gency plan is developed to assure that a disaster can be avoided. It is important that the de-
velopment team be factored into decisions on the proposed changes and that their full support
is obtained.

Once a project is identified and a modified process is selected, an experiment plan is written
describing the goals, measures, team structure, and experimental approach. A sample SEL ex-
periment plan is included in Appendix A. If the study is very small (e.g., collect inspection data
to measure the cost of software inspections), a formal experiment plan may not be written.

The basic project/experiment information is then provided to the SEL database support group
so that project names, subsystem names, personnel participating, and forms expected can be
logged, and the database can be readied for data entry.

Once an experiment is defined and the study objectives have been agreed upon with the
developers, a representative from the analysts is assigned to work directly with the
development team for the duration of the project. This representative keeps the development
team informed of experimental progress, provides information on the particular process
CMU/SEI-94-TR-22 13

changes being applied, and answers any questions the development team may have with
regard to SEL activities. The SEL representative does not manage or direct the development
project in any way. The SEL representative attends reviews and development status meetings
and looks at measurement data collected. At the conclusion of the project, the SEL
representative also writes a section for inclusion in the project’s development history report
which discusses the experimental goals and results.

For most projects, the experiment being conducted does not have a significant impact on the
development procedures and typically does not involve major changes to the technologies be-
ing applied. If there is a more significant change (e.g., using Ada, applying Cleanroom tech-
nique, or using inspections with a team unfamiliar with the technology), the analysts arrange
for training for the development team. For example, when the SEL studied Cleanroom tech-
nique on one project, approximately 40 hours of training in the technique were provided to the
first development team using it in this environment [Green 90].

4.2 Collecting Measures
In support of the SEL experiments, technical and management staff responsible for software
development and maintenance provide the requested measurement data. Although the types
of data requested may vary from project to project to satisfy the requirements of particular ex-
periments, the core set of information is invariant. Basic data are collected from every project,
including effort, defects, changes, project estimates, project dynamics (e.g., staffing levels),
and product characteristics. These data are provided on data collection forms. Figures 4 and
5 are samples of the forms used to report effort data and defect/change data. Details of the
core measures used, as well as the measurement program in general, can be found in the
Software Measurement Guidebook [Bassman 94]. The full set of data collection forms and
procedures can be found in the Data Collection Procedures for the Software Engineering Lab-
oratory Database [Heller 92].
14 CMU/SEI-94-TR-22

Personnel Resources Form
Name: Date (Friday):

Project:

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours by Activity
(Total of hours in Section B should equal total hours in Section A.)

Activity Activity Definitions Hours

Predesign Understanding the concepts of the system. Any work prior to the actual design (such as requirements analysis).

Create Design Development of the system, subsystem, or components design. Includes development of PDL, design diagrams, etc.

Read/Review
Design

Hours spent reading or reviewing design. Includes design meetings, formal and informal reviews, or walkthroughs.

Write Code Actually coding system components. Includes both desk and terminal code development.

Read/Review
Code

Code reading for any purpose other than isolation of errors.

Test Code
Units

Testing individual components of the system. Includes writing test drivers.

Debugging Hours spent finding a known error in the system and developing a solution. Includes generation and execution of tests associated with
finding the error.

Integration
Test

Writing and executing tests that integrate system components, including system tests.

Acceptance
Test

Running/supporting acceptance testing.

Other Other hours spent on the project not covered above. Includes management, meetings, training hours, notebook, system description, user’s
guides, etc.

SECTION C: Effort on Specific Activities (need not add to Section A)
(Some hours may be counted in more than one area; view each activity separately.)

Rework: Estimate of total hours spent that were caused by unplanned changes or errors. Includes effort
caused by unplanned changes to specifications, erroneous or changed design, errors or
unplanned changes to code, changes to documents. (This includes all hours spent debugging.)

Enhancing/Refining/Optimizing: Estimate of total hours spent improving the efficiency or clarity of design, code, or documentation.
(These are not caused by required changes or errors in the system.)

Documenting: Hours spent on any documentation on the system.
(This includes development of design documents, prologs, in-line commentary,
test plans, system descriptions, user’s guides, or any other system documentation.)

Reuse: Hours spent in an effort to reuse components of the system.
(This includes effort in looking at other system(s) design, code, or documentation.
Count total hours in searching, applying, and testing.)

Figure 4: Effort Data Collection Form

For Librarian’s Use Only

Number:

Date:

Entered by:

Checked by:
CMU/SEI-94-TR-22 15

CHANGE REPORT FORM
Name: Approved by:

Project: Date:

 Section A — Identification

Describe the change (what, why, how):

Effect: What components are changed? Effort (What additional components were examined in
determining what change was needed?):

Prefix Name Version

(Attach list if more space is needed.)

Location of developer’s source files

month day year

Need for change determined on:

month day year

Change completed (incorporated into system):

1 hr/less 1 hr/1 day 1/3 days >3 days

Effort in person time to isolate the change (or error):

1 hr/less 1 hr/1 day 1/3 days >3 days

Effort in person time to implement the change (or correction):

 Section B — All Changes

Type of change (check one):

Error correction Improvement of user services

Planned enhancement Insertion/deletion of debug code

Implementation of requirements change Optimization of time/space/accuracy

Improvement of clarity, maintainability,
or documentation

Adaptation to environment change

Other:

 Section C — For Error Corrections On

Source of Error
(check one)

Requirements

Functional specifications

Design

Code

Previous change

Check here if change involves Ada components.
(If so, complete questions on reverse side.)

Effects of Change
Y N Was the change or correction to one and only one component?

(Must match Effect in Section A.)

Y N Commission error (i.e., something incorrect was included)

Y N

Characteristics

Y N

Omission error (i.e., something was left out)

Y N

Commission error
(i.e., something incorrect was included)

Y N

Transcription (clerical) error

For Librarian’s Use Only

Number:
Date:
Entered by:
Checked by:

Class of Error
(check most applicable*)

Initialization

Logic/control structure (e.g., flow of control incorrect)

Interface (internal) (module-to-module communication)

Interface (external) (module-to-external communication)

Data value or structure (e.g., wrong variable used)

Computational (e.g., error in math expression)

*If two are equally applicable, check the one higher on the list.

Figure 5: Defect/Change Data Collection Form
November 1991
16 CMU/SEI-94-TR-22

As the developers/maintainers complete the forms, they submit them to the database support
personnel who assure the quality of the information by checking the forms and data for con-
sistency and completeness. When data are missing (e.g., if an expected form is not submit-
ted), the developer is informed of the discrepancy and is expected to provide or correct the
data. Database support staff then enter the data in a central database and perform a second
quality assurance step by checking for data entry errors by comparing the database informa-
tion against the original paper forms.

In addition to the forms that are completed by the developers and managers, several tools are
used to gather automatically information such as source code characteristics (e.g., size,
amount of reuse, complexity, module characteristics) or changes and growth of source code
during development. Database support personnel execute the tools to gather these additional
measures, which are then entered in the SEL database.

Additionally, subjective measures are recorded on the development process. These data are
obtained by talking with project managers and by observing development activities. Data such
as problem complexity, adherence to standards, team experience, stability, and maturity of
support environment are captured at the termination of each project. (See [Bassman 94] for
details on these measures.)

Figure 6 depicts the life-cycle phases during which the core SEL measures are collected. Each
project provides these data and may provide additional measures required for the specific ex-
periment in which it is participating.

4.3 Analyzing Data
The analysts use these data together with information such as trend data, previous lessons
learned, and subjective input from developers and managers, to analyze the impact of a spe-
cific software process and to build models, relations, and rules for the corporate memory. As
specific processes are studied (such as inspections, Cleanroom), the analysts, joined by will-
ing participants from the development organization, complete analysis reports on the study
and may even prepare a paper or report for publication in the open literature. Development
team participation is strictly voluntary in this step, as the analysts are ultimately responsible
for producing the report.

As the project information becomes available, the analysts use it not only to assess particular
processes, but also to build models of the process and product so that the experiences of each
development effort can be captured and applied to other projects where appropriate. Data are
used to build predictive models representing cost, reliability, code growth, test characteristics,
changes, and other characteristics. The analysts also look at trends and processes applied to
determine whether or not any insight can be gained from data describing particular methodol-
ogies used during development or maintenance.
CMU/SEI-94-TR-22 17

One of the most important facts that the SEL has learned from its experience with analysis of
software data is that the actual measurement data represent only one small element of exper-
imental software engineering. Too often, data can be misinterpreted, used out of context, or
weighted too heavily even when the quality of the information may be suspect. Having learned
from its extensive data analysis experience over the years, the SEL now follows these key
rules:

• Software measures will be flawed, inconsistent, and incomplete; the analysis must
take this into account. Do not place unfounded confidence in raw measurement
data.

Even with the extensive quality-assurance process and the rigor of the software
measurement collection process in the SEL, the uncertainty of the data is still quite
high. An analyst must consider subjective measures, qualitative analysis, definition
of the context, and an explanation of the goals. If one merely executes a high
number of correlation analysis studies on a high number of parameters, chances are
that some (possibly very questionable) statistic will appear. Extreme caution must be
applied when using software measurement data, especially when the analyst is not
intimately familiar with the environment, context, and goals of the studies.

S
am

pl
e

da
ta

 p
ha

se
s

Process
• methods
• tools
• (etc.)

Product
• size
• cost
• (etc.)

Dynamics
(growth, changes, ...)

Errors/changes
(unit test to delivery) Maintenance errors

Project estimates
(size, cost, dates, reuse)

Development effort
(tracked by time and by activity) Maintenance effort

▲
Functional

requirements
received

Requirements
Analysis Design Code Test Acceptance

▲
Begin

maintenance
and operation

Maintenance

Figure 6: SEL Core Measures
18 CMU/SEI-94-TR-22

• Measurement activity mst not be the dominant element of software process
improvement; analysis is the goal.

When the SEL began to study software process, the overhead of the data collection
process dominated the total expenditures for experimental activities. As the SEL
matured, it found that the successful analysis of experiments should consume
approximately three times the amount of effort that data collection activities require.
This ratio was attained through a gradual cutback in data collection to where the only
information requested (beyond the core measures) was that which could be clearly
defined as relevant to the goals of a particular experiment.

• Measurement information must be treated within a particular context; an analyst
cannot compare data where the context is inconsistent or unknown.

Each set of measurement data that is archived in the SEL database represents a
specific project, with unique characteristics and unique experimental goals. These
goals may have significantly influenced the process used, the management
approach, and even the general characteristics of the project itself. Without
knowledge of the context in which the data were generated and the overall project
goals as well as process goals, significant misinterpretations of the data can result.

4.4 Improving Process
Measurement activities represent a relatively small element of the overall process improve-
ment task. Results of analysis of experimental data must be judiciously applied toward opti-
mizing the software development and maintenance process. The experimental software
engineering results are captured both in studies as well as in refined processes available to
the production personnel. The SEL packages its analysis results in the form of updated stan-
dards, policies, training, and tools. This packaging facilitates the adoption of revisions to the
standard processes on ongoing and future software projects.

The SEL conducts three general types of analysis, all of which are active continually in the en-
vironment. They include

• Pilot studies of specific techniques and technologies on a project or set of
projects [e.g., Cleanroom impact on design, impact of object-oriented design
(OOD) on code reuse, impact of inspection on coding errors].

• Studies of completed projects for development and refinement of local
process and product models (e.g., cost models, error characteristics, reuse
models).

• Trend analysis of completed projects to track the impact of specific process
changes on the environment as a whole (e.g., tailored Cleanroom, OOD,
software standards).
CMU/SEI-94-TR-22 19

All of the analyses are dependent on the project measures and all require a thorough under-
standing of context, environment, goals, problem complexity, and project characteristics to be
able to derive results that can be fed into the overall process improvement program.

A study of a specific process or technique is usually termed a “pilot study.” Although these
studies often occur in the university environment, they are also conducted on production
projects where some risk can be tolerated. These projects are testing new and unfamiliar tech-
niques to determine their value in the production environment and to determine whether more
extensive studies would be beneficial. On pilot projects, the analyst typically analyzes each
phase of the project in detail and reports back to the development team the intermediate re-
sults as the project progresses toward completion. In general, the SEL conducts no more than
two pilot studies at any one time because the amount of analysis and reporting is so extensive.
These studies normally yield multiple reports and papers that look at every aspect of the im-
pact of the new technology, make recommendations for tailoring, and project the value of the
enhanced process in an expanded application.

The second class of study involves multiple projects, where the goal is to expand and update
the understanding of process and product attributes. Cost models are enhanced, error at-
tributes are studied, and relations between process and product characteristics are analyzed
for classes of projects. These studies normally do not use data from projects under develop-
ment, but focus on completed projects. This type of analysis requires not only the archived
measurement data, but also a detailed knowledge of each project’s context (including goals,
processes used, problem complexity, size, and other product attributes). Trends in software
quality, productivity, as well as profiles of the software product are produced so that specific
needs and potential process enhancements can be identified.

Trend analysis also looks at multiple completed projects. The goal of these studies is to deter-
mine the appropriate application of evolving technology and methods within the environment
as a whole, or at least for a specific class of projects. After pilot projects have been completed
and appropriate tailoring or enhancement of process changes have been made, additional
projects apply the tailored process. The additional application of the methods may involve only
a single element of the originally defined process. For instance, although the Cleanroom meth-
odology includes specific techniques for design, testing, management, implementation, and
the inspection process, it may turn out that only the testing and implementation techniques are
appropriate for further application. Once it is determined which process changes are appropri-
ate for a broader class of projects (or possibly the entire development environment), these el-
ements of the process are incorporated into the software standards and policies. Additionally,
the training program may be updated to reflect the refined process. (See the discussion of
packaging in Chapter 5 for a detailed description of the SEL training program.)
20 CMU/SEI-94-TR-22

5 SEL Experiences: Understanding, Assessing, and
Packaging

The SEL paradigm has been applied on approximately 120 production projects in the FDD.
Each project has provided detailed measurement data for the purpose of providing more in-
sight into the software process, so that the impact of various software technologies could be
empirically assessed. Projects have ranged in size from 10 KSLOC to 1.5 million SLOC, with
the majority falling in the 100–250 KSLOC range. Appendix B lists the general characteristics
of the projects that have been studied in the SEL to date. All of the information extracted from
these development and maintenance projects is stored in the SEL database and used by the
analysts who study the projects and produce reports, updated standards, policies, and training
materials.

During the understanding phase of the SEL paradigm, the goal is to produce a baseline of de-
velopment practices and product attributes against which change can be measured as pro-
cess modifications are applied. Additionally, the understanding process generates the models
and relations used to plan and manage the development and maintenance tasks. The goal of
the assessing or experimental phase is to determine the impact of specific process changes
on the overall goals of the organization. In the packaging phase of the paradigm, those prac-
tices that have proven measurably beneficial are incorporated into the organization’s stan-
dards, policies, and training programs.

5.1 Understanding
Probably the most critical element of the SEL’s process improvement program is the under-
standing step—where the only goal is to gain insight into the local software business. This first
step cannot provide the justification for claiming that one process is better than another, but
instead yields a baseline of the characteristics of the software, including both process and
products, upon which change and meaningful comparison can be based.

Although the initial plan was to begin experimenting with various techniques, the SEL soon
learned that without a firm, well-understood baseline of both process and product character-
istics, valid experimentation was impossible. In order to build this understanding, information
gathered from the first 5–10 projects was primarily used to generate models, relations, and
characteristics of the environment. These models and their understanding proved to be a sig-
nificant asset to the management, planning, and decision making needed for effective soft-
ware development.

The understanding process, begun with those first 5–10 projects, continues today on all
projects. The various models are continually updated as the process is better understood, and
as new technologies and methods change the way the SEL views software development. Fig-
CMU/SEI-94-TR-22 21

ure 7 lists 11 projects active between 1985 and 1990 that were included in the early SEL base-
line.

By examining the effort data of these projects, the SEL built its baseline of software cost ex-
penditures by phase and by activity. This is some of the most basic, yet often overlooked, in-
formation for software environments. By looking at a series of projects, a simple model of effort
distribution can be built to depict the cost of design, code, test, and other activities. Such data
are accumulated weekly from all developers, managers, and technical support using a data
collection form. The form captures effort expended on software design, testing, coding, and
the amount of time spent on code reading vs. code writing. (See Figure 4 for a sample effort
data collection form.)

Figure 8 illustrates distribution for the effort data based on the projects in this baseline. These
data represent 11 projects over 5 years, consuming a total of approximately 65 staff-years of
effort. The data show that approximately 1/4 of the cost of producing the software is spent on
activities other than designing, coding, or testing. This “other” activity includes meetings,
travel, reviews, training, etc. The SEL has found that the value for “other” activities has
remained almost constant for the entire time the SEL has been closely monitoring projects; in
fact, it has increased slightly over time instead of decreasing as SEL staff first expected that it
would. This time represents an important component for project budgets, one that is often
overlooked by managers who lack a thorough understanding of their baseline process. One

Project Start Date End Date

GROSIM 8/85 8/87

COBSIM 1/86 5/87

GRODY 9/85 7/88

COBEAGSS 6/86 7/88

GROAGSS 8/85 4/89

GOESIM 9/87 7/89

GOFOR 6/87 9/89

GOESAGSS 8/87 11/89

UARSTELS 2/88 12/89

GOADA 6/87 4/90

UARSAGSS 11/87 9/90

Figure 7: SEL Baseline (1985-1990)
22 CMU/SEI-94-TR-22

surprising observation has been that the basic characteristics of this environment do not
radically change from year to year even with continuous modifications being made to the
underlying processes. The profile of the software environment changes very slowly. In Figure
8, the data are represented in two ways:

• One representation is effort by phase, where the total hours reported each
week are attributed to the phase that the project is currently executing: i.e.,
designing from start through review and acceptance of design, coding from
start through beginning of system testing, and testing from the start through
system delivery. These data require only that the phase dates be known and
that the total hours worked each week be reported by the development
staff.

• The second representation is effort by activity, where weekly information is
broken down to the particular activity that the programmers were performing
during that week. For example, they may report design hours even though
the project was well into the coding phase. This modeling of the data provides
a more accurate view of project interactions, as compared to the model that
relies on (somewhat arbitrary) phase dates often set before project initiation.

Effort Distribution by Life-Cycle Phase

Sys Test 20%

Acc Test 15%

Req Analysis 12%

Preliminary Design 8%

Detailed Design 15%
Implementation 30%

Effort Distribution by Activity

Other 26%Design 23%

Code* 21%

Test 30%

* code writing: 85%

code reading:15%

Figure 8: Effort Distribution by Phase and Activity
CMU/SEI-94-TR-22 23

Along with cost and schedule, reliability and correctness of the resulting code are considered
attributes of interest to management. These attributes also contribute to the expanding
understanding of the software process and product in the environment. The SEL captures
these attributes by collecting defect data. The SEL defined its own classes of errors to ensure
internal consistency in the data. Types of errors include

• Computational errors—improper calculations within the source program,
such as writing the wrong form of an expression.

• Interface errors—include both internal and external errors and represent
invalid information (e.g., wrong data) being passed between modules, such
as in a subroutine call.

• Logic/control errors—errors in flow control in a program, such as incorrect
branches as the result of evaluating an if-statement expression.

• Initialization errors—improper settings of the initial value of variables.

• Data errors—wrong variable used in a calculation.

The SEL continually collects error data (starting when unit test is completed and continuing
through delivery of the software and during maintenance) so that it is possible to continually
understand the numbers and types of errors occurring in the software. This information is as
important as the effort data. Together, they constitute two of the most critical core measures
that the SEL has found. On maintenance projects, defect data are collected on a modified form
which the SEL developed in 1990 when the organization became responsible for software
maintenance as well as development.

Over 2000 errors were classified and studied from the projects in the 1985-1990 baseline. The
error class distribution as well as the origin of errors (i.e., during what phase/activity the defect
entered the software) are shown in Figure 9.

An earlier SEL study of errors provides an example of how models of software characteristics
can be developed. By tracking five projects of similar complexity and size, the uncovered er-
rors showed a decreasing step function for their rate of detection during sequential phases of
the projects. From these data and trends, the SEL developed an internal model of expected
error occurrence and detection rates for its class of software (see Figure 10). More recent
studies show that the step function is still present, although the error rates have decreased
significantly.
24 CMU/SEI-94-TR-22

E
rr

or
s/

K
S

LO
C

6
▲

5
▲

▲
4

▲

▲
▲

3

2
▲

▲

▲
▲ ▲

▲ ▲
1

▲
▲

▲ ▲ ▲

0
▲ ▲

Code/Test System Test
Acceptance

Test
Operations

*
 Based on five similar projects in SEL

Figure 10: Error Detection Rate Model

Classes of Errors*

Computational 15%

Initialization 16%

Logic/Control 20%

Interface 22%
Data 27%

Origin of Errors*

Previous change 10%

Requirements 20%

Design 30%

Code 40%

* Data from approximately 11 projects over 5 years (over 4000 errors sampled)

Figure 9: SEL Error Characteristics
CMU/SEI-94-TR-22 25

In addition to effort and defect data, other parameters are useful for developing a total under-
standing of the local environment. By counting defects found during the development of the
software, then counting defects found during the operation and maintenance phases, the SEL
developed a general understanding of the overall reliability of the software. Models of charac-
teristics such as defects, change rate, effort distribution, and documentation size all provide
useful information toward the development of improved models of software. This leads toward
the capability of engineering the software process with well-understood relations, models, and
rules. Using a sampling of projects developed during the early years of the SEL (late 1970s to
mid-1980s), a set of models and relations was produced which was used as the baseline for
planning, managing, and observing change over time (see Figure 11). One of the more sur-
prising observations was that, after years of operation, the models changed very slowly—even
with the significant technology and process changes introduced over time. Figure 12 describes
the characteristics of another set of software projects active during the latter part of the 1980s.
The differences between this and the earlier models/relations are surprisingly small, but there
is change.

Of all the models and relations that the SEL has developed during the understanding phase,
the most useful for project planning and management and for observing change have been

• Effort distribution (cost characteristics).

• Error characteristics (numbers, types, origins).

• Change and growth rates (of the source code during development).

Productivity Code rate = 26 lines per day

Effort Distribution

Pages of Documentation Doc = 34.7 (KSLOC.93)

Maintenance Cost ~12% development cost per year

Reuse Cost

Figure 11: Initial SEL Models/Relations

Date Activity
Design = 26% 23%
Code = 38% 21%
Test = 36% 30%
Other = — 26%

FORTRAN = 20% of new
Ada = 30% of new
26 CMU/SEI-94-TR-22

The first two of these have been described in some detail in this section. These very basic
pieces of information are being collected continually; they are used to observe change and im-
provement and to assess process impact.

5.2 Assessing
After establishing a baseline of process, product, and environment characteristics and deter-
mining organizational goals, the next step in applying the SEL paradigm is to assess the value
of any process change. In the SEL, these assessments are called “experiments,” and each
project that is developed in the production environment is viewed as an experiment. Some of
the studies are meant only to establish models of process or product, while other experiments
are designed to evaluate the impact that a significant process change may have on the local
software business—both process and product. Some of the experiments do not make overt
changes to the established development process in the SEL, but are monitored mainly to es-
tablish the baseline understanding of the process. Additionally, some technologies require
multiple projects to be completed before the impact of the change can be fully understood and
before recommendations can be made for tailoring the process for local use.

It is perhaps useful to comment here on the relationship between the SEL paradigm and the
CMM. Others have contrasted the two as alternative approaches to solving the same prob-
lem—process improvement. However, the SEL’s understanding/assessing/packaging model
and the CMM are quite distinct. The SEL uses a specific process model to drive the organiza-
tion. Via this model, decisions are made as to how to manage a software development project.
Other development models certainly exist, such as a straightforward “waterfall” or MIL-STD-
2167A. On the other hand, the CMM is an assessment model, and can be used to assess the
process improvement of the SEL as well as other organizational structures. Thus the two con-
cepts are actually complementary and can be used separately or jointly in any organization.

Component Type Size (SLOC) % Reused
Each Mission

Development
Duration
(months)

Effort per
Mission

 (staff-years)

Attitude (e.g., determination,
control, calibration, simulation)

Mission-unique 250,000 25 27 40

Orbit/tracking data processing Mission-general 800,000 95 12-18 2

Mission design/analysis Mission-general 200,000 85 12-18 5

Orbit maneuver support Mission-general 100,000 60 12-18 5

Figure 12: More Recent SEL Software Characteristics (late 1980s)
CMU/SEI-94-TR-22 27

The structure of the SEL, as a partnership of GSFC, CSC, and the University of Maryland, has
permitted a wide variety of experiments to be conducted, maximizing the skills and resources
of each of the contributing organizations. Experiments have ranged across numerous technol-
ogies, from minor process change (e.g., adding code-reading techniques to measure resulting
error rates) to major process change (e.g., object-oriented design, Cleanroom, Ada). Through
the experimentation process, the SEL has gained broad insight into the impacts of these tech-
nologies and processes and has reported extensively on its findings. Some representative
studies are discussed in the paragraphs to follow. They include assessments of

• Design approaches
• Testing techniques
• Cleanroom methodology
• Ada/OOD
• Independent verification and validation (IV&V)

5.2.1 Studies of Design Approaches

Some studies require only an understanding of the current development environment. These
are low-impact studies that can be undertaken with little risk to projects under development.
The following design study is one such experiment.

In 1985, several experiments were conducted to determine the value of various design char-
acteristics on the quality of the end product. This particular study used available information
already being captured from development projects; there was no need to retrain the develop-
ment personnel in particular design techniques. The goal was to determine if the “strength and
coupling” criteria described by Constantine and Meyers [Stephens 74] could be used as a pre-
dictive metric to determine the reliability of software.

A set of 453 software modules was selected from 9 completed projects for which detailed mea-
surement information existed. The measures included design characteristics, number of de-
fects found in the modules, and module size. This study was described in detail in a paper
presented at the 1985 International Conference on Software Engineering [Card 85].

Strength was measured by the number of functions performed by an individual module, as de-
termined by the authoring programmer. The 453 modules were classified in the following way:

• 90 modules were of low strength and averaged 77 executable statements.

• 176 modules were of medium strength and averaged 60 executable statements.

• 187 modules were of high strength and averaged 48 executable statements.

As a control, module size was also used. Small modules had up to 31 executable statements;
medium-sized modules had up to 64 executable statements; and large modules had more
than 64 executable statements. Error rates were classified as low (0 errors/KLOC), medium
(<3 errors/KLOC), and high (> 3 errors/KLOC).
28 CMU/SEI-94-TR-22

In analyzing error rates for these modules, strength proved an important criterion for determin-
ing error rates (see Figure 13) and proved more effective than simply using size as a predictor
for defects. For example, 44 percent of the low-strength modules had high error rates; for high-
strength modules, error rates ranged from 44 percent to only 20 percent. On the other hand,
using size as a predictor of error, 27 percent of large modules were error prone while 36 per-
cent of small modules were error prone, indicating that high strength was a good indicator of
fewer defects.

Using all of the data available for the study, the SEL’s baseline understanding for strength be-
came:

• Good programmers tend to write high-strength modules.

• Good programmers tend not to show any preference for particular module size.

• Overall, high-strength modules have a lower fault rate and cost less than low-
strength modules.

• Fault rate is not directly related to module size.

High-Strength Modules

Zero 50%

High 20%

Medium 30%

Medium-Strength Modules

Zero 36%

Medium 29%

High 35%

Low-Strength Modules

Zero 18%

Medium 38%

High 44%

Figure 13: Fault Rate for Classes of Module Strength

Error rates

medium ≤ 3 errors/KLOC
CMU/SEI-94-TR-22 29

5.2.2 Studies of Testing

Some studies are best carried out in small controlled environments. Using the university
environment as an initial testing laboratory is useful for these studies. After validating the
results in the university environment, the concept can be applied in an operational setting. The
following testing experiment is an example of that approach.

Reliability of the software produced is of continuing concern to the SEL. The goal of one study
was to evaluate several testing techniques in order to determine their effectiveness in discov-
ering errors. The techniques evaluated in this experiment were

• Code-reading of the source program by programmers other than the authors.

• Functional (i.e., black box) testing of the source program to the specifications
(i.e., in-out behavior) of the program.

• Structural (i.e., white box) testing by developing test cases that execute
specific statement sequences in the program.

Initially, a study was performed at the University of Maryland using 42 advanced software en-
gineering students. Based upon positive results of this initial study, 32 programmers from
NASA and CSC were recruited. All knew all 3 techniques, but were most familiar with the func-
tional testing approach generally used at NASA. Three FORTRAN programs were chosen
(ranging from 48 to 144 executable statements containing a total of 28 faults). All 32 program-
mers evaluated the 3 programs using a different testing technique on each program.

The main results of this study can be summarized as follows:

• Code reading was more effective at discovering errors than was functional
testing, and functional testing was more effective than structural testing (see
Figure 14).

• Code reading was more cost effective than either functional testing or
structural testing in number of errors found per unit of time (see Figure 15).
Structural testing and functional testing had about the same costs.

Number of Faults Detected

5.1 4.5

3.3

Reading Functional Structural

Code reading uncovered more errors than other methods; functional testing uncovered more errors than structural testing (α < .005).

While different quantities of faults were detected in each program, the percentage of faults detected/program was the same.

Advanced students uncovered more faults than other students (α < .005); intermediate students uncovered the same amount of faults as junior students.

Percent faults detected correlates with percent felt by tester to have been uncovered. R = .57 (α < .001).

Figure 14: Fault Detection Rate by Testing Method
30 CMU/SEI-94-TR-22

The study also produced some interesting results concerning programmer expertise and the
discovery of faults. Space does not permit a full explanation here (see [Basili 87] for further
details), but the results can be summarized as follows:

• The FORTRAN program built around abstract data types had the highest
error discovery rate. This was an early indicator of the value of OOD.

• More experienced programmers found a greater percentage of the faults
than less experienced programmers.

• Code reading and functional testing found more omission and control faults
than structural testing. Code reading found more interface faults than the
other two techniques.

This study, besides providing an assessment of the value of each of the testing techniques,
adds to our understanding of the underlying baseline technology for later experiments.

5.2.3 Studies with Cleanroom

The following study of Cleanroom software development is an example of the use of pilot
studies of new processes that pose great risks to the development organization. In this case,
the method was studied for several years at the University of Maryland before being testing in
the SEL operational environment.

Reliability and defect rates have always been important components of understanding the en-
vironment. The Cleanroom technique, developed by Harlan Mills of IBM, proposed to radically
alter how programs are developed in order to affect these rates. The SEL looked at Cleanroom
as another process that might significantly improve their development process.

Cost-Effectiveness (number of faults detected/effort)

3.3

1.8 1.8

Reading Functional Structural

Code reading was more cost-effective than other methods [(α < .005), est +1.5(.4)].

There was a different overall detection rate for one program.

Techniques did not vary in total detection time.

Figure 15: Cost of Fault Detection by Testing Method
CMU/SEI-94-TR-22 31

The idea behind Cleanroom is relatively simple. After a programmer implements a function,
the programmer must verify that the function meets its specification, rather than relying on unit
testing to show that it apparently works. Cleanroom, then, has the following attributes:

• Coding takes longer than traditional development because the verification step must
be added. Programmers must truly understand their programs in order to verify the
functions.

• Understanding and verifying functions results in significantly fewer errors, which
results in much less system test—an expensive part of development.

• Overall result is lower cost and improved reliability.

Since 1988, several projects have been developed in the SEL using the Cleanroom method-
ology. To prepare developers for using the Cleanroom technique, a series of training courses
were given. A pilot project was undertaken which proved to be very successful. Time to under-
stand the method (from training until the start of the second Cleanroom project) was approxi-
mately 26 months. Two follow-on Cleanroom projects were undertaken. A smaller in-house
development was very successful, but a larger contracted project was not so successful. It
was not clear whether problems on the larger project were due to scaling up of Cleanroom to
larger tasks or to a lack of training and motivation of the development team on this project.
Because of the differences that Cleanroom imposes on the development process, a fourth
Cleanroom project is now underway for evaluation before declaring the technique “operation-
al.”

Compared to the SEL baseline process, it was clear that the Cleanroom development process
was different (Figure 16). Design time and code reading grew significantly, while code writing
and testing times all dropped. Defect rates improved (Figure 17) although productivity re-
mained about the same using this new technology. The results of these studies are reported
in more detail in [Basili 94].
32 CMU/SEI-94-TR-22

Typical SEL Effort Distribution

Other 26%Design 23%

Code* 21%

Test 30%

SEL Cleanroom Effort Distribution

Other 22%Design 33%

Code* 18% Test 27%

* code writing: 85%
code reading: 15%

* code writing: 48%
code reading: 52%

• Increased design effort with Cleanroom• Code writing/code reading breakdown:

SEL Baseline SEL Cleanroom
writing 85% 48%
reading 15% 52%

Figure 16: Results of Cleanroom Experiment

Figure 17: Assessing Cleanroom Against Goals and Expectations

7

6

4.3

3.1

Errors (per KDLOC*)

40

28

26

20

Productivity (DLOC* per day)

SEL Baseline

1st Cleanroom

2nd Cleanroom

3rd Cleanroom

* DLOC: developed lines of code
CMU/SEI-94-TR-22 33

5.2.4 Studies with Ada and OOD

Some studies impose a great risk on the development organization. In such cases,
experiments must be carefully controlled. The SEL evaluation of Ada was one such study. This
experiment also shows the difficulty of trying to isolate single processes for evaluation.

FORTRAN had always been the preferred programming language within NASA, but during the
mid-1980s there was considerable interest in whether Ada should become their “language of
choice.” The SEL had a baseline understanding of the FORTRAN development environment,
but needed to develop a corresponding baseline for Ada. A controlled experiment was de-
signed where the same onboard computer simulator would be developed in both Ada and
FORTRAN in order to compare the two languages.

In 1984, the GROSS project developed the operational FORTRAN simulator while a few
months later an independent group, after first undergoing an intensive training program in the
use of the language, developed the same simulator (GRODY) using Ada.

The major result from this initial study was an improved understanding of the requirements
used to specify NASA software. As the Ada simulator was being designed, it soon became
apparent that the requirements document typically used in flight dynamics applications con-
tained many functional design decisions inherent with an assumed use of FORTRAN. Based
upon this finding, requirements for the simulator were respecified using an object-oriented ap-
proach indicating the use of OOD technology, data abstraction, and information hiding. Be-
cause of this redesign of the requirements, the SEL study encompassed both the applicability
of Ada in the FDD and the use of OOD techniques.

The GROSS-GRODY experiment was considered successful enough to try to use Ada on an
actual mission, so several additional Ada projects were developed between 1987 and 1990
(see Figure 18). As the SEL learned about Ada, the characteristics of Ada programs began to
change: packages became smaller; use of generics rose; use of tasking dropped; and there
was a greater use of the Ada typing mechanism as the programming staff became more fa-
miliar with the features of the language (Figure 19).
34 CMU/SEI-94-TR-22

• One parallel study completed
• 15 Ada production projects
• All projects provide full SEL

data
• Numerous studies completed

SWASXTLS 65K

GSSR1 150K

TOMSTELS 55K

SOHOTELS 68K

FASTELS 66K

SMEXTELS 61K

POWITS 68K

UARSTELS 68K

FDAS 68K

6 months training
in OOD/Ada GOADA 170K

GENSIM 100K

GRODY 128K

GROSS (FORTRAN) 52K Parallel development – Ada and FORTRAN

1984 1986 1988 1990 1992 1994 1995

Active development effort

Figure 18: SEL Ada/Object-Oriented Technology (OOT) Projects
CMU/SEI-94-TR-22 35

From these initial Ada studies, the SEL developed a model of Ada software development as
compared to the traditional FORTRAN baseline:

• First-time use of Ada resulted in a 30 percent increase in costs.

• In general, line-by-line, Ada code is more expensive than FORTRAN code.

• Reuse of Ada source code is higher than for FORTRAN, resulting in a
decrease in program costs for Ada software.

• Error rates were similar to error rates in FORTRAN.

 Generics

G
en

er
ic

 P
ac

k
C

ou
nt

 p
er

P
ac

k
B

od
y

C
ou

nt
80%

60%

40%

20%

0%
85/86 87/88 88/89 90/93

 Strong Type

T
ot

al
 T

yp
es

 p
er

S
ta

te
m

en
t

.06

.04

.02

0.0

85/86 87/88 88/89 90/93

 Package Size

K
S

LO
C

 p
er

P
ac

ka
ge

2.5

2

1.5

1

0.5

0
85/86 87/88 88/89 90/93

 Tasking

T
ot

al
 T

as
ks

 p
er

S
ys

te
m

10

8

6

4

2

0
85/86 87/88 88/89 90/93

Figure 19: Maturing Use of Ada
36 CMU/SEI-94-TR-22

Some of the attributes in Figure 18 are not unique to the Ada language but, rather, represent
general OOD features. Given that, the knowledge obtained from these studies was packaged
as the General Object-Oriented Software Development [Seidewitz 86] for application on mul-
tiple projects in the environment. The result has been that FORTRAN programs, too, have
greatly improved in their use of object-oriented techniques and in the reuse of components
from system to system. Figure 20 shows the shortened schedules that have resulted from in-
creases in reuse as object-oriented technology is increasingly employed on flight dynamics
software. FORTRAN has continued to remain a competitive alternative to Ada as the technol-
ogy has evolved.

5.2.5 Studies with IV&V

Some process changes may not be appropriate for certain development organizations. The
needs and goals must match the process. The following evaluation of IV&V was one such study.

A study conducted in the mid-1980s is representative of the more formal experimentation pro-
cess that the SEL typically uses. Much literature had been published indicating the value of
using IV&V during the development of large software systems, so the SEL considered adopt-
ing the methodology within the FDD production environment. However, before decisions were

D
el

iv
er

y
tim

e
(m

on
th

s)

ADA FORTRAN

30

28
25

21
20

1615

13
10

5

0

EARLY
(3 projects
1986-1990)

RECENT
(3 projects
1991-1994)

EARLY
(4 projects
1985-1990)

RECENT
(3 projects
1991-1994)

Figure 20: Reuse Shortened Project Duration
CMU/SEI-94-TR-22 37

made as to whether or not IV&V should become part of the standard process, several exper-
iments were conducted to assess the cost, benefits, and compatibility of the technology for the
SEL class of systems.

Two experiments were designed to test IV&V on two major software development efforts.
(These studies are described in detail in [Page 84].) The goal of using the technology was to
drive software error rates down, while maintaining a relatively cost-effective development pro-
cess. Each project was approximately 65 KSLOC and was typical of previous SEL tasks. The
IV&V tasks had 3 full-time programmers and each project took approximately 16 months from
design through acceptance. The initial expectations for these projects were

• Increases in discovery of defects and quality of the operational software.

• Decreases in design flaws, costs of correcting errors, and system test effort.

• No changes in total defects reported.

The requirements on the IV&V team were

• Verify the requirements and design of the implemented system.

• Perform separate system testing. Validate consistency of the system to its
requirements.

• Do not debug the programs, but report all anomalies.

The results of the IV&V study are shown in Figure 21 and are summarized below:

• Productivity dropped due to the increased costs of performing the IV&V
function.

• Errors found before system test were generally higher than the SEL average,
but not excessively so.

• IV&V did not significantly affect the overall error rate of SEL software.

• IV&V errors cost about the same to fix as errors in previous SEL projects.

While IV&V has been proposed in environments where it is critical to achieve a high degree of
reliability, that situation was not apparent in the SEL environment. For the class of software
that the SEL develops, IV&V was not deemed to be effective in improving either the reliability
or overall cost of developing flight dynamics software.
38 CMU/SEI-94-TR-22

5.2.6 Additional Studies
In addition to the studies described, the SEL has experimented with numerous other
technologies including testing coverage, code-reading techniques, computer-aided software
engineering (CASE) technology, structured techniques, documentation approaches, defect

3

S
ta

ff
m

on
th

s/
K

S
LO

C

IV & V

2.6

MAX

2 AVG 2

1.6

MIN

1.2

1

0 Cost increased

4

E
rr

or
s/

K
S

LO
C

MAX
1.3

3

IV&V
2.3

2

AVG
1.4

1

MIN
0

Reliability did not improve

E
rr

or
s

fo
un

d
be

fo
re

 s
ys

te
m

 te
st

in
g

(%
)

78

MAX
76.376

IV&V
74.574

72

70
AVG
68.468

66

64
MIN
62.7

62

More errors were found early

1.2

R
el

at
iv

e
co

st
 to

 c
or

re
ct

 e
rr

or
s

MAX
AVG 1.1 IV&V

1 1.02

0.9

MIN
0.6 .068

0.3

0.0

Error correction cost did not differ

Figure 21: A Look at IV&V Methodology

• If errors found are multiplied by a latency factor, IV&V seems more effective.

• If all measures are examined, IV&V may not be appropriate in the environment.

Before IV&V

With IV&V
CMU/SEI-94-TR-22 39

causal analysis, reuse approaches, and functional testing vs. structural testing, as well as
many variations of these methodologies. For a complete list of SEL reports and publications
see the Annotated Bibliography of SEL Literature [Morusiewicz 93].

Probably the most important lesson that has been derived from the studies is that specific
techniques can help the overall goals of process improvement when appropriately selected
and tailored. However, the most effective element of the improvement paradigm is the contin-
uous analysis of the software business and the continuous expansion of the understanding of
the software process and product.

5.3 Packaging
As the experiments provide additional insight into the most appropriate techniques, tools, and
processes, results are identified and captured in the form of policies, standards, tools, and
training for the development organization. The results of the understanding and analysis phas-
es are captured and packaged for “reuse” by ensuing projects, so that they become part of the
routine software business.

For each of the studies conducted, the SEL analysts generate reports of results and conclu-
sions. The reports may be papers for professional conferences, internal reports, or technical
reports. Although the reports are valuable, the full value of the process analysis is felt when
modifications and enhancements are made to the instruments that actually guide the way the
development/maintenance organization carries out its business. These include standards,
policies, and training classes. The SEL development organization uses a standard set of pol-
icies that is updated on a periodic basis to reflect new experimentation results. For instance,
the Manager’s Handbook for Software Development [Landis 90] reflects the process that the
managers use on the flight dynamics systems. This handbook contains the models, guide-
lines, and acceptable processes expected to be applied on each of the development efforts.
It is periodically modified to reflect the completed studies of production projects. A full set of
standards represents the changing process for this environment [Landis 92].

An important packaging concept is the infusion of technology in the form of support tools for
use by project personnel. The SEL developed a project management tool called the Software
Management Environment (SME). SME provides project managers access to the SEL data-
base of previous project data and access to the baseline set of SEL process models. Using
the SME, a manager can, for example, compare the growth rate of source programs or the
growth rate of errors, or, using data from similar projects in the database, the manager can
predict future activities on the current project. (For more details on the SME, see [Hendrick
92].) Tools such as SME help institutionalize the packaging of the SEL process, because they
do not require operational personnel to know all of the details of each model in order to use
them to gain insight into their software projects.
40 CMU/SEI-94-TR-22

SEL experiences have been packaged in a variety of formats. Figure 22 summarizes some of
the recent SEL processes that have been understood, assessed, and then packaged.

As part of the packaging process, the SEL has developed a standard set of training courses
that is designed to provide all of the developers, managers, analysts, and database support
staff with the information needed to function effectively in the FDD environment. Courses cov-
er the SEL software process improvement concepts, software development methodology,
software management approaches, standards, and organizational guidelines. This core set of
courses reflects the experimental results, the process improvement approach, and, in general,
all of the experiences of the SEL. These core courses are continually updated to reflect new
and changing experiments within the SEL.

In addition to the core courses, the SEL staff provides training in any technology, methodolo-
gy, or process that is planned as part of a SEL study when the technology or process is unfa-
miliar to the development teams. For instance, extensive training was provided in Ada and
OOT before any attempt was made to apply these technologies on development projects. Oth-
er training has included Cleanroom, inspections, and CASE. If the SEL staff does not possess

Assessed Processes Sample Study Results SEL Process

Testing/Reading
Technologies

• Selby, Basili (85)
• Card, Selby, McGarry (85)

1. Manager’s Handbook for Software

Development

Design Process • Card, Page, McGarry (85)
• Seidewitz, Stark (87)

2. Recommended Approach to

Software Development

IV&V • Page, McGarry, Card (85) 3. Programmer’s Handbook for Flight

Dynamics Software Development
Tools Usage • Valett, Hall, McGarry (84)

Cleanroom • Kouchakdjian, Green, Basili (89)
• Green, Pajerski (91)
• Basili, Green (94)

4. Ada Style Guide

Ada • Agresti, Bailey, Brophy (87)
• McGarry, Agresti (88)
• Bailey, Waligora, Stark (94)

5. Cleanroom Process

OOT • Seidewitz, Stark (87) (91)
• Seidewitz (94)

6. General Object-Oriented

Development

CASE • McGarry (92)

Maintenance Modeling • Rombach, Ulery, Valett (92) 7. SEL Training Plan

Prototyping • Zelkowitz (87) 8. Approach to Software Cost

Estimation
Cost Estimation • Condon et al (93)

Figure 22: SEL Packaging: SEL Software Process
CMU/SEI-94-TR-22 41

the skills or knowledge to teach the courses, appropriate instructors may be recruited from
elsewhere in the organization or outside vendors may be contracted to provide the training.

All SEL staff (managers, developers/maintainers, analysts, and database support) are re-
quired to participate in the core set of training classes, while the staff from specific develop-
ment experiments attend specialized training addressing the processes under study.
42 CMU/SEI-94-TR-22

6 The SEL Impact

The SEL has invested extensive time, energy, and resources in its efforts to better understand
software process and its impact on software products. SEL studies have involved over 120
projects and perhaps as many software technologies, ranging from development and man-
agement practices (e.g., structured technologies), to automation aids (e.g., CASE and devel-
opment tools), to technologies that affect the full life cycle (e.g., Ada, OOD). The results of SEL
experiments have been captured in a large collection of reports, papers, and documents.
These publications are available to the public at no charge and are used as the foundation for
extending the studies within the SEL. See [Morusiewicz 93] for a complete list of SEL-pub-
lished and SEL-related literature.

6.1 Impact on Product
Individual studies often resulted in specific improvements on the project being studied, but
many experiments resulted in no measurable improvements or even negative impact on the
end product. The major goals of the SEL from the beginning called for significant overall im-
provement in three product measures:

• Decrease in the defect rate of delivered software.

• Decrease in the cost of software to support similar missions.

• Decrease in the average cycle time to produce mission support software.

The additional measure of predictability has also always been a goal, but this is a more sub-
jective measure and is more difficult to quantify. Detailed measures from the projects allowed
the SEL staff to observe trends in the key measures over time and to analyze specific changes
by comparing similar classes of software supporting similar classes of projects. In addition to
the information that characterizes the measures identified above, additional data collected on
all projects support more extensive comparisons of other product attributes.

To determine the general impact of the sustained efforts of the SEL as measured against its
major goals, comparisons were made between a group of projects developed between 1985
and 1989 (the early baseline) and a group of similar projects developed between 1990 and
1993 (the current baseline). Projects were grouped based on size, mission complexity, mis-
sion characteristics, language, and platform. Similar types of comparisons have been made
over longer periods of time, as well as comparisons made on smaller sets of projects in varying
classes. The goal of these analyses was to assess the return on investment derived from the
process improvement program. This was measured as improvement in the end product in the
three key measures: defects, cost, and cycle time.
CMU/SEI-94-TR-22 43

The early baseline comprises 8 projects completed between 1985 and 1989 (see Figure 23).
These projects were all ground-based attitude determination and simulation systems devel-
oped on large IBM mainframe computers ranging in size from 50-150 KSLOC. All of these
projects were considered successful in that they met mission dates and requirements within
acceptable cost, and all of these projects applied some variation on the standard software pro-
cess as part of SEL experimentation. The current SEL baseline comprises 7 projects complet-
ed between 1990-1993 (see Figure 24). The analysis focused on a comparison of defect rates,
cost, cycle time, and levels of reuse. Additionally, the reuse levels were studied carefully with
the full expectation that there would be a correlation between higher reuse and lower cost and
defect rates.

Project % Reuse Cost 1

(Staff-months)
Reliability

(Error/KDLOC)

GROAGSS 14 381 4.42

COBEAGSS 12 348 5.22

GOESAGSS 12 261 5.18

UARSAGSS 10 675 2.81

GROSIM 18 79 8.91

COBSIM 11 39 4.45

GOESIM 29 96 1.72

UARSTELS 35 80 2.96

1 Mission cost = cost of telemetry simulator + cost of attitude ground support system.

Figure 23: Early SEL Baseline (1985-1989)

Project % Reuse Cost 1

(Staff-months)
Reliability

(Error/KDLOC)

EUVEAGSS 81 155 1.22

SAMPEX 83 77 .76

WINDPOLR 18 476 n/a2

EUVETELS 96 36 .41

SAMPEXTS 95 21 .48

POWITS 69 77 2.39

TOMSTELS 97 n/a3 .23

FASTELS 92 n/a3 .69
1 Mission cost = cost of telemetry simulator + cost of attitude ground support system
2 Cleanroom project excluded because errors are counted differently.
3 Ongoing projects; final costs unavailable.

Figure 24: Current SEL Baseline (1990-1993)
44 CMU/SEI-94-TR-22

The early baseline projects had a development defect rate that ranged from a low of 1.7 errors
per KSLOC to a high of 8.9 errors per KSLOC with the average rate being 4.5 defects per
KSLOC. The current baseline projects had a defect rate ranging from a low of 0.2 to 2.4 errors
per KSLOC with the average being 1 error per KSLOC. This reliability measure showed a de-
crease in the defect rate of approximately 75 percent over the 8-year period (see Figure 25).

Software cost was also compared between the 2 baselines. The mission cost is defined as the
total cost of all the flight dynamics software required to support the flight project. An examina-
tion of the selected missions from the 2 baselines revealed that while the total lines of code
produced to support the specific missions has remained relatively close, the total mission cost
has decreased significantly. The average mission cost in the early baseline ranged from a low
of 357 staff-months to a high of 755 staff-months with an average of 490 staff-months. The
current baseline projects had costs ranging from a low of 98 staff-months to a high of 277 staff-
months with an average of 210 staff-months. Figure 26 shows the comparison of the cost data.
The significant decrease in cost can be attributed to increases in both productivity and code
reuse (Figure 27). This comparison shows that the average cost per mission has decreased
by over 50 percent over the 8-year period.

E
rr

or
s/

K
LO

C
(d

ev
el

op
ed

)

10

High = 8.9

8

6

Average = ~4.5

4

High = 2.4
2

Average =~1
Low = 1.7

Low = .2

0
Early

(1985-1989)
Current

(1990-1993)

Figure 25: Impact on SEL Products (Reliability)
CMU/SEI-94-TR-22 45

Through the experimentation and emphasis on the reuse of software in the SEL, detailed data
have been tracked that characterize the trends in the reuse of software. Although code reuse
represents only one measure of software reuse, it is one of the more measurable and more

1000

S
ta

ff-
m

on
th

s
800

High = 755
600

Average = ~490
400

Low = 357

High = 277

Average = ~210
200

Low = 98

0
Early

(1985-1989)
Current

(1990-1993)

Figure 26: Impact on SEL Products (Cost)

100

%
 R

eu
se

Ada

90

Average ~79%
80

FORTRAN

61High = 8.9
60

40

Average

20 ~20%

0
Early (1985-1989) Current (1990-1993)

Figure 27: Impact on SEL Products (Reuse)
46 CMU/SEI-94-TR-22

easily understood, so the SEL uses it to measure reuse in its environment. Code reuse is de-
fined as the total lines of application code in components (compilable units) that have been
taken in their entirety from a previously completed system or application library. Commercial
off-the-shelf products and multiple use of a module within the same system are not included
in the computations.

In addition to examining the changes over recent years by comparing projects with similar
characteristics, the long-term trends of reliability were examined for the full set of projects
where accurate error data were available. Approximately 60 flight dynamics projects had ac-
curate error data over the same phases of the life cycle. The error rate data were taken from
these projects over the full lifetime of the SEL and were fit using a simple linear regression
(shown in Figure 28). The data indicated that error rates decreased from approximately 7.5
errors per KSLOC to approximately 1 error per KSLOC—an improvement of over 75 percent.

E
rr

or
s

pe
r

K
D

LO
C

16

▲ ▲ FORTRAN

14 ■ Ada

12

▲ ▲ ▲

10 ▲

▲
▲ ▲

8
▲

▲ ▲

▲

▲

 ▲
6

▲ ▲
▲ ▲ ▲

▲ ▲

▲ ▲ ▲ ■ ■ ▲ ▲▲

4
▲ ▲

▲ ▲ ▲ ■

■

▲ ■

2
▲ ■ ▲ ▲

■

■ ■ ■

0

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994

Project Midpoint
CMU/SEI-94-TR-22 47

6.2 Impact on Process
The SEL has reviewed in detail the process changes that have been tried and adopted over the
lifetime of the improvement program. It would be satisfying to be able to point to a key technol-
ogy or methodology change and to state that it had a direct, measurable link to a specific prod-
uct improvement. However, it is difficult to isolate the impact of any one change in this
environment. But the most significant changes that have been adopted can be identified by ex-
amining the policies, training programs, and development approaches that today constitute the
SEL/FDD process. Although specific techniques or methodologies may have measurable im-
pact on a class of projects, the significant improvement to the software development process is
viewed at a higher level where the sustained, continuous incorporation of detailed techniques
into higher level processes is the more significant payoff. The most significant process attributes
that distinguish the current SEL production environment from the environment of a decade ago
include the following:

• Process change has been infused as a standard business practice.
The standards, policies, and training material all now contain elements of the
continuous improvement approach to experimentation that has been
promoted by the SEL.

• Measurement is now our way of doing business.
Measurement is no longer treated as an add-on to development. The
measurement activity is as common a part of the software standards and
policies as documenting software. It is expected, applied, and effective.

• Change is now driven by product and process , not merely process alone.
As the process improvement program has matured over the years, there has
developed an equal concern about product attributes as well as process
attributes. A set of product goals is always defined before process change is
infused. Because of this, measures of product are as important as (and
probably more important than) those of process.

• Change is now bottom-up.
Although process improvement analysts originally assumed that they could
work independently from the developers, the years have brought the
realization that change must be guided by development-project experience.
Direct input from developers as well as measures extracted from
development activities are key factors in change.

• “People-oriented” technologies are emphasized rather than automation.
The process changes that have been most effective are those that leverage
the thinking ability of the developers. These include reviews, inspections,
Cleanroom techniques, management practices, and independent testing
techniques, all of which are driven by disciplined activities of the
programmers/managers. Automation techniques have sometimes provided
improvement, but not to the extent that people-driven approaches have.
48 CMU/SEI-94-TR-22

6.3 Cost of Change
The benefits of the process improvement efforts are well substantiated by looking at the mea-
sures of software cost, error rates, and cycle time—all goals of the organization as change
was being implemented. Not only has the SEL traced the detailed software measures through-
out the 17-year lifetime, but expenditures incurred due to the efforts of process change have
also been tracked quite closely. The SEL investment in process change activities can be di-
vided into 3 significant areas:

• Project overhead

• Data handling, archiving, and technical support

• Process analysis

The total investment that the SEL has made in the improvement effort has been approximately
10 percent of the total software development cost in the FDD. Project overhead represents
costs incurred due to developers attending training (in new processes), completing data col-
lection forms, participating in interviews, and providing detailed additional information request-
ed by the analysts. This overhead for data collection and process change is extremely small.
It is now nearly impossible to measure except in the cases of very large process changes,
such as using a new language (longer training, meetings, etc.). For projects participating in the
routine process improvement efforts, the impact is less than 1 percent of the total software
cost. A successful process improvement program does not require a large perturbation or cost
to the development organization.

Data archiving and repository activities require a larger investment. Not only must measures
be collected from the developers, but there must be a smooth process of data quality assur-
ance, archiving, and reporting. This function of the SEL has cost approximately three percent
of the total development budget. That is, the database support element has cost approximate-
ly eight million dollars over the lifetime of the SEL. This figure includes purchase and design
of database management systems and distribution of SEL literature as well.

The analysis activity has been the most costly of all the expenditures. The responsibilities of
the analysts include setting goals, defining experiments, interpreting measurement data, train-
ing the development/maintenance staff, developing standards and policies, and tailoring pro-
cesses for particular needs. The analysts must provide refined processes to the development
organization along with rationale of why one process is more appropriate than another. They
must design and then provide any required training to the development organization.

SEL activities have cost approximately $25 million in an organization that has spent approxi-
mately $250 million on software development and maintenance. There is no empirical evi-
dence to indicate whether this 1:10 ratio would persist when process improvement is
expanded to a larger organization. Very preliminary data from SEL experience in carrying out
a broader NASA-wide program indicate that project overhead would remain low, and that the
CMU/SEI-94-TR-22 49

data repository could function with 15 persons to support development organizations that are
orders of magnitude larger than the FDD. Figure 29 shows the observed process improvement
cost based on the experiences of the FDD organization.

6.4 Impact on Other Organizations
The SEL has operated in one domain at NASA/GSFC for 17 years and the measures of
change have been apparent. In addition to the impact of the process activities on this local or-
ganization, the overall concept of change and improvement has been adopted by other orga-
nizations at GSFC and across NASA.

$210M

%
 o

f T
ot

al
 E

xp
en

di
tu

re
s

100% • Develop and maintain
mission support software

10%

8%

$15M 7.1%

• Develop models
(processes)

• Develop standards

• Analyze results

• Train staff

• Define experiments

6%

4%

$6M 2.9%

• Archive results

• Maintain database

• QA

2%

<$3M 1.4%

• Forms data

• Training
0%

Project Overhead Data Processing Analysis/Application
Production Software

Developed

 * Does not include civil service cost, which adds 20% to each category

Figure 29: ROI for Process Improvement in the FDD
50 CMU/SEI-94-TR-22

Systems Engineering and Analysis Support (SEAS) Contract
CSC is the prime contractor on the SEAS contract (valued at $1 billion over 10 years) which
supports NASA with a staff of nearly 1400 developers and analysts. This project has expanded
the application of SEL concepts beyond the FDD. Drawing on the SEL's experience in
documenting the methodology used in the flight dynamics environment and on CSC’s general
corporate methodology, SEAS has developed and documented a system development
methodology for use across the entire contract and a set of standards and procedures to help
staff members apply it.

Established guidelines for quantitative management are also used on the SEAS contract. Rec-
ognizing the importance of quantitative management, as shown by the SEL's success, SEAS
has packaged its experiences in this area in a data collection, analysis, and reporting hand-
book to be used by all the managers.

The SEAS organization also offers a training program, modeled after the SEL’s example. An
established, required training program exists for all engineers, developers, testers, integra-
tors, and managers working on the contract. This required training is designed to ensure con-
sistent understanding and application of the SEAS System Development Methodology and of
the quantitative management techniques used in the SEAS environment.

Earth Observing System (EOS) Core System Development Organization
The EOS Core System, one of GSFC’s largest development efforts (totaling $760 million over
20 years), has adapted the SEL process improvement concept. The EOS program is managed
by Hughes Applied Information System. SEL personnel are currently consulting with Hughes
to help guide the development of a process improvement program for the EOS organization.

NASA Software Engineering Program
In 1991, a software engineering program modeled on the SEL’s concepts was initiated by
NASA Headquarters for application across the Agency. To date, GSFC and four other NASA
centers have participated in the program. The first phase, baselining of all NASA software, is
ongoing and scheduled for completion in December of 1994.
CMU/SEI-94-TR-22 51

52 CMU/SEI-94-TR-22

7 Summary

Over the course of its history, the SEL has pioneered a measurement-based paradigm for soft-
ware process improvement. Long before it became fashionable to think of software develop-
ment in terms of an “engineering discipline,” the founders of the SEL had the vision to
recognize that software developers follow a process, and that if that process could be captured
qualitatively and measured quantitatively, a baseline could be established against which im-
provements could be measured. What has evolved since that time is a unique “bottom-up” ap-
proach to software process improvement that is driven by a solid understanding of an
organization’s environment (process and product characteristics), coupled with clearly defined
organizational goals for process improvement. This approach eventually leads to a steady
state that involves a continuous cycle of understanding the current baseline, introducing new
methods and techniques in a controlled fashion and measuring their impact, refining those
techniques deemed effective, and packaging the resulting process changes for infusion back
into the organization’s standard process.

Over the years, the SEL has validated this paradigm and measured its impact in the FDD en-
vironment. It has executed experiments and studies ranging from small-scale comparisons of
code reading and testing techniques to long-term evaluations of major technologies, such as
Ada, object orientation, and Cleanroom. Each of these studies resulted in some modification
to the standard flight dynamics software development process, usually in the incorporation of
key concepts from the technologies studied tailored to maximize their leverage within the en-
vironment. As documented earlier in this report, the resulting impact on product measures has
been significant, and when the costs of implementing the program are tallied, the return on
investment is substantial.

The SEL is committed to sharing its findings as to the improvements it has witnessed in flight
dynamics software development and what techniques have or have not made an impact. More
importantly, however, the SEL is equally committed to sharing the process improvement para-
digm it has forged, and all of the lessons it has learned along the way. Many of these results are
published in software engineering journals and presented at major international conferences. In
addition, the SEL sponsors an annual Software Engineering Workshop, with paper sessions,
panels, and tutorials, that draws an audience of over 400 software engineering practitioners
from around the world. The SEL has also captured its research results and process models in
a series of documents, many of which have been sent to thousands of individuals and organi-
zations. As discussed in Chapter 6, the SEL’s concepts have been adapted and adopted by oth-
er organizations, including Hughes Applied Information System, NASA Headquarters, and the
SEL’s partner in industry, Computer Sciences Corporation. Thus, the SEL has had, and contin-
ues to have, a significant impact on the software engineering community.
CMU/SEI-94-TR-22 53

Looking to the future, current efforts are just getting underway to establish SEL-based process
improvement programs at various other U.S. Government agencies. There is also considerable
interest from several sectors in examining the expansion issues related to applying the SEL par-
adigm beyond local environments to higher organizational levels. The SEL anticipates being ac-
tively involved in supporting these efforts. It also plans to continue supporting the process
improvement goals of the FDD organization. Most importantly, perhaps, is the SEL’s continued
commitment to sharing its processes, findings, and lessons learned throughout the software
community, and by so doing, advancing the state-of-the-practice in software engineering.
54 CMU/SEI-94-TR-22

Appendix A Sample SEL Experiment Plan

SEL Representative Study Plan for SOHOTELS
October 11, 1993

A.1 Project Description

The Solar and Heliospheric Observatory Telemetry Simulator (SOHOTELS) software devel-
opment project will provide simulated telemetry and engineering data for use in testing the
SOHO Attitude Ground Support System (AGSS). SOHOTELS is being developed by a team
of four GSFC personnel in Ada on the STL VAX 8820. The project is reusing design, code,
and data files from several previous projects but primarily from the Solar, Anomalous, and
Magnetospheric Particle Explorer Telemetry Simulator (SAMPEXTS).

The SOHOTELS team held a combined preliminary design review (PDR) and critical design
review (CDR) in April 1993. In their detailed design document, the SOHOTELS team stated
the following goals for the development effort:

• To maximize reuse of existing code.

• Where reuse is not possible, to develop code that will be as reusable as
possible.

• To make sure performance does not suffer when code is reused.

A.2 Key Facts

SOHOTELS is being implemented in three builds so that it can be used to generate data for
the early phases of the AGSS (which is a Cleanroom project). Build development and inde-
pendent acceptance testing are being conducted in parallel. At present, the test team has fin-
ished testing SOHOTELS Build 1. The development team expects to complete Build 2 and
deliver it to the independent test team by the end of the week.

SOHOTELS consists of six subsystems. As of June, the estimated total number of compo-
nents was 435, of which 396 (91 percent) have currently been completed. Total SLOC for SO-
HOTELS was estimated at 67.6 KSLOC, with 46.6 KSLOC of code to be reused verbatim and
15.7 KSLOC to be reused with modifications. As of September 13, 1993, there were 65.4
KSLOC in the SOHOTELS system, or 97 percent of the estimated total.

The SOHOTELS task leader is currently re-estimating the size of the system because SO-
HOTELS will be more complex than was originally predicted. The new estimates will include
SLOC for the schema files that are being developed.
CMU/SEI-94-TR-22 55

The phase start dates for SOHOTELS are:

A.3 Goals of the Study

The study goals for SOHOTELS are

• To validate the SEL’s recommended tailoring of the development life cycle
for high-reuse Ada projects.

• To refine SEL models of high-reuse software development projects in Ada,
specifically:

• effort (per DLOC, by phase and by activity);
• schedule (duration for telemetry simulators and by phase);
• errors (number per KSLOC/DLOC);
• classes of errors (e.g., initialization errors, data errors); and
• growth in schedule estimates and size estimates (from initial estimates to

completion and from PDR/CDR to completion).

A.4 Approach

The following steps will be taken to accomplish the study goals:

• Understand which of the standard development processes are being
followed and which have been tailored for the SOHOTELS project. Ensure
that information is entered into the SEL database that will allow SOHOTELS
data to be correctly interpreted in light of this tailoring.

• Analyze project/build characteristics, effort and schedule estimates, effort
and schedule actuals, and error data on a monthly basis while development
is ongoing.

• At project completion, plot the effort, schedule, error rate, and estimate data.
Compare these plots with current SEL models and with plots from other high-
reuse projects in Ada. Compare and contrast the error-class data with data
from FORTRAN projects, from Ada projects with low reuse, and from other
high-reuse Ada projects.

September 9, 1992 Requirements Definition

October 3, 1992 Design

May 1, 1993 Code and Unit Test

June 26, 1993 Acceptance Test

May 7, 1993 Cleanup
56 CMU/SEI-94-TR-22

A.5 Data Collection

To address these study goals, the following standard set of SEL data for Ada projects will be
collected:

• Size, effort, and schedule estimates (Project Estimates Forms).

• Weekly development effort (Personnel Resources Forms).

• Growth data (Component Origination Forms and SEL librarians).

• Change and error data (Change Report Forms and SEL librarians).
CMU/SEI-94-TR-22 57

58 CMU/SEI-94-TR-22

Appendix B FDD Projects
The following tables are taken from the SEL Cost and Schedule Estimation Study Report
[Condon 93]. They are included here to provide an overview of the basic characteristics of the
many FDD projects studied by the SEL over the years. Table B-2 summarizes system size
and reuse rates for the same projects.
CMU/SEI-94-TR-22 59

Project Type Development
Language

Duration
Period1 Weeks

Technical and
Management6

Hours

PASA AGSS F 05/76 — 09/77 69 15760
ISEEB AGSS F 10/76 — 09/77 50 15262
AEM AGSS F 02/77 — 03/78 57 12588
SEASAT AGSS F 04/77 — 04/78 54 14508
ISEEC AGSS F 08/77 — 05/78 38 5792
SMM AGSS F 04/78 — 10/79 76 14371
MAGSAT AGSS F 06/78 — 08/79 62 15122
FOXPRO AGSS F 02/79 — 10/79 36 2521
DEA AGSS F 09/79 — 06/81 89 19475
DEB AGSS F 09/79 — 05/81 83 17997
DESIM TS F 09/79 — 10/80 56 4466
ERBS AGSS F 05/82 — 04/84 97 49476
DERBY DS F 07/82 — 11/83 72 18352
GROSS DS F 12/84 — 10/87 145 15334
GRODY DS A 09/85 — 10/88 160 23244
COBEDS DS F 12/84 — 01/87 105 12005
ASP AGSS F 01/85 — 09/86 87 17057
GROAGSS AGSS F 08/85 — 03/89 188 54755
GROSIM TS F 08/85 — 08/87 100 11463
COBSIM TS F 01/86 — 08/87 82 6106
COBEAGSS AGSS F 06/86 — 09/88 116 49931
GOADA DS A 06/87 — 04/90 149 28056
GOFOR DS F 06/87 — 09/89 119 12804
GOESAGSS AGSS F 08/87 — 11/89 115 37806
GOESIM TS A 09/87 — 07/89 99 13658
UARSAGSS AGSS2 F 11/87 — 09/90 147 89514
ACME AGSS2 F 01/88 — 09/90 137 7965
UARS_2 AGSS2 F N/A N/A 97479
UARSDSIM DS F 01/88 — 06/90 128 17976
UARSTELS TS A 02/88 — 12/89 94 11526
EUVEAGSS AGSS F 10/88 — 09/90 102 21658
EUVE_23 AGSS F N/A N/A 21658
EUVETELS TS A 10/88 — 05/90 83 4727
EUVEDSIM DS A 10/88 — 09/90 1214 207754

SAMPEXTS TS A 03/90 — 03/91 48 2516
SAMPEX AGSS5 F 03/90 — 11/91 85 4598
SAMPEXTP AGSS5 F 03/90 — 11/91 87 6772
SAMPEX_2 AGSS5 F N/A N/A 11370
POWITS TS A 03/90 — 05/92 111 11695

Abbreviations: A Ada DS Dynamics simulataor TS Telemetry simulator
AGSS Attitude Ground F FORTRAN simulator

Support System
1 Design phase through acceptance test phase.
2 The AGSS for the UARS satellite was developed as two projects. One project, containing the majority of the AGSS code and functionality, was called simply

UARSAGSS and was developed by CSC. The other project, containing two utilities (CFADS and STARID), was called ACME and was developed in-house
by GSFC. When referring to the total size or effort of the two combined projects, this study uses the name UARS_2.

3 The EUVE AGSS was developed as a single project, and the EUVEAGSS account in the SEL database includes all hours spent on this AGSS. In recording
the lines of code in the EUVEAGSS account, however, the SEL database did not include the ACME lines of code, all of which were borrowed from the ACME
project and reused verbatim in the EUVE AGSS. When referring to the size or productivity of the total EUVE AGSS, this study uses the name EUVE_2. The
values for effort and schedule duration do not vary between EUVE AGSS and EUVE_2.

4 Duration adjusted by +15% and Effort adjusted by +10% because EUVEDSIM did not have an acceptance test phase. These values are consistent with those
of the Ada Size Study Report.

5 The AGSS for the SAMPEX satellite was developed as two projects. The telemetry processor part, called SAMPEXTP, was developed in-house by GSFC.
The other project, containing the majority of the AGSS code and functionality, was called simply SAMPEX and was developed by CSC. When referring to the
total size or effort of the two combined projects this study uses the name SAMPEX_2.

6 Includes technical staff and technical management hours for preproject through cleanup phases. Does not include support staff-hours (project management,
librarians, secretaries, technical publications).

Table B-1: Projects Studied
60 CMU/SEI-94-TR-22

Project Newly Written Extensively Modified Slightly Modified Reused
Verbatim

PAS 84729 0 20041 7098

ISEEB 43955 0 3506 7776

AEM 45345 0 4673 893

SEASAT 49316 0 4252 21825

ISEEC 20075 0 6727 48618

SMM 76883 0 5652 2834

MAGSAT 61950 0 14297 13266

FOXPRO 5354 0 1323 2449

DEA 45004 0 9705 12616

DEB 44644 0 8606 13016

DESIM 14873 0 0 385

ERBS 137739 0 5767 15635

DERBY 37137 0 3901 4549

GROSS 33196 3493 8574 6441

GRODY 123935 1143 3037 146

COBEDS 26986 0 7363 2556

ASP 70951 0 0 10483

GROAGSS 194169 9982 18133 14109

GROSIM 31775 0 4294 2881

COBSIM 45825 1342 1156 4494

COBEAGSS 141084 16017 13647 7934

GOADA 109807 12496 41750 7049

GOFOR 22175 2867 6671 5330

GOESAGSS 106834 6377 9779 5869

GOESIM 59783 5784 15078 11450

UARSAGSS 260382 9340 21536 11868

ACME 34902 0 0 0

UARS_2 295284 9340 21536 11868

UARSDSIM 63861 17476 20710 4399

UARSTELS 38327 6114 12163 11544

EUVEAGSS 41552 13597 14844 179016

EUVE_2 41552 13597 14844 213918

EUVETELS 2161 371 5573 58591

EUVEDSIM 20859 36248 87415 39495

SAMPEXTS 0 3301 6120 52026

SAMPEX 10590 1631 1282 141006

SAMPEXTP 15899 1920 1777 36

SAMPEX_2 26489 3551 3059 141042

POWITS 12974 7980 20878 26275

Table B-2: Detailed Line-of-Code Data
CMU/SEI-94-TR-22 61

62 CMU/SEI-94-TR-22

References

[Basili 84] Basili, V. R., and D. M. Weiss, “A Methodology for Collecting Valid
Software Engineering Data,” IEEE Transactions on Software Engi-
neering, November 1984.

[Basili 87] Basili, V. R., and R. W. Selby, “Comparing the Effectiveness of
Testing Strategies,” IEEE Transactions on Software Engineering,
December 1987.

[Basili 92] Basili, V. R., G. Caldiera, F. McGarry, R. Pajerski, G. Page, and S.
Waligora, “The Software Engineering Laboratory — An Operational
Software Experience Factory,” Proceedings of the Fourteenth Inter-
national Conference on Software Engineering, Melbourne, Austra-
lia, May 1992.

[Basili 94] Basili, V. R., and S. Green, “Software Process Evolution at the
SEL,” IEEE Software, July 1994.

[Bassman 94] Bassman, M., F. McGarry, and R. Pajerski, Software Measurement
Guidebook (SEL-94-002), Software Engineering Laboratory, July
1994.

[Card 85] Card, D. N., G. Page, and F. E. McGarry, “Criteria for Software Mod-
ularization,” Proceedings of the Eighth International Conference on
Software Engineering, London, 1985.

[Condon 93] Condon, S., M. Regardie, M. Stark, and S. Waligora, Cost and
Schedule Estimation Study Report (SEL-93-002), Software Engi-
neering Laboratory, November 1993.

[Green 90] Green, S., The Cleanroom Case Study in the Software Engineering
Laboratory: Project Description and Early Analysis (SEL-90-002),
Software Engineering Laboratory, March 1990.
CMU/SEI-94-TR-22 63

[Heller 92] Heller, G. H., J. Valett, and M. Wild, Data Collection Procedures for
the Software Engineering Laboratory Database (SEL-92-002), Soft-
ware Engineering Laboratory, March 1992.

[Hendrick 92] Hendrick, R., D. Kistler, and J. Valett, Software Management Envi-
ronment (SME) Concepts and Architecture (Revision 1) (SEL-89-
103), Software Engineering Laboratory, September 1992.

[Landis 90] Landis, L., F. E. McGarry, S. Waligora, et al., Manager’s Handbook
for Software Development (Revision 1) (SEL-84-101), Software En-
gineering Laboratory, November 1990.

[Landis 92] Landis, L., S. Waligora, F. E. McGarry, et al., Recommended Ap-
proach to Software Development (Revision 3) (SEL-81-305), Soft-
ware Engineering Laboratory, June 1992.

[McGarry 94] McGarry, F. E., and M. Thomas, “Top-Down vs. Bottom-Up Process
Improvement,” IEEE Software, July 1994.

[Morusiewicz 93] Morusiewicz, L., and J. Valett, Annotated Bibliography of Software
Engineering Laboratory Literature (SEL-82-1206), Software Engi-
neering Laboratory, November 1993.

[Page 84] Page, G., F. E. McGarry, and D. Card, “A Practical Experience with
Independent Verification and Validation,” Proceedings of the Eighth
International Computer Software and Applications Conference,
IEEE Computer Society Press, 1984.

[Paulk 93] Paulk, M., B. Curtis, M. Chrissis, and C. Weber, Capability Maturity
Model for Software, Version 1.1 (CMU/SEI-93-TR-24, ADA
263403). Pittsburgh, Pa: Software Engineering Institute, Carnegie
Mellon University, February 1993.

[Seidewitz 86] Seidewitz, E., and M. Stark, General Object-Oriented Software De-
velopment (SEL-86-002), Software Engineering Laboratory, August
1986.
64 CMU/SEI-94-TR-22

[Stephens 74] Stephens, W. P., G. J. Meyers, and L. L. Constantine, “Structured
Design,” IBM Systems Journal, Volume 3, Number 2, 1974.
CMU/SEI-94-TR-22 65

66 CMU/SEI-94-TR-22

13a. TYPE OF REPORT

Final

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S)

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

FIELD SUB. GR.GROUP

SEI

ESC/ENS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

63756E N/A N/A N/A

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

CMU/SEI-94-TR-22 ESC-TR-94-022

Software Process Improvement in the NASA Software Engineering Laboratory

December 1994 80

software process improvement, software engineering, Software Engineering
Laboratory, software processes, process achievement award

Frank McGarry
19. ABSTRACT (continue on reverse if necessary and identify by block number)

The Software Engineering Laboratory (SEL) was established in 1976 for the purpose of studying and
measuring software processes with the intent of identifying improvements that could be applied to
the production of ground support software within the Flight Dynamics Division (FDD) at the National
Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC). The SEL has
three member organizations: NASA/GSFC, the University of Maryland, and Computer Sciences Cor-
poration (CSC). The concept of process improvement within the SEL focuses on the continual under-
standing of both process and product as well as goal-driven experimentation and analysis of process
change within a production environment.
UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22c. OFFICE SYMBOL

ESC/ENS (SEI)
22b. TELEPHONE NUMBER (include area code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

(please turn over)

ABSTRACT — continued from page one, block 19

	Table of Contents
	List of Figures
	Foreword
	Preface
	1 Background
	1.1 SEL History
	1.2 SEL Process Improvement Strategy

	2 The SEL Organization
	2.1 Software Development/Maintenance
	2.2 Process/Product Analysis
	2.3 Database Support

	3 The SEL Process Improvement Concept
	3.1 Bottom-Up Improvement
	3.2 Measurement
	3.3 Reuse of Experience

	4 SEL Experimentation and Analysis
	4.1 Defining Experiments
	4.2 Collecting Measures
	4.3 Analyzing Data
	4.4 Improving Process

	5 SEL Experiences: Understanding, Assessing, and P...
	5.1 Understanding
	5.2 Assessing
	5.2.1 Studies of Design Approaches
	5.2.2 Studies of Testing
	5.2.3 Studies with Cleanroom
	5.2.4 Studies with Ada and OOD
	5.2.5 Studies with IV&V
	5.2.6 Additional Studies

	5.3 Packaging

	6 The SEL Impact
	6.1 Impact on Product
	6.2 Impact on Process
	6.3 Cost of Change
	6.4 Impact on Other Organizations

	7 Summary
	Appendix A Sample SEL Experiment Plan
	SEL Representative Study Plan for SOHOTELS October...
	A.1 Project Description
	A.2 Key Facts
	A.3 Goals of the Study
	A.4 Approach
	A.5 Data Collection

	Appendix B FDD Projects
	References

