
Technical Report
CMU/SEI-94-TR-007
ESC-TR-94-007

A Practical Guide to the
Technology and Adoption of
Software Process Automation

Alan M. Christie

March 1994

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Unlimited distribution subject to the copyright.

Technical Report
CMU/SEI-94-TR-007

ESC-TR-94-007
March 1994

A Practical Guide to the Technology and Adoption of
Software Process Automation

Alan M. Christie
CASE Environments Project

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright© 1994 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Introduction 1

2 Software Process Automation in Context 5

2.1 Process Automation and Related Technologies 5
2.2 Issues Related to CASE and Process Improvement 6
2.3 Why Use a Process-Centered Framework? 12

2.3.1 Advantages of Using a PCF 12
2.3.2 Disadvantages of Using a PCF 13

3 An Experimental Investigation into PCFs 15

3.1 The Experimental Approach 15
3.2 Model-Building Capabilities (Phase 1) 17
3.3 End-User Capabilities (Phase 2) 20
3.4 Process Example and Its Execution Script (Phase 3) 20
3.5 Evaluation Criteria and Questionnaire (Phase 4) 25

4 The ProcessWeaver Experiment 27

4.1 Review of ProcessWeaver 27
4.1.1 Agenda Window 27
4.1.2 Work Context Window 28
4.1.3 Method Editor 29
4.1.4 Activity Editor 30
4.1.5 Cooperative Procedure Editor 30
4.1.6 Pulling the Elements Together 34

4.2 Developing the ProcessWeaver Process Model 36
4.3 The Evaluation 39

4.3.1 Functionality 39
4.3.2 Developer Issues 44
4.3.3 End-User Issues 45
4.3.4 Performance 46
4.3.5 System Interface 46
4.3.6 Off-line User Support 47

4.4 Improvements in Functionality 48

5 The Synervision Experiment 49

5.1 Review of SynerVision 49
CMU/SEI-94-TR-007 i

5.1.1 Managing Personal Tasks 50
5.1.2 Managing Group Tasks 52
5.1.3 Process Enactment Through the Use of Templates 52
5.1.4 Process-Centered Environments 54

5.2 Developing the Synervision Process Model 55
5.3 The Evaluation 55

5.3.1 Functionality 57
5.3.2 Developer Issues 60
5.3.3 End-User Issues 62
5.3.4 Performance 63
5.3.5 System Interface 63
5.3.6 Off-Line User Support 64

6 End-User Role Plays 65

6.1 User Interface 65
6.2 Adoption Issues 69
6.3 Application Issues 70

7 A Comparison of ProcessWeaver and Synervision 73

8 Adopting and Using Process Automation Technology 79

8.1 Process Automation and Process Maturity 79
8.2 Guidelines for Adopting Automated Process 79
8.3 Transitioning to a PCF 82

9 Summary and Conclusions 87

References 91

Appendix A Vendor Information on PCFs 95

Appendix B Listing of SynerVision Experiment Script 97

Appendix C A Brief Overview of ProNet 103

Appendix D Terminology and Concepts 107

Appendix E End-User Evaluation Materials 111

Acknowledgments 117
ii CMU/SEI-94-TR-007

List of Figures

Figure 2-1: The Five Levels of the Maturity Model 9
Figure 2-2: Tool-Use Characteristics at the Five Maturity Levels 11
Figure 3-1: Simplified Evaluation Process 16
Figure 3-2: The Modify Document Process 21
Figure 3-3: The Identify Agents for Roles Process 22
Figure 3-4: The Update Document Process 23
Figure 3-5: Sequence of Evaluation Tasks 26
Figure 4-1: An Agenda Window 28
Figure 4-2: A Work Context Window 29
Figure 4-3: A Method Editor Window 30
Figure 4-4: An Activity Editor Window 31
Figure 4-5: A Cooperative Procedure Window 32
Figure 4-6: Overview of ProcessWeaver Elements 35
Figure 4-7: Activity Hierarchy for the Example Process 36
Figure 4-8: Cooperative Procedure for the Activity ReviewIdentify 37
Figure 4-9: Cooperative Procedure for the Activity Update 38
Figure 4-10: Co-Shell Library Functions to Retrieve and Save Document Files 39
Figure 5-1: SynerVision Main Window Illustrating a Task Hierarchy 50
Figure 5-2: SynerVision Access Attributes Window 53
Figure 5-3: Synervision Task In-Box Window 53
Figure 5-4: Dialog Window Generated Through the svprompt Command 54
Figure 5-5: Example of a Short SynerVision Script 56
Figure 6-1: Summary of End-User Experiences 66
Figure 6-2: Summary of End-User Views on Adoption of Automated Process 67
Figure 6-3: Summary of End-User Views on Appropriate Applications 67
Figure C-1: Definition of Activities Associated Only with “Store” Entities 105
Figure C-2: Simple ProNet Change Request Model 105
Figure D-1: Relationship Between Process Enactment Concepts 109
CMU/SEI-94-TR-007 iii

iv CMU/SEI-94-TR-007

List of Tables

Table 2-1: Pages of Practices at the Five CMM Levels 10
Table 3-1: Model-Building Capabilities 18
Table 3-2: End-User Capabilities 20
Table 3-3: PCF Evaluation Areas 25
Table D-1: Relationship to NIST Service Categories 110
Table E-2: Process Enactment Scenario 112
Table E-3: Questionnaire for End-User Role Plays 113
CMU/SEI-94-TR-007 v

vi CMU/SEI-94-TR-007

A Practical Guide to the Technology and Adoption of
Software Process Automation

Abstract: Process automation provides a means to integrate people in a
software development organization with the development process and the
tools supporting that development. For many reasons, this new technology has
the potential to significantly improve software quality and software
development productivity. As yet, however, there is little practical experience in
its day-to-day use. The main goal of this report is thus to provide information
for organizations that are considering its adoption. For these reasons, the
report aims to identify how process automation relates to both process
improvement and CASE tools, to review in some detail two of the major
commercial process automation products, and to address relevant
organizational adoption issues. It is hoped that the report will help bridge the
gap between those whose focus is software process improvement and those
whose focus is software technology.

1 Introduction

Consider two scenarios:

Jim is the manager responsible for developing the software performance requirements on a
flight control computer. Since he is, as usual, overloaded, he asks Bob, one of his engineers,
to determine the timing constraints on the system. Bob, who is new to the job, performs the
task but significantly overestimates the values. He e-mails these to Jim who inserts them into
the requirements document. At the requirements review, Mary who is familiar with timing con-
straints realizes that something is wrong and requests a recalculation. Jim readily agrees, but
because he is preoccupied, forgets to inform Bob about the problem, and corrective action is
never taken. When the system is built, a major crisis develops when it is found that the control
computer cannot perform the job...

The Nala Corporation has decided that, in order to compete for Government contracts, it must
improve its software development process. It has taken to heart the belief that you cannot un-
derstand what you do not measure, and it therefore initiates a major metrics program. The pro-
gram’s primary focus is to measure programmer productivity and task schedules. To perform
this collection task, upper management requests that developers and project managers fill out
an electronic form each week identifying task status and lines of code written. Unfortunately,
the perception within the ranks is that this is an intrusive bureaucratic hassle that does not help
in supporting the on-going projects, many of which are behind schedule and in need of every
man-hour they can get. Thus the forms are resented, only sometimes filled in, and when they
are, many errors are made. The result is that no meaningful improvements are made on the
basis of the results...
CMU/SEI-94-TR-007 1

These scenarios represent two fictitious, but realistic, examples of how ineffective processes
can put an organization in jeopardy. A well-defined and implemented process will go a long
way to resolving these problems, but manual implementation of this process can, in the short
run, be time consuming even if, in the long run, it is beneficial. In a competitive commercial
environment there is therefore an enormous temptation to skip anything that gets in the way
of developing the final product. In the manufacture of mechanical and electrical products, pro-
cess automation has made dramatic impacts in improving productivity; there is no reason why
similar approaches cannot work with software. Process automation represents a technology
that can help manage this problem by:

• guiding sequences of activities that compose the project,

• managing the products that are being developed,

• invoking tools that developers require to do their tasks,

• performing automatic actions that do not need human intervention,

• allowing communication between the persons who are building the product,

• gathering metric data automatically,

• supporting personal task management,

• reducing human errors, and

• providing project management with current, accurate status information.

However, there are also pitfalls and these, along with the advantages, will be discussed in
Section 2.3.3.

Because of the potential impact of process automation, it is important to assess it objectively
and to understand both the technical and organizational issues. This is the main motivation
behind this report, which is intended to provide practical guidance on process automation
technology and its adoption. The report will look into three aspects of the automated process.
First the report will look at the automated process’s relationship to software process and CASE
tools; second, it will investigate in some depth the characteristics of two commercially-avail-
able process automation products; and third, it will address the issues in adopting process au-
tomation into a software development organization.

Because process automation requires that a project works within a well-defined process, a
clear understanding of one’s operating procedures is an important prerequisite. Indeed to be
most effective, process automation must be viewed within the context of process improve-
ment. This is so since experience gained in working within the process should be incorporated
into the process program to make it more effective. Process automation products are qualita-
tively different from standard CASE tools since the latter do not significantly affect organiza-
tional behavior. (CM tools are the exception, but they emphasize data management rather
than process management.) Thus Section 2 of this report discusses the relationship of pro-
cess automation to process improvement and in particular the SEI Capability Maturity Model
[Paulk 93]. This discussion also addresses CASE tools and how they fit within this context.
2 CMU/SEI-94-TR-007

The major part of the report then focuses on assessing the current technology by selecting
and analyzing two of the foremost process automation products in the field: ProcessWeaver
from Cap Gemini and SynerVision from Hewlett-Packard. In performing this analysis, it is nec-
essary to explore these products in some depth; otherwise, a superficial impression may result
in erroneous conclusions. This assessment is conducted by using a technique that was de-
signed to consistently evaluate environments [Weiderman 86]. A standard process model is
first established. The model is then implemented in each product, and each product is then
measured against a set of evaluation criteria. This investigation is aimed at assessing the
technology by looking at specific examples of commercial products; it is not designed to rank
the products. As it turns out both of these products excel in some ways and are weak in others.

The final issue to be addressed in the report is adoption. To date there are few, if any, exam-
ples of process automation technology being used to support software development on a day-
to-day basis. Thus there is little hard evidence of the efficacy of such technology. However,
experience gained through process improvement, adopting technology in general, and CASE
tools in particular sheds some light on the issues.

Appendix A provides information on specific commercial products, and what platforms they
operate on, while Appendix B lists the process program for the SynerVision experiment. Ap-
pendix C provides a brief overview of the ProNet process definition notation as this notation is
used to define the evaluation models, while Appendix D briefly reviews some of the process-
related terminology used in this report. A brief note on this terminology is needed here. A pro-
cess automation product may fall into the category of either a process-centered environment
(PCE) or a process-centered framework (PCF) depending on whether or not the product in-
cludes end-user applications. The relationship between PCEs and PCFs and other process
concepts is discussed and clarified in Appendix D. For simplicity, when we are later discussing
the products under review, we will use the term PCF for either, unless there is a need to dif-
ferentiate between a PCE and a PCF. Finally, Appendix E lists the scenario script and ques-
tionnaire given to the participants of the SynerVision and ProcessWeaver role plays.
CMU/SEI-94-TR-007 3

4 CMU/SEI-94-TR-007

2 Software Process Automation in Context

Over the last two hundred years, traditional manufacturing processes have seen two major
revolutions. First, manufacturing, which started out as a craft industry, evolved to mass pro-
duction. Second, in the past few decades, significant advances have been made in what has
been called “lean” production, as exemplified by many of the Japanese automobile manufac-
turers [Womack 90]. This last revolution is still in progress and has lead to major improve-
ments both in productivity and quality. The history of software manufacturing is much shorter,
spanning decades rather than centuries, but software production still uses techniques that
have much in common with craft industries. In craft industries, products of high quality and so-
phistication can be produced, but such products rely heavily on skilled experts. Given the phe-
nomenal growth of the software industry, relying on the limited supply of these experts has
been a major contributor to what has been called the software crisis. Thus there is a need for
techniques that can leverage the skills of software engineers, simultaneously improving pro-
ductivity and quality. Given the precedent of traditional manufacturing, this is not an unreason-
able goal.

2.1 Process Automation and Related Technologies

Research into the technology of software process modeling and automation has been on go-
ing for some years [Derniame 92, Kaiser 90, Mi 92, Peuschel 92, Kellner 90a, Curtis 92], but
only recently have commercial implementations come on the market. Both the research into,
and subsequent commercialization of, process automation technology have resulted in a con-
siderable body of theoretical and developmental knowledge. This knowledge includes, for ex-
ample, appropriate process modeling formalisms and languages. The STARS program is an
example of a significant effort that is attempting to develop and apply process-oriented tech-
nologies in support of large-scale software development within the US Department of De-
fense. This effort has addressed a wide variety of process-related issues, and specifically has
investigated process definition, modeling, and enactment [STARS 92].

The characteristics that distinguish PCFs (and PCEs) from other software engineering envi-
ronments are:

• their explicit focus on process mechanisms, and the resulting need for
process definition and enactment languages; and

• their emphasis on communication between, and integration of, people and
their actions, rather than on the communication between, and integration of,
tools.

Agreed-to or de-facto tool integration standards are important for PCFs, if PCFs are to connect
to the wider field of CASE. Within the CASE integration community, there are several devel-
opments that are helping in this direction. For example, the conventions introduced by BMS
CMU/SEI-94-TR-007 5

[Brown 93a], CORBA [Soley 92], or PCTE [Brown 93a] are providing an impetus to third-party
developers to be “compliant”. Indeed, the two PCFs that we will be investigating have mech-
anisms to address tool-integration issues.

Much research and commercial work has also been done on the integration of CASE tools.
On the commercial side, integration has been traditionally tool-to-tool, with limited process im-
plications. An example of such a tool-to-tool integration is the linking of a word processor with
a configuration management (CM) tool in order to manage document versions [CW]. More am-
bitious efforts to develop integrated tool sets have been attempted, but usually in research-
oriented settings. For example in [Brown 93b] a software development scenario was con-
structed with Softbench as the framework and using a variety of tools for C-code development,
testing, metrics collection, and configuration management. With this level of complexity, it was
found that a process model, written in C, was required to manage the sequencing of events.

Many configuration management systems have also addressed practical process issues.
While earlier CM products have built-in hard-wired process models [Dart 91], more recent sys-
tems have started to provide the capability for end-user process customization (e.g.,
CaseWare). However, the emphasis in CM systems is more (but not exclusively) on the man-
agement of product than on the management of process. PCFs and CM products are likely to
have different notions of process management, and integration of PCF and CM services will
be painful unless some standards are agreed to. Otherwise a PCF will only be able to call on
a limited subset of the services supported by a CM tool.

In the longer term, merging of the concepts in process automation and configuration manage-
ment may occur in which there is a fusing of data management and process management fea-
tures. Indeed, CASE integration may benefit from such a union, since tools will then be
supported by a compatible and consistent set of product and process services.

2.2 Issues Related to CASE and Process Improvement

In attempting to move software development away from the craft approach (which is highly
skilled and individualistic) to a more rational means of production, two approaches have been
pursued:

• using technology to support, automate, and to some extent reduce the skill
level required for software development; and

• improving the process through which the software is developed.

Because these two paths have a direct bearing on the technology of software process auto-
mation, they are discussed below in some detail. These paths also cross, and it is at this in-
tersection that process-centered environments exist.

The first approach involves the use of CASE tools to help produce software more efficiently.
At the developer level these tools support such activities as design, code generation, test, re-
verse engineering, and document production. At the management level these tools support
6 CMU/SEI-94-TR-007

such activities as configuration management, planning, scheduling, tracking, and cost estima-
tion. However, to date, CASE tools have not lived up to their early promise in the sense that a
very large fraction of those purchased become “shelfware” [Page-Jones 92]. This is, in part, a
consequence of the exaggerated claims of CASE tool vendors. It also results from a too nar-
row focus on CASE technology. As stated in [Boone 91]:

The current attempts at CASE implementation have only been at the tactical
level, dealing with such issues as tool evaluation and selection, and choosing
pilot projects for applications of these tools. These tactical approaches have
met with extremely limited success, and a growing number of experienced
users are sharing the opinion that the situation will continue unless CASE is
approached strategically.

By strategic thinking, Boone suggests that four elements, closely related to total quality man-
agement, are required:

• pursuing continuous improvement,

• putting quality first,

• using process engineering, and

• facilitating change.

This report focuses on the last two of these items. Practical guides to addressing some of
these CASE issues are provided in [Oaks 92, Fletcher 93]. In particular, these guides provide
strategies for CASE adoption, addressing some of the “strategic” issues identified in [Boone
91], and have relevance to the adoption issues to be discussed in Section 8. Also, many of the
issues addressed by Boone’s four elements involve human factors and thus may give a de-
gree of discomfort to many who are technically trained and naturally look for technical solu-
tions. However, as Boone points out, the success of CASE will be just as dependent on non-
technical, as on technical considerations. These non-technical issues have much in common
with the spirit of the Capability Maturity Model [Paulk 93a] that provides a practical incremental
approach to process improvement. Because of its relevance, the CMM will be discussed be-
low within the context of tools and process automation.

The above issues are even more acute when dealing with integrated tool sets. To date, tool
vendors have developed some direct tool-to-tool integrations (for example, IDE’s integration
of Software through Pictures, CodeCenter, and FrameMaker). However, successful use of in-
tegrated tools, as reflected in actual day-to-day use for product development, is quite limited.
As stated in [Rader 93]:

[I]nformal discussions with practicing software engineers from the defense and
engineering communities indicate that few of the concepts, standards and
products that purport to provide CASE tool integration have found their way into
operational use.
CMU/SEI-94-TR-007 7

Given the problems associated with the adoption of individual CASE tools, it is perhaps not
surprising that adoption of integrated CASE tool sets has met with resistance. In addition to
the issues associated with the introduction of single CASE tools, integrated CASE tool sets
are more expensive, magnify the process and adoption issues, and will incur significant train-
ing costs. While the above issues are also relevant to PCFs, PCFs may provide the critical
ingredient, process structure, that will help CASE tools and integrated tool sets overcome
some of these barriers. Some itemized reasons why this is so are given below:

• Specific elements of tool functionality can be matched to the needs of the
process.

• Training in the use of the tools can be seen in the context of the process.

• Tools can be more rationally evaluated and selected.

• The process provides a framework for communication between tools.

• Metrics collection on tool-related data can be given a more rational basis.

In summary, CASE tools and integrated tool sets have failed to reach their full potential in part
because of issues which are less technical and more organizational or cultural. PCEs may
force some of these issues to be addressed more explicitly, and may thus be important in the
successful adoption of CASE.

Let us now turn to the second approach to moving software production away from its craft or-
igins — process improvement. A project that does not have a clear understanding of the pro-
cesses through which it develops its software is likely to produce an inferior product. This is
particularly so for large projects having many people and producing large, complex software
systems. It was because of the consistent failure to successfully manage the development of
such large software systems that the Capability Maturity Model was developed. The CMM pro-
vides a framework for establishing effective processes for software development and does so
in a manner that prioritizes the implementation of the practices necessary to build effective
processes.

The CMM is based on five levels, which are:

• Level 1: Initial

• Level 2: Repeatable

• Level 3: Defined

• Level 4: Managed

• Level 5: Optimizing

The general characteristics of these are summarized in Figure 2-1 [Paulk 93a]. At Level 2 (Re-
peatable), there is a strong focus on developing effective management practices within
projects. At Level 3 (Defined), standard processes are defined across the whole organization
and tailored for use within individual projects. Level 4 (Managed) then sets quantitative quality
goals for both processes and products, making extensive use of metrics to achieve this objec-
tive. Finally, at Level 5 (Optimizing), the emphasis is on continuous process improvement
8 CMU/SEI-94-TR-007

(1) INITIAL
The software process is characterized as ad hoc
and occasionally even chaotic. Few processes
are defined and success depends on individual
efforts.

(2) REPEATABLE
Basic project management processes are estab-
lished to track cost, schedule, and functionality.
The necessary process discipline is in place to
repeat earlier successes on projects with similar
applications.

(3) DEFINED
The software process for both engineering and manage-
ment is documented, standardized, and integrated into a
standard software process for the organization. All
projects use an approved version of the organization’s
standard software process for developing and maintain-
ing software.

(4) MANAGED
Detailed measures of the software process and
product quality are collected. Both the software
process and products are quantitatively under-
stood and controlled.

(5) OPTIMIZING
Continuous process improvement is en-
abled by quantitative feedback from the
process and from piloting innovative ideas
and technologies.

Figure 2-1: The Five Levels of the Maturity Model
CMU/SEI-94-TR-007 9

through technology innovation and quantitative cost-benefit analysis on alternative processes.
Before a particular level can be achieved by an organization, all the requirements of the lower
maturity levels must be met. Each level is composed of a set of Key Process Areas (KPAs),
such as Requirements Management at the Repeatable Level, while each KPA is in turn com-
posed of a set of specific practices.

This view of process maturity is independent of tools or tool support. However, at higher levels
of software maturity, there is increasing overhead associated with maintaining this maturity,
as a result of the cumulative number of practices that must be supported. To get an idea of
the extent of the effort required to achieve a particular maturity level, Table 2-1 shows the num-
ber of pages of practices from [Paulk 93b] that are required to characterize each maturity level.
Since each page provides specific and detailed information and guidance, these simple data
give an idea of the effort necessary to reach and sustain a particular level. Clearly, not all prac-
tices can be automated or even supported by software tools. However, a significant number
can have at least partial support, and it has been argued [Ett 91] that “[a]utomated process
enactment support is necessary to achieve a process maturity beyond SEI Level 3 in a COST
EFFECTIVE manner.” Given the large number of practices at and below Level 3, it is possible
that automation may also be a critical component for levels 2 and 3, if cost effectiveness is
important.

In many instances, there is a clear relationship between tool functionality and the needs of a
particular Key Process Area. For example, the Level 2 KPA “Software Project Planning” is like-
ly to make use of project management tools. While this relationship is important, it is more use-
ful, in the context of this report, to correlate tool use to the broad goals of each maturity level.
Figure 2-21 illustrates this other relationship. For example, at Level 2, there will be sets of
guidelines on tool selection, tool use, and tool training at the project level. In addition tool use
will be integrated into the project-defined processes by which the software is produced. The
view of the technology/process relationship shown in Figure 2-2 is useful because it implies
that one can start to use a PCF at any maturity level. However, if a PCF is used at Level 1,
only limited components of its functionality can be effectively employed (for example, code de-
velopment at the individual level, personal scheduling, and task routing).2 At Level 2, a much

1. This figure was developed by the author to be consistent with the CMM, but is not part of it.

2. This is not to say that an actual Level 1 organization cannot start to define its processes and then implement
some of the simpler, less critical of them through a PCF. Indeed this may be part of the activities that the Level
1 organization performs in order to achieve Level 2.

Table 2-1: Pages of Practices at the Five CMM Levels

Maturity Level 1 2 3 4 5

Pages of practices at Level 0 84 100 32 48

Cumulative pages of practices at Level 0 84 184 216 260
10 CMU/SEI-94-TR-007

(1) INITIAL
Individualistic, craftsman-like approach used.
No guidelines or standards in the use of tools.
No metrics gathered.
No support of reuse.
High quality product produced only by skilled craftsmen.
Effective software production limited to small teams.

(2) REPEATABLE
Project-level commonality in use of tools.
Some team-oriented tool-to-tool integrations performed.
Some local metrics gathered/analyzed (level of effort).
Project standards on tool use specified.
Training in use of project tools given.
Some limited reuse of designs and code.

(3) DEFINED
Tool standards are set across the organization.
Local tool selection is based on organizational standards.
Repository for organizational data established.
Corporate reuse library established.
Metrics gathered based on organizational standards.
Metrics stored in org. repository -- for trends, profiling.
Organizational tools training standards established.

(4) MANAGED
Process improvement is driven by quantitative
analysis of metric data.

(5) OPTIMIZING
Innovative tools and technologies evaluat-
ed for and adopted into the organization.

Figure 2-2: Tool-Use Characteristics at the Five Maturity Levels
CMU/SEI-94-TR-007 11

broader set of functionalities can be invoked, since project processes can be enacted through
the PCF.

2.3 Why Use a Process-Centered Framework?

PCFs represent a new class of software that integrates the people in the organization with the
development process and with the supporting technology. Unlike compilers, editors etc., PCFs
primarily affect how work is performed rather than what is produced. PCFs provide the “glue”
that actively manages the flow of work between people and their tools. Thus the issues that
must be addressed in their adoption are significantly different from those for standard CASE
tools. Some of these issues are already known through experiences with the software factory
concept [Cusumano 91], but there may be novel issues that, because of the lack of practical
application of PCFs in real-world settings, we have yet to discover. The primary motivations
for using a PCF are improvement of quality and productivity; each of the items discussed be-
low directly supports these goals. There are some significant advantages to using a PCF and
some disadvantages. These are also discussed below.

2.3.1 Advantages of Using a PCF

Use of a PCF inherently forces one to define one’s processes in a rigorous enactable sense.
This discipline alone is a major benefit. It allows for improved communication and understand-
ing between the human participants and for consistency in how things are done. While use of
a PCF cannot guarantee process improvement, used correctly it can certainly support the im-
provement effort by encouraging process definition and use. Training new employees in the
process [Kellner 89] is supported both off-line and on-line. off-line support is available through
use of the defined model to teach the novice the overall structure of the process. On-line, the
novice (like other parties using the process) is guided through the process and thus requires
a less detailed knowledge of the process in order to do his/her job effectively. In this way, fewer
process-related errors are likely to be made. Whether the user is a novice or not, a PCF can
eliminate the need for project personnel to perform many mundane tasks. Automated actions
can be initiated on the basis of certain process states being reached, information can be pre-
sented to the user when appropriate, and messages can be sent between agents (human or
not) when necessary.

As a by-product of having one’s processes defined in an enactable sense, one can build up
an enactable-process reuse library. This library can be of enormous help to others in the or-
ganization who have similar process needs [Kellner 93b]. Thus a project that has developed
a particularly effective process (say, for peer review) can save the process in the corporate
reuse library for access by others. By so encouraging this consistency and uniformity of pro-
cess use, the organization is not only saving resources, but it is supporting Maturity Level 3
characteristics.
12 CMU/SEI-94-TR-007

If a process cannot be measured, then improvement is a matter of opinion. However, collect-
ing metric data manually has several drawbacks. First, developers generally do not want to
waste their time manually filling out metric data forms, for either time-dependent data or code-
dependent data, if they see no direct benefit to their work. Second, manually-generated data
is likely to be error-prone and inconsistent,3 particularly if the data is collected with resentment
and suspicion. Resentment and suspicion are related to the issue of intrusiveness, that is,
management “spying” on developers and using the collected data as fodder for job evalua-
tions. However, this problem exists whether a PCF is used or not. (Suggestions for its solution
are addressed later in Section 8.2.) Metrics collection and analysis can be major time consum-
ers, and use of automation in this area could thus be a significant contributor to productivity.
Of course, the collection of complete and accurate data also enhances product quality. Anal-
yses of this metric data should lead to improved automated processes, and these improve-
ments can then be permanently captured in the corporate reuse library.

In a traditional software development organization, it is often difficult for management to obtain
current information on project status, etc., particularly if the project is large. Since the automat-
ed control of a process requires a current knowledge of task and product status, decisions tak-
en etc., this information can also be made immediately available to management. Thus
management can request reports on such current information as “list of tasks completed” or
“status of change requests”.

An indirect advantage of PCFs is that they may make CASE technology more effective. Earlier
it was mentioned that CASE tools are too often viewed at a tactical level, that is, organizational
issues such as process adoption and improvement are not seen as important elements to suc-
cess. However, PCFs force one to address these very issues. Thus embedding CASE tools
into a PCF may provide those CASE tools with a context to make them more effective.

2.3.2 Disadvantages of Using a PCF
Besides the significant advantages described above, there are some potential pitfalls to using
a PCF. First, not all software development organizations have characteristics compatible with
high degrees of process automation. This is particularly true for organizations in which con-
ceptually new software is being developed. These organizations may not easily be able to sta-
bilize their processes and may have to operate in a craft manner (i.e., using small teams of
highly competent professionals).

Second, the notion of letting a machine control how one works has negative connotations as-
sociated with mindless mass production. Designing an automated process to be human-com-
patible, while challenging, is critical to success. Thus, in addition to understanding the
mechanics of building process programs, the designer of these processes must have insights
into human behaviors, motivations, and expectations, and must be sensitive to the needs of
the project for which the processes are being developed. As will be discussed later, it is prob-

3. Of course, automated collection of metrics can be prone to its own types of errors, for example, if the duration
of a task is equated with the task effort.
CMU/SEI-94-TR-007 13

ably essential for success that those who will use the automated processes should also be
involved in their design. While management may see process automation as a means to con-
trol the developers (through, for example, greater access to status information), developers
will only accept such automation if it is perceived to support their developmental needs (e.g.,
it liberates from chores rather than enforces unrealistic constraints). An example of a badly
designed system might be one in which management can too easily spy on the minute-to-
minute activities of developers.

Another pitfall in designing automated process models is the inability to handle unanticipated
events. For example, the model may have to be modified during the project’s execution in or-
der to handle extra staff. Such events will surely occur. Thus, PCFs should contain mecha-
nisms to allow the process designer to adapt processes during their real-time execution.
Because this activity may introduce erroneous process behavior, such modifications can have
potential danger and must be managed very carefully. In addition, there may be even more
severe situations from which it is not possible to revert to an automated process. For these
cases, built-in mechanisms to allow the process model to gracefully degrade to manual control
should be considered.

A practical but important consideration is what might be called “process roll-back”. Situations
may occur, for example, where a technical error is made and not caught at the time. The pro-
cess moves forward, and later on the problem is identified. With a non-automated process,
there is likely to be sufficient flexibility within human control, so that manual corrections can be
made. However, with the automation of a predefined process, reversing back to correct the
problem will be much more difficult. In the simple case of a wrong button being pressed, an
“undo” feature will be sufficient, but after a sequence of permanent changes have been com-
mitted, the complexity of the fix is much higher. Currently, the only practical solution may be
to take the automated controller off-line, fix the problem manually, and then restart the control-
ler.
14 CMU/SEI-94-TR-007

3 An Experimental Investigation into PCFs

In order to better understand the technology behind process-centered frameworks, two prod-
ucts are examined. These products are ProcessWeaver, developed by Cap Gemini [Process-
Weaver 92], and SynerVision, developed by Hewlett-Packard [SynerVision 93a, SynerVision
93b]. These are typical of a new generation of commercially available products that have re-
cently become available. Information to contact the suppliers of these and other PCFs4 can
be found in Appendix A.

3.1 The Experimental Approach

To compare the technologies behind ProcessWeaver and SynerVision, a modified version of
an evaluation methodology, developed for software engineering environments, is used [Wei-
derman 86]. This evaluation technique is based on several criteria which, in the context of this
investigation, involve the following:

• Since detailed functionality may vary from PCF to PCF, the evaluation
attempts to focus on the activities of the users of a PCF rather than the low-
level features implemented in that PCF.

• The evaluation postpones the inspection of specific features of a PCF as long
as possible. This approach forces one to keep a broad perspective and this
helps with comparisons of PCF functionalities (as opposed to detailed
implementation).

• The evaluation is based on a PCF-independent example of a process. This
ensures that the PCFs are being assessed against the same criteria. It also
reduces the effort since the same process model is used on each PCF.

• Objectivity and repeatability are assured through performing the same well
defined tests on each PCF. Different experimenters, using the same process
example, should come to the same or similar conclusions when evaluating
the same PCF.

• Prior to examining the PCF, it may not be possible to determine all
appropriate aspects of the evaluation.Thus the experimental approach
should allow for iteration and refinement of the approach during the
evaluation.

• The methodology should be extensible in the sense that the experiments can
be easily modified, expanded and improved upon.

The original approach suggested by Weiderman focuses on end users. Such an application to
project management tools is discussed in [Feiler 88]. However, in evaluating PCFs, there are
two classes of user: the developer of the enactable process and the subsequent end-user of
this process. Thus, the approach is modified somewhat to account for this difference. In addi-

4. Since SynerVision has some end-user applications built into it, it has some of the characteristics of a process-
centered environment (PCE). However, for simplicity, both ProcessWeaver and SynerVision will be called pro-
cess-centered frameworks (PCFs). See Appendix D for an elaboration of this issue.
CMU/SEI-94-TR-007 15

tion, some of the original methodology has been simplified. These simplifications result in less
formality and detail in the areas of evaluation questions than suggested in Weiderman’s ap-
proach.

While Weiderman’s approach involved six phases, the approach used here involves eight
shorter phases. The details of these phases and the relationships between them are illustrated
in Figure 3-1. The vertical line down the center of Figure 3-1 separates the development of the

PCF-independent experimental set-up (Phases 1 through 4) from evaluations of each PCF
(Phases 5 through 8), while the arrows represent dependencies. For example, Phase 1 pro-
vides Phase 3 with criteria on what is needed in the process model. A textual description of
each phase is given below.

1. Establish model-building criteria. Establish the functional capabilities against
which the PCFs are evaluated. This includes both the capabilities for
developing and debugging process programs based on the process example.
For example, we may wish to investigate the ability of the PCF to model the
communication between agents (human or otherwise) or the ability of the
PCF to perform syntax checking of the process program.

2. Identify end-user capabilities. Identify end-user capabilities that the PCFs
might provide. Examples are: personal task management, project planning,
or metrics collection. In reviewing these capabilities, one has to be careful not
to conclude that product A is better than product B because it includes tool X.
One design philosophy may result in a suite of tools being integrated into the
product, while another design philosophy may focus on providing process
mechanisms together with the capability for encapsulating tools.

Run end-user

Figure 3-1: Simplified Evaluation Process

Phase 1

Phase 2

Phase 4

Phase 3

Phase 5

Phase 6

PCF-Independent Products PCF-Dependent Products

Identify end-user

Develop evaluation
criteria and questionnaire

Develop process
example and its execution

Implement process
example in PCF

Evaluate developer
and end-user results

Evaluate end-user
role-plays

Phase 7

Establish model-
building criteria

capabilities

Phase 8

script simulations
16 CMU/SEI-94-TR-007

3. Develop process example. Given the information of Phases 1 and 2, develop
the process example against which the PCFs are to be tested. The process
example developed for the evaluation is a document-modification process
and was graphically defined using ProNet [Christie 93b]. Details of this
example, which will be discussed below, is defined independently of the PCF
on which it will later be implemented. An execution script is also developed to
guide the end users through the end-user simulations (see Phase 7).

4. Develop evaluation criteria and questionnaire. Develop a set evaluation
criteria, that are independent of both the PCFs and the process example, and
against which both the developer and end-user evaluations will be performed.
The criteria used are very similar to those identified in [Weiderman 86] and
consist of such items as “ease of learning”, “performance”, “portability”, etc.
Also develop a questionnaire to be filled in by the role players of the end-user
simulation.

5. Implement the process example in the PCF. In each PCF, implement the
process example defined in Phase 3, using the Phase 1 criteria for guidance
in the building process.

6. Evaluate developer results. With the experience gained from the PCF-
specific model-building exercise (Phase 5), assess the capabilities of the
PCF using the evaluation criteria developed in Phase 4, supported by the
model-building criteria of Phase 1.

7. Run end-user simulations. Perform a set of end-user evaluations, in which
several persons act out the process enactment scenario. These simulations
will be guided by the execution script. A copy of the materials provided to the
end-users (including the execution script) is provided in Appendix E.

8. Evaluate end-user role plays. Analyze the end user role-plays using the
Phase 4 evaluation criteria. Also use the Phase 4 evaluation criteria to
address end-user issues that are not part on the end-user process enactment
scenario.

The next four subsections describe respectively the first four phases (i.e., the PCF-indepen-
dent phases) of the of the experiment.

3.2 Model-Building Capabilities (Phase 1)

In order to define the process example, a set of features that a PCF may be expected to sup-
port is identified. These features provide requirements for the design of the process example
and are placed in the following categories given in Table 3-1: development, enactment, re-
source, communications and debugging. The categories are similar to those identified in [NIST
93] (See Appendix D). In addition, [Kellner 90] was reviewed in helping to identify some of the
elements listed in Table 3-1.
CMU/SEI-94-TR-007 17

 be

n

 sup-

le to

ot
e

 of
,

e

il

i-
Table 3-1: Model-Building Capabilities

1 Development issues Discussion

a Scoping of variables If a process is composed of subprocesses, then there should
mechanisms for passing variable values from process to sub-
process and back.

b Modeling hierarchies Models of any realistic complexity cannot be defined as one
monolithic entity. Thus the PCF must allow activities to have
internal structure (i.e., contain sub-activities) that can be broke
out and defined separately.

c Supporting model development In order to construct process models, the PCF must provide
port for model building. This support may be through a textual
language with an editor, a graphical language, or a mixture of
text and graphics.

d Creating a process library In order to enact a process multiple times, it must be possib
store the process program (i.e., the template) with its variables
(e.g., roles) uninstantiated. See also item 2.a.

e Supporting flexibility of task control Humans perform tasks in an opportunistic manner that cann
always be predicted by a process model. For example it may b
legitimate to prepare for a task before all the formal precondi-
tions for the task have been met (as defined in the process
model). Thus the ability to specify differing degrees of control
over task initiation is desirable.

f Modeling standard programming
constructs

The process modeling language in a PCF must have a means
expressing the usual programming constructs such as iteration
conditional testing, and variable instantiation.

g Performing parallel, aggregated
processes

Consider the situation where twenty identical processes feed a
downstream process. The PCF should have the ability to invok
the same template for all twenty upstream processes. Further,
because the number of upstream tasks may not be known unt
run-time, it would be helpful if binding of these could be
delayed until that time.

2 Enactment issues Discussion

a Assigning agents to roles A PCF must be able to distinguish between roles (usually
defined in the process model prior to run-time) and the agents
who actually perform the actions (defined at the start and poss
bly throughout process enaction). The concept of roles and
agents applies equally to humans and machines. The ability to
instantiate roles with specific agents must be supported.
18 CMU/SEI-94-TR-007

si-

s

 be

and
-
ns

.

ons
ans

ro-

ion.

g
-

b Supporting on-the-fly process modi-
fication

The ability to modify process models on the fly during execution
may be important. Things go wrong during process execution,
and changes may have to be made promptly. It may not be pos
ble to wait until an automated process has terminated before
modifying action can be taken.

c Logging process data Logging of process can be important in order to:
1) debug the process (see also item 5.g),
1) roll back an ongoing process to correct an error,
2) provide post-project verification that the defined process wa
followed, and
3) provide insights for the support of process improvement.

3 Resource issues Discussion

a Invoking tools A PCF must provide the mechanisms through which tools can
invoked. Such invocation may involve simply starting the tool or
it may involve accessing a specific aspect of its functionality.

b Managing objects There is a close relationship between the tasks in a process
the artifacts produced by the tasks. These artifacts may be ver
sions of a product. Thus, having some means to manage versio
of products is a useful capability.

4 Communication issues Discussion

a Modeling communication between
agents

Central to process enaction is the notion of communication,
either from human-to-human, human-to-computer-agent, com-
puter-agent-to-human and computer-agent-to-computer-agent
The PCF must provide mechanisms for such communication.

b Modeling automatic actions As a result of an event occurring, automatically triggered acti
may be necessary. These actions may send messages to hum
or may trigger other automatic events. Means to model auto-
matic actions must therefore be provided.

5 Debugging issues Discussion

a Checking syntax This is the ability to identify and clearly define the source of p
gramming errors.

b Performing reachability analysis This is the ability to evaluate an enactable process model to
assure that all of its parts are accessible during process enact

c Performing deadlock analysis This is the ability to evaluate if there are process states from
which it is impossible to exit.

d Tracing process dynamics The ability to trace the dynamics of the process as it is bein
enacted can provide significant insights for process model vali
dation.

Table 3-1: Model-Building Capabilities
CMU/SEI-94-TR-007 19

o-

-

e
ekly

on

sks,
them.
and

elp.

.
s.
3.3 End-User Capabilities (Phase 2)

End-user applications may be built in (as part of a PCE) or through the invocation of external
tools (as in a PCE or PCF). In either case, application tools will be needed to support the large
majority of processes. Some of the capabilities which are particularly well suited to integration
in a PCF or PCE are reviewed in Table 3-2.

3.4 Process Example and Its Execution Script (Phase 3)

All of the items in Table 3-1 (with the exception of debugging issues) influenced the design of
the process example in some significant way. This example portrays a simple document up-
date process and is formally defined using ProNet notation [Christie 93a, Christie 93b, Earl
93].5 A brief review of this notation is also provided in Appendix C. The elements of the exam-
ple, illustrated in Figures 3-2, 3-3, and 3-4, are described below.

5. Note that the ProNet graphical symbol set used in the first two of these documents is more limited than used
in this report (see Appendix C for current symbol set).

e Querying This is the ability to check on the values of variables during pr
cess enactment (simulation or actual use).

g Spying This is the ability to insert breakpoints in the simulation of a pro
cess in order to examine the status of variables, etc.

g Logging process data See 2.c above.

Table 3-2: End-User Capabilities

Application Discussion

a Scheduling periodic
work

A simple but important application of process support is the ability to initiat
tasks (e.g., time card generation) or present personal reminders (e.g., we
meetings) on a periodic basis.

b Collecting metric
data

A PCF provides many mechanisms which can facilitate the automatic collecti
of process and product metrics.

c Supporting project
management tasks

Both process enactment and project management require information on ta
resources, and agents and the relationships and dependencies between
Thus there is significant overlap in the data needs of process enactment
project management and each can leverage off the other.

d Supporting the
individual user

There are many modest personal tasks with which process automation can h
Examples include: managing “to do” lists, planning work estimates, tracking
work effort, and capturing personal metrics.

e Supporting group
communications

A variety of group activities do not require a full process model to drive them
Examples include: delegating, negotiating, reassigning and coordinating task

Table 3-1: Model-Building Capabilities
20 CMU/SEI-94-TR-007

The group that performs the document modifications consists of a manager and two technical
writers. Following the process flow, shown in Figure 3-2, the manager receives a change re-
quest (CR) from outside and determines through the process review new CR, if it is appropri-
ate for processing. If it is, then there is a selection process, identify agents for roles, that
determines who will perform the editing function and who will perform the review function. Fi-
nally there is the update process, update document, in which the changes are actually made.
The latter two processes have lower level detail, and this exercises the PCF in the ability to
model hierarchies.

The identify agents for roles process, shown in Figure 3-3, contains elements to exercise com-
munication and automatic action facilities in the two PCFs. The manager makes an initial as-
signment of roles (make initial assignments), and these roles are communicated to the two

Figure 3-2: The Modify Document Process

review new CR

identify agents for roles

update document

accepts | falseaccepts | true
$newCR

DO

$manager

editopr notified

has exit composite

has exit condition
has exit condition

has entrance agent

has entrance condition

has entrance artifact

has exit condition

has exit condition

has entrance condition

msgSent
CMU/SEI-94-TR-007 21

Figure 3-3: The Identify Agents for Roles Process

get editor's reply

impose assignments

notify reviewer

notify editor

accepts| true

DO

edAccepts | i,false

$techWriter2

assignments made

$manager

$manager

make revised assignments | i++

i == 1

i == 2

editor notified

CO

has entrance agent

has entrance agent

has exit condition

has entrance condition

has entrance agent

has exit condition

has entrance agent

has exit agent

has entrance

has entrance condition

has exit condition

has entrance condition

has entrance condition

has entrance composite

has exit composite

$editor

has exit agent

has entrance

has entrance condition

has entrance condition

has exit condition

reviewer notified

make initial assignments | i=1

$editor

role assigned | i

$editor

has exit agent

has exit condition

has exit agent

has exit agent

$reviewer

$reviewer

has exit agent

has exit agent

$techWriter1 $techWriter2

has entrance agent has entrance agent

 condition

condition

$techWriter1

has entrance agent

$editor

$techWriter1

$techWriter2

has entrance agent

has entrance agent

has entrance condition

$reviewer

$reviewer

has entrance agent

has entrance agent

has exit condition
edAccepts | i,true

$newCR

has entrance artifact
22 CMU/SEI-94-TR-007

individuals. The person assigned the editor role can accept or reject that role (get editor’s re-
ply). If the reply is “accept”, then the other person is automatically notified through the notify
reviewer activity that he/she has been given the reviewer role. If the first person rejects the
editor role, then the second person is automatically requested to take on the editor’s role

Figure 3-4: The Update Document Process

get doc

modify doc | i=1

review doc

$editor

$document | 0

$document | i

DO

$comments | i-1

docRepos

docRepos
editor notified

has entrance store

has exit artifact

has exit artifact

has entrance artifact

has exit composite

has exit

has entrance store

has entrance artifact

has entrance artifact

has entrance agent

has entrance condition

$newCR

put doc

has entrance artifact

modify doc again | i++

$editor

has entrance agent

$newCR

has entrance

has exit

has entrance artifact

docSaved

has exit condition

sendMsgToMgr

has entrance

msgSent

has exit artifact

$document | i

has entrance artifact

has exit condition

condition

passReview

has exit artifact

has entrance artifact

has entrance condition

condition

has entrance
artifact

artifact

artifact

$comments | i

$reviewer

has entrance agent
CMU/SEI-94-TR-007 23

(make revised assignments). This person can also accept or reject the editor’s role. If “reject”
is selected, then the manager is notified and a manual assignment is made through the activity
impose assignments. In this case the writers are notified of the manager’s decision (through
the notify editor and notify reviewer tasks).

The remaining high level process, update document, is shown in Figure 3-4. To perform the
tasks in this process, the document is removed from a simple repository, edited, reviewed, and
then replaced into the repository. Thus some simple SCM functionality is required. The pro-
cess starts with the system extracting the document from the repository and presenting it to
the editor (get doc). The editor then revises it as described in the change request (modify doc).
After the modified text has been reviewed (review doc), the document is then either approved
by the reviewer or sent back to the editor with review comments for further modification togeth-
er. If the reviewer approves the changes, the document is put back into the repository and the
manager is notified that the process is complete (put doc).

Note that items 1a, 1b, 1c,1d, 1f, 2a, 3a, 3b, 4a, and 4b of Table 3-1 are explicitly tested by
the process example. It should also be noted that there are many aspects of the two PCFs
being addressed that are not being tested. For example, both PCFs have significant capability
in the area of external communication and tool encapsulation.

The execution script for the process example is now reviewed. Appendix E provides the eval-
uation materials which were given to the participants of the end-user evaluations. This script,
which is part of the end-user evaluation materials, is shown in Table E-1 and follows one of
many possible process scenarios. In this particular scenario, the manager receives an incom-
ing change request to modify a document (item 1 in Table E-1) and identifies his initial choice
of editor (item 2). Both technical writers (A and B) initially refuse to accept the role of editor
(items 3 and 5), and this forces the manager to impose the editor role on Technical Writer A
(items 7). After Technical Writer A has performed the requested modification (item 10), the
documents are sent for review to Technical Writer B who in turn adds a comment in the sup-
porting document Review Comments (item 11). The task is then automatically sent back to
Technical Writer A who again edits the document (item 12), after which it is sent back to Tech-
nical Writer B for a second review. At this point, Technical Writer B accepts the modification
(item 13), the document is automatically saved in the repository, and the manager is notified
that the modification has been successfully completed (item 14).
24 CMU/SEI-94-TR-007

3.5 Evaluation Criteria and Questionnaire (Phase 4)

In order to assess the adequacy of the two PCFs, a set of evaluation criteria are established.
These criteria are defined independently of the model-building capabilities (Phase 1) and the
process example (Phase 2). They are, in fact, a modification of the set suggested in [Weider-
man 86], and are shown in Table 3-3. These form the basis for the evaluation which the author

performed. Also, an end-user questionnaire is developed. This questionnaire, shown in Table
E-2, lists the questions that the role players answered after performing in the simulated docu-
ment update process. An analysis of the responses to these questions is provided in Section
6.

In summary the sequence of tasks that will be performed using SynerVision and Process-
Weaver is as shown in Figure 3-5.

Table 3-3: PCF Evaluation Areas

1 Functionality a) Completeness of major functional areas for develop-
ment, as identified in Tables 3-1.
b) Completeness of end-user functional areas as defined
in Table 3-2.

2 Developer issues a) Ease of learning.
b) Ease of use.
c) Effectiveness of support for development.
d) Quality of on-line help.
e) Error handling.

3 End-user issues a) Ease of learning.
b) Ease of use.
c) Clarity of presentation.

4 Performance a) Execution time efficiency.
b) Space efficiency.

5 System interface a) Ease of tool integration.
b) Portability.
c) Interface to operating system.

6 Off-line user support a) Support from customer representatives.
b) Clarity of documentation.
c) Availability of hands-on training.
d) Availability of encoded process examples.
CMU/SEI-94-TR-007 25

Implement the process example in the PCFs

using the specifications of Figures 3-2, 3-3 and 3-4)

Evaluate issues identified in

Evaluate end-user responses to role plays (Table E-2)

Perform end-user role plays

Figure 3-5: Sequence of Evaluation Tasks

(results evaluated in Section X.3*)

(results evaluated in Section 6)

* where X=4 for ProcessWeaver and X=5 for SynerVision

Table 3-3, supported byTables 3-1 and 3-2

(model-building guided by Tables 3-1, and 3-2

 (Tables E-1 and E-2)
26 CMU/SEI-94-TR-007

4 The ProcessWeaver Experiment

4.1 Review of ProcessWeaver

ProcessWeaver provides a suite of tools for the management of individual tasks and for pro-
cess automation (i.e., sequences of tasks). The end user of ProcessWeaver is provided with
a main window called the Agenda, and it is through this window that tasks, called Work Con-
texts, are sent, received, or worked on. Work Contexts appear as icons in the Agenda and can
be opened to provide detailed tasking information. In addition, there are several windows to
support the development of processes. These are the Method Editor, the Activity Editor, the
Cooperative Procedure Editor, and the Work Context Editor. The Method Editor provides the
capability for defining activity hierarchies, while the Activity Editor allows task inputs, outputs,
and roles for these activities to be specified. Through the Cooperative Procedure editor, one
can model the detailed task-level processes for each activity. Finally, the windows through
which the end user performs tasks, are designed using the Work Context Editor. These ele-
ments of ProcessWeaver are reviewed in more detail in the following subsections. The final
subsection (4.1.6) provides an “integration” view, since there are many components to Pro-
cessWeaver and the relationship between these components is not at first obvious.

4.1.1 Agenda Window
The Agenda window acts as a central location for managing an individual’s tasks. The current
tasks are displayed as icons in the Agenda window as shown in Figure 4-1. In this instance,
the task UpdateDocument is the Work Context icon. These tasks may either be isolated “to
do’s” or may be elements of a more complex process. If they are isolated “to do’s”, they may
be delegated from someone else or they may originate locally from the person who “owns” that
Agenda. In the latter case, the Work Context could reflect a personal task that has to be per-
formed on a periodic basis (e.g., defining monthly objectives) and automatically appears on
the first day of the month. Delegation of a task is performed simply by dragging the Work Con-
text icon over to the Delegation icon (the report) on the right of the window. This generates a
predefined list of candidates, from which one or more are selected. A completed task can be
eliminated by dragging its icon over the garbage can icon.

The menu bar along the top of the window provides a variety of options. The Weaver option
allows one to access the editors for Work Contexts, Cooperative Procedures (i.e., processes),
and Methods (i.e., activity hierarchies). The Work Context option primarily allows one to select
individual Work Contexts to be instantiated for a specific task and perhaps delegated. The Pro-
cedures option allows one to generate a new instance of a process, while the Preferences op-
tion allows one to customize some setup parameters, such as setting an alarm when a Work
Context is received.
CMU/SEI-94-TR-007 27

4.1.2 Work Context Window
On double clicking a Work Context icon in the Agenda window, its associated window ap-
pears. A typical Work Context window is shown in Figure 4-2. Notice that there are three dif-
ferent types of objects. These are: message boxes, icons representing elements of the task to
be worked on, and control buttons. These three items are all the object types that need to be
supported by Work Contexts. In the message box, variables can be embedded in the text.
Thus in the example above, a role variable (e.g., $person) can be instantiated at run-time with
a name (e.g., Alan). These boxes can also be used to input information into the process. By
clicking on an icon, the user can activate the corresponding object. This could be a text editor,
compiler, or CASE tool.

Individual Work Contexts can be developed or modified using the Work Context editor. This
function allows the developer to customize Work Contexts with any combination of text boxes,
icons and buttons that is appropriate to support the end user. A wide variety of icon designs
is provided, and one can associate an icon with an appropriate tool or document. A default tool
set is provided and this set can be extended by the developer if necessary. Buttons are given
identifiers so that they can be associated with a particular decision path of a process model.

Figure 4-1: An Agenda Window
28 CMU/SEI-94-TR-007

4.1.3 Method Editor
As mentioned above, the two previous views (the Agenda and the Work Context) support the
end user of the process while the next three views (the Method, Activity, and Procedure Edi-
tors) support the process developer. ProcessWeaver models projects by structuring them into
a hierarchy of activities. An example of a simple hierarchy is shown in Figure 4-3. The window
in Figure 4-3 supports a variety of functions. First through the Edit option one can add, delete,
and append both activities and decomposition levels to the hierarchy. Through the Check op-
tion one can examine measures related to, for example, the consistency of input and output
products between activities, and this can be very useful for the verification of large models.
The Run-time option allows one to generate simple default cooperative procedures (process-
es) automatically that are attached to the activities; these are discussed in Section 4.1.5. Each
of the activities has associated with it an Activity Editor that defines the inputs required by that
activity, the roles required to support the activity, and the outputs generated by that activity.

Figure 4-2: A Work Context Window

.

CMU/SEI-94-TR-007 29

4.1.4 Activity Editor
Each Activity Editor window displays information related to one activity; a typical Activity Editor
window can be seen in Figure 4-4. This window can be accessed for a particular activity by
double clicking on that activity in the Method Editor window. The main items displayed in the
Activity Editor window are the inputs, outputs, and roles associated with the activity. It is these
items against which the Methods Editor can perform consistency checking, over the whole
process model, as discussed in Section 4.1.3. By clicking on the Edit button, one activates the
Cooperative Procedure Editor window.

4.1.5 Cooperative Procedure Editor
The Cooperative Procedure window defines the detailed processes using a Petri net [Reisig
82] notation. A very simple default process model is illustrated in Figure 4-5. Petri Nets were
initially developed to model synchronous and asynchronous events in communication sys-
tems and have been adapted by ProcessWeaver for process definition and enactment. These
nets consist of three kinds of elements that can be displayed graphically: places (denoted by
circles), transitions (denoted by rectangles), and directed arcs. Arcs connect places to transi-
tions and transitions to places. In addition, the concept of tokens (that are inserted into places)
is used for process enaction to mark a place that has been asserted in some way (e.g., made
TRUE). If a token is in a place, then all the arcs emanating from that place are said to be load-
ed, and if all the places leading to a transition have tokens, then the transition is said to be
enabled. Within this process context, transitions represent state changes while places repre-
sent states. Thus, when a condition is satisfied, and the associated action taken, the process
can transition from one state to the next.

Figure 4-3: A Method Editor Window
30 CMU/SEI-94-TR-007

In Figure 4-5, the process begins at the place with the inserted token. An event at the next
higher level in the activity hierarchy may initiate this sub-task. The Perform_Update transition
has no entrance condition. The window associated with the action (not shown) provides three
elements. First, actions can be taken by executing some code written in ProcessWeaver’s Co-
shell scripting language. Second, the agent who will perform the action is identified. Finally,

Figure 4-4: An Activity Editor Window
CMU/SEI-94-TR-007 31

the Work Context, that will be sent to the agent, is identified. When the agent has finished the
work, the Done button (defined in the Work Context) is pressed, and the token moves to the
place marked END.

Figure 4-5: A Cooperative Procedure Window
32 CMU/SEI-94-TR-007

Down the left hand side of the Cooperative Procedure window is a set of transition icons. The
graphical part of the process model can be rapidly constructed simply by dragging icons from
the left-hand edge of the window and placing them in the model definition area. These can
then be connected by dragging a line between (legally-connected) icons. In the graphical mod-
el, each transition is composed of two parts — a condition part and an action part. Upon double
clicking one of these icons, an information box, customized for that type of icon, appears and
lets the model developer enter appropriate information. During execution, the condition part
must be satisfied before the action part can be initiated. In addition to the null (always true)
condition, there are four other types of condition (Event, Wctxt, Collect and Proc). These are
described briefly below:

Event: This icon implies “waiting for an external event”. For example, it could mean
that some set of external logical conditions has occurred, such as a word processor
updating a file, in conjunction with “Joe” being the editor on that file. External events
can also include events on the ProcessWeaver communication bus.

Wctxt (work context). This icon implies that a cooperative procedure is waiting for
an answer from a work context currently being performed. For example, when a
button named Done is pressed inside a work context, the Wctxt condition is set to
TRUE.

Collect. This icon evaluates a set of conditions — either work contexts or events. It
can be made to fire when all the incoming conditions are TRUE or when only one
of the incoming conditions is TRUE.

Proc(edure). This icon waits for a given state (e.g., completion) of a sub-process
previously launched.

Empty. This icon implies that the condition is always TRUE.

In addition, there are five types of action, each action having an associated icon. The action
associated with one of these icons is taken when the corresponding condition is TRUE. These
actions are named: Wctxt, Progr, Distr, Proc, and Empty. These are briefly described below:

Wctxt (work context). When this icon is activated, a work context is sent to the per-
son designated in an information box attached to this icon.

Progr (programming). Allows one to describe required actions, using Process-
Weaver’s Co-shell programming language. This language provides many function-
al features such as:

•manipulation of variables and lists,

•ability to perform arithmetic and logical operations, and provision
for constructs in tests, and control, etc.;
CMU/SEI-94-TR-007 33

• communication with users through work contexts;

• manipulation of events on ProcessWeaver’s communication bus through
constructs that are similar to Hewlett Packard’s Broadcast Message Server;
and

• support for development of user-defined Co-shell functions.

Distr (distribution). This icon allows for the sending of a work context to multiple
recipients. Its behavior is similar to the Wctxt action.

Proc(edure). This icon initiates a sub-process of the current process at run-
time.

Empty. This icon implies that there is no action.

4.1.6 Pulling the Elements Together
Given the number of elements that contribute to a ProcessWeaver model it can be a challenge
for the novice to understand how all these elements tie together. Figure 4-6 provides a simpli-
fied description of such an integrated picture. For the process developer, the Method Editor
provides a hierarchical view of the major activities. Each of the activities defined in the Method
Editor window has two associated windows: an Activity Editor that specifies the inputs, out-
puts, and roles required for the activity, and a Cooperative Procedure Editor that defines the
lower level elements of the process using the Petri net notation. Each transition in the Petri net
is composed of a condition part and an action part, the action taking place when the condition
is met.

In the end-user view (at run-time), a process template is instantiated by a user (e.g., project
manager) who invokes an existing Cooperative Procedure under the Procedures menu in the
Agenda. This user does not see the Petri net process model, but is presented with a window
(not shown) in which the roles, documents and other artifacts to be used in this specific pro-
cess are instantiated. For example, the role $editor may be instantiated with the specific agent
(e.g., Alan) who carries out the operation, while the file to be modified, $doc, may be instanti-
ated by the document War and Peace. Upon receiving this information, ProcessWeaver can
start to enact the process (initiating Work Contexts, performing automatic tasks, etc.).

Through its activities, a cooperative procedure may perform a variety of types of functions.
These were reviewed in Section 4.1.5. One of the important types of function is to be able to
send Work Context messages to human agents who are responsible for tasks. These mes-
sages appear on the receiver’s Agenda window as Work Context icons. (In Figure 4-6, the task
is UpdateDocument.) On opening the icon to view the full Work Context window, the agent
should find sufficient information to perform the task. In the example shown in Figure 4-6, a
document icon (War and Peace) is seen on the Work Context window, and when this is
34 CMU/SEI-94-TR-007

Figure 4-6: Overview of ProcessWeaver Elements

Developer Views

End-user Views

Method Editor

Activity Editor

Cooperative Procedure Editor

Document Edit Window

Work Context Window
Agenda Window
CMU/SEI-94-TR-007 35

opened, the actual document to be worked on appears. Note that you can also open the
change request Too Long as well. When the task has been completed, the Done button on the
Work Context window is pressed. This state change, resulting from pressing the button, is de-
tected by the UpdateFinished condition in the Cooperative Procedure which then allows the
process to move forward.

4.2 Developing the ProcessWeaver Process Model

To develop the ProcessWeaver model, it was originally intended that the activity hierarchy
shown in Figure 4-3 be used. However, this had to be modified because of a variable scoping
problem that was encountered. It was intended that the persons taking on the roles of editor
and reviewer be identified in the sub-activity IdentAgentsForRoles. However, as Process-
Weaver is currently structured (in Version 1.2), a variable that is instantiated in a certain activ-
ity can only have the instantiated value used in that activity or in child activities. Hence the
activity structure had to be simplified as shown in Figure 4-7. The activity ReviewIdentify in

Figure 4-7 thus includes the parent activity (DocUpdate) and the child activities (ReviewCR
and IdenAgenForRoles) shown in Figure 4-3. The Cooperative Procedures for ReviewIdentify
and Update are shown in Figures 4-8 and 4-9 respectively.

The upper part of Figure 4-8 defines the process through which the manager reviews the
change request. To do this review, a Work Context is displayed on the manager’s terminal al-
lowing the CR to be accessed for review and providing accept and reject buttons. Figure 4-8
shows the two paths taken depending on his choice. The second part of the figure defines the
process for selecting the editor and reviewer. The logic of this process is the same as that of
Figure 3-3, although the implementation is modified to conform with ProcessWeaver’s Petri
net notation. Note that this graphical model is not sufficient to completely define the process
model; fragments of co-shell scripting are associated with many of the transition icons.

Figure 4-9 is a fairly straightforward adaptation of Figure 3-4. The document is checked out of
the repository, modified by the editor, and sent to the reviewer. If the reviewer passes the doc-
ument, the updated version is checked back into the repository. Otherwise, the modifications
are rejected by the reviewer, and the document is passed back to the editor with suitable com-
ments in a review comments notebook. Check-out and check-in are implemented using the

Figure 4-7: Activity Hierarchy for the Example Process
36 CMU/SEI-94-TR-007

Figure 4-8: Cooperative Procedure for the Activity ReviewIdentify
CMU/SEI-94-TR-007 37

Unix SCCS commands get and delta that are embedded in the auxiliary Co-shell functions
shown in Figure 4-10. Libraries of such functions can be developed for general process use
and are attached to a Cooperative Procedure for use within that Cooperative Procedure.

Notice at the end of Figure 4-8 that the subprocess Update (Figure 4-9) is initiated through a
procedure call to the action StartDocMod. The procedure EndDocMod watches for the termi-
nation of this subprocess.

Figure 4-9: Cooperative Procedure for the Activity Update
38 CMU/SEI-94-TR-007

Clearly, the graphical model cannot be expected to define the detailed logic required for en-
actability. For example, as noted above, calls to SCCS functions have to be made. In other
cases, conditions require explicit tests to be performed, and actions may require that assign-
ments of roles to agents be made. These statements are generally made using the Co-shell
language windows that can be accessed through the condition and action icons.

4.3 The Evaluation

In reviewing the issues to be evaluated, Table 3-3 is the primary focus. Each of the items in
categories 1 through 6 of Table 3-3 will be discussed in a separate section below.

4.3.1 Functionality
Category 1 of Table 3-3 is the largest of the six categories, since it is expanded to include an
assessment of the capabilities defined in Tables 3-1 and 3-2.

4.3.1.1 Model-Building Capabilities

Development: Scoping of variables. ProcessWeaver allows the value of a variable, instan-
tiated in one activity, to be used in activities of children (and their children, etc.). However, vari-
ables instantiated at the child level do not have their values propagated up to the parent or
higher levels.

Development: Modeling hierarchies. ProcessWeaver models activity hierarchies using the
Method Editor. While this breakdown describes parent-child relationships between activities
as a tree, it does not specify the sequencing of child activities within the parent. This
sequencing is specified by the process flow for the parent activity as defined in the Coopera-
tive Procedure. The Cooperative Procedure uses the Procedure action (see Section 4.1.5) to
initiate sub-activities under it. Because of the scoping problem discussed in the paragraph
above, there were significant restrictions imposed on the way the activity hierarchy for the
experiment could be constructed. (See also the first paragraph of Section 4.2).

Figure 4-10: Co-Shell Library Functions to Retrieve and Save Document Files

define sccs_get($path, $file)
$command=format(“cd ”, $path, “;”, “/usr/ucb/sccs get -e s.”, $file,
“sccs.out 2>&1”);
system($command);

end;

define sccs_del($path, $file)
$command=format(“cd ”, $path, “;”, “/usr/ucb/sccs delta s.”, $file,
“sccs.out 2>&1”);
system($command);

end;
CMU/SEI-94-TR-007 39

Development: Supporting model development. Process models are developed with
graphical notations to support high level decomposition of activities (through the Method Edi-
tor) and to define the lower level process (through the Cooperative Procedure Editor). Both of
these graphical views are supported by textual information that is input through forms linked
to the graphical editors. This graphical approach helps productivity by allowing a rapid devel-
opment of the overall process model. In addition, fewer syntactic and semantic errors are
introduced in comparison to a purely textual approach. The graphical form of the model also
allows for better communication with persons unfamiliar with process modeling.

Development: Creating a process library . ProcessWeaver stores processes in templates
and these templates can be reused. Each process is stored in multiple files each of which
uses ProcessWeaver’s Universal Storage Mechanism. This mechanism uses an ASCII for-
mat which aids in porting process from one platform type to another. Different file types are
created for Methods, Cooperative Procedures, and Work Contexts. These files are humanly
readable and can be manipulated using certain Co-shell functions. However, hey are created
primarily as means to capture, in textual form, the graphically-defined process models.

Development: Supporting flexibility of task control. Humans can be very creative at start-
ing tasks in an opportunistic manner. Thus they may wish to start tasks before all the precon-
ditions for these task have been satisfied (as defined in the process model). For example, a
certain task may require the integration of ten software components, and cannot formally
begin until all the components are available. However, preliminary integration work can rea-
sonably start when only five of the components have been completed. In this case, one would
like to relax the constraint that all components must be available before the task can begin.
Allowing for different degrees of constraint on task initiation is thus an important feature which
should be incorporated into the process programming language.

Currently, ProcessWeaver does not allow such flexibility in task initiation. When one defines
the Petri net associated with a Cooperative Procedure, all tokens must be in the places pre-
ceding a transition before that transition can be acted upon. A more flexible approach would
be to provide for two types of places: the first type (as now exist) are mandatory, i.e., the tran-
sition cannot start without a token being in the place preceding the transition. The second
type of place is non-mandatory, i.e., a transition can start without there being a token in the
preceding place. While the transition could be initiated without a full compliment of tokens,
the transition could not terminate until all tokens are in place.

Development: Modeling standard programming constructs. Because of the graphical
nature of the process modeling approach, there is a reduced need for conventional program-
ming. This reduction is enhanced by the fact that much information is supplied through fields
in standard forms. However, ProcessWeaver does have an expressive textual language
called Co-shell with which to describe lower level constructs to support list manipulation, vari-
able assignment and testing, and flow of control. Co-shell programming scripts are most
commonly found in the Prog actions described in Section 4.1.5.
40 CMU/SEI-94-TR-007

Besides supporting these standard programming constructs, Co-shell also provides functions
to support the manipulation of data and events. ProcessWeaver files conform to an ASCII-
based humanly readable format (called the Universal Storage Mechanism) and are used to
store the elements of a process. For example, Work Contexts and Cooperative Procedures
are stored in USM files. A suite of functions is supplied that allows for the manipulation of
these files at a low level. A suite of functions is also supplied to manage events and commu-
nication. These allow Co-shell to send and receive messages, allowing components (Unix
processes) to communicate through the network. Co-shell can thus, for example, listen for
the saving of a specific file and take action when this occurs. Finally, a useful feature of the
Co-shell facility is that the shell language can be invoked from a Unix window and can be
used to interactively debug Co-shell scripts.

A second method of invoking tools is through direct calls to the Unix operating system using
the Co-shell language. This was the approach used in the experiment to invoke the SCCS
tools get and delta, in order to automatically extract and return the document to the configura-
tion management repository (see Figure 4-10).

Development: Performing parallel aggregated processes. There are many situations
where multiple, identical subprocesses converge into a single downstream process. An
example of this is where several software components are integrated to produce a complete
system. To facilitate the development task in such cases, ProcessWeaver allows one to cre-
ate a default Cooperative Procedure and then load this into multiple parallel activities. Thus,
for example, one could load the Cooperative Procedure shown in Figure 4-9 into each of the
three parallel activities shown in Figure 4-3.

Enactment: Assigning agents to roles . ProcessWeaver has a very explicit approach to role
assignment (or variable assignment in general). In a process template, any process entity
(e.g., role, product) can be defined as a variable, to be instantiated when the process starts.
Associated with each Cooperative Procedure is a list which specifies the variables needed to
run the process. These variables can be instantiated by hand through the procedure parame-
ters list, or, in the case of a child process, the parent process may instantiate them.

Enactment: Supporting on-the-fly process modification. The ability to modify an on-going
process may be important, either to adapt to unforeseen circumstances or to improve some
procedure (e.g., replacing someone who has left the project, or adding an improved testing
tool). Currently there are no mechanisms to allow this.

Enactment: Logging process data. Process data logging is a useful feature for multiple
reasons. First, a historical log of process data generated during a debugging run can provide
insights into a process model’s logical correctness. Second, if a product or process error is
made and requires correction, a historic log of the performed process can, in principle, allow
this process to be rolled back to an earlier state and restarted. Third, a historic log of a per-
formed process can support process verification, i.e., a post-project analysis can be per-
formed to assure that the process was adequately followed. Finally, process improvement
can be supported by process data logs as they allow analysis of the effectiveness of the pro-
CMU/SEI-94-TR-007 41

cess. ProcessWeaver does not explicitly provide the capability to gather historic data. How-
ever, it does provide the underlying functionality for such a capability to be built. It does not,
however, provide the capability to perform process roll-back.

Resource: Invoking tools. Tools can be invoked in two ways. First, when a tool is invoked
through a Work Context icon, it must first be defined in a weaver.tls file. A weaver.tls file pro-
vides a mapping between a tool function and the corresponding specific tool for a specific
platform. Thus, when a Work Context calls for a word processor, the weaver.tls file can be set
up to call FrameMaker for the Sun4. In the experiment, Emacs was invoked to display and
edit the text files.

Resource: Managing Objects. During software product construction, multiple versions of
intermediate and final products will be produced. There is therefore a close tie between pro-
cess management and product management. (This can be seen in Figure C-2 of Appendix
C.) Having the capability to retrieve, store, and test for product versions as an integral capa-
bility within the Co-shell language could be useful. As it currently stands, one has to use
external version control functions. (SCCS functions were used to support the Document
Update process).

Communication: Modeling communication between agents . Communication between
human agents is modeled principally using the Work Context concept. Work Contexts can be
used in two ways. First, individual Work Context templates can be instantiated for simple
tasks. After selecting the appropriate Work Context from the Agenda, the initiator of the task
fills out a Work Context parameters form, in which the task roles are instantiated with the spe-
cific entities (e.g., names of people and documents). The appropriate Work Context icon then
appears on the initiator’s Agenda window and can be dispatched to the appropriate person by
dragging the icon over the Delegation icon. Thus ProcessWeaver supports simple task man-
agement and communication between team members.

Second, Work Contexts can, of course, be embedded within processes. This has been
described at some length above. As with simple task initiation, process initiation requires that
roles be instantiated with specific entities prior to process enaction. However, unlike simple
task delegation, the initiator of a process does not have to explicitly dispatch Work Contexts
to assignees; this is done automatically since the process knows which roles are associated
with which tasks, and agents have been associated to roles.

ProcessWeaver can respond to messages broadcast by tools using a protocol which con-
forms to Hewlett-Packard’s Broadcast Message Server. This can be implemented through the
Event condition (see Section 4.1.5). ProcessWeaver can also access tools that are already
available within IBM’s WorkBench/6000 (or equivalently Hewlett-Packard’s Softbench) using
the Co-shell language. This communication is performed by creating a Unix script supported
by the ProcessWeaver command wb_send, that allows WorkBench messages to be sent.
This form of communication was not investigated in the experiment.
42 CMU/SEI-94-TR-007

Communication: Modeling automatic actions. Automatic actions (i.e., elements of the pro-
cess that are performed without human intervention) can be easily implemented as was dem-
onstrated in the experiment. The experiment applied this in two areas: requests to end users
for decisions and invocation of SCCS tools.

Debugging: Syntax checking. Syntax checking is supported both in the Methods Editor and
in the Cooperative Procedure Editor. With the Methods Editor, one can check that all the
inputs, outputs and roles between activities are consistent. Another type of check is the Run-
Time check. This check evaluates whether there are inconsistencies between an activity and
its related Cooperative Procedure (e.g., it can identify inconsistent parameters).

Supporting the Cooperative Procedures Editor is a syntax checking feature. This graphically
highlights any conditions or actions that have faulty syntax statements in attached Co-shell
scripts. If one has a condition or action box open, this option will also highlight the offending
line of Co-shell script.

Co-shell scripts can be interactively debugged off-line by typing coshell in any Unix window.
This provides a vehicle for debugging routines such as shown in Figure 4-10.

Debugging: Tracing process dynamics. One can graphically view an executing process by
selecting the View button located in the Cooperative Procedures main menu. In this mode,
the Petri net tokens can be observed to move from place to place as the process evolves,
thus providing good insight into behavior characteristics. of the process. Ongoing processes
can always be viewed with the View feature, so it also provides a window into the real-time
status of project tasks.

Debugging: Querying. At any point in the process, the interact option allows the user to
implement Co-shell commands thus, for example, allowing values of variables to be exam-
ined.

Debugging: Spying. While one cannot spy on the variables of the process, ProcessWeaver
is supported by a simple spy function that provides information on the messages that are
broadcast on the communication channel (e.g., for event notification and reply).

Debugging: Reachability, deadlock, logging of process data. These are not explicitly
supported in the reviewed version of ProcessWeaver.

4.3.1.2 End-User Functional Capabilities

Scheduling periodic work. ProcessWeaver has the ability to initiate periodic Work Contexts.
The period can be set, for example, so that the Work Context for a task appears on a particular
day of the week or on a particular date in the month.

Collecting metric data. ProcessWeaver has no explicit mechanisms for collecting metric da-
ta. Events can, however, be recorded using the event handler functions of the Co-shell lan-
guage. These mechanisms could be used to construct a metric gathering capability.
CMU/SEI-94-TR-007 43

Supporting project management tasks. ProcessWeaver provides the capability to commu-
nicate with project management tools through a supplied Cooperative Procedure that starts
up a project. This can invoke either MicroSoft Project for Windows or Project Management
Workbench 3.1 under PC/DOS.

Supporting the individual user. ProcessWeaver (V1.2) is primarily designed to support pro-
cesses management, and, other than scheduling periodic Work Contexts, does not support,
for example, “to do” lists or the tracking personal tasks.

Supporting group communications. ProcessWeaver provides effective communication
through the Work Context feature. This feature can be used to initiate and delegate individual
tasks (or just send messages) and is also the communication mechanism used when tasks
are embedded within processes.

4.3.2 Developer Issues
Ease of learning. The graphical nature of ProcessWeaver is a considerable help to develop-
ing processes. ProcessWeaver allows the major activities to be defined through a work-break-
down type of diagram, with each activity having its own process defined though a Cooperative
Procedure (Petri net diagram). This is intuitively appealing and helps with learning. The novice
user may however find the connection between all the diagrams and associated text boxes
somewhat confusing at first, although this decreases as the user gains experience with the
system. The graphical component of ProcessWeaver is supported by the textual Co-shell lan-
guage. This provides lower-level constructs that are difficult to describe graphically. Use of
simple Co-shell scripts was made in the experiment and little difficulty was experienced.

Ease of use. Once ProcessWeaver’s organization is understood, one can develop process
models quite rapidly. The graphical approach to model development is fun, easy to use, and
less likely to promote errors than a textual approach. A generic Cooperative Procedure (that
may be user-defined) can be generated for each activity specified through the Method Editor,
and this is useful for developing and debugging prototypes of the model. However, experience
gained during this investigation indicates that Cooperative Procedures will most likely need
customizing.

The window that displays Cooperative Procedures works well for small process models, like
those discussed in this report. However, ProcessWeaver does not currently have the ability to
zoom in and out of a diagram and scrolling across and down the window is quite slow. These
implementation details are likely to cause some frustrations when larger models are construct-
ed.

Effectiveness of support for development. ProcessWeaver’s graphical approach to pro-
cess definition significantly simplifies and speeds up model-building. The Method Editor pro-
vides a range of options with which to construct and edit activity hierarchies; the Cooperative
Procedure editor allows process elements to be rapidly accessed, linked, and rearranged,
while the Work Context editor provides a very straightforward means of creating the end-user
44 CMU/SEI-94-TR-007

interface. Navigating between the editor windows and other supporting windows was found to
be very easy, once the relationships between the elements was understood. In addition, sup-
port for model debugging (to be described later) was found to be quite comprehensive.

Because each Method, Cooperative Procedure, and Work Context is stored in a separate text
file, the number of files associated with a complete process model can become quite large.
(There were 15 files for the simple example model.) Thus file management and version control
could become an issue. Transmitting all the files for the example model was found to be some-
what tedious.

Quality of on-line help. On-line help is not implemented in the version (1.2) of Process Weav-
er that was used.

Error handling. ProcessWeaver provides a variety of high-level process-oriented error mes-
sages. For example, if one attempts to generate a default Cooperative Procedure for an activ-
ity before any inputs, outputs, or roles have been defined, the message Activity “XXX” has not
been edited yet => no inputs/outputs/roles appears. In some cases, errors cannot occur as
syntax checking prevents illegal states. For example, in constructing a Cooperative Proce-
dure, the system prevents the linking of two contiguous transitions or places.

4.3.3 End-User Issues
Ease of learning . There is a spectrum of end users from those who simply respond to Work
Contexts sent (from an ongoing automated process), to those who develop Work Contexts in
order to communicate requests, and to those who develop simple Cooperative Procedures to
automate short processes. Each of these end-user categories requires different levels of ex-
pertise. Technical learning for the first group is likely to be minimal, although significant behav-
ioral adjustments will be needed for such people. In the second category, development of
Work Contexts can help an individual in scheduling periodic tasks such as writing end-of-the-
month reports, as well as for interaction between individuals. Such development requires
knowledge of a limited subset of ProcessWeaver’s functionality (making and instantiating a
Work Context template), so learning should be straightforward. The third category of end user
will require a lengthier period of training, as knowledge of a significant fraction of Process-
Weaver’s capabilities will be required.

The current ProcessWeaver manual does not address end-user categories, or how Process-
Weaver should be implemented by an end user. Having some guidance in this area (perhaps
through an end-user manual) would thus be of considerable help. End-user learning in the
broader sense must also address technology adoption issues, since a PCF such as Process-
Weaver can potentially have a dramatic impact on the way people work. Teaching personnel
to work within a process that is driven by automation will be a greater challenge than simply
training these personnel on these technical issues.

Ease of use . ProcessWeaver provides a standard Work Context format for presenting infor-
mation related to one task to the end user. This format allows for:
CMU/SEI-94-TR-007 45

• the display of textual information that explains what the task involves,

• document icons that allow access to the documents themselves, and

• control buttons, that allow for decision making such as indicating that the task
has been completed (see Figure 4-2 as an example).

This format was found to be intuitive and easy to use. For some more complex applications it
might be useful to have the functionality provided by pull-down menus, but this is not currently
provided.

Clarity of presentation . As indicated in ease of use, the format of basic Work Context win-
dows through which information is presented is well designed. ProcessWeaver cannot of
course be responsible for process models that have poor explanatory text, inappropriate
icons, or badly chosen controls.

4.3.4 Performance
Execution time efficiency. With respect to response times, there were no long delays expe-
rienced. The following times are for the experimental model that was implemented on a Sun
4 SPARC station running under Sun OS 4.1.2. For the end user, loading a new cooperative
procedure took about one second, while after the roles had been instantiated with agents, it
took about eight seconds for the first Work Context icon to appear in the Agenda window.
Transmitting a Work Context from one user to another took about four seconds. Delay times
associated with developing process models were also modest. Opening the method window
took about a second, opening a Cooperative Procedure window took about five seconds, while
opening a Work Context window took about three seconds. These times are approximate, as
a regular watch was used, and there was some minor variability in the times resulting from dif-
ferent machine loadings. Note that the process used model was small, and the results do not
indicate how response times will vary with model size, nor is it known how response times will
vary with larger numbers of users.

Space efficiency. The ProcessWeaver files take about 13.5Mb of memory (in the bin direc-
tory). User files for the process example took up about 15.8 Kb, half of this being for the Work
Contexts. Additional memory is taken up by each instantiated (run-time) process model. For
the experiment, each instance took up about 8Kb. Since these can accumulate, they can take
up an increasing amount of space if they are not managed. They are deleted if the process
successfully terminates.

4.3.5 System Interface
Ease of tool integration . As discussed above, tool integration was implemented:

• using the weaver.tls file that associates a tool class with specific tools on
specific platforms, and

• making Unix calls through Co-shell scripts.
46 CMU/SEI-94-TR-007

Both approaches were found to work with few problems. These interfaces are relatively simple
and essentially allow one to start and stop tools.

Portability . ProcessWeaver runs on Unix platforms from Hewlett Packard, DEC, and Sun that
support X-windows, X11R4, Motif, NSF 4.0. The Agenda can also be run on PCs running Mi-
crosoft Windows 3.1.

The process model files are all defined using ProcessWeaver’s Universal Storage Mechanism
which is based ASCII-based. They are therefore portable between machines.

Interface to the operating system . Bourne shell commands can be embedded in Co-shell
scripts through the Co-shell system function. Using this mechanism, file read-write access and
the SCCS calls were implemented. Within ProcessWeaver, only files owned by ProcessWeav-
er can have their access permissions changed. This constraint is more a consequence of the
Unix system design than of ProcessWeaver design. In a large project, such files would all have
to be owned by the “process” rather than appropriate individuals, and this might have restric-
tive consequences.

4.3.6 Off-line User Support
Support from Customer Representatives . ProcessWeaver does not yet have a large sup-
port staff in the US, although Cap Gemini is planning to expand this function. However the sup-
port that was provided for the work associated with this report was both responsive and
technically knowledgable.

Clarity of Documentation . The current manuals (User and Reference) [ProcessWeaver 92]
are good for reference but not as tutorials. The User’s Manual does an effective job of explain-
ing many of the low level details. However, it is weak on providing the broad picture, i.e., ex-
plaining how all the functional elements of a process model are linked together. The User’s
Manual could also be improved if it provided examples of use, such as leading a model devel-
oper through the process of model construction, including the use of the Co-shell. In the Ref-
erence Manual, code fragments illustrating the use of Co-shell functions are provided with the
function definitions and these are necessary but not sufficient. A set of functions is provided
to manipulate the ProcessWeaver data files, but little explanation is provided on why these
functions are needed or how they are used. Finally, if the user wishes to use the event-driven
features of ProcessWeaver, he/she must have a working knowledge of this subject — again
little more than a listing of the functions is provided. Thus, a separate tutorial manual covering
model construction, use of the Co-shell language and its event-driven features, etc., would be
of great value and would make ProcessWeaver more accessible to potential users. As men-
tioned earlier, a separate manual covering both end-user applications and automated process
adoption issues would also strengthen the product.

The ProcessWeaver manuals are logically organized and in general information can be found
rapidly. The indexes for both manuals are good, but could be more complete. For example,
none of the terms associated with “viewing” a running cooperative procedure (see Debugging:
CMU/SEI-94-TR-007 47

Tracing of process dynamics) such as view, kill, stop, and sleep are in the User’s Manual in-
dex.

Availability of Hands-On Training . Currently training sessions are limited by the small num-
ber of support personnel in the US. However, Cap Gemini intends to expand this area as it
does with customer support.

Availability of Encoded Process Examples. To date there are few available encoded exam-
ples. The version supplied (1.2) came with one working demonstration. A variety of enactable
examples of varying size and application would be of great benefit, not only for learning the
system, but also as a foundation for customized applications.

4.4 Improvements in Functionality

ProcessWeaver Version 1.2 was reviewed in this report. However, this version is soon to be
superceded by Version 2. Some of the significant updates, which relate to the preceding dis-
cussions, are summarized below. Note that, at the time of writing, the author has no hands-on
experience with this new version. It is anticipated that the new version will be made available
for general release at the end of June 1994.

Version 2 is expected to include, but not be limited to, the following:

• Links will allow integration with Hewlett-Packard’s Broadcast Message
Server (or equivalently IBM’s WorkBench 3.0) and with the IBM
implementation of PCTE.

• A change will be made in the scoping rules to remove the restrictive scoping
problem discussed in Section 4.2.

• A tutorial manual with large example and “how-to” section will be included
with the documentation. Also, user documentation will be available as on-line
context-sensitive help.

• Folders will be provided for organizing Work Contexts.

• Through selection lists, an event can be generated without terminating a
Work Context, as is required in Version 1.2.

• A set of application tools covering configuration management, software
testing and test tracking, and general office automation will be available.

• An Activity Instance Manager (AIM) will be added. This will provide project
management with functions for planning, process tracking, and graphical
browsing of the process model. It is anticipated that the feature will remove
the need for use of external project management tools.

By adding the end-user application capabilities described in the last two items, ProcessWeav-
er is no longer a framework but takes on some of the characteristics of an environment. Thus,
like SynerVision, ProcessWeaver, Version 2, may be called a process-centered environment
(PCE).
48 CMU/SEI-94-TR-007

5 The Synervision Experiment

As in the previous section on ProcessWeaver review, this section starts out with a review of
SynerVision’s approach to process automation. The subsequent sections then deal with Syn-
erVision in the context of the evaluation experiment.

5.1 Review of SynerVision

SynerVision provides four “use-models” that address increasingly broad measures of process
support. These use-models cover:

• management of personal tasks,

• management of group tasks,

• process enactment through the use of process template,

• process-centered environments.6

In the management of personal tasks, personal task hierarchies can be created, and attributes
associated with these tasks can be attached. Such attributes may be associated, for example,
with management of time or with dependencies between tasks. In this way the owner of these
tasks can track and monitor their status. In addition to these personal functions, the use-model
for group tasks contains functionality to support group interactions. Thus tasks can be dele-
gated, and broader use is made of attributes to support project management such as task sta-
tus and time spent on tasks. More formal support is provided through the process-enactment
use-model. At this level, processes (i.e., task hierarchies and their behavior) are captured in
templates that can be reused. These templates support facilities for communication, tool invo-
cation, metrics collection, etc., and provide the “glue” that embeds these facilities in user-de-
fined processes. Process-centered environments (the final use-model) apply the concepts of
the three previous use-models to implement major process enactment applications, and
Hewlett Packard foresees that commercial vendors will be mainly responsible for their devel-
opment. Once developed, process-centered environments will be customized to meet the
needs of individual organizations. To date, the only significant process-centered environment
built on the SynerVision framework is HP’s ChangeVision, a product for managing change re-
quest tracking and software updating.

Given the discussion of Section 2.2, a possible relationship between SynerVision’s use-mod-
els and the levels of the Capability Maturity Model can be seen to exist. At CMM Level 1 Syn-
erVision’s first two use-models can be effectively adopted, since neither use-model needs to
have strong notions of defined process. At these levels, individuals can be helped in the infor-
mal management of personal tasks, and modest group communications are supported. It

6. By an unfortunate coincidence, SynerVision’s name for their last use-model (process-centered environments)
is the same one as used in a more general context within this report. (See Appendix D for the report’s defini-
tion). However, the term process-centered environment is only used with SynerVision’s meaning in Section 5,
and it is made clear when referred to in this sense.
CMU/SEI-94-TR-007 49

should be noted, however, that use of these models is an effective precursor to having pro-
cesses defined, in that identification of tasks and gathering of simple task metrics are encour-
aged. In the third use-model, enactable processes are defined, and this encourages CMM
Level 2 behaviors. Having the processes automated prevents groups from sliding back into
informal, ad-hoc practices. The final use-model (process-centered environments) envisages
ambitious use of process automation, with defined processes being adopted throughout an or-
ganization. To the extent that such process models are accepted consistently by multiple
groups within an organization, this use-model may support CMM Level 3 behaviors.

5.1.1 Managing Personal Tasks
The variety of functions that SynerVision provides for the management of personal projects,
are briefly reviewed below. Central to task management is the notion of the task and task hi-
erarchies. Figure 5-1 shows the main SynerVision window in which a simple task breakdown

Figure 5-1: SynerVision Main Window Illustrating a Task Hierarchy
50 CMU/SEI-94-TR-007

structure is illustrated. Note the task information columns to the left of the tasks themselves.
This information can be customized, and a variety of display options such as earliest start date
can be included in these columns.

Lists of current tasks, such as shown in Figure 5-1, can be developed for individual use. When
a task is executing (i.e., it is highlighted and has an “E” in the cell of the column marked with
an “E”), time is allocated against it. The times spent on higher-level tasks reflect the durations
spent in child tasks. This time-recording mechanism provides support for such activities as
managing monthly objectives and distributing time between projects. One can also filter tasks
according to the task’s attributes using such attributes as task status or priority. For example,
one can suppress all the tasks that have the status Inprogress from the task structure shown
in Figure 5-1. In a similar way, one can also sort tasks according to task attributes such as
status or priority.

SynerVision provides a set of windows through which one can customize the attributes of
tasks to be performed. The first of these windows is the Basic window. This window allows the
user to input information such as task priority, earliest start time, and estimated task duration.
The window also displays how much time has been spent to date on a task. The second win-
dow (Notes) allows one to attach one or multiple textual notes to a task. This can be useful for
recording either what should be performed in this task or information on how the task was per-
formed. The Dependency window then allows one to set constraints on the sequence through
which the tasks are performed. Thus one can state that task B should be started before task
A is completed and whether this constraint is only advisory or whether it is mandatory. To sup-
port automation inside a task, SynerVision has the capability to attach action scripts through
the Actions window. These scripts are written in the language of the Unix Bourne shell with
Synervision extensions and can thus support a wide range of functionality. As a minimum, one
can call on utilities such as for e-mail or word processing, but more complex requests can be
made through this feature.

A major advantage of automating the software process is that metrics can be collected rela-
tively accurately and painlessly (as compared to manual approaches). Because SynerVision
contains or generates information related to tracking project progress, it can provide the user
with a variety of standard and customized reports that are useful to track both individual and
project efforts. These data are useful, not only to control an ongoing project, but for subse-
quent process improvement. Standard process reports include:

• Estimation accuracy (planned vs. actual times)

• Hierarchical results (copy of the task information shown in Figure 5-1)

• Planned vs. unplanned tasks

• Process adherence by user

• To do list

• Total tasks by project

• Total tasks by user
CMU/SEI-94-TR-007 51

Standard project reports include:

• Blocked tasks

• Completed tasks

• Project completion

• Project time

• Quality status

• Task time

5.1.2 Managing Group Tasks
The major extension that the group feature provides is the ability of group members to com-
municate about tasks. The project leader can set up a task (with a sub-task structure) and can
define which members of the group have access privileges to each task. Tasks in a task hier-
archy can only have one assigned owner, and sub-tasks can be created by individuals who
have been assigned a higher-level task, and, during project execution, individuals can accept,
reject, or delegate tasks. This team-oriented task structure and related task status information
can be viewed by members of the project. However, read permissions are attached to all tasks
to control visibility of task information, and write permissions are attached to control execu-
tion/modification privileges.

In order to set access permissions on a task, the original owner of the task uses the Access
window shown in Figure 5-2. This window allows control of who has read and write permis-
sions for that task. It also allows for the forwarding of the task to the person identified under
the NewOwner column. Upon receiving notice of the task (the in-box shown in the upper right
of Figure 5-1becomes full), the new owner can open the task in-box shown in Figure 5-3 and
has the option of accepting, reassigning, or rejecting the task.

5.1.3 Process Enactment Through the Use of Templates
Within SynerVision, there is an incremental growth of concepts from personal processes to
group processes and then to process enactment through the use of process templates. Pro-
cesses that have been developed for personal or group support can be automatically captured
in templates and reused. Thus personal and group processes can be modified and improved
upon and, when they are considered effective, can be transformed into templates for adoption
by similar groups. In this way, there is less likely to be a major cultural impact, since they have
not been imposed from outside, but were evolved within the organization’s culture [Kellner
93a].

When a template is automatically generated from a personal or group process, a text-based
script is generated and stored in a file. This file is humanly readable since the process descrip-
tion is compiled into a script that is based on the Unix Bourne shell language [Sobell 89] with
extensions to account for process needs. Alternately, partial scripts can be automatically gen-
erated from a task hierarchy and then completed by hand, or they can be fully written by hand.
52 CMU/SEI-94-TR-007

Figure 5-2: SynerVision Access Attributes Window

Figure 5-3: Synervision Task In-Box Window
CMU/SEI-94-TR-007 53

The template language (as an extension of the Borne shell language) provides features that
are not available in automatically generated scripts. In this context, one of the more important
additions to the process-template use-model is the AUTOMATIC_ACTION function. Section
5.1.1 discussed the Actions window, a window in which commands can be placed to invoke
actions. If such actions are compiled into a template, they are embedded in what are called
MANUAL_ACTIONs and, to be initiated during process enactment, require human interven-
tion. On the other hand, AUTOMATIC_ACTIONs can be initiated by the machine, with no hu-
man intervention. However, they cannot currently be generated from the Actions window and
must be written into the script. An overview of this scripting language will be given in Section
5.2.

One does not need to follow a process script from beginning to end. For example, one can
start at a task in the middle of a process script, provided that the preconditions are consistent
with that task and its children. However, doing so may be contrary to the project’s policies.
Thus SynerVision provides a function Process Adherence, that analyzes that tasks have ac-
tually been performed. This information is also useful from a metrics analysis point of view.

Figure 5-3 shows the standard communication dialog window. However, this does not always
provide sufficient functionality. For example, it does not allow text to be entered into the sys-
tem. Thus SynerVision provides a Bourne shell-based function svprompt with which allows
custom dialog windows can be designed. These dialog windows allow for buttons, text display,
and input. One such window is shown in Figure 5-4.This type of dialog window is used exten-

sively in the process example, and is the equivalent of ProcessWeaver’s Work Context win-
dow.

5.1.4 Process-Centered Environments
The final use-model is called the process-centered environment (HP’s term). This use-model
provides little in the way of technical extensions to the previous use-models, but focuses main-
ly on tailoring existing large-scale process templates for specific applications. Hewlett-Pack-
ard envisions that these large models are likely to be developed commercially and cite their

Figure 5-4: Dialog Window Generated Through the svprompt Command
54 CMU/SEI-94-TR-007

ChangeVision as an example of such a case. Customizing existing process models is seen as
requiring much less investment of effort than having to develop the processes from scratch.
Precedents for this exist, for example with building one’s own CM system or word processor.
Often these systems come with features that make them user-tailorable.

5.2 Developing the Synervision Process Model

In this section we will discuss the development of the enactable SynerVision process scripts
from the process graphs shown in Figures 3-2, 3-3, and 3-4. For a complete understanding of
these scripts, a knowledge of the Bourne shell scripting language is useful but not essential
for the following discussion. Appendix B provides a full listing of the complete enactable script
that was developed for the experiments, and for illustrative purposes, Figure 5-4 shows a
short, simplified, but executable, version of the Appendix B script. This script implements the
top-level task (Figure 3-2) breakdown, but does not expand the lower-level tasks Review New
CR and Identify Agents for Roles.

The top-level task has three sub-tasks or children, and associated with each of these is an ac-
tion defined by the associated AUTOMATIC_ACTION statement. The task breakdown struc-
ture can be created manually by simply typing in the text, or it can be generated automatically
using the facilities provided by the main SynerVision window. In either case, the associated
AUTOMATIC_ACTIONs have to be generated manually.7 Some comments on this script are
appropriate.

A task can be automatically activated when the value of either the executing or status attribute
of that task is changed. For example, at the end of the first AUTOMATIC_ACTION in Figure
5-5, the ATTRIB function sets the Executing condition of the task RevNewCR to
Running_Foreground (see line 1). The second AUTOMATIC_ACTION is fired when status of
its associated task (RevNewCR) changes from New to InProgress (see line 2). Since
RevNewCR”s initial state is New and Running_Foreground implies a status of InProgress, the
activity RevNewCR is activated automatically at the end of the InitProj activity. Similar state
transitions can be followed for the other tasks. Thus each task may activate and deactivate
other tasks through the ATTRIB -i -v -t $task... command. This does not, however, prevent one
from starting a task in the middle of a process sequence; one is free to start anywhere, al-
though errors may occur if, for example, the preconditions for that task are incorrect. In order
to force a task to complete before another one begins, the DEPENDENCY function (not used
in the example) may be applied.

5.3 The Evaluation

As with ProcessWeaver, the six categories of Table 3-3 and the items within these categories
provide the basis for the review of SynerVision.

7. Some automation of this is currently possible, and it is anticipated that future versions of SynerVision will be
able to accommodate both MANUAL_ACTIONs and AUTOMATIC_ACTIONs.
CMU/SEI-94-TR-007 55

###
identify task structure (main task and child tasks)
###

TASK "Initiate Project"
InitProj=$last_TASKID

CHILDREN_BEGIN

 TASK "Review New CR"
 RevNewCR=$last_TASKID

 TASK "Identify Agents For Roles"
 IdenAgForRl=$last_TASKID

 TASK "Update Document"
 UpdateDoc=$last_TASKID

CHILDREN_END

##
Define AUTOMATIC_ACTIONs associated with tasks
##

Initialize variables
AUTOMATIC_ACTION -t $InitProj Status New Inprogress perform <<EOF
 ATTRIB -i -v manager "Paul"
 ATTRIB -i -v report "War and Peace"
 ATTRIB -i -v CR "Change Title"
 ATTRIB -i -v -t $RevNewCR "Executing=Running_Foreground" ### line 1 ###
EOF

#send message to manager identifying document to be reviewed
AUTOMATIC_ACTION -t $RevNewCR Status New Inprogress perform <<EOF ### line 2 ###
 CR=\‘GET_ATTRIB CR\‘
 report=\‘GET_ATTRIB report\‘
 manager=\‘GET_ATTRIB manager\‘
 result=\‘svprompt -p "\$manager, please review change request \$CR
for document \$report and identify whether to accept or reject." -L -d "accept
reject"\‘
mark this task completed
 ATTRIB -i -v -t $RevNewCR "Status=Completed"
 if [\$result = "accept"]; then
start the next task

ATTRIB -i -v -t $IdenAgForRl "Executing=Running_Foreground"
 else
mark parent task as abandonded

ATTRIB -i -v -t $InitProj "Status=Abandoned"
 fi
EOF

AUTOMATIC_ACTION -t $IdenAgForRl Status New Inprogress perform <<EOF
 svprompt -p "Now performing Identify Agents For Roles"
 ATTRIB -i -v -t $UpdateDoc "Executing=Running_Foreground"
 ATTRIB -i -v -t $IdenAgForRl "Status=Completed"
EOF

AUTOMATIC_ACTION -t $UpdateDoc Status New Inprogress perform <<EOF
 svprompt -p "Now performing Update Document"
 ATTRIB -i -v -t $UpdateDoc "Status=Completed"
EOF

Figure 5-5: Example of a Short SynerVision Script
56 CMU/SEI-94-TR-007

5.3.1 Functionality
Category 1 of Table 3-3 (functionality) is the largest category, since it is expanded to include
assessments of the capabilities defined in Tables 3-1 (Model-Development Capabilities) and
3-2 (End-User Capabilities).

5.3.1.1 Model-Development Capabilities

Item 1a of Table 3-3 addresses “completeness of major functional areas for development, as
identified in Table 3-1”. This subsection thus reviews the items of Table 3-1.

Development: Scoping of variables: SynerVision allows variable values, defined anywhere
in the process hierarchy to be used anywhere else. However, visibility of the variable’s value
in the hierarchy is controlled using the ATTRIB function.

Development: Modeling hierarchies. SynerVision models task hierarchies through a tex-
tual task breakdown structure. An example of such a structure is shown is Figure 5-1. Also
provided in this view are columns of user-customizable information on the tasks, such as time
spent on the task. One can also illustrate this task structure graphically. However, the textual
form provides a more compact and useful view of the task information than the graphical
form.

Development: Supporting model development. As discussed in Section 5.1.3, SynerVi-
sion processes can be developed incrementally, from personal processes to group processes
to formal process templates. All of this can be performed with little or no programming. In this
lies a real strength. However, if one has to develop processes with any complexity, templates
are likely to require significant hand-coding. This requires a knowledge of the Bourne shell
language, and in this there are two drawbacks. First, development time can be lengthy and
error prone. As discussed in the following subsection, SynerVision currently has few debug-
ging aids to support development. Second, it is likely to be difficult to communicate the result-
ing process descriptions, using the templates, to the people who have either to use the
processes, or to sign off on their acceptability. In this regard, a front-end graphical interface
for process definition would be very helpful

Development: Creating a process library. One can build SynerVision process templates
for library creation in two ways. In the first approach, the menu items in the window interface
(see Figure 5-1) provide the functionality necessary to define logically simple processes. The
Generate Template feature can then be used to automatically generate a permanent tem-
plate script for that process. In the second approach, the template script is written by hand.
Of course, an automatically generated script can subsequently be modified or expanded by
hand.

Development: Supporting flexibility of task control. SynerVision allows the end user of a
process to start intermediate tasks at any time. For example, one may wish to start writing
code, even although the formal code design has not yet officially been signed off. In this
case, it is the user’s responsibility to make sure that the inputs to the task are correct. How-
ever, SynerVision also provides the means to control task initiation, if necessary, through the
CMU/SEI-94-TR-007 57

DEPENDENCY function. In addition, a task attribute dependency-enforcement can be used
to specify whether this dependency is mandatory or can be overridden. Dependencies can
also be used to implement AND and XOR relationships between tasks. This flexibility of task
control in SynerVision reflects a practical understanding of real-world user issues.

Development: Modeling standard programming constructs. Since the SynerVision tem-
plate language is based on the Bourne shell scripting language, it has all the standard pro-
gramming constructs that the shell contains, i.e., looping, conditionals, variable binding, etc.

Development: Performing parallel aggregated processes. For a discussion of this topic,
see Performing parallel aggregated tasks in Section 4.3.1.1. SynerVision does not include
any explicit capability in this area. If one wishes to have identical processes performed in par-
allel, one would have to program this into the script by hand, either by placing the common
process in a shell function which is called multiple times, or by duplicating the appropriate
segment of script for the common process.

Enactment: Assigning agents to roles . There is no explicit concept of “role” within Syner-
Vision (other than the system administrator function) and thus there are no mechanisms for
assigning agents to roles. Specific individuals are assigned read/write access to tasks and
documents, depending on what their responsibilities are. One must explicitly program into a
template the role mechanism, as is done in the experiment template (see the first
AUTOMATIC_ACTION in Appendix B).

Enactment: Supporting on-the-fly process modification . From practical considerations,
there may be times when modification of a process that is currently being enacted is required.
For example, a task performed late in a process may have to use a product different from that
specified at the start of the process.8 In SynerVision, a process is guided by executing its pre-
defined process script. The script cannot be changed during this execution and thus adapting
processes on-the-fly is not allowed. In the above example, this means that once the product
has been specified, it cannot be replaced by another, unless the possibility for this change has
been accounted for in the process script.

Enactment: Logging process data . For a discussion of this topic, see Logging process data
in Section 4.3.1.1. SynerVision provides a feature called Process Adherence through which
reports of tasks actually performed can be generated. Additional data logging capability could
be incorporated into a SynerVision script by saving information about tasks performed to a
file. In theory, process roll-back could be implemented if appropriate process and product
data were logged. However, considerable thought would have to be given to its implementa-
tion, particularly with respect tracking back through product versions — and SynerVision
does not provide any explicit capability to manage product versions. (See Managing Objects
below.)

8. However, if such modifications are allowed, they must be very carefully planned, or there could be serious side
effects on the execution of the rest of the process.
58 CMU/SEI-94-TR-007

Resource: Invoking tools. Tools can be invoked in the template language through Bourne
shell calls. This approach provides the simple ability to start and stop a tool, and was used in
the experiment (see Appendix B). HP’s Broadcast Message Server can be used to provide
greater encapsulation functionality, but is not used here.

Resource: Managing Objects . For a discussion of this topic, see Managing Objects in Sec-
tion 4.3.1.1. SynerVision process scripts are based on the Bourne Shell language and as
such have full access to all the Shell’s commands, including the SCCS version management
functions. There is, however, no explicit support for version control at the process manage-
ment level.

Communication: Modeling communication between agents. Communications can be
performed in several ways:

• Tasks can be assigned from one person to another using the Access
Attributes window (Figure 5-2). Such assigned tasks appear in the receivers
Task In-Box (Figure 5-3). Tasks assigned automatically (using the ATTRIB
function in a process template) can also appear in the Task In-Box window.

• Communications between human agents or from the machine to a human
agent is supported inside scripts using the svprompt function. svprompt
generates a customized dialog box that provides optionally for textual
messages, a text input field, and buttons.

• Communications can also be established through a connection to
SoftBench’s Broadcast Message Server. Since this is not an explicit part of
SynerVision’s functionality, it is not used here.

Communication: Modeling automatic actions. If a task needs to initiate an automatic
action, or a sequence of actions,(i.e., actions without human intervention), the function
AUTOMATIC_ACTION is used. This was discussed in Section 5.2

Debugging: Syntax checking . SynerVision provides error information when a model is
instantiated and also at run-time. Since the template language is an extension of the Bourne
shell, one can interactively debug expressions or redirect values of variables.

Debugging: Tracing process dynamics. Tracing of the real-time status of tasks can be per-
formed by viewing the status column of the SynerVision Main window (see Figure 5-1). As a
process evolves the status of tasks change and provide a limited indication of what is hap-
pening. During the execution of a process, this feature also allows participants in the process
to view task status. However, this trace feature is fairly limited as an aid for debugging.

Debugging: Logging process data. Selected process data can be logged to a file during
process execution through manually inserted statements in the process script.

Debugging: Reachability, deadlock, querying, spying . SynerVision does not support
these functions.
CMU/SEI-94-TR-007 59

5.3.1.2 End-User Functional Capabilities

Scheduling periodic work. The ability to automatically schedule periodic tasks such as
weekly meetings can be very useful. However, SynerVision does not explicitly provide this ca-
pability (at least not without writing some Bourne shell script). This is an example of where
some built-in higher-level functionality could improve end-user effectiveness.

Collecting metric data. One of the advantages of adopting a PCE is its potential for gathering
accurate and complete metric data automatically, thus relieving the end-user of a distasteful
chore. SynerVision provides very effective support for the collection and review of time- and
task-related metric data. For example, it will track actual-to-estimated task times, and percent-
age of tasks complete.

Supporting project management tasks . Project management is supported through the met-
ric data described above. Thus a project manager can maintain current knowledge of task sta-
tus and can generate customized reports providing information about the status of a project.

Supporting the individual user. The individual user is supported in a variety of features for:

• generating personal task metrics,

• associating notes with tasks for guidance on the task, or for journaling,

• specifying task dependencies, and

• automating tasks (e.g., for tool invocation).

Supporting group communications. Users are supported in a variety of features for:

• setting up and operating a shared project,

• communicating between project members, and

• providing metric information on project status.

5.3.2 Developer Issues
Ease of learning . SynerVision is in a conceptually new class of software product, is quite
complex, and has many features. The novice to SynerVision must understand such concepts
as tasks (their ownership, status, behavior, etc.), processes (task hierarchies and dependen-
cies, construction of personal and group processes), communication (accessing information,
communication between project member and event management), metrics specification and
capture, and process template construction (using the Bourne shell and its SynerVision exten-
sions).

Of these items the most challenging (in this author’s estimation) is the manual development of
process templates. As previously mentioned, this requires, as a basis, a good working knowl-
edge of the Bourne shell language. Significant use is made of the here feature of the language
and this, combined with the need to distinguish between variable binding at process instanti-
ation time and process run-time, can be a considerable challenge for new users.
60 CMU/SEI-94-TR-007

However, the development of simple processes (i.e., those not requiring manual construction
of templates) for either personal use or group use is well supported and much easier to do. It
is likely that an organization investing in SynerVision would start with these processes, work
up to template customization, and then go on to the development of hand-written process tem-
plates. This incremental approach provides a safe way in which to gain the necessary experi-
ence.

Ease of use. SynerVision can be used in several ways. First, individuals can develop process
templates for personal task management. Second, limited-size process templates can be de-
veloped to support group activities. Both of these functions can be handled without a detailed
knowledge of the SynerVision template language. These templates can be generated auto-
matically and can thus be quickly and informally prepared, tested, used, improved, or discard-
ed without too much investment of time or resources. Greater thought has to be given when
standard templates are developed for complex processes in which the greater power and ex-
pressiveness of the template language has to be used. This is likely to require significant de-
veloper training, investment in requirements definition, coding, testing, etc., and a broader
consideration of the process adoption issues.

Effectiveness of support for development. The developer’s view is accessed through the
SynerVision main window (Figure 5-1) and is supported by the SoftEdit editor. The SynerVi-
sion main window contains all of the capability to develop processes and automatically define
their templates. Pull-down menus are used to select supporting functionalities, such as who
has access to tasks (Figure 5-2). Through the Task item in the menu-bar (Figure 5-1), one can
select options to create sub-tasks in the task hierarchy, to instantiate a process from a tem-
plate file, or to generate a new template from a defined task hierarchy. This approach is effec-
tive for developing process templates but could be enhanced in two ways. First, a more
effective means for testing and debugging process models is needed (Section 5.3.1.2), and
second, a process-oriented graphical front end would help define the model and communicate
its nature to affected individuals.

Quality of on-line help. SynerVision has an extensive and excellent on-line help capability
with hypertext support. The path taken through the current hypertext sequence of selections
is provided above the current help page. This prevents the user from becoming lost. The major
elements of the SynerVision help feature are the Step-by-Step Instructions and the Guided
Tour. Also provided is an on-line Information OverView of ChangeVision. As an example of
the Help features, Step-by-Step Instructions include the topics:

• Basics of Using SynerVision

• Creating and Manipulating tasks

• Setting Task Attributes

• Annotating a Task with Process Guidance Notes

• Viewing Tasks the Way you Prefer

• Project Metrics and Reports
CMU/SEI-94-TR-007 61

• Creating and Manipulating Manual Task Actions

• Using Shared Projects and Tasks

• Creating and Manipulating Process Templates

However, this on-line help does not cover programming in the SynerVision template language,
a feature that could be very useful.

Error handling. SynerVision provides both instantiation and run-time error messages. Instan-
tiation error messages provide some insights to problems, but do not, for example, identify
template line numbers where errors have occurred. The run-time error messages usually pro-
vide insightful information. In developing and running the process models, no system crashes
occurred.

5.3.3 End-User Issues
Ease of Learning . There are two main classes of end-user and each has different learning
issues. The first class of end user will develop personal or group processes for its own imme-
diate use through the automated generation of process templates. While some learning is re-
quired, a major investment in time is not, since a high percentage of a process script is
generated by the machine with appropriate end-user guidance. With this class of end-user,
process adoption is not a primary issue since, by developing their own processes, such users
are internally motivated to apply them. The second class of end user will only be expected to
use pre-defined templates, and thus need not be closely involved with their technical develop-
ment. Learning to use the templates should not be difficult, since the process guides the user
through the sequence of tasks. However, these end users are more likely to have the auto-
mated process imposed upon them and thus may show resistance to change. Learning for
them is thus less technically focused and more culturally focused.

Ease of use . Using the automated process is not, by itself, difficult since the user is guided
through the needed process steps. In fact, if not designed effectively from a behavioral per-
spective, this ease of use may well make the user feel like a cog in a machine, with the poten-
tial for reducing creativity to button pushing and form filling.

Clarity of presentation . The standard end-user windows provided by SynerVision are shown
in Figures 5-2 and 5-3. These allow for the sending and receiving of task delegation informa-
tion and are straightforward to understand. However, the task information which can be dis-
played in the Task In-Box (Figure 5-3) is limited basically to the task name and who assigned
it.

During execution of a complex process scenario, a large number of currently active tasks may
be displayed at any one terminal. The Task In-Box can be used to list these tasks so long as
only brief information on the tasks is required. However, if more complex instructions or deci-
sion making is required, then the Task In-Box is insufficient. For such tasks, customizing the
presentation must be done and this is performed using the svprompt function. A typical display
62 CMU/SEI-94-TR-007

generated by this function is shown in Figure 5-4. The clarity of information presented by these
displays has more to do with the developer’s use of the interface and the process context in
which the windows are displayed than it does with SynerVision’s underlying features.

However, the currently implemented svprompt function provides a less than adequate means
for managing its windows. Many task windows, such as shown in Figure 5-4 may reside on the
terminal simultaneously, taking up space or hiding each other. In addition, the designer of the
process interface is not provided with any control over the placement of documents or tools,
that may be associated with tasks, are displayed. Management of these various windows is
an issue with which SynerVision has yet to deal.

5.3.4 Performance
Execution time efficiency. SynerVision was run on a HP Apollo 9000 Series 700 workstation
running under HP-UX. The slowest common procedure with a noticeable delay is the instan-
tiation of a process from its template. A one-task template (with eight lines of code) took 5 sec-
onds for instantiation from the template, while the experimental model defined in Appendix B
(184 lines of code) took about 33 seconds. This primarily affects developers who are debug-
ging models and thus are required to instantiate models often, but it can also affect end users,
since a process has to be instantiated from its template before it is used. Run-times for exe-
cuting the process model are usually of less importance, since instant responses are not re-
quired. (For example, when one end user sends a message to another end user, the
communication time is generally not critical.) As with ProcessWeaver, these times are approx-
imate, as a regular watch was used. Variability in times, resulting from different loadings on
the machine, was not a problem with SynerVision since the machine was isolated from other
users.

Space efficiency. With respect to space efficiency, SynerVision takes about 2.7Mb of mem-
ory, while the files in the SynerVision ‘bin’ directory takes about 7.2Mb. The experimental mod-
el (Appendix B) takes about 8Kb.

5.3.5 System Interface
Ease of tool integration . Invoking Unix tools in process templates was simple to do using
Bourne shell constructs (see Appendix B). However, directing SynerVision output to the ap-
propriate end-user terminals created some frustration. This is in part because higher-level
constructs for directing output were not available in SynerVision; this functionality had to be
built up from the Bourne shell. This is one area where some simple extensions to the scripting
language could be a real benefit to the process developer.

More complex integrations using SoftBench’s Broadcast Message Server were not attempted.

Portability . At the time of writing, SynerVision is available only on Hewlett Packard Apollo
computers. However, the product is planned for release on Sun workstations in the first quar-
ter of 1994.
CMU/SEI-94-TR-007 63

Interface to the operating system . SynerVision process models are based on the Bourne
shell language which is part of the Unix operating system. In addition, SynerVision uses the
Unix file system to store the process models.

5.3.6 Off-Line User Support
Support from customer representatives . Customers purchase an annual support contract
for phone-in question answering and document update. Customers can also purchase specific
services such as for the development of specialized process templates.

Clarity of documentation . The current documents which support SynerVision are:

1. Installing SynerVision and ChangeVision

2. Introduction to SynerVision: Models of Use [SynerVision 93a]

3. Developing SynerVision Processes [SynerVision 93b]

The first document was not used since it had little relevance to the technology behind Syner-
Vision and in addition SynerVision was already installed on the HP platform. The second doc-
ument provides a good explanation of the different use-models described throughout Section
5 of this report. It was very helpful in understanding the philosophy that guided the develop-
ment of SynerVision and as a practical hands-on guide for exploring models that did not re-
quire template programming. The third document, which is required for template
programming, is considerably less helpful and needs revision to be effective. Its principal
weakness is the assumption that its readership knows the Bourne shell language. A review of
this language, emphasizing the features that are commonly required in SynerVision tem-
plates, would be valuable. The document’s other main weaknesses are its weak organization
and lack of good illustrative examples (not just code fragments) to clarify the technical points
it is making. It might have made more sense for the latter two documents to be organized as
a user manual and a reference manual. A tutorial manual would also be of significant help.

Availability of hands-on training . Customer on-site training is currently offered. In addition,
a one-day management overview course will be given that focuses on the development and
use of SynerVision-supported processes.

Availability of encoded process examples. Since it is an example of a conceptually new
class of product, SynerVision should provide some simple application examples. This would
help support the successful transfer of the technology to early adopters. As a minimum, ex-
amples of simple templates for personal processes and group processes could be very useful.
In addition, template programs, manually developed using the Bourne shell constructs, would
help more advanced users.
64 CMU/SEI-94-TR-007

6 End-User Role Plays

This section deals with feedback obtained from persons who performed the end-user role
plays. Two groups of three persons performed these role plays; one technology oriented
group of three persons and one process-oriented group of three persons. Each group per-
formed the document review scenario with both the SynerVision implementation and the Pro-
cessWeaver implementation. It should be noted that the number of persons participating in
the role plays was small and further studies, which involve larger numbers of people, would
be worthwhile. However, the results of this investigation showed some interesting and con-
sistent results. The script shown in Table E-1 was used to guide the role-plays and, on com-
pletion of each role play, the participants filled in the questionnaire shown in Table E-2.
Figures 6-1 through 6-3 below summarize the results of the end-user responses to this ques-
tionnaire.

ProcessWeaver was run from a Sun 4 host, while SynerVision was run from an HP-9000
host. In both cases, the client machines were either Sun 4 platforms or Macintoshes (using
MacX). Thus the hardware environment was quite heterogeneous.

Before discussing the results, some aspects of Figures 6-1 through 6-3 are first explained.
Each statement in the questionnaire is associated with five boxes which allow for a range of
responses from full disagreement to full agreement. The number of responses for each box
was tallied and totals are shown in the figures. These totals range from zero to four. (There
were never more than four out of the six responses in any one box.) The ‘Bias’ column at the
right hand side reflects the degree to which opinion differed between those participants with a
process background and those with a technology background. A positive bias indicated that
the “technology” participants were more favorably inclined to agree with the statement than
the “process” participants, while a negative bias reflects the reverse. The bias was calculated
simply by assigning the box number (items 1 through 5 in Table E-2) to the responses in that
box, summing these assignments for the “technology” responses and also for the “process”
responses and then subtracting the “process” total from the “technology” total. For example if
the “technology” responses were in the boxes marked with a 2, a 4, and 5 while the “process”
responses were in the boxes marked with a 1, a 3, and a 3, then the bias would be (2+4+5)-
(1+3+3) = +4. It should also be noted here that the statements were designed to focus on the
characteristics of the products’ features and not on the process example implementations.
However, this clean separation was not always possible. Hence some of the responses may
be colored by the way in which the end-user interfaces of these products were constructed.

6.1 User Interface

Examining the data in Figure 6-1, it appears that there is a slight tendency to agree with the
statements rather than disagree. If one considers the response range being from 1 (total dis-
agreement with the statement) through 5 (total agreement), a neutral response is reflected by
a 3. Averaging across all ProcessWeaver’s responses (across all statements and all partici-
CMU/SEI-94-TR-007 65

A. Experience with the scenario (ProcessWeaver)

1 The screen layouts were easy to understand.

2 The instructional text was well formatted.

3 The instructional text was easy to read.

4 The Agenda window was useful in displaying current tasks.

5 The use of icons was helpful in organizing the task elements.

6 The use of buttons was effective.

7 The amount of information in the windows was good.

8 Computer response times were good.

9 I found it easy to understand the operating mechanics of the system.

10 The guided task sequence was helpful in managing the process.

11 The task sequencing was logical.

12 I would enjoy working in an environment supported by ProcessWeaver.

B. Experience with the scenario (SynerVision)

1 The screen layouts were easy to understand.

2 The instructional text was well formatted.

3 The instructional text was easy to read.

4 The use of buttons was effective.

5 The amount of information in the windows was good.

6 Computer response times were good.

7 I found it easy to understand the operating mechanics of the system.

8 The guided task sequence was helpful in managing the process.

9 The task sequencing was logical.

10 I would enjoy working in an environment supported by SynerVision.

Disagree Agree Bias

+2

+3

+3

-2

+1

-1

-1

+1

+1

-4

+1

0

Disagree Agree

+6

+3

+4

+3

+2

Bias

+5

+6

+3

+2

+2

Figure 6-1: Summary of End-User Experiences
66 CMU/SEI-94-TR-007

ble
Given your brief experience with the process automation scenario, would you feel comforta
working in a process-centered environment if:

1) it were designed by you and only supported your personal tasks,

2) you had input to its design, and it were used within your project,

3) it were predefined, but modified (with your input) for use
within your project,

4) you did not have input to its design?

Do you think that working within a process-centered environment isnecessarily:

5) too invasive,

6) too impersonal,

7) too controlling?

Uncom-
fortable

Comfort-
able

No Yes

Bias

-4

-3

-2

-1

+6

+3

+6

Bias

Figure 6-2: Summary of End-User Views on Adoption of Automated Process

Do you think that process automation, as exemplified in the experiment, could be effectively
applied to improve productivity and software quality? Consider such areas as:

1) office paper-routing (e.g., document updating, document sign-offs)

2) software quality (e.g., inspections, walk-throughs)

3) software development (e.g., edit/compile/test cycle, systems integ.)

4) communications (e.g., subcontractor mgmt.., intergroup coord.)

5) metrics collection and analysis

6) process improvement (process definition, process reuse, or adaption)

Appro-
riate

Inappro-
priate

-2

-4

-1

+3

+1

-3

Bias

Figure 6-3: Summary of End-User Views on Appropriate Applications
CMU/SEI-94-TR-007 67

pants) the mean response is 3.64. The corresponding mean response for SynerVision is
3.21. The three categories in which ProcessWeaver’s had a noticeably higher rating than
SynerVision were:

• The screen layouts were easy to understand.

• The guided task sequence was helpful in managing the process.

• I would enjoy working is an environment supported by ProcessWeaver.

This result may, in part, be because ProcessWeaver manages all tasks (i.e., the Work Con-
texts) as icons inside its Agenda window and thus provides mechanisms for organizing and
controlling ones tasks at a symbolic level. The SynerVision interface lacked this level of ab-
straction (see Clarity of presentation in Section 5.3.3).

It is interesting to note the technology/process bias in Figure 6-1. The bias column clearly in-
dicates that the technology participants were more positively inclined to the interfaces (partic-
ularly SynerVision’s) than the process participants. The one significant counterpoint to this
general conclusion is the response to statement A12. Here, the process participants appeared
to be more favorably inclined to working within the ProcessWeaver environment than the tech-
nology people. The following is an itemized list of (paraphrased) comments from the partici-
pants. The comments are italicized, followed by the author’s remarks (non-italicized)

• Little context is provided when tasks arrived — I may know what I have to do,
but I am not be provided with adequate context. For example, when the
technical writers rejected the role of editor, there is no opportunity for them
to provide the reason(s) why. This is a design problem with the process
model, not a problem with either product. However, the example does point
out the importance of providing human communication channels when
developing an automated environment.

• SynerVision window management was lacking functionality. When a
document is invoked in the scenario, the document is simply thrown on the
screen, and may cover up other ongoing work. An inelegant solution to this
problem could be devised by implementing additional buttons to allow
documents (and tools) to be opened. However, a built-in feature to support
this functionality should be part of the product.

• Both products lack the capability to undo an erroneous action (such as
clicking on the wrong button). This is a necessary capability for a real-world
applications. A generalization of this is process roll-back (discussed in
Section 2.3.2), also missing in both products.

• I really liked the idea of the Agenda window in ProcessWeaver, where one
could keep track of outstanding work in one place.
68 CMU/SEI-94-TR-007

• Training: Comments clearly indicated a need for training in understanding the
process. With the role play, little training was supplied. In a real-world setting,
setting end-user expectations through training will be critical.

a. End-user training in the use of the process automation is essential.
b. In practice, users need some form of tutorial on PCEs, either

classroom style or through access to self-help materials.
c. In some cases in the scenario, it would be nice to have a bit better

description of what exactly to expect and when to expect it. In this way
I would know that the scenario was proceeding according to plan or
not.

• The foundations of process automation, as exhibited by both products is
impressive, but the technology has some way to go before it can be
considered mature.

• When I shut off my terminal, do I lose all the tasks currently on the screen?
This question was answered for the Macintoshes by exiting MacX (the
Macintosh software which allows Macintoshes to act as terminals for X
window applications). This action disconnected the running SynerVision
model from the Macintosh and the connection could not be reestablished.
For ProcessWeaver, tasks (i.e., Work Contexts) did persist when the same
procedure was performed. On shutting down, and restarting SynerVision on
the HP-9000, the Synervision task structure and the task status was
recovered, but the process seemed to lack information about the process
status prior to the shutdown. Thus the process could still not be continued.
On the other hand, ProcessWeaver appears to store this status information
since shutting down and restarting ProcessWeaver did not appear to affect
the Work Contexts in the Agenda window.

6.2 Adoption Issues

Adoption issues are addressed here independently of either SynerVision or ProcessWeaver.
Figure 6-2 provides the adoption-issue data from the end users. The responses to items 1
through 4 clearly indicate a greater willingness to accept automation if one has control over
the process. Greatest acceptance is found when the processes are developed for personal
use, although there appears to be significant support for these processes in which the users
have input to the design. There was a consistently negative reaction to having an imposed ex-
ternal process.

The bias factors in Figure 6-2 indicate that process-oriented individuals were less concerned
with adoption issues than were the technology individuals. This trend is particularly noticeable
with statements 5 through 7 where the issues of invasiveness, impersonality, and control are
examined. However, the trends shown by both groups were similar. (Note that the sign rever-
sal between items 1 through 4 and 5 through 7 reflects the manner in which the statements
were made and not a reversal of opinion.) Typical of the comments in this area are:

• I would like to see the wider scope of what is happening. This might be
helped by providing workers visibility into the status of activities in the project,
and by providing the ability to send explanatory or confirmational messages.
CMU/SEI-94-TR-007 69

• Whether I felt comfortable in an automated environment would depend on
how process-driven I was. Acceptance might also be easier if one were new
to a project or if the project itself were new (i.e., there are no built-in
expectations) rather than if a unfamiliar process were imposed upon an
existing project.

• On working in a process in which the user does not have input:

a. I would be uncomfortable working in someone else’s process.
b. If I do not have any input to the design of the process, there’s a

chance I could live with it, but if it does not match my reality, I would
be dissatisfied.

• Comments of the ‘too invasive’ issue:

a. It could be too invasive if it tells me how to accomplish work instead
of telling me what needs to be accomplished.

b. Unlike e-mail I cannot elect when to receive information.
c. It’s too invasive only to the extent that windows get popped in front of

you while you are concentrating on something else. The second issue
is one of metrics gathering coupled with personnel evaluations. If this
is not handled well (i.e., the ground rules are well established, well
known and accepted), it could be a really big issue. Otherwise I don’t
feel a process-centered environment is too invasive.

• Comments on the ‘too impersonal’ issue:

a. It’s no more impersonal than with e-mail. As with anything else,
process automation is not a substitute for communication between
staff.

b. Automated environments would likely reduce personal interaction
with other human beings.

• Comments on the ‘too controlling’ issue:

a. I find the elimination of process navigation concerns to be a relief. I
can have the files and tools I need when I need them. It allows me to
concentrate on the work, not the setup.

b. Where do I get a chance for input other than “yes-no”? The machine
controls my destiny with no human on the other end (or so it seems).

c. The only way it would be too controlling is if the process-centered
environment restricted all of my efforts to exactly what the process is
scripted for. As long as this is not the case, and the environment is
providing timely guidance, this is OK with me.

6.3 Application Issues

Contrary to the results in Section 6.2 where concerns were raised about adoption of process
automation technology, Figure 6-3 indicates that there was a fairly positive response to apply-
ing the technology to particular areas. In this section, the Bias indicator did not show any con-
sistent trends between the technology and process individuals. The three applications where
process automation was seen to be most suited were: office paper routing, metrics collection
and analysis, and process definition and improvement. The following are typical comments:
70 CMU/SEI-94-TR-007

• Office paper routing:

a. Somewhat helpful, particularly in getting sign-offs.
b. Excellent application, particularly if the tool supports tracking.

• Software quality:

a. Too people-intensive, a PCE doesn’t add much.
b. I think the quality of inspections would decrease without face-to-face

meetings.
c. For coordinating inspections, walk-throughs and for follow-up action

items, this would be good.
• Software development:

a. Good for the individual.
b. Good for automating a tasks that are (almost) always followed in the

same sequence.
c. If it is supported by automated metrics collection, such as time spent

in each phase.
• Communications:

a. Yes — if it makes sure everybody gets appropriate mail and info.
b. Only appropriate if everyone has PCE support.
c. PCEs should make communication as easy as with e-mail.
d. A great way to ensure some form of recorded communications.

• Metrics collection and analysis:

a. Definitely could make these activities easier.
b. Must watch out for gathering too much, or irrelevant information.

• Process improvement:

a. I think it would be a BIG mistake to encode process this way for a
development group.

b. Looks like a winner for assisting activities in process improvement.
c. Good for process definition. However, need for a process asset

library.
As can be seen from the results above, there were clear differences of opinion, ranging from
enthusiasm to concern, as to the effectiveness of applying automation to software develop-
ment process. There was a slight but noticeable and fairly consistent divergence of opinion
between those with a technology background and those with a process background. As might
be expected, the technology-oriented participants viewed process automation with greater de-
gree of scepticism. Since involving technical personnel will be central to successful imple-
menting process automation, it is important to identify and deal with the issues technology-
oriented individuals raise.
CMU/SEI-94-TR-007 71

72 CMU/SEI-94-TR-007

7 A Comparison of ProcessWeaver and Synervision

The objective of the experiments conducted with SynerVision and ProcessWeaver is to ex-
plore an emerging technology using these products as examples. Both of these process-cen-
tered frameworks have powerful mechanisms for enacting process and both, as members of
a new class of software, have their weaknesses. In any case, the successful application of ei-
ther PCF (or other PCF as listed in Appendix A) is likely to depend as much on organizational
and human factors as on the product selected. Such issues as having an effectively defined
process, good developer and end-user training, and sensitivity to technology adoption issues
will be at least as important for success as the chosen PCF.

ProcessWeaver and SynerVision have many similar capabilities, but implement these capa-
bilities in different ways. Currently, both SynerVision and ProcessWeaver do not differentiate
between the process developer and end user — each PCF provides the same functionality to
both groups. This allows end-users to implement their own personal processes or define pro-
cesses for local project support, as well as allowing for the development of more ambitious
processes. However, there may be a need, particularly with large processes, to distinguish be-
tween process-developer and end-user capabilities. Both PCFs implement reuse templates so
that a process can be instantiated and enacted from a library of previously defined processes.
Both PCFs allow the end-user to enact subprocesses, independent of the parent process to
which they are associated. While tasks form the “building blocks” of processes in both PCFs,
tasks can also be initiated, communicated, and worked on by end users in isolation from any
process.

It should be noted that neither of these PCFs is repository-based, and in that sense they em-
phasize the control aspects of process rather than the data management aspects. Thus nei-
ther has mechanisms for handling versions of products, or for controlling potential conflicts
that can arise from multiple agents modifying the same product. Data-centered products that
have emerged primarily from the configuration management community are also entering the
market place. Such products (e.g., CaseWare) do provide a repository and also allow one to
define and enact the processes that focus on a product’s evolution. However, these CM prod-
ucts have narrower process modeling capabilities. Integration of PCFs with configuration man-
agement products is probably needed, but since CM and PCF products may have different
notions of “process,” care is probably required in this effort. It should also be pointed out that
neither ProcessWeaver nor SynerVision support some of the groupware concepts such as si-
multaneous, remote collaboration on work, for example, in editing a document.

There are also some noticeable differences between the two products. ProcessWeaver em-
phasizes a graphical approach to process definition. This approach defines a process by
graphically specifying an activity hierarchy, each activity being supported by a lower-level Petri
net model. In SynerVision, processes are defined in a text-oriented manner using an activity
hierarchy, which is supported by scripting that specifies task behaviors and dependencies.
CMU/SEI-94-TR-007 73

SynerVision integrates some end-user applications,9 while a design decision was made with
ProcessWeaver to focus strictly on process support,10 allowing for application extensions to
be added as required. The following topics highlight some of the similarities and differences in
more detail.

Developing process models. With both ProcessWeaver and SynerVision, simple process
models can be developed without any knowledge of their textual scripting languages. Because
of its built-in project management and metrics tools, SynerVision allows one to develop rea-
sonably sophisticated models without knowledge of its textual language. Also, as discussed
in Section 5.1, SynerVision’s design provides a smooth incremental learning curve from sup-
porting simple personal tasks to managing of group tasks. However, when one needs to de-
scribe processes that require the explicit writing of SynerVision scripts, the learning curve
becomes much steeper.

As stated above, ProcessWeaver does not provide built-in metrics and project functionalities
that SynerVision provides. Thus, to include such capability in ProcessWeaver, one may have
to start using ProcessWeaver’s scripting language at an earlier point than with SynerVision.
However, because of the graphical nature of much of the ProcessWeaver model, the degree
to which the scripting language has to be used may not be significant. Through ProcessWeav-
er’s graphical approach, both the activity hierarchy and the process models associated with
each activity are defined. This approach provides two advantages:

• model development is faster, and

• fewer syntactic and semantic errors are introduced.

SynerVision’s approach to model definition is textually oriented (see Figure 5-5). The activity
hierarchy can be displayed graphically, but this is somewhat superfluous as the textual view
is quite adequate (see Figure 5-1). However, because of the textual approach, building Syn-
erVision process models by hand requires a greater investment in learning the language and
is more time consuming than with ProcessWeaver’s graphical approach. Productivity in con-
structing SynerVision models could also be improved if SynerVision had a richer set of higher-
level functions. During the construction of the experiment, it was found that time was spent
developing supporting functions from Bourne shell elements and it would have helped if these
had been built in.

While the graphical process support provided by ProcessWeaver is very helpful in developing
models, neither SynerVision nor ProcessWeaver supported by a true graphical process enact-
ment language. A graphical process enactment language is desirable in order to communicate
all the essential process elements to others who will either have to sign off on a process or

9. That is, it has characteristics of a process-centered environment (PCE) since it supports end-user capabilities
for metrics collection and project management.

10. That is, version 1.2 of ProcessWeaver is strictly a process-centered framework (PCF).
74 CMU/SEI-94-TR-007

who will have to live within it. In addition to defining the relationships between all the major
process elements, such a graphical language should be able to display tasks, artifacts used
by tasks, and the agents (or roles) who perform the tasks.

The software underlying both SynerVision and ProcessWeaver was found to be robust in the
sense that no system crashes and no significant system bugs were encountered during devel-
opment.

Templates, roles, and process instantiation . Both SynerVision and ProcessWeaver have
explicit mechanisms to allow for the initiation of isolated tasks and for sending these tasks off
to the persons responsible for their execution.

With respect to processes (that embed tasks) SynerVision and ProcessWeaver provide for the
development of process templates that allow for the repeated use of defined processes. If one
develops a process in SynerVision, there is an explicit step that must be taken to generate a
template from an existing runable process. However, in ProcessWeaver, one develops mod-
els as templates (which, in turn, may embed default Cooperative Procedure templates). In ei-
ther case, an instance of the template is generated and executed at run-time.

Every Cooperative Procedure in ProcessWeaver provides a parameters box to the process
developer in which variables required for the execution of that process are placed. Later, at
run-time, ProcessWeaver presents the process executor with a procedure parameters box in
which the variable instances are filled in. In SynerVision, the process developer must explicitly
build such mechanisms into the model using the scripting language. This is an example of
where the process developer’s task could be simplified if higher level functionality were built
into SynerVision.

A SynerVision process model is basically contained within one file. This was found to be very
useful for electronically transmitting the model to a remote location when debugging support
was needed. Because a ProcessWeaver model consists multiple files, such a procedure be-
comes less convenient.

Process control. Process definition in ProcessWeaver is based on a Petri net formulation,
and this has resulted in one overly restrictive characteristic. Before a task in a Cooperative
Procedure can begin, all the upstream tasks must have been completed. In real situations, it
may be possible for someone to start a task before all the formal conditions for task initiation
have been met, and indeed this opportunistic behavior may result in greater productivity. Sec-
tion 4.3.1.1 discussed a possible resolution of this problem.

SynerVision does not exhibit this modeling constraint. Unless explicitly specified to the con-
trary, an agent responsible for performing a task can begin at any time. Clearly there will be
tasks that must not start prior to other tasks ending, but this can be specified in the model.

Accessing external tools and the external environment. SynerVision allows access to ex-
ternal tools using the standard Unix mechanisms and can communicate with its external envi-
ronment using the functionality provided by Hewlett Packard’s Broadcast Message Server.
CMU/SEI-94-TR-007 75

ProcessWeaver supports similar mechanisms for tool invocation and communication. Pro-
cessWeaver and SynerVision both provide a convenient means for associating tools with tool
classes. Thus on different platforms or with different users, different tools within the same
class may be invoked.

SynerVision provides project management and metrics capabilities that are seamlessly inte-
grated into the product. Processes can be developed incorporating these tools without a
knowledge of the SynerVision scripting language. In addition the metrics tools provide the ca-
pability to gather metric data such as time spent on a task without any intervention on the part
of the task owner.

ProcessWeaver provides project management support through integration to external tools,
but this is not as integrated as SynerVision’s support. Two tools are currently supported by
ProcessWeaver are: MicroSoft Project for Windows and Project Management Workbench 3.1
(under PC/DOS).

Debugging. ProcessWeaver provides a variety of tools to support debugging. These include
support for consistency checking (e.g., between inputs and outputs of Cooperative proce-
dures), syntax checking of scripts, interactive debugging for the Co-shell language, and pro-
cess visualization (that allows one to view tokens as they move around the Petri net and to
spy on variable values during this process). SynerVision does not currently support any de-
bugging aids other than that provided by the interactive shell that comes with Unix.

Documentation and examples. Neither SynerVision nor ProcessWeaver currently provide
adequate documentary support. SynerVision’s manual Introduction to SynerVision: Models of
Use [SynerVision 93a] provides an excellent grounding in those aspects of SynerVision that
do not require one to program. However, the more advanced manual, Developing SynerVision
Processes [SynerVision 93b], is less well organized, needs improved explanations of the con-
cepts, and should contain a greater number of complete examples rather than code frag-
ments. This manual tries to be both a reference manual and a tutorial, and these two focuses
should probably be separated. SynerVision has extensive on-line support that supports the
development of processes that do not need manually-encoded scripts.

The ProcessWeaver manuals (User and Reference) have three significant weaknesses. First,
the User Manual lacks a good explanation of how the high-level elements of ProcessWeaver
(Methods, Cooperative Procedures and Work Contexts and their supporting information box-
es) relate to each other. Second, the Reference Manual needs to provide expanded coverage
of the concepts in event handling supported by illustrative examples. Third, the Reference
Manual should provide more background into the functions that support the manipulation of
the files stored under ProcessWeaver’s Universal Storage Mechanism format. In this version
of ProcessWeaver (1.2) on-line help was not implemented.

Both SynerVision and ProcessWeaver lack a good library of illustrative and executable pro-
cess examples.
76 CMU/SEI-94-TR-007

The end-user view. ProcessWeaver provides a means of easily customizing, within a limited
format, the information that is sent, either from one person to another, or that is sent to a per-
son as a result of an automatic action. This window is called a Work Context (see Figure 4-2)
and allows for text boxes, document or tool icons, and control buttons to be displayed. Upon
clicking on an icon, a window containing the document or tool is opened for use. This end-user
window management in ProcessWeaver was found to be quite effective.

SynerVision provides three main types of window for displaying end-user information. First, a
Task In-box (see Figure 5-3) is provided that simply lists a person’s assigned tasks along with
the names of the task assigners. The main purpose of this window is to allow the assignee to
accept, reject, or reassign a task. Second, customized windows can be developed that contain
both textual information related to the task, and control buttons. However, neither the Task In-
box nor the customized windows can display icons representing documents or tools. A sup-
porting document or tool can, however, be opened as needed to support the task, and this is
done by writing a line or two of Bourne shell script. However, this approach is not very elegant
and SynerVision could incorporate improved functionality for managing end-user windows,
particularly with respect to the support of task-related documents and tools. Finally, the Notes
feature may be used to supply the end-user with guidance on the task at hand or to document
how a task was accomplished.

In summary, each PCF has different strengths and weaknesses. There is no “best” product —
it truly depends on one’s needs. For example, ProcessWeaver provides developer-friendly
support for graphically-based model building, while SynerVision has effective built-in support
for project management and automatic metrics gathering. SynerVision provides more exten-
sive capability for the project with modest process enaction objectives (when one can build
models without having to resort to hand-coded shell scripting). On the other hand, the higher-
level functionality for building and debugging process models may make ProcessWeaver a
more attractive choice when large models are being considered. The choice of which product
to use (including the others listed in Appendix A) has to be made based on the requirements
of the project for which the process enactment model is being built. Both reviewed products
show significant insights into what is needed for effective process enactment, but the imple-
mentation paths have gone in different directions. The technology has some way to go before
reaching maturity, and practical field experience will make it more robust and provide the ven-
dors with greater application knowledge.
CMU/SEI-94-TR-007 77

78 CMU/SEI-94-TR-007

8 Adopting and Using Process Automation Technology

Because there is as yet little industry experience in automating large-scale software process-
es, it is wise to proceed cautiously. The following three subsections discuss some conserva-
tive guidelines to follow when adopting this technology as well as providing some practical
steps to its implementation.

8.1 Process Automation and Process Maturity

Automated processes are more “brittle” than manual processes, i.e., they are less adaptable
to unforeseen circumstances and they cannot be modified as easily on the fly. Thus an under-
standing of one’s manually-driven process is a prerequisite to the success of process automa-
tion. It can be argued that a CMM Level 1 organization should not use a process-centered
framework for critical processes if these processes are not already understood, stable, and
well-defined. While it is tempting to think that a process-centered framework can help move a
organization from Maturity Level 1 to Level 2, stable manual processes (an essential ingredi-
ent of a level 2 organization) will significantly reduce the risk of implementing a PCF. There is
also a concern that a Level 1 organization will become too preoccupied with the PCF technol-
ogy rather that focus on the main issue which is process improvement.

This is not to say that a Level 1 organization cannot use some of the functionality provided by
PCFs (such as supporting individuals in product development) or experiment with them in
small-scale noncritical areas, but experience should be gained before process automation is
imposed on critical parts of one’s product line. Application to small-scale, noncritical areas will
provide a means to learn and gain confidence about both the technology and the adoption is-
sues.

8.2 Guidelines for Adopting Automated Process

Adopting any new technology is likely to meet with significant resistance. Because of its per-
vasiveness and potentially impersonal nature, this is particularly true with process automation.
As with any new technology, some of this resistance will simply result from the fact that people
often do not like to change from their comfortable routine to new and uncertain ways. Howev-
er, some resistance will also come from reasons unique to process automation technology.
Such reasons are related to the controlling nature of the technology and the automated col-
lection of personal productivity metrics. Typical reactions to these changes will include:

• Now I don’t talk to people, I only communicate through my terminal.

• I don’t want management to know every move I make.

• I don’t want to be treated like a cog in a machine.

• I know these metrics are going to be used against me in my annual
evaluation.
CMU/SEI-94-TR-007 79

Such comments reflect the natural fears of staff members, particularly if management is
viewed as authoritarian. Some of the resistance reflects a general reluctance to any change
which significantly affects how one does ones job. However, process automation imposes be-
havioral changes that are unique to that technology. Most computer tools (for software devel-
opment, project management, etc.) are passive in the sense that they respond to the
commands of, and perform actions to support, the human agent. Process automation is differ-
ent in that it can request actions of the human. While the roles of the computer and human are
not entirely reversed, this puts the computer at the same status level as the human (since the
human can still request the machine to perform actions too). This question of roles may be
difficult for many to take, and is a major reason why adoption issues for process automation
technology are so critical.

If management wishes to succeed, then it has to create an environment of trust that can only
be achieved through closely involving the people who will have to live within the system. While
Henry Ford may have been able to impose his will on the men in his assembly line by increas-
ing their wages, such a crude approach is unlikely to work in the software field [Womack 90,
Yourdon 92]. More sensitive strategies have to be used. The following points provide some
experience-based guidelines which may be useful to address when considering the applica-
tion of process automation technology. [Fletcher 93] discusses similar issues with reference
to CASE.

1. Resistance to change . Resistance should be expected. Overt resistance is
to be encouraged otherwise it can easily become covert and undermining. Is-
sues, such as those in the bulleted list above, should be aired and discussion
encouraged. Out of such discussions, ideas and approaches may be found,
which, as well as being excellent in their own right, will foster a feeling of “buy-
in”. Some of the strategies suggested in the paragraphs below relate to resis-
tance and its resolution.

2. Process ownership. The philosophy of pushing down responsibility to as
low an organizational level as possible should be adopted. Thus the group
responsible for performing a process which is to be automated should help
define, and should feel that it has ownership of, that automated process. This
may be done by encouraging close collaboration between the user group and
a software engineering process group (SEPG). The SEPG should know how
to elicit information on the current processes and identify the user-group’s
requirements on its automated equivalent, by:

• knowing how to define process models,

• knowing how to implement and validate enactable models,

• understanding metrics collection and analysis issues, and

• having the necessary skills to address adoption/transition issues.

3. Training. Training (for example, on process definition/automation, metrics
collection and analysis) and setting expectations (for example, no layoffs
resulting from automation, non-attribution of metrics data etc.) are significant
contributors to the success of this adoption task.
80 CMU/SEI-94-TR-007

4. Process improvement . In the same way that a group operating a process
should feel ownership if it, the group should also have the responsibility for
improving it. Thus the group should be responsible for collecting and
analyzing its own process metrics, encouraging suggestions for enhancing
the process and for implementing changes. These changes should, of course
conform to the organizational standards (see Item 8 below).

5. Process metrics . Process metrics should be managed by the group and
should be non-attributable to individuals. With the automated metric
collection, access to confidential metric data should be controllable, thus
assuring those involved that such data will not be used in employee
evaluations. Only non-attributable data is passed up the management chain.
Person-specific metrics are used by the group only to improve the group’s
process; group-averages may then be used to support the improvement of
higher-level processes.

6. Organizational context. Project processes should be defined within the
broader context of the organization. Thus the organization has the
responsibility to develop process definition standards (e.g., type of process
definition/enactment methodologies), process interface standards (to allow
for compatibility between project processes and higher level processes), and
data format standards (to allow for information consistency between
projects). However, broad organizational standards should only be imposed
after sufficient exploratory experience is gained with process automation at
the project level.

7. Process interfaces. Broad higher-level process models may be used to
guide the organization of the lower-level processes and information flows.
However, these higher-level processes should not specify the details of the
individual processes. Detailed process definition should be a bottom-up task
(using the standards). The top-down model may be periodically revised as a
result of bottom-up integration of tasks. In this way the model is organic, being
neither completely top-down nor bottom-up. Constraints on the construction
of individual processes include:

• inputs and outputs (both artifacts and decisions), derived from the higher
level,

• guidelines and standards on process definition, and

• data formats.

8. Transitioning strategies . To institute automated processes in an existing
project, real-time validation may be required before commitment to the new
process is made. One approach to this is to run the old (perhaps manual)
process in parallel, side-by-side with the new automated process, making
sure that the inputs to both are identical. Outputs are then compared for some
time to assure that they are identical. In cases where the old and new
processes are not the same, the two processes can still be run side-by-side
until sufficient confidence is gained that the new process is providing correct
output (parallel strategy). Another strategy is to incrementally insert small
components of the automated process into the old process in such a way that
the change-over to the new process occurs gradually (incremental strategy).
CMU/SEI-94-TR-007 81

9. Process reuse . Processes that have been successfully run by one project
can be captured in a corporate repository for use or modification by others.
This not only reduces the effort in implementing processes in subsequent
projects, but will support the drive to organizational consistency of process
and encourage communication between projects.

10.Granularity of process control. The manner in which a process is be
modeled should depend on the application area. In general, processes closer
to technical development should provide increasing degrees of support or
guidance and decreasing degrees of imposed control. For example,
developers are unlikely to accept a level of overt, external control in which
every act in the edit/compile/test cycle is regulated. However, they may wish
to support their activities by developing their own personal process scripts.
On the other hand, persons managing change requests or document review
activities may be very happy to have the support of an externally defined
process in order to lift some of the administrative burdens from their
shoulders.

8.3 Transitioning to a PCF

In order to install an organization-wide integrated software development environment (not
necessarily a PCF), significant planning must be done [Humphrey 89]. While Humphrey
suggests a two-phase strategy, the following approach expands that suggested by him and
has three phases. The first phase is exploratory and allows for technical and adoption
experience to be gained. This phase may be done by projects having the characteristics of an
organization at Maturity Levels 1 or 2.11 The second (strategic) phase involves planning for
organizational adoption and requires the organization to be at least a high maturity Level 2.
The third phase covers actual implementation of process automation within projects as
directed in phase 2.

Phase 1: Exploration

This phase is very important in allowing an organization to assess the appropriateness of
process automation for its culture, prior to making significant investments. Thus implementing
one or more pilot processes should be the first step. Before starting, it is probably wise to read
about technology change management. Little has yet been written explicitly about adopting
process automation, but many of the issues are the same as those in the adoption of other
technologies. Excellent places to start are [Oaks 92, Humphrey 89, Fletcher 93, and Block 81].
The paper by [Dart 94] illustrates how close the issues of adopting automated configuration
management are to that of adopting automated process. The following criteria are suggested
in selecting an appropriate process to be automated:

11. The Capability Maturity Model [Paulk 93a] associates maturity levels with organizational characteristics, not
project characteristics. However, nearly all of Level 2 practices within the CMM focus on project characteris-
tics. It is in this sense that the term “a project showing Level 2 characteristics” is used. Of course, the term “a
project showing Level 3 characteristics” makes little sense.
82 CMU/SEI-94-TR-007

• the process is modest in size,

• the process is well understood and stable,

• the process is not on the critical production path of external products,

• the project, of which the process is a part, is not constantly putting out
“brushfires”, and

• the users of the process are positively inclined to automation.

Phase 2: Strategic planning

Once confidence has been gained through the demonstration process(es), the knowledge and
skills gained can be put to use in developing a strategy that will allow wider and consistent im-
plementation throughout the organization. The following activities are suggested:

• Establish an automation focal point (an individual). This person was probably
part of the Phase 1 activities, could be part of a software engineering process
group, and must have an understanding of issues related to technology,
process and adoption. Communication is also an essential skill for this
individual.

• Define application focuses for automation (i.e., individuals, projects leaders,
upper management and corporate staff).

• Develop a high-level requirements statement for the automation project.
Include requirements for:

• communication,

• metric data collection,

• management tools,

• development tools,

• data repositories,

• vendor support, and

• training.

• Establish a strategic plan for PCF for adoption and maintenance.

• Assess the most promising PCF.

• Establish a corporate process reuse repository.

• Develop a handbook for the adoption of automated process which covers the
technical, adoption, training, and reuse issues.

Phase 3: Project implementation

With experience in hand from the demonstrations, and the organizational framework provided
by Phase 2, implementation throughout the organization’s projects can begin. For this phase,
the following activities are suggested:

• Establish an implementation group composed of experts in the automation
technology and members of the affected project. If necessary train
individuals in the PCF and in adoption techniques.
CMU/SEI-94-TR-007 83

• Identify and evaluate project-based costs, benefits and risks associated with
adoption of process automation.

• Develop project and application-specific process automation objectives and
implementation plans.

• Develop project and application-specific migration strategy based on the
handbook for the adoption of automated process.

• Define, develop and implement the process templates based on the
handbook for the adoption of automated process.

• Validate the effectiveness of the process by involving future users in
simulated process role-plays (see Section 6)

• Provide training and hands-on experience for all affected parties.

• Track the progress of the automation project (getting feedback from users),
document lessons learned, and improve the process model.

It may be helpful to expand on the activity of defining a project’s migration path by suggesting
one possible scenario. This scenario assumes that Phases 1 and 2 have been completed and
that Phase 3 (project implementation) is starting. As mentioned above, a project showing
Level 1 characteristics will not have the process maturity to effectively use a PCF in the broad
sense. A project with level 2 characteristics is therefore chosen to pilot the installation. At this
point, the manually-defined process is chosen and adapted for automation using the
organization’s standards. It is then tested off-line through simulation. Critical project members
are closely involved in these activities. The functional elements supported by the PCF may
include development tools such as compilers, debuggers, etc., or management tools such as
for project planning and cost estimating. At this point a transition strategy must be planned and
implemented, and could, for example, use either the parallel or incremental approach
discussed earlier (see Item 8 in Section 8.2). Transitioning the automated process into the
project also requires that the project members be trained in how to work and feel comfortable
with the automated process.

When sufficient confidence has been reached with the first project, other projects transition to
the use of the PCF, perhaps while concurrently achieving Maturity Level 2 characteristics. In
adopting the PCF, these latter projects will have to conform to the data standards set up for
the repository. This not only allows projects to communicate, but also sets the stage for the
organization to reach maturity Level 3. At Level 3, a major focus is on organizational
consistency of process. Thus each project's process will be tailored to reflect the
organization's standard process. The process, as defined for each project, will be developed
using standard process modeling tools and stored within the organization's repository under
CM control. Also, in moving towards Level 3, the organization will support access tools
allowing upper management to query the repository. This is possible since data across the
organization is now stored in a consistent manner.

The functionality provided by the PCF will need to accommodate changes in the process as
process improvement takes place. Increasing complexity is to be expected as new
requirements, greater process complexity, and product variety are imposed. Significant
84 CMU/SEI-94-TR-007

modification of the process program is also likely since mistakes will be made as experience
is gained. If the process model is not resilient and flexible, it is likely that continued modification
of the associated software will overstress the original concept. This problem of process
evolution and maintenance affects not only the process template design, but also challenges
the underlying mechanisms provided by the process programming language.
CMU/SEI-94-TR-007 85

86 CMU/SEI-94-TR-007

9 Summary and Conclusions

As software systems have grown in size and complexity, the ability to predictably manage
them with respect to cost, quality, and on-time delivery has declined. This has led to an aware-
ness of the importance of well understood software process as an essential ingredient in soft-
ware development [Humphrey 89]. However, managing all the elements of software process
requires a significant investment in time and resources, and this may discourage organizations
otherwise favorably inclined to process improvement. Fortunately elements of many process-
related tasks can be automated, providing support for both developers and managers in their
day-to-day efforts. Approached in the right manner, automation of the process has the ability
to bring improvements in both quality and productivity.

Automation can support process activities in many ways. Some of the important ones are:

• It assures that the development process is actually followed and can provide
a “paper trail” of the sequence of activities performed.

• It allows developers to communicate with each other and coordinate tasks
with less effort.

• It can support project oversight by providing project and upper management
with the current status of development activities.

• It can automatically link to project management tools, thus making updates
to project plans much simpler.

• It can reduce the chance of many process-related errors occurring by
transferring process control to the enacted model.

• It can support the automatic collection of metric data, thus eliminating the
time consuming and error prone tasks of manual collection.

• It can automatically provide input to a corporate repository to support process
improvement and project estimation.

• Through automation, many menial tasks can be removed from human
involvement.

• Process automation can provide a setting in which the developer has easy
and context-dependent access to the tools he/she needs to perform the
tasks.

• Finally, it can contribute to process reuse since a defined and validated
model can be captured in a process database.

It should be noted that there are also some potential pitfalls to using this technology. Most im-
portantly, a process-centered environment cannot be viewed as simply a CASE tool to be im-
posed on a developer. Process automation involves at least the whole project and perhaps
the broader organization. Any process-centered framework will impose ways of doing things
that may differ significantly from past experience. If not approached correctly, users of such a
PCF could easily subvert it. A second issue is that of working within a defined process. It is
unlikely that an automated process can be successfully implemented without the project hav-
ing a well understood and stable manual process. This does not imply that the automated pro-
CMU/SEI-94-TR-007 87

cess need slavishly follow the manual process, but without an understanding of the basic
project tasks and information flows, etc., it is unlikely that the automated process will succeed.
PCFs are fragile in the sense that they cannot easily change strategy in mid-stream if prob-
lems arise. Humans have a remarkable ability to adapt to unforeseen circumstances; software
systems have still to learn this ability. Finally, PCFs are not a panacea, and indeed are still in
their infancy. Adopters cannot rely on the practical experience of others as there are, as yet,
few examples of day-to-day industrial use.

Two PCFs, ProcessWeaver from Cap Gemini and SynerVision from Hewlett Packard, were
examined in some depth in order to better understand the technology. It was found that they
provided some functionality in common, but also differed in a significant number of ways.
Characteristics in common include the ability to generate process templates thus allowing for
process reuse, the ability to support personal task management in addition to implementing
predefined task sequences (i.e., processes), the ability to develop simple processes without
having to know either PCF’s scripting language, and an interface that serves the needs of both
the developer and end-user. This latter feature allows end-users to develop simple processes
for themselves or group use.

Differences between these PCFs include the following. ProcessWeaver’s approach to devel-
oping models is primarily graphical. A process is defined at a high level through an activity hi-
erarchy, each activity being supported by an associated process diagram These process
diagrams are defined using a Petri net notation. This graphical approach allows for a rapid pro-
cess development and helps reduce the likelihood of errors. SynerVision essentially uses a
textual approach to defining the process. An activity hierarchy is defined textually (although a
graphical representation of this is available), and each of the activities has actions that are per-
formed to satisfy it. Other information, such as dependencies between activities, may form part
of the activity definition. ProcessWeaver’s Petri net approach is less flexible in that one must
complete all upstream tasks to the current task before it can begin. With SynerVision one can
begin a task any time providing that the necessary inputs are available and there are no ex-
plicit constraints imposed by the process model.

SynerVision provides an effective suite of tools for automatically capturing different metric data
and for performing simple project management functions. These two features support each
other since both rely on the same types of data. On the other hand, the version of Process-
Weaver which was evaluated (V1.2) provides links to connect to project management tools but
does not provide this functionality directly. ProcessWeaver’s lack of support for process met-
rics is seen as a weakness since there is such a close relationship between process automa-
tion and the collection of process metrics. ProcessWeaver does, however, provide useful
features for debugging process models, from consistency checking to simulation. To date Syn-
erVision provides little support for debugging. Information windows, that provide the end user
with task-dependent messages for guidance and control buttons for decision making, are used
by both SynerVision and ProcessWeaver. ProcessWeaver has the added capability of dis-
88 CMU/SEI-94-TR-007

playing icons in these windows. These icons can represent documents or tools and can be
opened to display the document (in, for example, a word processor) or tool, and provide a very
effective means for managing tasks.

The documentation of both ProcessWeaver and SynerVision could be improved. One of Syn-
erVision’s manuals provides a good explanation of the product if one is only going to generate
processes without invoking the scripting language. However, the manual that describes the
scripting language needs to be clarified and reorganized. ProcessWeaver’s documentation
provides a good explanation of the product’s major elements but fails to adequately explain
how these elements fit together. ProcessWeaver’s manual could also provide expanded cov-
erage of the product’s lower level features. Both products could be significantly improved if
they were supported by a wider set of executable examples and simple application cases (sim-
ilar to the one developed in this report).

In conclusion ProcessWeaver and SynerVision both had the functionality to construct the ex-
perimental model described earlier, and provided robust environments in which to build and
enact the models. There were frustrations during model construction and debugging, and
these resulted from:

• inexperience at using the methodologies,

• product features that reflect early technology,

• less than adequate documentation, and

• lack of good illustrative and executable examples.

Unlike coding tools whose users typically have a sophisticated programming background,
PCFs will have a less technical, and more process-oriented set of users. Both SynerVision and
ProcessWeaver have features that indeed support nontechnical users, but the needs of these
users could be more adequately addressed. The basic technical approach used by either
product is believed to be solid and form a good foundation for process automation. The current
limitations of these products (most likely reflected in other PCFs; see Appendix A) are to a
great extent a consequence of the newness of this technology, and it is hoped that these lim-
itations will be removed in time.

Process-centered frameworks provide the structure to support process automation. However,
successful introduction of this technology imposes fundamental changes in the way software
is developed. First, application of process automation is more likely to succeed if the organi-
zation’s processes have already been defined and operated manually. This not only provides
a basis for developing the automated equivalent of the process, but educates the organiza-
tion’s staff on what it is like to work within a defined process. Second, imposing an automated
process requires a significant degree of trust between developers and management since it
can be perceived as being intrusive. Two major implications of this are:
CMU/SEI-94-TR-007 89

• in order to encourage feelings of ownership, affected project members
should be closely involved in developing or adapting process to meet their
project needs, and

• automated metrics collection is designed to assure that the data is used to
improve the process and not to evaluate an individual’s performance.

Third, to achieve success in process automation, a transition strategy is necessary. It is sug-
gested that a three phase approach is used. The focus of the first phase is gaining experience
with the technology and its adoption in small, noncritical processes.The second phase then
involves strategic organizational planning, while the third phase involves implementation
across multiple projects. The strategic plan must have the visible and continued support of up-
per management since the culture changes introduced by process automation will be signifi-
cant and will likely be resisted.

The future of process automation has yet to be decided. Potentially it can bring dramatic im-
provements in software productivity and quality, but questions remain to be answered. Is the
technology sufficiently responsive and adaptable to human needs? Conversely will imple-
menters be sufficiently aware of the critical human-factors issues? Will early failures at auto-
mation prematurely give the field a bad reputation? Will resistance to working in an automated
process be a major impediment? Will process automation products be sufficiently flexible to
describe most process characteristics and sufficiently scalable to model “industrial-strength”
projects? While answers to these questions will only be resolved in time, awareness of the is-
sues and plans to deal with them will immeasurably improve the chances for success.
90 CMU/SEI-94-TR-007

References

[Block 81] Block, P. Flawless Consulting, San Diego: Pfeiffer and Co., 1981.

[Boone 91] Boone, G. “CASE and its Challenge for Change”, International Journal of Software
Engineering and Knowledge Engineering 1,2 (1991): 151-163.

[Brown 92] Brown, A. W.; Earl, A. N.; McDermid, J.A. Software Engineering Environments: Au-
tomated Support for Software Engineers, New York: McGraw-Hill, 1992.

[Brown 93a] Brown, A. W. et al. “Experiences with a Federated Environment Testbed”, Pro-
ceedings of the European Software Engineering Conference, Garmisch, Germany: Springer
Verlag, September 1993.

[Brown 93b] Brown, A.; Carney, D.; Oberndorf, P. & Zelkowitz; M.; eds. Reference Model for
Project Support Environments: (CMU/SEI-93-TR-23). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, November 1993.

[Chen 83] Chen, P. P., ed. Entity-Relationship Approach to Information Modeling and Analy-
sis, Amsterdam: North Holland, 1983.

[Christie 93a] Christie, A.M. “Process-Centered Development Environments: An Exploration
of Issues”. (CMU/SEI-93-TR-04). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, June 1993.

[Christie93b] Christie, A.M. “A Graphical Process Definition Language and its Application to a
Maintenance Project”. Information and Software Technology, 35, 6/7, (June/July) 1993: 364-
374.

[Curtis 92] Curtis, B.; Kellner, M.; Over, J. “Process Modeling”, Communications of the ACM,
35, 9, (September 1992): 75-90.

[Cusumano 91] Cusumano, M. A. Japan’s Software Factories, New York: Oxford University
Press, 1991.

[CaseWare] CaseWare/CM Integration. Technical note from CaseWare Inc.

[Dart 91] Dart, S. “Concepts in Configuration Management Systems”, Proceedings of the Third
International Conference on Software Configuration Management, ACM Press, Trondheim,
Norway, June, 1991.

[Dart 94] Dart, S. “Adopting an Automated Configuration Management Solution”, Sixth Annual
Software Technology Conference, Salt Lake City: Paper presented at STC Conference, April
1994.
CMU/SEI-94-TR-007 91

[Derniame 92] Derniame, J.C. ed. “Software Process Technology”, Second European Work-
shop, EWSPT, ‘92, Trondheim, Norway: Springer-Verlag, September 1992.

[Earl 93] Earl, A. “An Introduction to the Notations of ProcessMaker”, Mark V Systems, Encino,
CA., 1993.

[Ett 91] Ett, W.H. “Enacting the Software Process”, Washington DC: STARS ‘91 Proceedings,
December 1991.

[Feiler 88] Feiler, P.H., & Smeaton, R. The Project Management Experiment (CMU/SEI-88-
TR-7, ADA197490), Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon Univer-
sity, July 1988.

[Feiler 92] Feiler, P.H.; & Humphrey, W.S. Software Process Development and Enactment,
(CMU/SEI-92-TR-04, ADA258465). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, September, 1992.

[Fletcher 93] Fletcher, T.; & Hunt, J. Software Engineering and CASE: Bridging the Cultural
Gap, New York: McGraw-Hill Cap Gemini America Series, 1993.

[Humphrey 89] Humphrey, W. S., “Managing the Software Process”, Reading, MA: Addison-
Wesley, 1989.

[Kaiser 90] Kaiser, G.E.; Barghouti, N. S.; & Sokolski, M. H. “Preliminary Experience with Pro-
cess Modeling in the Marvel Software Development Environment Kernel”, Proceedings of the
Twenty-Third Annual Hawaii International Conference on Systems Science, Vol. 2. IEEE
Computer Society Press1990.

[Kellner 89] Kellner, M. “Software Process Modeling: Value and Experience”, 1989 SEI Tech-
nical Review, Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon Universi-
ty,1989.

[Kellner 90] Kellner; & M., Rombach, H. D. “Comparison of Software Process Descriptions”,
Proceedings of the 6th International Software Process Workshop: Support for the Software
Process, Hakodate, Japan: IEEE Computer Society Press, October 1990.

[Kellner 93a] Kellner, M.: & Gates, L. P. “Evolution of Software Process”, Proceedings of the
International Workshop on the Evolution of Software Process, Quebec, Canada, January,
1993.

[Kellner 93b] Kellner, M.; & Phillips, R. W. “State of the Practice in Process Technology”, Pro-
ceedings of the 8th International Software Process Workshop, Wadern, Germany: IEEE Com-
puter Society Press, March, 1993.

[Majkiewicz 94] Majkiewicz, J. “How Smart are Smart Documents”, SunExpert 5,3 (March
1994): 46-54.
92 CMU/SEI-94-TR-007

[Mi] Mi, P.; & Scacchi, W. “Process Integration in CASE Environments”, IEEE Software 9,2
(March 1992): 45-53.

[NIST 93] “Reference Model for Frameworks of Software Engineering Environments, NIST
Special Publication 500-211, August, 1993.

[Oaks 92] Oaks, K. S., Smith, D., Morris, E. Guide to CASE Adoption, (CMU/SEI-92-TR-15),
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, November 1992.

[Osterweil 87] Osterweil, L. “Software Processes are Software Too”, 9th International Confer-
ence on Software Engineering, Monterey, California, IEEE Computer Society Press, 1987.

[Page-Jones 92] Page-Jones, M. “The CASE Manifesto”, CASE Outlook, January-February,
1992: 33-42.

[Paulk 93a] Paulk, M. C., et. al. Capability Maturity Model for Software, Version 1.1,
(CMU/SEI-93-TR-24, ADA263403), Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, February, 1993.

[Paulk 93b] Paulk, M. C.; et al. Key Practices of the Capability Maturity Model, Version 1.1,
(CMU/SEI-93-TR-25, ADA 263432), Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, February, 1993.

[Peuschell 92] Peuschel, B. Schafer, W., Wolf, S. “A knowledge-based Software Development
Environment Supporting Cooperative Work”, International Journal of Software Engineering
and Knowledge Engineering, 2,1, (1992): 79-106.

[ProcessWeaver 93] ProcessWeaver User’s Manual and Reference Manual, Version PW1.2.
Grenoble, France: CapGemini Sogeti, 1992.

[Rader 93] Rader, J.; Morris, E.J.; & Brown, A.W. “An Investigation into the State of the Prac-
tice of CASE Integration”, pp. 209-221. Proceedings of Software Engineering Environments,
‘93, IEEE Computer Society, July 1993.

[Reisig 82] Reisig, W., Petri Nets, Heidelberg: Springer-Verlag, 1982.

[Sobell 89] Sobel, M. G. A Practical Guide to the Unix System, 2nd Edition, Redwood City, CA:
Benjamin Cummings, 1989.

[Soley 92] Soley, R. M., ed. Object Management Architecture Guide, V2.0, Object Manage-
ment Group, September 1992.

[STARS 92] STARS Joint Activity Group. A Compendium of Process Concepts For Practitio-
ners - PCP Abstracts, Submitted to Electronic Systems Center, Hanscomb AFB, October 30,
1992.

[SynerVision 93a] SynerVision. Introduction to SynerVision: Models of Use, Hewlett-Packard
document B3261-90002, Draft May 5, 1993.
CMU/SEI-94-TR-007 93

[SynerVision 93b] SynerVision. Developing SynerVision Processes, Hewlett-Packard docu-
ment B3261-90003.

[Weiderman 86] Weiderman, N. H.; et al. “A Methodology for Evaluating Environments”,
pp199-207, Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments, Palo Alto, CA: ACM publication, December
1986.

[Womack 90] Womack, J. P., Jones D. T., Roos, D. The Machine that Changed the World,
New York,: Rawson Associates, 1990.

[Yourdon 92] Yourdon, E., “The Decline and Fall of the American Programmer”, Englewood
Cliffs, NJ: Prentice Hall, 1992.
94 CMU/SEI-94-TR-007

Appendix A Vendor Information on PCFs
The following is a list of products which support process automation for software development
or business workflow. This list is not all-inclusive. Configuration management products such
as CaseWare and groupware products such as Lotus Notes are also making an impact in the
process area. For a review of other products (with a focus on document management) [Majk-
iewicz 94] should be consulted

Life*Flow
Company: Computer Resources International A/S
14205 SE 36th St.
Suite 100
Bellevue, WA 98006
Contact: John Wilkerson
Phone: 206-649-1134
Platforms supported: Sun SPARC, IBM RS6000, HP9000, PC Windows (client mode).

Process Engineer
Company: LBMS, Inc.
1040 North Kings Highway
Suite 724
Cherry Hill, NJ 08034
Contact: Joni Fuller
Phone: 609-482-2011
Platforms supported: Networked PCs

ProcessWeaver
Company: Cap Gemini America
1114 Ave. of the Americas
29th floor
New York, NY 10036
Contact: Larry Proctor
Phone (US): 1-800-759-8255 (pin: 513-3640)
Platforms supported: Unix platforms including HP, Dec, Sun SPARC, IBM RS6000. The Agen-
da (client mode) also runs under MicroSoft Windows.
CMU/SEI-94-TR-007 95

ProcessWise
Company: ICL
ProcessWise Portfolio Center
ICL Waterside Park
Cain Road
Bracknell, Berkshire, RG12 1FA
United Kingdom
Contact: Jane Burns
Phone (UK): 44-0344-711795
Platforms supported: ICL DRS6000, ICL Series 39, Sun, Bull DPX20, IBM RS6000

SynerVision
Company: Hewlett-Packard Company
Software Engineering Systems Division
3404 East Harmony St., MS 7
Fort Collins, Colorado 80525
Contact: Dave Pugmire, Process Program Manager
Phone: 303-229-3265
Platforms supported: HP9000. Sun SPARC platforms should be supported by the time this re-
port is released.
96 CMU/SEI-94-TR-007

Appendix B Listing of SynerVision Experiment
Script

The following script is for the Synervision implementation of the experimental model. It is pro-
vided a) to illustrate the programming that was required to implement the model and b) as a
basis for others who may wish to explore SynerVision’s capabilities. Each
AUTOMATIC_ACTION in the script corresponds to one of the activities in the task hierarchy
shown at the beginning of the script. Also provided at the end of the script is a listing of the
function getTerm that is used in the process model. Clearly the script needs to be modified to
be used on other machines, as path names will be different. In addition, the variables manag-
er, person1, etc., instantiated in the first AUTOMATIC_ACTION, need to be defined in Syn-
erVision’s schema file.

ProcessWeaver defines its graphical model as a series of ASCII files. While these are read-
able, they are machine-generated, quite lengthy, and thus not provided.

This is the task hierarchy for the Update Document project
##

TASK “Initiate Project”
InitProj=$last_TASKID

CHILDREN_BEGIN

TASK “Review New CR”
RevNewCR=$last_TASKID

TASK “Identify Agents For Roles”
IdenAgForRl=$last_TASKID

 CHILDREN_BEGIN

TASK “Make Revised Assignments”
ReviseAssign=$last_TASKID

TASK “Impose Assignments”
ImposeAssign=$last_TASKID

TASK “Get Editors Reply”
GetEdReply=$last_TASKID

TASK “Notify Editor”
NotifyEd=$last_TASKID

TASK “Notify Reviewer”
NotifyRev=$last_TASKID

TASK “Check If Person A is Editor”
CheckA=$last_TASKID

TASK “Make Initial Assignments”
InitAssign=$last_TASKID

CHILDREN_END

TASK “Update Document”
UpdateDoc=$last_TASKID

 CHILDREN_BEGIN

TASK “Get Report”
GetReport=$last_TASKID

TASK “Initial Mods”
InitMod=$last_TASKID
CMU/SEI-94-TR-007 97

TASK “Modify Report”
ModReport=$last_TASKID

TASK “Review Report”
RevReport=$last_TASKID

TASK “Put Report”
PutReport=$last_TASKID

CHILDREN_END

CHILDREN_END

Each AUTOMATIC_ACTION below is associated with one of the tasks above
###

AUTOMATIC_ACTION -t $InitProj Status New Inprogress perform <<EOF
Initialize the variables for the project

ATTRIB -i -v manager “Paul”
ATTRIB -i -v person1 “Leonard”
ATTRIB -i -v person2 “Alan”
ATTRIB -i -v report “TestReport”
ATTRIB -i -v CR “CR_No_1”
ATTRIB -i -v notes “ReviewNotes”
ATTRIB -i -v inc 0
ATTRIB -i -v -t $RevNewCR “Executing=Running_Foreground”

EOF

AUTOMATIC_ACTION -t $RevNewCR Status New Inprogress perform <<EOF
Send a message to the manager requesting him to decide on the acceptability of the
modification. If the modification is unacceptable, the project terminates here.

CR=\‘GET_ATTRIB CR\‘
report=\‘GET_ATTRIB report\‘
manager=\‘GET_ATTRIB manager\‘
display=\‘getTerm \$manager\‘
DISPLAY=\$display
export DISPLAY
cd /users/amc/SVdata
get -e s.\$report>temp
chmod a-w \$report
emacs \$CR &
emacs \$report &
result=\‘svprompt -p “\$manager, please review the acceptability of change request \$CR

per the document \$report then press either the Accept or Reject button” -L -d “Accept
Reject”\‘
 # mark this task completed

ATTRIB -i -v -t $RevNewCR “Status=Completed”
if [\$result = “Accept”]; then

 # start the next task
ATTRIB -i -v -t $IdenAgForRl “Executing=Running_Foreground”

else
 # mark parent task as abandonded

ATTRIB -i -v -t $InitProj “Status=Abandoned”
fi
delta s.\$report>temp

EOF

AUTOMATIC_ACTION -t $IdenAgForRl Status New Inprogress perform <<EOF
This task is for continuity -- it has no action except to call to a lower-level task

ATTRIB -i -v -t $InitAssign “Executing=Running_Foreground”
EOF

AUTOMATIC_ACTION -t $UpdateDoc Status New Inprogress perform <<EOF
This task is for continuity -- it has no action except to call to a lower-level task

ATTRIB -i -v -t $GetReport “Executing=Running_Foreground”
EOF

AUTOMATIC_ACTION -t $InitAssign Status New Inprogress perform <<EOF
The manager makes an initial assignment of the proposed editor,and by default, also the
reviewer.

 report=\‘GET_ATTRIB report\‘
 manager=\‘GET_ATTRIB manager\‘
 personA=\‘GET_ATTRIB person1\‘
 personB=\‘GET_ATTRIB person2\‘
 display=\‘getTerm \$manager\‘
 DISPLAY=\$display
 assign=\‘svprompt -p “\$manager, please make an initial assignment of who

will edit the report \$report” -L -d “\$personA
\$personB”\‘

 if [\$assign = \$personA]; then
ATTRIB -i -v -t $InitProj editor \$personA
98 CMU/SEI-94-TR-007

ATTRIB -i -v -t $InitProj reviewer \$personB
else

ATTRIB -i -v -t $InitProj editor \$personB
ATTRIB -i -v -t $InitProj reviewer \$personA

 fi
ATTRIB -i -v -t $InitAssign “Status=Completed”
ATTRIB -i -v -t $GetEdReply “Executing=Running_Foreground”

EOF

AUTOMATIC_ACTION -t $ReviseAssign Status New Inprogress perform <<EOF
As a result of the first person refusing the editor role, the second person is chosen to be
the editor.

personA=\‘GET_ATTRIB reviewer\‘
personB=\‘GET_ATTRIB editor\‘
ATTRIB -i -v -t $InitProj editor \$personA
ATTRIB -i -v -t $InitProj reviewer \$personB
ATTRIB -i -v -t $ReviseAssign “Status=Completed”
ATTRIB -i -v -t $CheckA “Status=New”
ATTRIB -i -v -t $GetEdReply “Status=New”
ATTRIB -i -v -t $GetEdReply “Executing=Running_Foreground”

EOF

AUTOMATIC_ACTION -t $ImposeAssign Status New Inprogress perform <<EOF
As a result of the secon person refusing the editor role, the manager must decide who will be
the editor (and then by default, who will be reviewer).

manager=\‘GET_ATTRIB manager\‘
personA=\‘GET_ATTRIB person1\‘
personB=\‘GET_ATTRIB person2\‘
display=\‘getTerm \$manager\‘
DISPLAY=\$display
assign=\‘svprompt -p “\$manager, both staff members have refused the editing assignment.

Please assign either \$personA or \$personB to be editor” -L -d “\$personA
\$personB”\‘

if [\$assign = \$personA]; then
ATTRIB -i -v -t $InitProj editor \$personA
ATTRIB -i -v -t $InitProj reviewer \$personB

else
ATTRIB -i -v -t $InitProj editor \$personB
ATTRIB -i -v -t $InitProj reviewer \$personA

fi
ATTRIB -i -v -t $NotifyEd “Executing=Running_Foreground”
ATTRIB -i -v -t $NotifyRev “Executing=Running_Foreground”
ATTRIB -i -v -t $ImposeAssign “Status=Completed”

EOF

AUTOMATIC_ACTION -t $NotifyEd Status New Inprogress perform <<EOF
The person selected to be editor is notified of the manager’s choice.

report=\‘GET_ATTRIB report\‘
personA=\‘GET_ATTRIB editor\‘
display=\‘getTerm \$personA\‘
DISPLAY=\$display
svprompt -p “\$personA, you have been selected to be editor for report \$report”
ATTRIB -i -v -t $NotifyEd “Status=Completed”

EOF

AUTOMATIC_ACTION -t $NotifyRev Status New Inprogress perform <<EOF
The person selected to be reviewer is notified of the manager’s choice.

report=\‘GET_ATTRIB report\‘
personB=\‘GET_ATTRIB reviewer\‘
display=\‘getTerm \$personB\‘
DISPLAY=\$display
svprompt -p “\$personB, you have been selected to be reviewer for report \$report”
ATTRIB -i -v -t $UpdateDoc “Executing=Running_Foreground”
ATTRIB -i -v -t $NotifyRev “Status=Completed”
ATTRIB -i -v -t $IdenAgForRl “Status=Completed”

EOF

AUTOMATIC_ACTION -t $CheckA Status New Inprogress perform <<EOF
Select path to next task depending on whether this is the first of second request for a
volunteer to be editor.

report=\‘GET_ATTRIB report\‘
reviewer=\‘GET_ATTRIB reviewer\‘
inc=\‘GET_ATTRIB inc\‘
personA=\‘GET_ATTRIB editor\‘
display=\‘getTerm \$personA\‘
DISPLAY=\$display
if [\$inc = 0]; then

ATTRIB -i -v -t $InitProj inc 1
reviewer=\‘GET_ATTRIB reviewer\‘
svprompt -p “I will check to see if \$reviewer will be editor”
ATTRIB -i -v -t $ReviseAssign “Executing=Running_Foreground”
CMU/SEI-94-TR-007 99

else
manager=\‘GET_ATTRIB manager\‘
 reportA=\‘GET_ATTRIB report\‘
 svprompt -p “\$manager will have to decide who will update \$report”
ATTRIB -i -v -t $ImposeAssign “Executing=Running_Foreground”

fi
ATTRIB -i -v -t $CheckA “Status=Completed”

EOF

AUTOMATIC_ACTION -t $GetEdReply Status New Inprogress perform <<EOF
Send message asking if person will volunteer to be editor. Depending on the result, select
appropriate next task.

CR=\‘GET_ATTRIB CR\‘
report=\‘GET_ATTRIB report\‘
personA=\‘GET_ATTRIB editor\‘
reportA=\‘GET_ATTRIB report\‘
display=\‘getTerm \$personA\‘
DISPLAY=\$display
reply=\‘svprompt -p “\$personA are you willing to act as editor for \$report

per the change request \$CR” -L -d “accept
reject”\‘

if [\$reply = “accept”]; then
ATTRIB -i -v -t $NotifyRev “Executing=Running_Foreground”

else
 ATTRIB -i -v -t $CheckA “Executing=Running_Foreground”

fi
ATTRIB -i -v -t $GetEdReply “Status=Completed”

EOF

AUTOMATIC_ACTION -t $GetReport Status New Inprogress perform <<EOF
Retrieve report form repository.

report=\‘GET_ATTRIB report\‘
CR=\‘GET_ATTRIB CR\‘
cd /users/amc/SVdata
get -e s.\$report>temp
chmod a-w \$CR
ATTRIB -i -v -t $InitMod “Executing=Running_Foreground”
ATTRIB -i -v -t $GetReport “Status=Completed”

EOF

AUTOMATIC_ACTION -t $InitMod Status New Inprogress perform <<EOF
Request the the editor updates the document as requested in the change request.

editor=\‘GET_ATTRIB editor\‘
report=\‘GET_ATTRIB report\‘
CR=\‘GET_ATTRIB CR\‘
display=\‘getTerm \$editor\‘
DISPLAY=\$display
export DISPLAY
cd /users/amc/SVdata
chmod a+w \$report
emacs \$report &
emacs \$CR &
svprompt -p “\$editor, please update \$report, as

requested in the chnage request \$CR. When you are fininshed,
press the OK button”

ATTRIB -i -v -t $RevReport “Executing=Running_Foreground”
ATTRIB -i -v -t $InitMod “Status=Completed”

EOF

AUTOMATIC_ACTION -t $ModReport Status New Inprogress perform <<EOF
A a result of the document review, the document still needs revision. The editor is requested
to make these revisions.

editor=\‘GET_ATTRIB editor\‘
report=\‘GET_ATTRIB report\‘
CR=\‘GET_ATTRIB CR\‘
ReviewNotes=\‘GET_ATTRIB notes\‘
display=\‘getTerm \$editor\‘
DISPLAY=\$display
export DISPLAY
cd /users/amc/SVdata
chmod a+w \$report
emacs \$report &
emacs \$CR &
chmod a-w \$ReviewNotes
emacs \$ReviewNotes &
svprompt -p “\$editor, unfortunately your revisions to \$report did not pass review.

 Please modify the document as indicated by the comments in \$ReviewNotes.
 When you are finished, press the OK button.”

ATTRIB -i -v -t $RevReport “Status=New”
ATTRIB -i -v -t $RevReport “Executing=Running_Foreground”
ATTRIB -i -v -t $ModReport “Status=Completed”
100 CMU/SEI-94-TR-007

EOF

AUTOMATIC_ACTION -t $RevReport Status New Inprogress perform <<EOF
The reviewer checks the revised document against the change request. This can result in the
document passing or the review or requiring further work.

reviewer=\‘GET_ATTRIB reviewer\‘
report=\‘GET_ATTRIB report\‘
CR=\‘GET_ATTRIB CR\‘
ReviewNotes=\‘GET_ATTRIB notes\‘
display=\‘getTerm \$reviewer\‘
DISPLAY=\$display
export DISPLAY
cd /users/amc/SVdata
chmod a-w \$report
emacs \$report &
emacs \$CR &
chmod a+w \$ReviewNotes
emacs \$ReviewNotes &
reply=\‘svprompt -p “\$reviewer, please review this updated version of \$report,

 using the change request \$CR, and comments in \$ReviewNotes. Any additional comments
 should also go into \$ReviewNotes.” -L -d “DocOK
NeedsFurtherWork”\‘

if [\$reply = “DocOK”]; then
 chmod a-w \$ReviewNotes
 ATTRIB -i -v -t $PutReport “Executing=Running_Foreground”

else
ATTRIB -i -v -t $ModReport “Status=New”
ATTRIB -i -v -t $ModReport “Executing=Running_Foreground”

fi
ATTRIB -i -v -t $RevReport “Status=Completed”

EOF

AUTOMATIC_ACTION -t $PutReport Status New Inprogress perform <<EOF
The updated document is saved in the repository and the manager is informed of completion of
the project

manager=\‘GET_ATTRIB manager\‘
report=\‘GET_ATTRIB report\‘
display=\‘getTerm \$manager\‘
cd /users/amc/SVdata
delta s.\$report>temp
DISPLAY=\$display
svprompt -p “\$manager, the report \$report has been successfully updated”
ATTRIB -i -v -t $UpdateDoc “Status=Completed”
ATTRIB -i -v -t $InitProj “Status=Completed”

EOF

The following is a listing of the function getTerm used in the above script.

#Given a user’s name, return the display they use

user_name=$1

(grep $user_name | awk -F/t ‘{print $3}’) <<EOF

Proper Name Login Display

Alan Christie amc bs
Paul Zarella pfz ncday:0.0
Leonard Green lsg ncday:0.0

EOF
CMU/SEI-94-TR-007 101

102 CMU/SEI-94-TR-007

Appendix C A Brief Overview of ProNet
To understand the process diagrams of Section 3, this section provides a brief guide to the
ProNet notation. ProNet diagrams are based on a modified Entity-Relation model [Chen], in
which the entities fall into one of eight classes. The following list defines the entity classes
used in an enactable model, and shows the symbols associated with each entity class12:

•Activities - are central elements of the process model and both consume
artifacts or conditions (as inputs) and generate artifacts or conditions (as
outputs). Activities may be atomic or may be composed of subprocesses.

•Artifacts 13- can either be required to support an activity or be produced
by an activity.

•Conditions - can either be required to initiate an activity or result from an
activity and take the values TRUE or FALSE.

•Agents - are specific entities that perform activities. Humans or non-
human entities capable of performing activities are considered to be
agents.

•Composites - are boolean combinations of conditions, artifacts, agents,
etc.

•Stores - allow for persistence of instantiated entities. Artifacts, condition
values, and even agents can be deposited in or retrieved from stores.

Relationships link the entities to the activities. Thus relationships are of the form:

{artifact} is entrance artifact for {activity}

{activity} has exit artifact {artifact}

{agent} is entrance agent for {activity}

Artifacts, conditions, agents and stores may have unknown values at the time the process is
defined. For these entities, a “$” sign is placed in front of the entity’s name. These entities will
need to have their value instantiated at execution time14.

In the process diagrams, these relationships allow the reader to identify the class of entity that
is linked to the activity. Also, if the relationship “artifact_1 is entrance artifact for activity_1”
holds, so does the inverse relationship “activity_1 has entrance artifact artifact_1”. A black dot

12. The set of graphical symbols defined here is expanded over the set used in [Christie 93a].

13. The term “product” , which was was used in the initial version of ProNet, has been relaced by the term “artifact.”

14. In the initial version of ProNet [Christie 93a, Christie 93b] the convention of prefixing entities with a “$” was not
used. In that initial version, the entity classes “agent” and “role” were defined separately. Placing a “$” sign in
front of an agent’s name implies that the agent is unspecified prior to run-time. This is equivalent to the previ-
ous notion of a role, and hence there is no longer a need for the “role” class.
CMU/SEI-94-TR-007 103

is placed next to the entity at the end of the relationship. For example in the relationship “ABC
is entrance artifact for XYZ”, the dot would appear in the graphical relationship close to the box
surrounding the activity XYZ.

C.1 Hierarchical Decomposition

Activities can be processes in their own right. Thus an activity at one level can be expanded
into a process diagram at a lower level. For consistency, inputs to and outputs from an activity
must propagate through to the lower-level process that it represents. Thus consistency of in-
formation at the interface between levels is maintained.

To illustrate these points, examine Figures 3-2 and 3-3. The activity Identify Agents for Roles
in Figure 3-2 has its elements defined by the process diagram in Figure 3-3. As can be seen,
inputs to the process diagram are attached to the left-hand edge of the diagram, while outputs
from that process are attached to the right-hand edge of the diagram.

C.2 Composites, Versions, and Stores

An important concept in the basic notation in the composite class. Composites allow boolean
combinations of entities to be logically related, either as input to an activity or as the output
from an activity. There are four instances of the composite class: CA, CO, DA, and DO, where
“C” stands for “convergent”, “D” stands for “divergent”, “A” stands for “AND”, and “O” stands
for “OR”. Since convergent composites are always implemented prior to an activity they are
called “entrance composites”. Similarly, since divergent composites are always implemented
after an activity they are called “exit composites”.

Iteration is required when, for example, a artifact undergoes a series of revisions, each revi-
sion being different from the last and thus requires looping around a sequence of process
steps. Consider a artifact (prod) that is initially created, at which time an incrementing variable
is set to an initial value (create_prod | i=1). Each time the artifact in updated in the activity
update_prod, the variable is also incremented (update prod| i++). Versions of artifacts are
tagged with the variable i, and hence versions of the artifact are defined. Thus prod | i repre-
sents the i’th version of the artifact. Nested loops can also be implemented using this notation.

Stores support collections of artifacts and conditions values, and thus allow for modeling of
persistency of generated entities. Since we must be able to add these entities to or retrieve
these entities from a store, we introduce two special activities. These do not generate arti-
facts, conditions, etc., but add artifacts to and remove artifacts from a store. The activity
types (put, get) are illustrated in Figure C-1 and are added on to the front of the activity name
as shown in the Figure C-1.
104 CMU/SEI-94-TR-007

C.3 An Example of a Simple ProNet Model

Figure C-2 illustrates a simple ProNet model fragment. A change request (CR) is initialized at
which time the incrementing variable is set to an initial value (initialize CR | i=1). The output
from that activity is the first version of the change request (CR | 1). The composite (CO) ac-
cepts either the first or subsequent versions of the change request as input to the activity re-
view CR. Output from review CR can either be the condition CR OK or the artifact revision
request | i. Each time the change request is updated, the variable i is incremented (update CR
| i++). Note that each activity is supported by an agent.

Adds artifact_X into store_A:

Retrieves artifact_X from store_A:

Figure C-1: Definition of Activities Associated Only with “Store” Entities

put_entity_X

get_entity_X

artifact_X

artifact_X

store_A

store_A

condition_Q

condition_Q

is entrance artifact for is exit store for

is exit condition for

is entrance store for is exit artifact for

is entrance condition for
CMU/SEI-94-TR-007 105

Figure C-2: Simple ProNet Change Request Model

reviewCR

$CR1 | 1 $CR2 | i

$revisionRequest | i

CO

DO

CA

CR OK

$developer

$reviewer

has entrance role

has entrance agent

has exit artifact has exit artifact

has entrance artifact

has entrance artifact

has entrance composite

has entrance agent

has exit composite

has exit artifact

has exit condition

has entrance artifact

has entrance composite

has entrance artifact

. . . .

updateCR | i++initializeCR | i=1. . . .
106 CMU/SEI-94-TR-007

Appendix D Terminology and Concepts
This appendix provides an overview of some of the process-related terminology and concepts
used in the body of the report. Definitions of basic terms have been extracted from [Feiler 92]
and are used with the same meaning as in that document. However, there are other terms
used in the report which need to be explained more fully, since these terms have not gained
general acceptance. This appendix also relates some of the process entities examined to the
process categories defined in [NIST 93]. [Osterweil 87] also provides a good explanation of
concepts in this area.

D.1 Basic Terminology

Some basic process-related definitions, extracted from [Feiler 92] are given below.

Process:

A set of partially ordered steps intended to reach a goal. While the term process is used in
many different contexts, the context for this definition is software. For software development,
the goal is production or enhancement of software products or the provision of services. Other
examples are the software maintenance process, the acceptance testing process, or the pro-
cess development process.

Process automation:

The use of machine process agents in process enactment. Here the use of the machine agent
is facilitated by a fully-developed process definition embodied in a suitable process program.

In the report, this term process automation is also used in a more general sense. It is used
when dealing with the broader organizational context in which the process-centered frame-
work implemented (as in the title of the report).

Process definition:

The implementation of a process design in the form of a partially ordered set of process steps
that is enactable. At the lower end abstraction, each process step may be further refined into
more detailed process steps. A process definition may consist of (sub)process definitions that
can be enacted concurrently. Process definitions whose level of abstraction are refined fully
are referred to as complete or fit for enactment. Completeness, however, depends on context
since a definition that is complete for one process agent may not be for another. A process
definition may be for a class of projects, a specific project team, or an individual professional.
CMU/SEI-94-TR-007 107

Enactable process:

An instance of a process definition that includes all the elements required for enactment. An
enactable process consists of a process definition, required process inputs, assigned enact-
ment agents and resources, an initial enactment state, an initial enactment agent and contin-
uation and termination capabilities. A process that lacks any of these capabilities is not
enactable.

Process model:

An abstract representation of a process architecture, design, or definition. Process models are
process elements at the architectural, design, or definitions level, whose abstraction captures
those elements of a process relevant to the modeling. Any representation of the process is a
process model. Process models are used where use of the complete process is undesirable
or impractical. A process model can be analyzed, validated and, if enacted, can simulate the
modelled process. Process models may be used to assist in process analysis, to aid in pro-
cess understanding, or to predict process behavior.

The process example referred to in the report (and in Figure D-1) is an instance of a process
model for a specific application, and described using a graphical process notation (ProNet).

Process program:

A process definition which is suitably designed and instantiated for enactment by machine.
Process programs must be designed to fit the particular computing environmental needs for
format and generally be tested, debugged, and modified much like computer programs

D.2 Process-Related Concepts

Two related concepts are used throughout this report: process-centered framework (PCF) and
process-centered environment (PCE). These terms are defined below and their relationships
to other process terms are illustrated through the Entity-Relation model of Figure D-1. These
definitions attempt to capture the spirit of the concepts framework and environment as defined
in [Brown 93b]. We also introduce below the term process template.

Process centered framework (PCF):

A PCF is a software product which provides the functionality necessary for the definition and
enactment of process. It includes a process enactment language, mechanisms for process en-
actment, a means to invoke tools, support for communications (between persons and tools),
and capabilities to support the debugging the process models described within the process en-
actment language.
108 CMU/SEI-94-TR-007

Process development services

Process debugging services

Communication services

Tool invocation services

Process
Centered
Framework
(PCF)

is part of

is part of

is part of

is part of

Process
Centered
Environment
(PCE)

are part of

Process example

Process
program

Joan

Tom

Rev Doc 2.3

 Process
program
instance

implements

is specification for

has instance

is supported by
is supported by

is supported by

is implemented through

Figure D-1: Relationship Between Process Enactment Concepts

$person1

$person2

$RevDoc

is supported by

is supported by

is supported by

is part of

implements

are invoked by

Process enactment services

runs

is part of

(template)

Application tools

Application tools
CMU/SEI-94-TR-007 109

Process-centered environment (PCE):

A PCE is a software product which includes the facilities of a PCF, and also includes applica-
tion tools. Examples of applications that these tools may support are: metrics collection,
project management, and software development.

Process template:

A process template is a process program in which the variables have not been instantiated.

Both a PCF and a PCE must have certain basic functionality, such as a supporting a process
programming language, while only a PCE will have an end-user application as part of the prod-
uct. ProcessWeaver (V1.2) is clearly a PCF since it does not have any application tools em-
bedded in it. On the other hand SynerVision may be considered to be a PCE since it has some
end-user applications embedded in it. Either a PCF or a PCE can invoke end-user application
tools to support a particular process and this can be seen in the figure.

D.3 Relationship to the NIST/ECMA Reference Model

The report Reference Model for Frameworks of Software Engineering Environments [NIST 93]
defines a conceptual model which is relevant to the discussions in this appendix. It partitions
services needed by a Software Engineering Environment into seven categories. The sixth cat-
egory, process management, is then structured into six process-related services: develop-
ment, enactment, visibility, monitoring, transaction, and resource. The [NIST 93] process
management categories are similar to those described in Table 3-1 (i.e., development, enact-
ment, debugging, resource, and communication), which were found to be a useful set of cat-
egories in the investigations of SynerVision and ProcessWeaver. A new category, not found
in the [NIST 93] model, is debugging, while the NIST model defined the category transaction
which was not needed since neither SynerVision nor ProcessWeaver had mechanisms to sup-
port the concept.The NIST category of monitoring is similar to the categories of communica-
tion. A correlation between the NIST process service categories and the elements of Table 3-
1 is shown in Table D-1.

a. Debugging services are not covered in [NIST].
b. Neither SynerVision nor ProcessWeaver supports transaction
services.

Table D-1: Relationship to NIST Service Categories

[NIST] Servicea Item Numbers from Table 3-1

development 1b, 1c, 1d, 1e, 1f, 1g

enactment 2a, 2b, 2c

visibility 1a

monitoring 4a, 4b

transaction 3bb

resource 3a
110 CMU/SEI-94-TR-007

Appendix E End-User Evaluation Materials
Objective : To evaluate the effectiveness end-user interface capability provided by SynerVi-
sion and Processweaver. Note that the objective is not to evaluate the process model itself or
its implementations in the products. To this end, the two implementations have been kept as
similar as possible.

In order to consider this evaluation of ProcessWeaver and Synervision from an end-user per-
spective, you are asked to participate in an exercise in which you will act out one of three
roles in a simple document update scenario. This scenario, as defined in Figures 3-2 through
3-4, will be enacted twice, once using a process model which has been implemented with
ProcessWeaver, and once in a model implemented with SynerVision. You will then be asked
to answer some questions about the two versions of the scenario and also about process
automation in general.

The scenario deals with updating a document. There are three roles; a manager and two
technical writers. Also, there are three documents: the document to be modified, the change
request that contains the modifications to be made, and review notes that contain any infor-
mation which the document reviewer may wish to send to the editor. There are four tasks in
the exercise which are:

• to determine if the change request should be implemented (manager’s task).
• to select one of the two technical writers as editor and the other as reviewer (manager’s

task). The sequence of events is as follows. The manager suggests that the first writer
be the editor. If the first writer rejects the role, the second writer is automatically asked
to be the editor. If the second writer also refuses the role, the manager then dictates
which writer will be editor. By default, the other writer becomes reviewer.

• to update the document (editor’s task).
• to review and either accept or reject the revisions (reviewer’s task). If a review fails, then

the document, the change request and a review notes document (in which the reviewer
adds review notes) goes back to the editor. The edit/review cycle continues until the
reviewer is satisfied.

In the scenario, many of the administrative tasks (e.g., making sure that the right persons
have the right documents at the right times) are automated. The information in Table E-1 pro-
vides you with the guidance necessary to follow the scenario. The actions in this table are all
sequential. If you are given the role of Technical Writer A, then follow the instructions for that
role. When an action needs to be performed, guidance is displayed at the terminal of the
appropriate person, along with the documents necessary to perform the action.

After performing the scenario, please answer the questions in Table E-2 as fully as possible.
Answers to some of these questions may require technical and human insights which stretch
the limited scope of the simple scenario. Therefore, please use your own background experi-
ence in conjunction with knowledge gained in the role play to answer the questions.
CMU/SEI-94-TR-007 111

Table E-2: Process Enactment Scenario

Role Action

1 Manager a) Review the change requestCR_No_1 with respect to documentTestReport.
b) Close both documents (control-x control-c).
c) Accept the change request by clicking onacceptbutton.

2 Manager Select Technical Writer A as editor by clicking on button besideTechnical
Writer A.

3 Technical
Writer A

Reject role as editor, by clicking onreject button.

4 Technical
Writer A

Remove the information window by clicking on the OK button.

5 Technical
Writer B

Reject role as editor by clicking on rejectbutton.

6 Technical
Writer B

Remove the information window by clicking on the OK button.

7 Manager Force selection ofTechnical Writer A as editor by clicking on button beside
Technical Writer A.

8 Technical
Writer A

Remove the information window by clicking on the OK button.

9 Technical
Writer B

Remove the information window by clicking on the OK button.

10 Technical
Writer A

a) Modify the documentTestReportas described inCR_No_1.
b) Save the updatedTestReportfile (control-x control-s).
c) Close both documents (control-x control-c).
d) Click on the OK button.

11 Technical
Writer B

a) Review the document TestReport against the modifications inCR_No_1.
b) In theReviewNotes document add “Replace last period (‘.’) in report with
an exclamation point (‘!’)”.
c) Save the updatedReviewNotesfile (control-x control-s).
d) Close all documents (control-x control-c).
e) Click on theNeedsFurtherWorkbutton.

12 Technical
Writer A

a) Modify the documentTestReport as described inReviewNotes.
b) Save the updatedTestReportfile (control-x control-s).
c) Close all documents (control-x control-s).
d) Click on theOK button.

13 Technical
Writer B

a) Review the documentTestReport against the modifications inReviewNotes
and in the change request.
b) Close all documents (control-x control-c).
c) Accept review by clicking on the DocOK button.

14 Manager Click on the OK button.
112 CMU/SEI-94-TR-007

a. In ranking your answers, 1 implies total disagreement, 5 represents full agreement.

Table E-3: Questionnaire for End-User Role Plays a

A. Experience with the scenario (ProcessWeaver)

1 The screen layouts were easy to understand. 1 2 3 4 5

2 The instructional text was well formatted. 1 2 3 4 5

3 The instructional text was easy to read. 1 2 3 4 5

4 The Agenda window was useful in displaying current tasks. 1 2 3 4 5

5 The use of icons was helpful in organizing the task elements. 1 2 3 4 5

6 The use of buttons was effective. 1 2 3 4 5

7 The amount of information in the windows was good. 1 2 3 4 5

8 Computer response times were good. 1 2 3 4 5

9 I found it easy to understand the operating mechanics of the system.1 2 3 4 5

10 The guided task sequence was helpful in managing the process. 1 2 3 4 5

11 The task sequencing was logical. 1 2 3 4 5

12 I would enjoy working in an environment supported by ProcessWeaver.1 2 3 4 5

B. Experience with the scenario (SynerVision)

1 The screen layouts were easy to understand. 1 2 3 4 5

2 The instructional text was well formatted. 1 2 3 4 5

3 The instructional text was easy to read. 1 2 3 4 5

4 The use of buttons was effective. 1 2 3 4 5

5 The amount of information in the windows was good. 1 2 3 4 5

6 Computer response times were good. 1 2 3 4 5

7 I found it easy to understand the operating mechanics of the system.1 2 3 4 5

8 The guided task sequence was helpful in managing the process. 1 2 3 4 5

9 The task sequencing was logical. 1 2 3 4 5

10 I would enjoy working in an environment supported by SynerVision.1 2 3 4 5

Please add any comments here.
CMU/SEI-94-TR-007 113

fort-
Table E-2: Questionnaire for End-User Role Plays (cont.)

C. Adoption issues

Given your brief experience with the process automation scenario, would you feel com
able working in a process-centered environment if:

1) it were designed by you and only supported your personal tasks,

2) you had input to its design, and it were used within your project,

3) it were predefined, but modified (with your input) for use within
your project,

4) you did not have input to its design?

Please explain your reasons.

Do you think that working within a process-centered environment isnecessarily:

1) too invasive,

2) too impersonal

3) too controlling?

Please explain your reasons.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
114 CMU/SEI-94-TR-007

ively
on-

ocess
Table E-2: Questionnaire for End-User Role Plays (cont.)

D. Applications

Do you think that process automation, as exemplified in the experiment, could be effect
applied to improve productivity and software quality? What would be the drawbacks? C
sider such areas as:

1) office paper-routing (e.g., document updating, document sign-offs),

2) software quality (e.g. inspections, walk-throughs),

3) software development (e.g., edit/compile/test cycle, sys. integ.),

4) communications (e.g., subcontractor mgmt., intergroup coord.),

5) metrics collection and analysis,

6) process improvement (process definition, reuse, or adaption).

Please explain your reasons.

E. Miscellaneous

Please provide any other comments or insights you may have in the area of applying pr
automation.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5
CMU/SEI-94-TR-007 115

116 CMU/SEI-94-TR-007

Acknowledgments
I’d like to thank Mike Baumann of Hewlett Packard, and Jean-Luc Meunier and Larry Proctor
of Cap Gemini for all their support and patience while I developed the process models. Without
their help, I could not have performed the in-depth analysis that I did. In particular I would like
to thank Mike Baumann for helping develop parts of the process script and the supporting
function getTerm and to thank Jean-Luc Meunier for helping to develop parts of the Process-
Weaver model and supporting SCCS functions. I’d also like to thank Granville Gosa and Paul
Zarella whose local technical support was invaluable. I’d like to thank Christer Fernstrom,
Jean-Luc Meunier and Gerald Perdreau of Cap Gemini for their technical review of the Pro-
cessWeaver sections of the report and to thank Dave Pugmire of Hewlett Packard for his re-
view of the Synervision section. I’d also like to thank Edward Averill, Alan Brown, David
Carney, Marc Kellner Leonard Green, and Patricia Oberndorf for the wealth of excellent sug-
gestions they gave me from their reviews. These have significantly improved the quality of the
document. I appreciate the support of those who participated in the end-user evaluations and
who provided me the excellent insights which resulted from that experience (Jim Armitage, Ed-
ward Averill, Cliff Huff, Ed Morris, Neal Reizer, and Paul Zarella). Finally, I’d like to thank Julia
Deems and Sandra Bond for their copy-editing of the final draft. Of course, I take full respon-
sibility for any remaining errors in the report.
CMU/SEI-94-TR-007 117

118 CMU/SEI-94-TR-007

13a. TYPE OF REPORT

Final

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S)

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

FIELD SUB. GR.GROUP

SEI

ESC/ENS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

63756E N/A N/A N/A

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

CMU/SEI-94-TR-007 ESC-TR-94-007

A Practical Guide to the Technology and Adoption of Software Process Automation

March 1994 128

software process automation, CASE tools, software process improvement

Alan M. Christie
19. ABSTRACT (continue on reverse if necessary and identify by block number)

Process automation provides a means to integrate people in a software development organization
with the development process and the tools supporting that development. For many reasons, this
new technology has the potential to significantly improve software quality and software development
productivity. As yet, however, there is little practical experience in its day-to-day use. The main goal
of this report is thus to provide information for organizations that are considering its adoption. For
these reasons, the report aims to identify how process automation relates to both process improve-
ment and CASE tools, to review in some detail two of the major commercial process automation prod-
UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22c. OFFICE SYMBOL

ESC/ENS (SEI)
22b. TELEPHONE NUMBER (include area code)

(412) 268-7631

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

(please turn over)

ABSTRACT — continued from page one, block 19
ucts, and to address relevant organizational adoption issues. It is hoped that the report will help
bridge the gap between those whose focus is software process improvement and those whose
focus is software technology.

	1 Introduction
	2 Software Process Automation in Context
	2.1 Process Automation and Related Technologies
	2.2 Issues Related to CASE and Process Improvement...
	2.3 Why Use a Process-Centered Framework?
	2.3.1 Advantages of Using a PCF
	2.3.2 Disadvantages of Using a PCF

	3 An Experimental Investigation into PCFs
	3.1 The Experimental Approach
	3.2 Model-Building Capabilities (Phase 1)
	3.3 End-User Capabilities (Phase 2)
	3.4 Process Example and Its Execution Script (Phas...
	3.5 Evaluation Criteria and Questionnaire (Phase 4...

	4 The ProcessWeaver Experiment
	4.1 Review of ProcessWeaver
	4.1.1 Agenda Window
	4.1.2 Work Context Window
	4.1.3 Method Editor
	4.1.4 Activity Editor
	4.1.5 Cooperative Procedure Editor
	4.1.6 Pulling the Elements Together

	4.2 Developing the ProcessWeaver Process Model
	4.3 The Evaluation
	4.3.1 Functionality
	4.3.1.1 Model-Building Capabilities
	4.3.1.2 End-User Functional Capabilities

	4.3.2 Developer Issues
	4.3.3 End-User Issues
	4.3.4 Performance
	4.3.5 System Interface
	4.3.6 Off-line User Support

	4.4 Improvements in Functionality

	5 The Synervision Experiment
	5.1 Review of SynerVision
	5.1.1 Managing Personal Tasks
	5.1.2 Managing Group Tasks
	5.1.3 Process Enactment Through the Use of Templat...
	5.1.4 Process-Centered Environments

	5.2 Developing the Synervision Process Model
	5.3 The Evaluation
	5.3.1 Functionality
	5.3.1.1 Model-Development Capabilities
	5.3.1.2 End-User Functional Capabilities

	5.3.2 Developer Issues
	5.3.3 End-User Issues
	5.3.4 Performance
	5.3.5 System Interface
	5.3.6 Off-Line User Support

	6 End-User Role Plays
	6.1 User Interface
	6.2 Adoption Issues
	6.3 Application Issues

	7 A Comparison of ProcessWeaver and Synervision
	8 Adopting and Using Process Automation Technology...
	8.1 Process Automation and Process Maturity
	8.2 Guidelines for Adopting Automated Process
	8.3 Transitioning to a PCF

	9 Summary and Conclusions
	References
	Appendix A Vendor Information on PCFs
	Appendix B Listing of SynerVision Experiment Scrip...
	Appendix C A Brief Overview of ProNet
	C.1 Hierarchical Decomposition
	C.2 Composites, Versions, and Stores
	C.3 An Example of a Simple ProNet Model

	Appendix D Terminology and Concepts
	D.1 Basic Terminology
	D.2 Process-Related Concepts
	D.3 Relationship to the NIST/ECMA Reference Model

	Appendix E End-User Evaluation Materials
	Acknowledgments

