
Carnegie Mellon University
Software Engineering Institute

SerpentSerpent

Slang
Reference
Manual

 User’s Guide
CMU/SEI-91-UG-5

January 2008

Serpent: Slang Reference Manual

User Interface Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings should not be construed as an official DoD position. It is published
in the interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

JOHN S. HERMAN, Capt, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1991 Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer
of scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other
U.S.Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense
Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on
ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce,
Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

The Software Engineering Institute is not responsible for any
errors contained in these files or in their printed versions, nor
for any problems incurred by subsequent versions of this
documentation.

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) i

Table of Contents

1 Introduction 1
1.1 This Manual 1

 1.1.1 Organization 1
 1.1.2 Typographical Conventions 1

1.2 Documentation 1

2 Serpent Overview 5
2.1 Serpent Architecture 6
2.2 Shared Database 8
2.3 Serpent Components 9

3 Slang Overview 11
3.1 Interaction Objects 11

 3.1.1 Attributes 11
 3.1.2 Methods 13

3.2 Variables 14
3.3 Data Dependencies 16
3.4 View Controllers 16
3.5 Shared Data 22
3.6 Dialogue Shared Data 24
3.7 Actions ON CREATE and ON DESTROY 25
3.8 Dialogue Structure 26

4 Lexical Elements 29
4.1 Character Set 29
4.2 Comments 29
4.3 Tokens 30

 4.3.1 Operators and Special Characters 30
 4.3.2 Identifiers 31
 4.3.3 Reserved Words 31
 4.3.4 Constants 32

5 Data 35
5.1 Different Forms of Data 35
5.2 Assignment of Values to Data Types 35
5.3 Object Types 36

ii Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

5.4 Data Types 36
5.5 Base Types 37
5.6 Dependency 37
5.7 Scope and Visibility 39
5.8 Extent 42
5.9 Data Access 42
5.10 Declared Data 43

 5.10.1 View Controllers 43
 5.10.2 Objects 44
 5.10.3 Attributes 44
 5.10.4 Methods 45
 5.10.5 Shared Data 45
 5.10.6 Dialogue Shared Data 46
 5.10.7 Application Shared Data 47

5.11 Data Reference 47
 5.11.1 Dialogue Structure 48
 5.11.2 Direct Reference 48
 5.11.3 Indirect Reference 49
 5.11.4 Examples of Data Reference 49

6 Expressions 53
6.1 Undefined Values 53
6.2 Logical AND and OR Operators 53
6.3 Equality Operators 54
6.4 Relational Operators 55
6.5 Arithmetic Operators 56
6.6 Unary Operators 58

7 Code Snippets and Statements 59
7.1 Function Call 59
7.2 Assignment Statement 60
7.3 Conditional Statement 60
7.4 Loop Statement 61

8 Interaction Objects 63
8.1 Attributes 63
8.2 Methods 64

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) iii

9 View Controllers 67
9.1 Creation Conditions 67
9.2 Actions “On Create” 69
9.3 Actions on Destroy 69
9.4 Dependency Considerations 70
9.5 Dialogue Structure 71

 9.5.1 Prologue 71
 9.5.2 Component List 72

10 User-Defined Functions 75
10.1 External Functions 75
10.2 Existing External Functions 76

 10.2.1 Slang String Functions 77
string_append 78
string_count_chars 79
string_delete 80
string_index 81
string_insert 82
string_is_integer 83
string_is_real 84
string_length 85
string_lower 86
string_upper 87
substring 88
div 90
make_integer, truncate 91
mod 92

 10.3.1 Existing C functions 93
 10.3.2 Creating New External Functions 94
 10.3.3 Type Equivalences 94
 10.3.4 Memory Allocation Considerations 95
 10.3.5 Linking External Functions To Slang Programs 97

11 Runtime System 99
11.1 Cycles 99
11.2 Timing of Data Transfers to Application and Toolkit 99
11.3 Implications of Dependencies 100

iv Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

12 Slang Preprocessor 101
12.1 Macros and Conditional Compilation 101

Appendix A Glossary of Terms 103

Appendix B Slang BNF Grammar 107

Appendix C Runtime Conversions 113

Appendix D Data Access Routines 119
get_bound_sd_instance 120
get_variable_value 121
get_name 122
get_object 123
get_parent_vc 124
put_variable_value 125
get_vc 126

Appendix E Shared Data Routines 127
create_sd_instance 128
destroy_sd_instance 129
get_sd_value 130
put_sd_value 131

Appendix F Utility Routines 133
exit 134
id_exists 135
new 137
recording_on 138
recording_off 139

Appendix G Athena Widget Set 141
XawBboard 143
XawBox 146
XawCommand 149
XawDialog 153
XawForm 156
XawLabel 159
XawMenuButton 162
XawMenuShell 165
XawPaned 168
XawScreenObject 172
XawScrollbar 173

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) v

XawSimpleMenu 176
XawSimpleMenuBSB 179
XawSmeLine 182
XawText 185
XawTextentry 190
XawToggleButton 195
XawTopLevelShell 199
XawViewport 201

Appendix H Motif Widget Set 205
XmArrowButton 207
XmBulletinBoard 210
XmCascadeButton 214
XmCommand 218
XmDrawingArea 223
XmDrawnButton 226
XmErrorDialog 230
XmFileSelectionBox 234
XmForm 239
XmFrame 243
XmInformationDialog 246
XmLabel 250
XmList 253
XmMainWindow 258
XmMenubar 262
XmMenuShell 266
XmMessageBox 269
XmMessageDialog 273
XmOption 277
XmPanedWindow 281
XmPopup 284
XmPulldown 288
XmPushButton 292
XmQuestionDialog 296
XmRowColumn 300
XmScale 304
XmScreenObject 308
XmScrollBar 309
XmScrolledWindow 312
XmSeparator 315

vi Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

XmText 318
XmToggleButton 323
XmTopLevelShell 327
XmWarningDialog 330
XmWorkingDialog 334

Index 339

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) vii

List of Examples

Example 3-1 Attributes 12
Example 3-2 Methods 13
Example 3-3 Dialogue Variables 15
Example 3-4 Menu Bar 22
Example 3-5 View Controller Template 24
Example 3-6 Calculating Aggregate Functions 26
Example 5-1 Automatic Conversion 36
Example 5-2 Fixed Data Type 36
Example 5-3 Dynamic Data Type 36
Example 5-4 Dependency Propagation 38
Example 5-5 Multiple Snippet Infinite Loop 38
Example 5-6 Snippet Dependent On Defined Variable 39
Example 5-7 Snippet Dependent On Variable Both Modified and Used 39
Example 5-8 Scope and Visibility in an Abstract Block Structured

Language 40
Example 5-9 Dialogue Shared Data Creation 47
Example 5-10 Dialogue Shared Data Destruction 47
Example 5-11 Direct Reference 48
Example 5-12 Employee Shared Data Definitions 49
Example 5-13 Direct Data Referencing 50
Example 5-14 Indirect Data Referencing 51
Example 6-1 Equality Comparison 55
Example 6-2 Relational Comparison 56
Example 6-3 Arithmetic Operation 57
Example 7-1 Function Call Statements 59
Example 7-2 Assignment Statements 60
Example 7-3 Conditional Statements 61
Example 7-4 While Statement 62
Example 8-1 Attributes 64
Example 8-2 Methods 65
Example 9-1 Free Creation Conditions 68
Example 9-2 Bound Creation Conditions 68
Example 9-3 Actions on Create 69
Example 9-4 Actions on Destroy 70
Example 10-1 External Declarations 76

viii Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) ix

List of Figures

Figure 1-1 Serpent Documents 2
Figure 2-1 Serpent Architecture 6
Figure 2-2 Serpent Shared Database 9
Figure 3-1 Label Widget 12
Figure 3-2 Command Widget Display 14
Figure 3-3 Drop-Down Menu 17
Figure 3-4 Shared Data Definition 23

x Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) xi

List of Tables

Table 4-1 Reserved Words 32
Table 4-2 Character Escape Codes 33
Table 5-1 Base Types 37
Table 6-1 AND Operations 54
Table 6-2 OR Operations 54
Table 6-3 Equality Operators 54
Table 6-4 Relational Operators 55
Table 6-5 Arithmetic Operators 56
Table 6-6 Plus, Minus, Multiple and Exponential Operations 57
Table 6-7 Divide Operation 57
Table 6-8 Unary Operators 58
Table 6-9 Unary Operations 58
Table 10-1 Slang String Functions 77
Table 10-2 Extended Arithmetic Functions 89
Table 12-1 Binary Arithmetic 113
Table 12-2 Relational Operations 114
Table 12-3 Assignment Operations 115
Table 12-4 Unary Arithmetic Operations 116
Table 12-5 Equality Operations 116

xii Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Introduction

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 1

1 Introduction
Serpent is a user interface management system (UIMS) that supports the development and
execution of the user interface of a software system from the prototyping phase through
production and maintenance. Serpent encourages a separation of functionality between the
user interface and application portion of a system. Serpent is also easily extended to support
additional input/output (I/O) toolkits.

This manual describes the model, syntax, and semantics of the Slang dialogue language, the
language within Serpent used for the specification of user interfaces.

1.1 This Manual

This manual serves two purposes: to provide an introduction to Slang and to provide a
reference manual for Slang. Readers should be familiar with general UIMS concepts, have
a working knowledge of programming languages, and understand the concepts described
in Serpent Overview and Serpent: System Guide.

1.1.1 Organization

The first three chapters provide an introduction to Slang. The remainder of the manual
provides syntactic and semantic information about Slang.

1.1.2 Typographical Conventions

The following conventions are observed in this manual.

Code examples Courier typeface

Variables, attributes, etc. Courier typeface

Syntax Courier typeface

Warnings and Cautions Bold, italics

1.2 Documentation

This reference manual describes the model, syntax, and semantics of the Slang dialogue
language. The following publications address other aspects of Serpent.

Serpent Overview
Introduces the Serpent system.

2 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Introduction

Serpent: System Guide
Describes installation procedures, specific input/output file descriptions for intermediate
sites and other information necessary to set up a Serpent application.

Serpent: Saddle User’s Guide
Describes the language that is used to specify interfaces between an application and
Serpent.

Serpent: Dialogue Editor User’s Guide
Describes how to use the editor to develop and maintain a dialogue.

Serpent: C Application Developer’s Guide
Serpent: Ada Application Developer’s Guide
Describe how the application interacts with Serpent. These guides describe the runtime
interface library, which includes routines that manage such functions as timing, notification
of actions, and identification of specific instances of the data.

Serpent: Guide to Adding Toolkits
Describes how to add user interface toolkits such as various Xt-based widget sets to Serpent
or to an existing Serpent application. Currently, Serpent includes bindings to the Athena
Widget Set and the Motif Widget Set.

Introduction

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 3

The following figure shows Serpent documentation in relation to the Serpent system:

Figure 1-1 Serpent Documents

Dialogue
Editor

Saddle
Processor

Slang
Compiler

Slang
Program

application
program

Transaction
Processing

Library
application

layer
I / O

Toolkits
presentation

layer
dialogue

layer

. .
 .

. .

. .
 .

. .

. .
 .

. .

. .
 .

. .

Saddle
User’s Guide

Serpent
 Overview

Serpent
 System
 Guide

Dialogue Editor
 User’s Guide

 Slang
 Reference
 Manual

 Guide to
 Adding Toolkits

 Application
 Developer’s
 Guide

4 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Introduction

Serpent Overview

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 5

2 Serpent Overview
Serpent manages the total dynamic behavior of an interface and allows an application to be
separated from the details of the user interface. Serpent is designed to manage relatively
arbitrary toolkits. There is a language to describe the interface and an editor to build it.
Serpent provides a runtime system that enables communication between the application
and the end user.

Serpent supports the incremental development of the user interface from prototyping
through production and maintenance. Serpent can be used either with an application in a
production environment or without an application in a prototyping environment.

A primary goal of Serpent is to encourage the separation of a software system into an
application portion and a user interface portion. This provides the application developer
with a fixed application programmer’s interface. One benefit of a fixed application
programmer’s interface is that the application programmer is insulated from the
modifications to the user interface that are the most likely modifications to a completed
system. Another benefit of using Serpent is that it provides the tools to develop and modify
the user interface. A system developed using Serpent can be migrated to new toolkits
without time-consuming reengineering of the application portion.

6 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Serpent Overview

2.1 Serpent Architecture

Serpent is implemented using the standard UIMS architecture defined by the Seeheim
working group on graphical interfaces (see User Interface Management Systems, G. E.
Pfaff, ed, Eurographics Seminars, Springer-Verlag, 1985). The architecture consists of
three layers: presentation, dialogue, and application (Figure 2-1).

Figure 2-1 Serpent Architecture

application
 layer interface

dialogue
manager dialogue

dialogue layer

interface

I/O Toolkits

presentation layer

Serpent Overview

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 7

The architecture is intended to encourage the proper separation of functionality between the
application and the user interface portions of a software system. The three different layers
of the standard architecture provide differing levels of control over user input and system
output. The presentation layer is responsible for layout and device issues. The dialogue
layer specifies the presentation of application information and user interactions. The
application layer provides the functionality for the system.

The presentation layer consists of toolkits that have been incorporated into Serpent.
Toolkits are existing hardware/software systems that perform some level of generalized
interaction with the end user. Serpent is distributed with an interface to the X Window
System (Version 11), to the MIT Athena Widget Set, and to the OSF/Motif Toolkit. Other
toolkits based on the X Window System Intrinsics can be easily integrated into Serpent, and
toolkits not based on the X Window System Intrinsics can be integrated without undue
difficulty. Refer to the Serpent: Guide to Adding Toolkits for a discussion of how to do this.

The end-user interface for a software system is formally specified as a dialogue in Serpent.
The dialogue specifies both the presentation of application information and end-user
interactions.

The application provides the functional portion of the software system in a presentation-
independent manner. It may be developed in C, Ada, or other programming languages (only
C and Ada are supported at this time). The application may be either a functional simulation
for prototyping purposes or the actual application for a delivered system. The actions of the
application layer are based on knowledge of the specific problem domain. Serpent: C
Application Developer’s Guide and Serpent: Ada Application Developer’s Guide describe
how an application interacts with Serpent.

One way of viewing the three levels of the architecture is by the level of functionality
provided for user input. The presentation layer is responsible for lexical functionality, the
dialogue layer for syntactic functionality, and the application layer for semantic
functionality. For example, in processing the selection of a menu item, the presentation
layer is responsible for determining which menu item was selected and for presenting some
indication to the end user of which item is currently selected. The dialogue layer is
responsible for deciding whether another item is to be selected and for presenting it to the
end user, or whether the choice requires action by the application. The application layer is
responsible for executing those functions specific to the application. In another example, in
processing a change in the status of the application, the application would detect the change
in status and inform the dialogue layer of the new status. The dialogue layer would decide
that the change in status requires a form to appear on the display, and the presentation layer
would actually make the form visible to the end user.

8 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Serpent Overview

2.2 Shared Database

Serpent provides an active database model for communication among the application, the
dialogue, and the toolkits. In an active database, multiple processes are allowed to update
a single database. Changes are then propagated to each user. This model is implemented in
Serpent by a shared database that logically exists between the application and toolkits. The
application can add, modify, query, or remove data from the shared database. Information
provided to Serpent by the application is available for presentation to the end user. The
application has no knowledge of the presentation media or user interface styles used to
present this information.

The application and the Slang program exchange data through the shared database. Figure
2-2 illustrates the use of the shared database in Serpent. When the application modifies data
in the shared database, the portions of the Slang program that depend upon that data are
automatically executed. When the Slang program modifies data in the application portion
of the shared database, the application is notified. The section of the shared database that is
associated with the application layer, application shared data, is accessible only from the
application layer and the dialogue layer.

The presentation layer also communicates with the dialogue layer via shared data. The
section of the shared database that is associated with the presentation layer, toolkit shared
data, is accessible only from the presentation layer and the dialogue layer.

Serpent Overview

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 9

Figure 2-2 Serpent Shared Database

Serpent allows the specification of dependencies between elements in the shared database.
These dependencies define a mapping between application data, presentation objects, and
end-user input. The dialogue manager enforces the constraints implied by these
dependencies by operating on the information stored in the shared database until the
constraints are satisfied. Changes are then propagated to either the application or the
toolkits as appropriate.

The type and structure of information that can be maintained in the shared database is
defined externally in a shared data definition file. The structure in the shared data definition
file corresponds to the database concept of schemata. A shared data definition file is
required for each application; Serpent: Saddle User’s Guide describes how to construct this
file.

2.3 Serpent Components

Serpent consists of the following components:

• A language designed for the specification of user interfaces (Slang). This
language is compiled into the dialogue layer of the Serpent architecture.

application
shared data

toolkit
shared data

local
 data

dialogue layer

Application

Athena Widget

Technology “Z”

10 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Serpent Overview

• A database-like schema language (Saddle) to define the interface between the
application and Serpent. Applications and toolkits written in either C or Ada
can be used with Serpent, although the interface description mechanism is
designed to be extensible to other languages.

• A transaction processing library that is linked to the application layer to
provide access to Serpent.

• An interactive editor for the specification of dialogues and for the construction
and preview of displays.

• Input/output toolkits. The use of Serpent depends upon the types of toolkits
that have been integrated.

Slang Overview

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 11

3 Slang Overview
Serpent dialogues are specified in Slang. These dialogues define the presentation of
application information to, as well as interactions with, the end user.

This chapter describes the overall dialogue model used by Serpent. The dialogue model
provides the conceptual basis for dialogue specification. This model is based largely on the
data-driven, rule-based approach used in production systems.

3.1 Interaction Objects

Interaction objects, which are defined by a given toolkit, allow user interaction with the
application. Each interaction object has a particular appearance and behavior. The behavior
determines how the object responds to end-user input. In a display technology, for example,
text fields, circles, or rectangles may be defined as interaction objects. In voice technology,
voice messages or recordings may be defined as interaction objects.

Interaction objects are specified by the designer in a dialogue and presented to the end user
by the presentation layer. The objects used as examples in this document are based on
Athena widgets. The Athena Widget Set is one of the initial toolkits supported by Serpent.
A description of the supported Athena widget objects is provided in Appendix G. A
description the OSF/Motif widgets is provided in Appendix H.

A dialogue is defined by a Slang program, and each Slang program enumerates a collection
of objects to be available to the end user. Examples of interaction objects defined for the
Athena Widget Toolkit are command widgets and text widgets.

Each object type has a collection of attributes that defines its presentation, as well as
methods that determine the high-level interactions that the end user can have with the
object. Objects are specified in a Slang program by listing the objects to be created and the
attribute values to be assigned to each occurrence of the object. See Chapter 8 for details.

3.1.1 Attributes

Interaction objects have attributes to define the presentation characteristics. These
attributes are defined by the toolkit integrator and their values are specified by the dialogue
developer.

12 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

Example 3-1 provides the Slang specification for a label widget. A label widget is an
Athena widget that provides a non-selectable rectangular label. Once defined, the
interaction object is displayed to the end user using the toolkit that supports this object. The
object defined in Example 3-1 causes a box (label widget) containing the value 0 to be
displayed as illustrated in Figure 3-1.

display: XawLabel {
 Attributes:
 parent: main_background;
 height: 40;
 width: 60;
 label: 0;
 font: “9x15bold”;
 vertDistance: 100;
 horizDistance: 175;
}

Example 3-1 Attributes

Figure 3-1 Label Widget

The label widget is generated as an independent window that the end user can position.

Slang Overview

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 13

3.1.2 Methods

Interaction objects also have methods that are defined by the toolkit. Methods provide a
way for handling end-user interactions in the dialogue by specifying actions to be
performed for specific, end-user generated events. For example, the interaction object in
Example 3-2 is declared as a command widget. A command widget is an Athena widget
object that provides a display button that may be selected by the end user. The Athena
Widget toolkit generates a notify event for the object when the command widget on the
display is selected.

push_button: XawCommand {
 Attributes:
 parent: main_background;
 height: 40;
 width: 60;
 vertDistance: 200;
 horizDistance: 175;
 font: “9x15bold”;
 label: “Push”;
 Methods:
 notify: {
 display.label:= display.label + 1;
 }
}

Example 3-2 Methods

14 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

The button object defined in Example 3-2 causes a command widget to be displayed that
contains the value Press. When selected, the command widget will generate a notify event
that causes the notify method in the button definition to be executed. In this case,
execution of the method causes the text attribute of the display object defined to be
incremental. Figure 3-2 illustrates the display of both objects after the command widget has
been pressed.

Figure 3-2 Command Widget Display

It is interesting to note that in the preceding example the label attribute of the XawLabel
is actually defined as a string, while the numeric constant 1 is an integer. All type
conversion is handled automatically by Slang.

3.2 Variables

Slang also allows for the specification of dialogue variables. Variables can be used for
defining object attributes and for defining control flow as described later in this chapter.
The preceding example can be rewritten to make use of local variables.

Variables:
 counter: 0;
Objects:
display: XawLabel {
 Attributes:
 parent: main_background;
 height: 40;

Slang Overview

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 15

 width: 60;
 vertDistance: 100;
 horizDistance: 175;
 font: “9x15bold”;
 label: counter;
}
button: XawCommand {
 Attributes:
 parent: main_background;
 height: 25;
 width: 25;
 vertDistance: 200;
 horizDistance: 175;
 font: “9x15bold”;
 label: “Push”;
 Methods:
 notify: {
 counter := counter + 1;
 }
}

Example 3-3 Dialogue Variables

Note in the example that Slang supports dynamic typing. That is, the variable counter is
treated as an integer in the initial assignment and in the method, but is converted to a string
for the assignment to label. Serpent automatically decides upon the appropriate type for
an operation or an assignment and changes the type of a value as necessary.

Note, also, that the label attribute of the display object is dependent on the counter
variable. Whenever counter is modified (in this case, as the result of a notify event), the
label attribute is automatically updated by Serpent. In this manner, local variables can be
used to express complex relationships between interaction object attributes.

The dependency concept is fundamental to the structure of Slang programs. Flow of
information between portions of a Slang program is handled automatically based on the
names used in variables and attributes. Thus, in Example 3-3, no explicit action is required
by the user to communicate to Serpent the information that the label attribute of the
display object depends on counter and that label should be recomputed whenever
counter changes.

16 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

3.3 Data Dependencies

An important and powerful aspect of Slang is that it automatically supports dependencies
between data items in the program. Certain data items, such as variables and interaction
object attributes, may be dependent on other variable data within the dialogue. Whenever
the data upon which these data items are dependent is modified, the data items are
automatically updated.

All variable declarations and object attribute definitions are automatically a portion of the
dependency system. Whenever a data item on the right-hand side of a variable declaration
or an attribute definition is modified, the declaration or definition is recalculated.
Consequently, new values are assigned to items on the right-hand side of the computation.
Computations performed either within methods or within creation and deletion actions are
not recalculated when an independent value is modified.

The automatic recalculation has the potential to introduce an infinite loop into a program.
That is, if variable a is defined in terms of variable b and variable b is defined in terms of
variable a, then an infinite loop within a program is created and the program will not
execute as expected.

Data dependencies are determined for the total calculation of a variable or an attribute. That
is, if the computation of an attribute is a complex statement, then the total computation is
redone as a result of the triggering of a data dependency.

3.4 View Controllers

Interaction objects, their methods and attributes, and dialogue variables provide a great deal
of power in defining relatively static interfaces, or interfaces that contain a fixed set of
interaction objects for which only the attributes may change. Although this is a very
powerful mechanism, it is not adequate to describe more complex interfaces where it is
necessary to present and remove interaction objects as a collection from the display.

The mechanism by which objects are collected is a view controller. A view controller is
used to group interaction objects and to control the circumstances under which they are
presented to the end user. Interaction objects and local dialogue variables are defined
within the context of view controllers. A view controller maps specific data in the
application into objects on the display and controls the existence of these objects.

A dialogue is specified in terms of view controller templates. A template maintains a watch
on application shared data or local dialogue data for specific conditions. When data that
satisfies a view controller template is placed into application shared data or when local
dialogue data attains certain values, a view controller is created.

Slang Overview

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 17

In a Slang program, a view controller template is specified that has a collection of objects
associated with it. When a view controller is instantiated from the template, the associated
objects are created and communicated to the presentation layer. The presentation layer
makes the objects visible to the end user.

A simple example of this is a drop-down menu. A drop-down menu consists of a menu bar
that contains a number of options. Selecting an option causes a submenu to appear directly
below the menu bar. Figure 3-3 illustrates a sample drop-down menu.

Figure 3-3 Drop-Down Menu

The drop-down menu can be implemented by using command widget interaction objects.
Each menu item on the menu bar is represented by a command widget object. When a menu
item is selected, additional command widget objects are displayed in order to produce the
submenu.

View controllers have creation conditions that define the condition under which the view
controller is instantiated. When a view controller is instantiated, the interaction objects
defined for that view controller are displayed to the end user.

The Slang dialogue segment shown in Example 3-4 defines several interaction objects that
make up the menu bar along with two dialogue variables.

18 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

The four objects that make up the menu bar are the: menu_bar_form, Menu_1, Menu_2,
and Quit menu items. The menu_bar_form is a form widget that specifies the relative
positions of objects within the form. The Menu_1, Menu_2, and Quit are command
widgets that provide selectable menu headings for the menu bar. Besides these interaction
objects, there are also three local variables defined: display_menu1_submenu,
display_menu2_submenu and display_sub_item_submenu. These variables are
initialized to FALSE and set to TRUE when their respective command buttons are selected.

#include “sat.ill”
|||
/*
** This demonstrates the use of Slang to produce
** a menu bar with two tear off menus.
** Initially, there is a menu bar presented to
** the user with two options: Menu_1 and Menu_2.
** Only Menu_1 is active. When the user selects
** Menu_1, a pull down menu will be displayed
** with additional items. When the user selects
** “Item 2 ->” another menu will be displayed.
** Each pull down has its own “Close” button and
** only affects that pull down menu. When the
** user selects the “Close” from the first pull
** down menu, the other pull down menu will
** remain on the display.
*/

Variables:

 display_menu1_submenu : FALSE;
 display_menu2_submenu : FALSE;
 display_sub_item_submenu : FALSE;

Objects:

menu_bar_form: XawBboard {
 Attributes:
 height:250;
 width: 250;
}

menu_bar: XawBboard {
 Attributes:
 parent: menu_bar_form;
 height:200;
 width: 200;
 vertDistance:20;
 horizDistance:20;

Slang Overview

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 19

 borderWidth: 3;
}

menu1_item: XawCommand {
 Attributes:
 parent: menu_bar;
 vertDistance: 10;
 horizDistance: 10;
 height: 20;
 width: 50;
 label: “Menu_1”;

 Methods:
 notify: {
 display_menu1_submenu := TRUE;
 }
}

menu2_item: XawCommand {
 Attributes:
 parent: menu_bar;
 vertDistance: 10;
 horizDistance: 60;
 height: 20;
 width: 50;
 label: “Menu_2”;

 Methods:
 notify: {
 display_menu2_submenu := TRUE;
 }
}

quit_menu_item: XawCommand {
 Attributes:
 parent: menu_bar;
 height: 20;
 width: 50;
 vertDistance: 10;
 horizDistance: 110;
 label: “QUIT”;

 Methods:
 notify: {
 exit ();
 }
}
/*

20 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

** menu1 view controller
*/

VC: menu1_submenu

Creation Condition: (display_menu1_submenu)

Objects:

menu1_form: XawBboard {
 Attributes:
 parent: menu_bar;
 vertDistance: 30;
 horizDistance:10;
 borderWidth: 1;
 height: 65;
 width: 76;
}

item1_menu_item: XawCommand {
 Attributes:
 parent: menu1_form;
 vertDistance: 0;
 horizDistance: 2;
 height: 20;
 width: 70;
 borderWidth: 1;
 label: “Item 1";
}

item2_menu_item: XawCommand {
 Attributes:
 parent: menu1_form;
 vertDistance: 21;
 horizDistance: 2;
 height: 20;
 width: 70;
 borderWidth: 1;
 label: “Item 2 ->”;
 Methods:
 notify: {
 display_sub_item_submenu := TRUE;
 }
}

remove_menu_item: XawCommand {
 Attributes:
 parent: menu1_form;

Slang Overview

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 21

 vertDistance: 42;
 horizDistance: 2;
 borderWidth: 1;
 height: 20;
 width: 70;
 label: “Close”;
 Methods:
 notify: {
 display_menu1_submenu := FALSE;
 }
}

ENDVC menu1_submenu

/*
** sub_item_submenu view controller
*/

VC: sub_item_submenu

Creation Condition: (display_sub_item_submenu)

Objects:

sub_item_form: XawBboard {
 Attributes:
 parent: menu_bar;
 vertDistance: 53;
 horizDistance: 88;
 borderWidth: 1;
 height: 65;
 width: 76;
}

itema_menu_item: XawCommand {
 Attributes:
 parent: sub_item_form;
 vertDistance: 0;
 horizDistance: 2;
 height: 20;
 width: 70;
 borderWidth: 1;
 label: “Item A”;
}

itemb_menu_item: XawCommand {
 Attributes:

22 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

 parent: sub_item_form;
 vertDistance: 21;
 horizDistance: 2;
 height: 20;
 width: 70;
 borderWidth: 1;
 label: “Item B”;
}
remove_menu_item: XawCommand {
 Attributes:
 parent: sub_item_form;
 vertDistance: 42;
 horizDistance: 2;
 borderWidth: 1;
 height: 20;
 width: 70;
 label: “Close”;
 Methods:
 notify: {
 display_sub_item_submenu := FALSE;
 }
}

ENDVC sub_item_submenu

Example 3-4 Menu Bar

When a menu item is selected, the variable that caused the view controller to be instantiated
is set to FALSE. Since the creation condition for the view controller is no longer TRUE, the
view controller is destroyed and the interaction objects are removed from the display.
Normally, the notify method for the menu items would perform some command-specific
action, such as notifying the application of the selected command.

3.5 Shared Data

Often the dialogue specifier may need to display interaction objects to the end user based
on the existence of a particular data item. An example is an application that provides a
function to query an employee database. The end user may make multiple requests to view
the data for several different employees at the same time.

Slang Overview

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 23

To specify a user interface for this example, it is convenient to define a view controller that
controls the presentation of an employee record. The creation condition for the view
controller can then be based on the existence of a new employee shared data instance in the
shared database. This is accomplished using the new function in the creation condition of
the view controller.

Figure 3-4 illustrates the shared data definition for an employee record and three instances
of the shared data element. These are added to the shared database directly from the
dialogue or by the application as described in Serpent: System Guide.

Figure 3-4 Shared Data Definition

The creation condition defined in the view controller template shown in Example 3-5 is
based on the existence of a new employee shared data instance in the shared database. The
creation condition uses the new function that serves only as a test for existence, not the
action to create anything. A separate instance of the view controller is created for each of
the three employee shared data instances and added to the shared database; a separate set
of interaction objects is created for each view controller.

employee:
name:

address:
phone:

end record:

record
string[50];
string[50];
string[13];

Shared Data Record Instantiation Shared Data Instances

John Smith
101 Main Street
(212) 555-1234

Sue Scott
22 Park Avenue
Undefined

Harry Altair
64 Fifth Avenue
(212) 712-6873

24 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

VC: employee_info
Creation Condition: (new(“employee”))
Objects:

name_field: XawText {
 Attributes:
 height: 20;
 width: 200;
 label: employee.name;
}
.
.
.
END VC employee_info;

Example 3-5 View Controller Template

Each of these three view controller instances is bound to the shared data instance that
caused it to be created. The dialogue specifier may then directly reference the specific
values of each of the employee shared data instances within the scope of the view
controller. For example, the label attribute of the name_field interaction object
illustrated in Example 3-5 is set directly to the name component of the employee shared
data instance.

This example illustrates how Slang provides a mapping between application shared data
and interaction objects. Remember, there are actually three different employee records in
the shared database and three different sets of interaction objects on the display. Serpent
provides a mapping between shared data instances and their corresponding interaction
objects and maintains the relationship between them.

3.6 Dialogue Shared Data

Dialogue shared data is a mechanism that allows a dialogue to create, modify, and destroy
instances of data without informing an application or a toolkit of the actions.

Slang provides predefined routines that allow for the creation and destruction of shared data
elements from within the dialogue. To create dialogue shared data, the type and structure
of the shared data must first be defined in a shared data definition file. The shared data
definition file must be named dm.sdd. Refer to Serpent: Saddle User’s Guide for further
information on creating a shared data definition.

Slang Overview

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 25

Dialogue shared data is used in exactly the same fashion as application shared data. It is
treated as shared data conceptually and with the same mechanisms, but the data actually is
local and not shared with anything. It is possible, for example, to instantiate view
controllers from new instances of dialogue shared data and to access this shared data in the
same manner as application shared data.

The exact syntax and semantics of the shared data routines are defined in Appendix E.

3.7 Actions ON CREATE and ON DESTROY

To specify actions to be performed whenever a view controller is created or destroyed, use
ON CREATE and ON DESTROY respectively. These mechanisms provide a means for
executing procedural code snippets at defined instances within the dialogue model. Actions
specified conditionally with ON CREATE and ON DESTROY may be used, for example, to
increment and decrement counters.

Actions ON CREATE and ON DESTROY also may be used for calculating aggregate
functions such as the average salary of all the employees in the employee database. The
Slang dialogue illustrated in Example 3-6 performs this function.

In Example 3-6, the variable average_salary is defined to be total_salary divided
by employee_count. Thus, average_salary depends upon both total_salary and
employee_count. When either changes, average_salary is automatically changed.
Thus, the view controller employee_vc has no associated objects. Its only function is to
increase or decrease employee_count and total_salary. The actual presentation to
the user is through the object salary_field.

Variables:
 employee_count: 0;
 total_salary: 0;
 average_salary: total_salary / employee_count;
/*
** if employee_count is 0, then average_salary
** becomes undefined
*/

Objects:
salary_field: XawText {
 Attributes:
 horizDistance: 100;
 vertDistance : 100;
 height: 20;
 width: 200;
 label: average_salary;

26 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

}
VC: employee_vc
Creation Condition: (new(”employee”))
On Create: {
 employee_count := employee_count + 1;
 total_salary := total_salary + employee.salary;
}
On Destroy: {
 employee_count := employee_count – 1;
 total_salary := total_salary – employee.salary;
}
END VC employee_vc;

Example 3-6 Calculating Aggregate Functions

3.8 Dialogue Structure

A Slang dialogue contains the specification of a user interface for a single application. The
dialogue contains information about the application shared data (and by implication, the
application) and the toolkits that are associated with the dialogue. The structure of the
dialogue is:

• a list of application and toolkit shared data

• a list of view controllers used in the dialogue

The dialogue itself is always the outermost view controller and, consequently, all of the
components of a view controller can be used in the dialogue as well as in explicitly declared
view controllers.

The components of a view controller are:

• variables

• objects

• actions ON CREATE

• actions ON DELETE

• nested view controllers

Slang Overview

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 27

Variable declarations serve two purposes: naming the variables for future reference and
giving a definition of the variable which will be reevaluated whenever the independent
variables in the definition are modified. The declaration of average_salary in Example
3-6 shows the use of variable declarations as a constraint definition. Whenever
total_salary or employee_count are modified, average_salary is automatically
reevaluated.

Objects declarations define the interaction objects that will be instantiated whenever a view
controller instance is created. Each object that is declared has a collection of attributes that
defines its presentation and a collection of methods that defines the response of the dialogue
to end-user actions. Attributes are dependent on the variables that are used to define them
(and consequently are reevaluated whenever the independent variables change), but
methods are not a portion of the dependency analysis.

Actions ON CREATE and ON DELETE are code snippets that are executed once
whenever a view controller is created (deleted). They are not subject to dependency
analysis and are only evaluated when the relevant events occur.

28 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Overview

Lexical Elements

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 29

4 Lexical Elements
This chapter describes the lexical components of Slang, including the characters that may
appear in a Slang dialogue and the lexical units or tokens that they may form.

4.1 Character Set

Characters used in a Slang dialogue may consist of any characters from the standard ASCII
character set. Slang is not case sensitive, except for characters written within string
constants, preprocessor commands, and comments.

There are also special characters that are used in Slang either to separate adjacent tokens
for the preprocessor or to format Slang dialogue text in a string. These characters include a
blank space, end of line, formfeed, and horizontal tab.

Line termination is also a special character, but is generally ignored in Slang. It is
important, however, in the recognition of preprocessor control lines, where the first
character of the line must be a “#” character. The character following a line break character
is considered the first character of the next line.

4.2 Comments

Comments begin with the characters /* and end with the first subsequent occurrence of the
characters */. Comments, which are removed from the Slang program by the Slang
preprocessor before a Slang dialogue is compiled, cannot be nested. For example, the
following line:

/* /* Slang Source Commentary */

would be treated as a single comment and would generate a compiler error.

Another way to comment out dialogue lines is to use the preprocessor’s conditional
commands. For example the following lines:

#if 0
 ...
#endif

would effectively comment out any section of the dialogue, including nested comments.
For more information about the preprocessor refer to Chapter 12.

30 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Lexical Elements

4.3 Tokens

The characters making up a Slang program are collected into lexical units called tokens.
Tokens are the smallest lexical units that are recognized by the Slang compiler. When
collecting characters into tokens, the Slang compiler always forms the longest token
possible. For example, vc_fred is interpreted as a single identifier instead of the reserved
word VC followed by the identifier _fred.

Adjacent tokens must be separated by white space or comments. In a macro body,
separating tokens with comments rather than white space will cause the tokens to be
merged. For example,

#define concat(x,y)
x/**/y
concat(A,B) => AB

Slang tokens are case insensitive, except for string constants. This means, for example, that
the identifiers Fred, fred, and FRED are the same.

There are five classes of tokens in Slang: operators, special characters, identifiers, reserved
words, and constants. Each of these classes is discussed in the following sections.

NOTE: Tokens that appear together in Slang, such as Creation and Condition, are
accepted with or without a separator character. For example, Creationcondition and
Creation Condition are both legal.

4.3.1 Operators and Special Characters

Slang has operators and special characters. Each operator has an associated precedence
level that controls the order of operations in an expression. If parentheses are not used to
indicate the grouping of operands with operators, the operand is grouped with the operator
that has the higher precedence. For example, a + b * c would be grouped as a + (b * c).

Relative Precedence Operator Description
9 names, literals simple tokens
8 func() function call
8 . component selection
7 not logical negation
7 – arithmetic negation
6 ** exponentiation
5 *, / multiplicative

Lexical Elements

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 31

4 +, – additive
3 <, >, <=, >= relational
2 =, <> equality/inequality
1 and, or logical
0 := assignment

Slang supports the following special characters;

• # delineates preprocessor instructions

• \ identifies an escape character inside of text used for output

• { } delineates blocks of code

• , separates parameters in a function call

• ; terminates a statement

• : declares an attribute or variable

4.3.2 Identifiers

An identifier is a sequence of letters, digits, and underscore characters. An identifier cannot
begin with a digit or an underscore and cannot have the same spelling as a reserved word.
Identifiers may be of any length.

4.3.3 Reserved Words

The following are reserved words in Slang and may not be used as identifiers:

• AdiMethods

• AndNot

• AttributesNull

• Boolean Objects

• BufferOn Create

• CreateOn Destroy

• Creation ConditionOr

• DoReal

• ElseSelf

• ElsifString

32 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Lexical Elements

• End IfThen

• End VcTrue

• End WhileUndefined

• ExitVariables

• FalseVc

• IdVoid

• IfWhile

• Integer

Table 4-1 Reserved Words

4.3.4 Constants

Constants are lexical elements that are characterized by having both a value and a type.
There are four types of user-definable constants in Slang: boolean, integer, real, and string.
There is also a system-defined type of constant which is an id.

There are also five predefined constants: Undefined, Null, True, False, and Self.

4.3.4.1 Integer Constant

An integer constant consists of a sequence of digits, 0-9. An integer constant may
optionally include a leading + or –. Integer constants may not include commas or other non-
digit characters. Examples of integer constants are: 1989, 0, and 1.

4.3.4.2 Real Constant

A real constant consists of a sequence of digits containing a single decimal point character.
A real constant may optionally include a leading + or –. Examples of real constants are: .5,
1989., and 3.14.

4.3.4.3 String Constant

String constants consist of any arbitrary text delimited by double quotes. Examples of string
constants are: “Fred,” “1989,” “string examples,” and “$%^&”.

String constants may also contain character or numeric escape codes. Escape characters are
used to either represent characters that would be awkward to enter directly or to represent
some particular formatting.

Lexical Elements

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 33

Escape characters consist of the backslash character followed by a character escape codes.
Table 4-2 lists the character escape codes used in Slang.

Table 4-2 Character Escape Codes

Numeric escape codes allow any character to be expressed by writing its octal code in the
target character set. For instance, using the ASCII character set, the character a may be
written as \141 and the NULL character as \0. Numeric escape codes terminate when either
three characters have been read or a non-octal character is encountered. For example, the
string \0111 consists of two characters: the character corresponding to octal code 011 and
the character 1. The string \080 consists of three characters: the character corresponding to
octal code 0 and the literal characters 8 and 0.

Predefined Constants

The UNDEFINED constant is used to represent a distinguished value which is recognized as
undefined.

The NULL constant is an ID constant. It is used to specify that a given ID, while not
undefined, does not identify any specific data item. The Null constant may be used, for
example, to identify the end of a list.

The Self constant is an ID constant that is used to specify the ID of the current view
controller or object, whichever is the local context.

\b backslash
\f form feed
\n new line
\x carriage return
\t horizontal tab
\\ backslash

34 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Lexical Elements

Data

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 35

5 Data
A Slang dialogue can be thought of as a mapping between application data and interaction
objects. As such, the ability to declare and manipulate data in Slang is crucial to developing
a dialogue. This chapter describes the different kinds of data that can exist in a Slang
dialogue and how to declare and reference those data.

5.1 Different Forms of Data

Slang recognizes three forms of data:

1. Entities. These are data items such as shared data, Vc, Object, Variable,
Attributes, and Methods, which have a predefined meaning within a Slang
dialogue. Some entities have names (shared data, Vc, object, and Variable)
and some have components that have names (shared data components,
Attributes, and Methods).

2. Object type. This is the declaration type of an object entity. Each object is
declared to be of a type. Admissible types are defined by the particular toolkits
that have been included into a Slang dialogue. For example, an object can be
declared to be a XawCommand widget. XawCommand is a type which is defined
within the Athena Widget binding to Serpent.

3. Data type. This is the type of the value of shared data components, attributes,
and variables. Components of application shared data, components of dialogue
shared data, attributes, and constants all have fixed type. The type of a shared
data component is specified in the shared data definition, the type of an
attribute component is specified by the toolkit integrator, and the type of a
constant is determined at compile time. Each variable has a dynamic data type
that is determined at runtime for each assignment of value to the variable. The
data value of a data type is its current value.

5.2 Assignment of Values to Data Types

When a data value is assigned to something with a fixed data type, its value is converted (if
possible) to the fixed type. Appendix C presents the allowable conversions. When a data
value is assigned to a variable (with dynamic type), the new type of the variable becomes
the type of the data value.

36 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

For example, if year has a fixed data type of integer, the following assignments will
yield equivalent values for year.

 year := ”1984”; year := 1984;

Example 5-1 Automatic Conversion

Alternatively, if year has dynamic type, the first assignment will result in a value typed as
string and the second will result in a value typed as integer.

5.3 Object Types

An object is the only data item that has an object type. Variables, attributes, and shared data
items have data types. Data types are discussed in more detail in the following paragraphs.

5.4 Data Types

Data items in Slang have either fixed or dynamic data type. For fixed data type, the type of
the data item is determined at compile time. For dynamic data types, the type is determined
dynamically at runtime. Examples of data items with fixed type are dialogue, application
shared data, and object attributes. The only data items with dynamic type are dialogue
variables.

Although fixed data types cannot change type, it is possible to assign data of a different type
to a fixed data type if there is an appropriate conversion. This automatic conversion is
illustrated in Example 5-2 The value 1984 is automatically converted to an integer so that
it can be stored as the fixed typed integer 1984.

year : integer; (described in Saddle file)
year := “1984”;

Example 5-2 Fixed Data Type

Alternately, dynamic type data items can change type dynamically at runtime. In Example
5-3, the variable year is set to the integer value 1. This means that the type of the variable
is set to integer and the value assigned is 1. In the following line, when the value 1984 is
assigned to the variable, the type of the variable is set to string and the value is assigned
1984.

year := 1;
year := “1984”;

Example 5-3 Dynamic Data Type

Data

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 37

5.5 Base Types

There are six base data types supported in Serpent. These types are defined in Table 5-1.
For more detailed information refer to Serpent: Saddle User’s Guide.

Type Description
boolean true, false
integer 32 bits, from -231 to 231 -1
real 64 bits, approximately 15 significant figures
string variable length to maximum specified in Saddle
description
id data item identifier
buffer n bytes of data together with length and type identifier

Table 5-1 Base Types

5.6 Dependency

An extremely important concept in Slang, dependency is one of the main ways in which the
state of a Slang dialogue is modified at runtime.

A data item in Slang is dependent on another data item when the expression or code snippet
(see Chapter 7) corresponding to the former data item references the latter. For example, if
the variable x were assigned the value 2 * y in the declaration statement, x would be
automatically reevaluated whenever y changed. Expressions that are used in the evaluation
of attributes of objects or in the declarations of variables are reevaluated whenever the
independent variables in those expressions are modified. The independent variables can be
either variables, attributes, or shared data components.

38 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

Data dependencies are determined dynamically at runtime. In Example 5-4, if the value of
w is true, x is dependent on y and the expression will only be reevaluated if y changes or if
w changes. If the value of w becomes false, then the expression would be dependent on z
and will only be reevaluated if z or w changes. Determining dependencies dynamically
helps to optimize runtime performance by reducing the situations in which the reevaluation
of variables and attributes is necessary.

x: {
If (w) Then
 x := y;
Else
 x := z;
End If;}

Example 5-4 Dependency Propagation

It is possible when doing runtime dependency propagation to have infinite loops in
dependent calculation. Potentially infinite loops within a Slang program are dealt with in
one of two ways, depending upon how many snippets are used in the loop. The granularity
of dependency calculations is at the snippet or expression level. That is, a snippet is
determined to be dependent upon particular data items during execution. An infinite loop
is suspected to exist (and execution is terminated) when a particular snippet is evaluated a
number (currently 10) of times for the same data items. In Example 5-5, where variable
var1 is dependent upon variable var2 and vice versa, the definitions are two independent
snippets.

var1: var2;
var2: var1;

Example 5-5 Multiple Snippet Infinite Loop

There are cases in which it is possible to have a snippet dependent upon a variable that is
also defined within the snippet. In these cases, the runtime system does not propagate
dependencies. In Example 5-4, the snippet used in the definition of x depends upon the
value of x (from the boolean expression “x = y”). The snippet also modifies the value of
x. Thus, if snippets were always reevaluated when the independent value is modified, the
definition of x would cause an infinite loop. Because, however, dependency granularity is
at the snippet level, this snippet is treated as a dependency on x, but not as a modification
of x. If x is modified from outside this snippet, the declaration is reevaluated but it is not
reevaluated as a result of the modification of x from within the snippet.

Data

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 39

x: {
If (x = y) Then
 x := y + 1;
Else
 x := y;
End If;}

Example 5-6 Snippet Dependent On Defined Variable

Example 5-7 shows another potential infinite loop. In this case, the variable temp is
referenced within the snippet (from the second statement). Thus, if the granularity were at
the statement rather than the snippet level, an infinite loop would result the second time the
snippet is executed (the snippet depends upon the variable temp and temp is modified by
the first statement in the snippet). Because the granularity is at the snippet level, this case
is treated as a modification of temp but not as a use of temp. That is, if temp is modified,
the snippet is not reevaluated and no infinite loop results.

x: {
 temp := 3 * var1 + var2;
 x := temp * temp;
}

Example 5-7 Snippet Dependent On Variable Both Modified and Used

5.7 Scope and Visibility

The scope of a data item in Slang is the set of statements and expressions in which the use
of the identifier is associated with that particular data item. Slang supports block structured
scoping in a fashion similar to that of programming languages such as Pascal.

Scopes are defined by view controllers and interaction objects. This could be alternately
stated by saying that view controllers and interaction objects provide context for data items.
Within the context in which they are defined, data items are said to have local scope. With
respect to the other children of the parent, data items are said to have global scope. All data
items declared in the same context must have unique names.

Data items are said to be visible if the identifier for that data item can be associated with the
value. Data items are typically visible within their scope unless they are hidden. Hiding
occurs when a data item having local scope has the same name as a data item with global
scope.

40 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

The dialogue itself can be thought of as a view controller with a creation condition of true.
Data items declared at the topmost level of the dialogue are then local to the dialogue and
global to all other view controllers defined within the dialogue.

The following example illustrates the concepts of scope and visibility within Slang in terms
of an abstract block structured language. The blocks can be thought of as being either view
controllers or interaction objects in Slang.

VC: A
Variables:
 x;
 y;
 VC: B
 Variables:
 x;
 z;
 On Create: {
 x := 1; /* assigns B.x */
 y := 2; /* assigns A.y */
 z := 3; /* assigns B.z */
 }
 END VC B;
 VC: C
 On Create: {
 z := 1; /* illegal */
 }
 END_VC C;
END_VC A;

Example 5-8 Scope and Visibility in an Abstract Block Structured Language

In this example, view controllers B and C are defined inside the context of view controller
A. Since both x and y are declared within view controller A, they are considered to be local
to A and global to both B and C. Data items declared within view controller B or C cannot
be referenced from view controller A since they are outside the scope of A.

There are three assignment statements within view controller B. The first assignment
assigns the value of 1 to data item x declared in view controller B. This is because the name
of the data item (y in this case) is hiding the identically named data item declared in view
controller A. The second assignment assigns the value of 2 to the data item y declared in
view controller A. The assignment of the value of 3 to data item z is a simple assignment
to the data item declared locally in view controller B.

Data

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 41

The assignment in view controller C of the value of 1 to data item z would be an error
condition since data item z is outside the context of view controller C and will result in a
compiler error message.

Data items can be referenced outside their scope if they exist and the exact path is known.
A path is a description of the location of a data item in the dialogue structure. Referencing
data using a path is described in Section 5.9.

42 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

5.8 Extent

The extent of a data item refers to the period of time for which storage is allocated for the
data item. Data items in Slang may have either local or dynamic extent.

A data item with local extent is created at the same time as either a view controller or an
interaction object. Examples of data items with local extent are variables and object
attributes.

Data items with dynamic extent may be created or destroyed at any time by either the
dialogue or application program. Only shared data has dynamic extent.

5.9 Data Access

Each instance of a named entity in a Slang program (view controller, variable, object, and
shared data element) is assigned a Serpent identifier when the instance is created. This
identifier is of type ID. The identifier, for the most part, is unnecessary for the Slang
programmer since the data items are within the scope of their use and can be referenced
directly by name. It is possible, however, to reference data items by using their identifier.
This is a useful feature when it is necessary to access a value that is out of the current
context. Values of variables, attributes of objects, and shared data components can be set or
retrieved through the use of the data access routines described in Appendix E.

Several different methods exist to determine the identifier for a data object:

At creation time: The creation of a shared data element through use of the
create_sd_instance returns an identifier for the shared data element that has been
created.

Special functions:

The function get_parent_vc returns the identifier of a view controller.

The function get_object returns the identifier of an object within a view controller.

The special SELF constant can be used to refer to the identification of objects, variables,
and view controllers:

• When used within an object attribute or method specification, SELF refers to the
ID for that object.

• When used within a variable specification, SELF refers to the ID for that
variable.

Data

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 43

• When used within the actions on create or destroy code snippets, SELF refers to
the ID of the enclosing view controller.

The use of data access routines to set or retrieve identifiers or values requires explicit
knowledge of the access path to the data item from the current context and, consequently,
should only be used when absolutely necessary. For example, the addition of an
intermediate view controller may change the access path from one compilation to another
and a section of code that worked correctly prior to the addition may no longer work
correctly.

5.10 Declared Data

This section describes data types that are declared within the dialogue.

5.10.1 View Controllers

View controllers serve two functions. At runtime, they provide a visibility mechanism for
a collection of objects. When an instance of a view controller is created, those objects
declared within the view controller are created and are thus made visible to the end user.

At compile time, view controllers provide context for variables, interaction objects, and
bound shared data instances. A shared data instance is bound to a view controller when the
creation condition for the view controller references the shared data element and the
creation condition becomes true.

View controller instances are data items within a dialogue that have unique instance IDs.
View controller IDs can be obtained using either the SELF constant or data access routines
and can then be used to reference data items within the dialogue using the data access
routines.

5.10.1.1 Declaration

A view controller may be referenced directly within its scope using the name of the view
controller.

5.10.1.2 Extent

Variables have local extent. This means they exist only for the period of time in which the
view controller instance that contains them exists.

44 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

5.10.1.3 Scope

Variables have local scope within the view controller in which they are declared and global
scope within the subview controllers of that view controller. Being in scope within a view
controller (whether local or global) means that the variable can be referenced within
objects, subview controllers or variables declared within the view controller. Thus, in
Example 5-8, variable y can be referenced from anywhere within View Controller A.

The order of declaration of variables is unimportant. Assume x is declared to be y + 1 and
y is declared to be 10. If the declaration of x precedes the declaration of y, x is initially
evaluated to be undefined and then y is evaluated to be 10. The evaluation of y changes an
independent variable in the declaration of x and, consequently, x is reevaluated to be given
the value 11.

5.10.2 Objects

Object declarations within Slang are templates that are instantiated when a particular view
controller is instantiated.Object instances are data elements and have unique instance
identifiers. Object identifiers can be determined using the SELF constant or data access
routines. Objects provide context for attributes.

An object may be referenced directly within its extent, using its name.

Objects have the extent of the containing view controller. When the view controller is
instantiated, an instance of the object is created and when the view controller is destroyed,
the instance is destroyed.

5.10.3 Attributes

Attributes are used to define the presentation characteristics of interaction objects.
Attributes are similar to shared data components in that they have fixed type. The type of
the attributes is defined by the toolkit integrator.

An object attribute is declared to be either an expression or a code snippet in which the
attribute is assigned (similarly to variables). The declaration generates a set of
dependencies that are associated with the attribute. Every time any of the data items
referenced in the declaration is modified, the attribute is reevaluated.

5.10.3.1 Type

An object attribute has a fixed type, either boolean, integer, real, string, buffer, or ID. Since

Data

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 45

attributes are used to communicate with input/output toolkits, the values of attributes also
have semantic meaning that is defined by the toolkit.

5.10.3.2 Extent

Attributes are created and destroyed with the object in which they are declared.

5.10.3.3 Scope

The scope of an attribute is limited to the object in which it is defined. Attributes may also
be accessed from outside their scope if the exact path is known.

5.10.4 Methods

Methods provide a way of handling end-user interactions by specifying actions to be
performed for specific end-user generated events. Each object type has a fixed collection
of valid methods declared by the toolkit integrator. Methods are executed once for each
end-user generated event.

5.10.5 Shared Data

Shared data is information that is communicated between the application and dialogue,
solely within the dialogue, or between the dialogue and a toolkit. It consists of instances of
shared data templates. Shared data is segmented: each application process communicating
with Serpent has a segment, the dialogue has a segment, and each toolkit being used has a
segment. The application segments are called application shared data, the dialogue
segment is called dialogue shared data, and the toolkit segments are called toolkit shared
data. The Slang programmer does not access toolkit shared data directly. Instead, the Slang
programmer manipulates objects, object attributes, and methods; Serpent handles these
objects internally through shared data.

Shared data resides in the shared database, is defined externally in a shared data definition
file, and is instantiated at runtime by either the application or dialogue. Application and
dialogue shared data instances can be bound to a view controller. A shared data instance is
bound to a view controller when two conditions exist:

1. The creation condition for the view controller references the shared data
element.

2. The creation condition is true.

46 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

5.10.5.1 Type

Shared data is different from dialogue internal data items in that it is declared externally to
the dialogue. The type and structure of shared data is defined in a shared data definition file.
A separate shared data definition file must be created for each Serpent application as well
as for dialogue shared data.

A shared data definition file consists of aggregate data structures. The aggregate structures
are referred to as shared data elements. Elements have components, each of which is
declared to be one of the primitive types of Slang.

See Serpent: Saddle User’s Guide for a complete description of shared data definitions.

5.10.5.2 Extent

Shared data has dynamic extent. It is created by either the application or dialogue and exists
until it is explicitly destroyed.

5.10.5.3 Scope

The scope of a shared data instance includes any bound view controllers and any interaction
objects and/or subview controllers defined within the scope of that view controller. Shared
data items may be referenced directly within its scope using the name of the element or
component.

Shared data can also be referenced from anywhere in the dialogue, if the ID is known, using
the shared data routines defined in Appendix E.

5.10.6 Dialogue Shared Data

It is often useful in dialogue specification to be able to instantiate multiple instances of local
data. For example, it is possible to create a dialogue without an application for prototyping
purposes and, subsequently, to add the application. In such a situation, application shared
data cannot exist because there is no application.

Dialogue shared data is like application shared data in that it is defined externally in a
shared data definition file, can have view controllers bound to it, and must be explicitly
instantiated and destroyed. It differs from application shared data only in that it is kept
locally in the dialogue and not communicated to any external process.

Data

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 47

The shared data definition file used to declare dialogue shared data must be named
dialogue_name.sdd, where dialogue_name is the name of the file containing the
dialogue, and the file name must be included in the prologue section of the Slang dialogue
(see Section 9.5.1 for a discussion of prologues).

 Dialogue shared data can be instantiated at runtime using the create_sd_instance
function described in Appendix E. The create_sd_instance function returns a unique
Serpent identifier that is used to reference, and later destroy, the shared data instance. In
Example 5-9, the shared data element dial_elem_sd is instantiated and the identifier
stored in dial_elem_id.

dial_elem_id := create_sd_instance(“elem_name”, “DM_BOX”);

Example 5-9 Dialogue Shared Data Creation

The dialogue shared data element may be destroyed using the destroy_sd_instance
function show in Example 5-7.

destroy_sd_instance(dial_elem_id);

Example 5-10 Dialogue Shared Data Destruction

5.10.7 Application Shared Data

Application shared data is used to communicate between the dialogue and an application.
Shared data instances can be created by the application and communicated to the dialogue
or created in the dialogue with the create_sd_instance function (described in
Appendix E) and then communicated to the application.

Application shared data is specified using Saddle and is specific to an application. These
concepts are discussed in detail in Serpent: C Application Developer’s Guide, Serpent: Ada
Application Developer’s Guide, and Serpent: Saddle User’s Guide.

5.11 Data Reference

In order to understand how data is referenced in a Slang dialogue, it is important to
understand the dialogue structure.

48 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

5.11.1 Dialogue Structure

Dialogues have both a static specification-time structure and a dynamic, runtime structure.
At specification time, the dialogue structure is a hierarchical tree of view controller and
object templates. This static structure can be thought of as being the dialogue tree skeleton.
At runtime, some of the templates have been instantiated (possibly multiple times). The
runtime dialogue structure then consists of this tree skeleton plus whichever nodes on the
tree skeleton have been instantiated. Since view controllers can instantiate multiple times,
there may be multiple instances of the various nodes associated with a particular node on
the skeleton. Each node in the dynamic structure has a unique path from the base of the
structure.

Data reference can be performed in Slang using both direct and indirect referencing. The
following subsections describe how each of these data referencing mechanisms are used.

5.11.2 Direct Reference

Data items in the dynamic structure can be referenced directly by path name from within
their scope. The scope rules can be thought of as allowing upward referencing within the
instance tree (as long as a name is not overloaded).

A path name consists of a series of tokens separated by the “.” symbol. The first symbol is
considered the anchor, and determines the location from which the remainder of the path is
determined. The anchor is bound to the first data item encountered in the dialogue structure,
starting with the current context and working towards the dialogue base. Each of the
following tokens must be defined in the context of the preceding token or a syntax error will
occur. The rightmost token is the name of the actual data item being referenced.

The following are examples of referencing data using pathnames:

a_vc.a_subvc.a_variable
visible_vc.presentation_object.attribute
employee.name

Example 5-11 Direct Reference

Data

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 49

5.11.3 Indirect Reference

Occasionally, it is necessary to reference other than upward in the instance tree. In this case,
the Serpent identifier of the particular data item to be referenced must be determined. Once
the identifier has been determined, the value of the data item can be set or retrieved using
the data access and shared data routines defined in Appendix E.

In order to use indirect referencing, the identifier of the data item must be determined. A
technique to use is to have the data item retrieve its identifier and save it in a variable within
scope of the location where it is to be referenced. Example 5-14 shows a use of this
technique.

5.11.4 Examples of Data Reference

To better illustrate data reference in Slang, some further examples from the employee
database application are presented in this section. These examples assume two different
shared data elements: one contains basic employee information and the other has
information from the employees’ previous reviews. These shared data records, specified in
Saddle, are illustrated in Example 5-12.

employee: record
name: string[50];
address: string[50];
phone: string[10];
salary: integer;
end record;
review: record
name: string[50];
ptr: id_type; /*id of employee data element*/
year: integer;
last_raise: string[50];
level: string[20];
end record;

Example 5-12 Employee Shared Data Definitions

The requirement is to provide a dialogue that will examine the database of employees and
review information and display an employee bonus. Two dialogues (Example 5-13 and
Example 5-14) show how to accomplish this function.

50 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

Example 5-13 is written using nested view controllers. The creation condition of
employee_vc is based on the existence of a new employee shared data instance in the
database. The sub-view controller review_vc is then created when a review shared data
instance is found for the specified employee with a date field value of 1989. In this
example, it is possible to directly reference shared data information from both the employee
and review shared data instances from within the review_vc view controller to determine
the employee bonus. Data references are automatically bound to the correct shared data
instance of both shared data instances. The top level view control is instantiated whenever
a new employee is added to shared data. The nested view controller is instantiated
whenever a new review is added to the shared data that describes the employee referenced
in the top most view controller. Thus, in the second view controller there are two
conditions: one to add a new review to the shared data and the other to insure that the
correct employee is referenced.

VC: employee_vc
Creation Condition: (new(”employee”))
Variables:

/*local variable is initialized*/
 name: employee.name;
 VC: review_vc
 Creation Condition:
 (new(“review”and name = review.name)
 Objects:
 due_for_raise: label_widget {
 /*
 ** omit most attributes
 */
 label {
 If (employee.salary < 20000)
 And
 review.level = ”superstar”)
 Then
 label := ”Merry Xmas.”;
 Else
 label := ”Forget it.”;
 End If;
 }
 }
 END VC review_vc;
END VC employee_vc;

Example 5-13 Direct Data Referencing

Data

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 51

In the second version of this problem, Example 5-14, a single view controller is used for
the solution. The assumption is that the application places the Serpent identifier for the
correct employee shared data instance into the ptr component within the review element.
The creation condition for the single view controller causes a new view controller to be
created whenever a new record element is added with the desired year. The ptr component
within the review element is used to reference the correct employee. Data access routines
must be used to reference the values.

VC: review_vc
Creation Condition:
 (new(”review”) And review.date = 1989)
Objects:
due_for_raise: XawLabel {
 Attributes:
/*
** omit most attributes
*/
label: {
 If(employee[review.ptr].salary < 20000)
 And
 review.level = ”superstar”)
 Then
 label := ”Merry Xmas.”;
 Else
 label := ”Forget it.”;
 End If;
 }
}
END VC review_vc;

Example 5-14 Indirect Data Referencing

52 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data

Expressions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 53

6 Expressions
Slang supports a standard set of unary and binary operators. Expression operands may have
any underlying type (see Chapter 5). The resulting type and value of the expression is a
function of both the operator and the type and value of each operand. The type results and
conversions tables in Appendix C define the exact conversions that are performed at
runtime. In general, operations on different types first try to coerce the types to integer, real,
and string, in that order, in order to perform the operation. If no conversion can be
performed then a runtime error occurs.

6.1 Undefined Values

Slang allows values of data items to be undefined. When an undefined value is used in an
expression, the undefined value propagates outward during expression processing. For
most operations, whenever an operand value is undefined, the resulting value is also
undefined. The only exception is the equality operation in which two undefined operands
are treated as being equal.

6.2 Logical AND and OR Operators

The logical AND and OR operators are used to provide logical operations on boolean
values. Logical operators are not defined for anything other than boolean values and
UNDEFINED.

A complete formal syntax for expressions is given in Appendix A. The following is the
formal syntax for logical AND and OR expressions:

expression ::=
[expression logical_operator] boolean_expression
logical_operator ::=
And
| ‘&’
| Or
| ‘|’

54 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Expressions

Logical operations can return one of three values: true, false, or undefined. The following
tables contain the values of logical operations.

AND false true undefined
false false false undefined
true false true undefined
undefined undefined undefined undefined

Table 6-1 AND Operations

The value of the first argument is read down the left column, the value of the second
argument is read across the top, and the value of the result can be determined by finding the
indicated entry in the table.

OR false true undefined
false false true undefined
true true true undefined
undefined undefined undefined undefined

Table 6-2 OR Operations

The value of the first argument is read down the left column, the value of the second
argument is read across the top, and the value of the result can be determined by finding the
indicated entry in the table.

6.3 Equality Operators

The equality operators are used to determine whether two data items are equal or not equal
to each other. Data items can be compared for equality if both data items are of the same
type or can be converted to the same type. Data items are considered equal if they have the
same value in type to which they are converted. The following operators are used for
comparing expressions

<= equal
< > not equal

Table 6-3 Equality Operators

Expressions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 55

The following is the formal syntax for equality expressions:

boolean_expression ::=
[boolean_expression equality_operator] relational_expression
equality_operator ::= ‘=’ | ‘<>’

Equality operations can return one of two values: true or false. The following are some
examples of equality comparisons

Operation Value
1 = 5 false
“7” = 7 true
3.4 = 3 false
3 = 3.0 true
5<> UNDEFINED true
“Fred” = “Tom” false

Example 6-1 Equality Comparison

All operands of the same type can be compared for equality or inequality. In general,
operands of mixed type may be compared when there is a defined conversion between the
types. ID operands can only be compared with other ID operands. The exact semantics of
equality operations is defined in Appendix C.

6.4 Relational Operators

Relational operators are used to compare two data items to determine their relative values;
that is, if one data item has greater or lesser value than the other. Relational operators can
only be used to make numerical comparisons. They cannot be used, for example, to
alphabetize a list. Strings can only be compared if they can first be converted to a numerical
type.

The following operators are used for comparing expressions:

Table 6-4 Relational Operators

< less than
<= less than/equal
> greater than
>= greater than/equal

56 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Expressions

The following is the formal syntax for relational expressions:

relational_expression ::=
[relational_expression relational_operator]
arithmetic_expression
relational_operator ::= ‘<’ | ‘<=’ | ‘>’ | ‘>= ’

Relational operations can return one of three values: true, false, or undefined. The
following are some examples of relational comparisons.

Operation Value
1 < 5 false
“7”> = 7 true
3.4 > = 3 true
3 < = 3.0 true
5 > UNDEFINED UNDEFINED

Example 6-2 Relational Comparison

Operands used in relational operations must be either integers or real numbers or
convertible to these two types. When one or both operands used in a relational operation is
UNDEFINED, the result of the operation is also UNDEFINED. The exact semantics of
relational operations are defined in Appendix C.

6.5 Arithmetic Operators

Arithmetic operators provide basic math functions. Arithmetic operations are only defined
for numerical values. They cannot be used, for example, to add or concatenate strings.
Arithmetic operations on strings are performed by converting the strings to a numeric type
and then performing the arithmetic.

The following arithmetic operators are used for performing arithmetic operations on
expression pairs.

Operator Operation
+ addition
– subtraction
* multiplication
/ division
** exponentiation

Table 6-5 Arithmetic Operators

Expressions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 57

Addition and subtraction have lower precedence than multiplication and division, which in
turn have lower precedence than exponentiation. The following is the formal syntax for
arithmetic expressions:

arithmetic_expression ::=
[arithmetic_expression addition_operator] term
term ::=
 [term multiplication_operator] factor
factor ::=
 [factor ‘**’] signed_id
arithmetic operator ::= ‘+’ | ‘–’
multiplication_operator ::= ‘*’ | ‘/’

Arithmetic operations can return values of two types: integer or real. They may also return
UNDEFINED if either of the operands is UNDEFINED. The following tables give the type of
arithmetic operations:

+,-,*,** real integer undefined
real real real undefined
integer real integer undefined
undefined undefined undefined undefined

Table 6-6 Plus, Minus, Multiple and Exponential Operations

/ real real undefined
real undefined undefined undefined
integer real real undefined
undefined undefined undefined undefined

Table 6-7 Divide Operation

The exact semantics of arithmetic operations are defined in Appendix C. The following are
some examples of arithmetic operations:

Operation Value
1 + 5 6
“7” * 8 56
3.4 – 3 0.4
3 + 3.0 6.0
5/ UNDEFINED UNDEFINED

Example 6-3 Arithmetic Operation

58 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Expressions

6.6 Unary Operators

There are two unary operators in Slang: unary negation and logical complement. Unary
negation is used to negate a single, numeric operand. Logical complement is used to negate
a single, logical operand. It is only defined for boolean values and undefined.

unary_operator ::=

 NOT
| ‘–’

Table 6-8 Unary Operators

The following is the formal syntax for unary expressions:

 signed_id ::=
[unary_operator] id

unary_operator ::=
NOT | ‘–’

Unary negation can return values of two types: integer or real. Unary negation also returns
an UNDEFINED value when the operand is undefined. Logical complement can return one
of three values: true, false or UNDEFINED. The following are examples of the unary
operations:

Unary Operations Types
-5 integer
- “3.14” real
-UNDEFINED UNDEFINED
not true false
not UNDEFINED UNDEFINED

Table 6-9 Unary Operations

Code Snippets and Statements

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 59

7 Code Snippets and Statements
A code snippet is a fragment of procedural code within a dialogue specification that is
executed in response to specific conditions. Code snippets are used to specify actions on
create, actions on destroy, object attributes, object methods, and variable declarations. A
code snippet consists of a collection of Slang statements.

The following is the formal syntax for code snippets:

code_snippet :: = ’{’ [statements] ’}’
statement :: =
function_call |
assignment_statement |
conditional_statement |
loop_statement

Slang statements are all terminated by the semicolon character.

7.1 Function Call

A function call is a transfer of control to a procedure that exists outside of the Slang
language but within the Serpent runtime system. Functions in Slang may or may not return
a value but must not modify any of the actual parameters to the function. A function call
may be a statement by itself (an imperative statement) or it may be a component of an
expression. Predefined functions are defined in Appendix D and Appendix E.

The following is the formal syntax for imperative statements and functions:

function_call ::=
 function_name ‘(’ [expressions] ‘)’
expressions ::= {expression ‘,’} expression

The following are some examples of function call statements:

destroy_sd_instance(id);
put_variable_value(vc_id, ”fred”, 17);

Example 7-1 Function Call Statements

60 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Code Snippets and Statements

7.2 Assignment Statement

The assignment statement is used to set the value, and possibly type, of the data item on the
left-hand side of the assignment operator to the value and type of the expression on the
right-hand side of the operator.

The following is the formal syntax for assignment statements:

assignment_statement ::=
 qualifed_name ‘:=’ expression

The following are some examples of assignment statements.

a := ”string”;
a := 7;
id := create_sd_instance(element_name);

Example 7-2 Assignment Statements

When the named identifier on the left-hand side of the assignment statement corresponds
to a dialogue variable, both the type and value of the variable are set to the type and value
of the expression. When the identifier corresponds to a shared data item or an object
attribute, the value of the expression is converted to the type of the shared data item or
attribute. The exact semantics of the assignment operation when the left-hand side of the
statement is a shared data element or object attribute is defined in Table 12-3.

7.3 Conditional Statement

The conditional statement is used to provide optional execution of statements.

The following is the formal syntax for If statements:

conditional_statement ::=
If boolean_condition Then

statements
{Elsif boolean_condition Then

statements}
[Else

statements]
End If

Code Snippets and Statements

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 61

The following are examples of If statements:

If (a > 0) Then
 value = ”positive”;
Elsif (a = 0) Then
 value = “zero”;
Else
 value = “negative”
End If;
If (b > 5) Then
 printf(“b greater than five.”);
Elsf (b > 0) Then
 printf(“B greater than zero but less than five.”);
End If;

Example 7-3 Conditional Statements

When evaluating a conditional statement, the condition after the IF part and any conditions
after the ELSIF parts are evaluated in lexical order (treating the final ELSE as an ELSIF
true THEN) until one of the conditions is true or all the conditions are false. If one of the
conditions evaluates to true the corresponding statements are executed; otherwise, none of
the statements is executed.

7.4 Loop Statement

The loop statement is used to perform controlled iteration of Slang dialogue statements. All
of the statements contained within the while loop are executed as long as the boolean
condition evaluates to true.

The following is the formal syntax for the while statement.

loop_statement ::=
While boolean_condition [DO]

statements
End While

62 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Code Snippets and Statements

The following is an example of a while loop that calculates the value of 5! (5 factorial).

i := 1;
x := 1;
While (i < 5) DO
 i := i+1;
 x := x * i;
End While;

Example 7-4 While Statement

The boolean condition of a loop statement is checked before the loop is entered. This means
that the statements contained within the loop may not execute at all if the condition is not
initially true.

Interaction Objects

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 63

8 Interaction Objects
Interaction objects are the means by which an end user visualizes and interacts with an
application system. Interaction objects are instances, in the toolkit layer, of objects
specified in a Slang dialogue. Objects in a Slang specification are object templates (for
example, a label widget in the Motif toolkit binding). When the specification is executed,
object instances are created within the dialogue. These object instances are passed to the
toolkit layer and become interaction objects. Object instances are created when the view
controller containing the object template is instantiated. An instance of an object is assigned
an identifier when it is created and the identifier can be retrieved using the data access
routines described in Appendix D.

Each object template has a collection of attributes that define the presentation of instances
created from it, as well as methods that determine the high level interactions that the end
user can have with the object. The syntax for object templates is:

objects ::=
Objects ‘:’ object_declaration { object_declaration }

object_declaration ::=
object_name ’:’ object_type_name
 ‘{ ’
 [Attributes ‘:’ { attribute_value }]
 [Methods ‘:’ { method_handler }]
‘ }’

8.1 Attributes

Attributes are used to define the presentation characteristics of object templates. Object
attributes have fixed types of boolean, integer, real, string, buffer, or ID. Since attributes are
used to communicate with toolkits, they also have semantic meaning that is defined by the
toolkit integrator.

Attributes are created and destroyed along with the object instance in which they are
defined. The scope of an attribute is identical to the scope of the object template in which
it is defined. Attributes may be accessed from outside their scope if the exact path is known.
Access is accomplished using the data access routines described in Appendix D.

64 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Interaction Objects

Object attributes allow the specification of either code snippets or expressions that are
associated with the attribute. Each specification is executed initially when the object
instance is created and every time any of the data items (if any) referenced in the
specification is modified. That is, the value of an attribute that depends upon certain data
items is recalculated whenever those data items are modified.

The following is the formal syntax for attributes:

attribute_value ::= attribute_name ‘:’ av_choice
av_choice ::=
code_snippet
| expression

The following are some examples of attribute definitions.

x: 5;
y: (x + 10) / 2;
label: temperature
color: {
 If (temperature < 32) Then
 color:=”blue”;
 Elsif (temperature < 100) Then
 color := “white”;
 Else
 color := “red”;
 End If;
}

Example 8-1 Attributes

Both the color and the label attributes, in the above example, are reevaluated whenever
temperature changes. In the latter case, the integer value of temperature is automatically
converted to the type of the label attribute (string).

8.2 Methods

Methods provide a way for handling end-user interactions in the dialogue by specifying
actions to be performed for specific end-user generated events. Methods are executed once
for each generated event and are procedural in nature. The number of and names of the
methods for a given interaction object are defined by the toolkit integrator.

The following is the formal syntax for methods:

method_handler ::= method_name ‘:’ code_snippet

Interaction Objects

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 65

The following are some examples of method definitions:

Methods:
 notify: {
 display_sizes_submenu := True;
 }
 send: {
 file_name := text_buffer;
 new_file_name := True;
 }

Example 8-2 Methods

66 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Interaction Objects

View Controllers

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 67

9 View Controllers
A view controller template is used to control which interaction objects are presented to the
end user under which circumstances. A view controller is an instance of a view controller
template. View controllers provide a means of logically grouping interaction objects that
are displayed and removed as a unit. When a view controller template is instantiated, the
associated object templates are instantiated as object instances and passed to the toolkit
layer as interaction objects. An example of this is a form containing multiple fields. Each
field in the form is represented by a separate object template, but the entire form would
most likely either be displayed or removed as a unit. View controllers may contain other
view controllers nested to an arbitrary depth.

The following is the formal syntax for view controllers:

vc ::=
VC ‘:’ vc_name creation_condition
component_list
{ vc }
ENDVC vc_name [;]
component_list ::=
[variables]
[objects]
[actions_on_create]
[actions_on_destroy]

View controller instances are assigned identifiers in the same fashion as shared data
element instances. The identifiers can be retrieved by means of the data access routines
described in Appendix D.

9.1 Creation Conditions

Each view controller has a creation condition that defines the condition under which the
view controller is instantiated.

The following is the formal syntax for creation conditions:

creation_condition ::=
Creation Condition ’:’ boolean_condition

68 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

View Controllers

There are two different classes of creation conditions in Slang: free and bound. Free
creation conditions are boolean conditions that may reference existing data items. View
controllers with a free creation condition can only be instantiated as many times as the
surrounding view controller. The following are examples of free creation conditions:

Creation Condition: (True)
Creation Condition: (a < 5)
Creation Condition: (x = 1)

Example 9-1 Free Creation Conditions

Both a and x must be either variables or previously bound shared data items.

The second class of creation conditions causes the instantiated view controller to be bound
to an instance of shared data. A bound creation condition must reference a single shared
data item. It causes the view controller to be instantiated when an instance of the shared data
element is created that is not currently bound to an instance of the view controller. This is
accomplished by using the new function within the creation condition. The new function
does not create new shared data; rather, it returns true when a new shared data item is
created and becomes false when the shared data item is deleted.

A binding creation condition can also reference a component of a shared data element to
cause the view controller to be instantiated only when a particular component assumes a
particular value.

Creation conditions are within the scope of the enclosing view controller. Thus, only data
items within the scope of the parent view controller can be used in a creation condition.
References to shared data elements that have been bound in a parent view controller are not
bound by the current creation condition.

The following are examples of bound creation conditions:

Creation Condition: (new(“employee”))
Creation Condition: (new(“employee”) and display=true)
Creation Condition: (employee.location = “Pittsburgh”)

Example 9-2 Bound Creation Conditions

Creation conditions cannot reference more than one non-bound shared data element. They
can, however, reference any number of constants, variables, or attributes as long as they
exist at the time the creation condition is evaluated. This does not include variables and
attributes defined within the view controller for which the creation condition applies.

View Controllers

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 69

A view controller can only be instantiated if its parent already exists. In other words, in
order for the creation condition for any view controller to be true, the creation condition for
all the view controller’s ancestors must also be true.

A view controller is destroyed when its creation condition becomes false, or the shared data
instance that caused it to be instantiated is removed from the shared database. When a view
controller is destroyed, all view controllers nested below it and child interaction objects of
that view controller are also destroyed.

9.2 Actions “On Create”

Actions “on create” are used to specify a code snippet to be executed upon the creation of
a view controller. Actions on create are executed once when the view controller is created;
they are not reevaluated if the variables on which the code snippet is dependent change. The
specification of an action on create code snippet is optional.

The following is the formal syntax for actions on create:

actions_on_create ::= On Create ’:’ [code_snippet]

The following is an example of an action on create:

On Create: {
 counter := counter + 1;
}

Example 9-3 Actions on Create

9.3 Actions on Destroy

Actions on destroy are used to specify a code snippet to be executed upon the
destruction of a view controller. Actions on destroy are executed once, when the view
controller is destroyed. The specification of an actions on destroy code snippet is
optional.

The following is the formal syntax for actions on destroy:

actions_on_destroy ::= On Destroy ‘:’ [code_snippet]

70 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

View Controllers

The following is an example of an action on destroy:

On Destroy: {
 counter := counter – 1;
}

Example 9-4 Actions on Destroy

9.4 Dependency Considerations

The interaction of three concepts within Slang can be important and confusing in some
dialogues. The three concepts are: automatic reevaluation of some snippets (those used in
variable declarations and those used in attribute definitions), the one-time evaluation of
other snippets (those used within on create and on delete), and the timing of the
creation of variables and objects within an instantiated view controller. In particular:

• Variables are evaluated before actions on create are executed. Thus, an
action on creation can use the value of a variable set in its specification.

• Variable declarations are reevaluated when any independent variable within it is
changed. Thus, a variable can be defined in terms of an attribute of an object
created within the same view controller. When the attribute is modified or given
a value, the variable declaration will be re-executed and a new value of a variable
calculated.

• Actions on create are executed prior to the evaluation of attributes for
objects. Thus, an action on create may depend on a variable declared in the same
view controller, as indicated above. If that variable depends only on items
outside the scope of the current view controller, or on other variables within the
scope of the current view controller, then the expected behavior will be
observed. On the other hand, if the variable depends upon an attribute of an
object declared in the current view controller, the action on create will not
yield the expected result. The sequence that causes the problem is:

• Evaluate variable (since attributes of objects are not yet defined, the
variable will use an UNDEFINED value for the attribute).

• Perform the actions on create.
• Evaluate the attributes of the object.

Since the variable depends on one of the attributes, it is reevaluated. Since actions on
create are only performed once, they are not reevaluated.

View Controllers

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 71

9.5 Dialogue Structure

A Slang dialogue contains the specification of a user interface for a single application. The
dialogue may be either a prototype or the user interface of a final product. Dialogues cannot
be called or included from other dialogues.

The following is the formal syntax for a Slang dialogue:

Slang_dialogue = prologue [externals] component_list {vc}

The dialogue, as such, consists of the prologue, external declarations, a list of top level
components, and a list of view controllers. Each of these top-level components is discussed
in the following sections.

9.5.1 Prologue

Each Slang program must indicate the shared data files and toolkits that it uses. This is done
in a prologue to the actual Slang program.

The prologue section of the dialogue is used to include the various .ill files required by the
dialogue. An .ill file is a file that is generated when an application or toolkit shared data
definition file is run through the Saddle preprocessor. Serpent: Saddle User’s Guide
contains more information on this process.

The prologue lists the shared data definitions and toolkit shared data. The form of this list is:

#include “name.ill”
#include “dm.ill”
#include “tech1.ill”
.
.
.
#include “techn.ill”
|||

where name is the name of the application shared data .sdd file. This can be omitted if
there is no application shared data. The special name dm.ill is the name of the dialogue
shared data. This can also be omitted if there is no dialogue shared data. The special
delimiter “|||” is used to indicate the end of the prologue.

72 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

View Controllers

Each toolkit being used requires its own entry in the list. For the Athena X toolkit, the entry
is:

#include “sat.ill”

 For the Motif toolkit, the entry is:

#include “smo.ill”

The dialogue must include the .ill files for each toolkit referenced in the dialogue, the
application .ill file if communication is required between the dialogue and application, and
the dm.ill file if dialogue shared data is to be used.

The following is the formal syntax for the prologue section of the dialogue:

prologue ::= ill_file_contents { ill_file_contents } ‘|||’

 The following lines provide a sample prologue section of a dialogue.

#include “app.ill”

/* application shared data definition
*/

#include “dm.ill”

/* dialogue manager shared data*/

#include “sat.ill”

/* Serpent Athena Toolkit */

#include “tech_y.ill”

/* Second I/O toolkit*/

|||

Prologue

9.5.2 Component List

The top-level dialogue structure can also be thought of as a view controller with a creation
condition of true, with certain exceptions—the inclusion of both a prologue and externals
section. As such, the dialogue can have almost all the same components as a view
controller.

View Controllers

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 73

The following is the formal syntax for the component list:

component_list ::= [variables] [objects] [actions_on_create]
[actions_on_destroy]

Objects declared directly in the top level of the dialogue are always visible. Actions on
create are executed immediately during execution of the dialogue. Actions on destroy
are executed on dialogue exit.

74 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

View Controllers

User-Defined Functions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 75

10 User-Defined Functions
Slang provides a mechanism for invoking externally defined C functions from within a
dialogue. The C function must be declared as an external in the Slang dialogue. The
limitations on the C functions are:

1. They must be true functions; that is, a function should not modify any of its
parameters. Thus, for example, the C library function strcat cannot be used
directly since it returns the result in the first argument.

2. Functions that return arguments of type string or real must allocate static
memory to hold the results.

10.1 External Functions

The following is the formal syntax for the externals section of the dialogue:

externals ::= {Externals ‘:’ {external_declaration}}
external_declaration ::= external_type
function_name ‘(’ [parm_list] ‘)’
external_type ::= Boolean
| Buffer
| Id
| Integer
| Real
| String
| Void
parm_list ::= {parm ‘,’} parm
parm ::= Boolean
| Buffer
| Id
| Integer
| Real
| String

The function_name can be any valid Slang name. Note that Slang can only bind to
external functions whose names consist entirely of lower case letters and digits. The
declaration void FUNC (string, string); is identical to void func (string,
string); and maps into external function func. This restriction exists primarily because
Slang is case insensitive while C is case sensitive.

76 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions

 The number of parameters accepted by the function should match the number and types
given in the parm_list. It is possible to have functions with no parameters. For example,
there is no character type in Slang. C functions that accept or return values of type character
cannot be used.

Object files for external functions may be placed in a UNIX archive library (see UNIX ar(1)
command) and the library may be passed to the Serpent command using the –L option to
force the routines to link with the dialogue. Object files for external functions may also be
linked directly using the -L option of the Serpent command. See Serpent: System Guide for
a description of the Serpent command.

Note: not all valid C types have a defined conversion.

Example 10-1 shows external declarations in a Slang dialogue.

 /* string processing */
integer strlen(string);
integer strcmp(string, string);
 /* mathematical functions */
integer abs(integer);
real cos(real);
real pow(real, real);

Example 10-1 External Declarations

Once declared, the function can be used anywhere a function statement is valid in a Slang
dialogue.

10.2 Existing External Functions

An external library of Slang-callable functions is supplied with Serpent. The serpent
command ensures that this library is linked with Slang programs that require it. (See
Serpent: System Guide for more information on the serpent command.) The definitions for
each set of functions are available by including the appropriate header file. These header
files, described in this section, reside in the directory externs/include under the installed
Serpent directory; each one specifies the EXTERNALS keyword followed by a series of
documented function definitions.

Each function package is described more completely in this section. Note that Slang forces
references to a function to lower case and searches for the lower case version of the name.

User-Defined Functions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 77

10.2.1 Slang String Functions

The Slang string functions provide useful string manipulation routines. These functions are
made available by including header file sstring.ext. In Slang, as opposed to C, strings
are indexed starting from 1. The following is a list of the available functions, with a brief
description of each one. A more complete description follows the list with examples
showing how one might use the functions.

Function Description

string_append Appends one string to another, returning the new string.

string_count_chars Counts the number of occurrences of a single character or
a set of characters in a string.

string_delete Deletes a substring from a string.

string_index Finds the first occurrence of a substring within another
string, returning the position of the substring.

string_insert Inserts one string inside another.

string_is_integer Determines whether a string represents a valid integer.

string_is_real Determines whether a string represents a valid real
number.

string_length Returns the length of a string.

string_lower Converts each upper–case character in a string to lower
case.

string_upper Converts each lower–case character in a string to upper
case.

substring Returns the specified “slice” from a string.

Table 10-1 Slang String Functions

78 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions, string_append

Function

string_append

Description The string_append function appends one string to the end of
another string.

Syntax string_append (initial_string,terminal_string)

Parameters initial_string The string on which to append
terminal_string.

terminal_string The string to append to initial_string.

Returns A new string is returned containing the result. The original strings are
left unchanged.

User-Defined Functions, string_count_chars

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 79

Function

string_count_chars

Description The string_count_chars function counts the number of
occurrences of a single character or a set of characters in a string.

Syntax string_count_chars (the_string, char_set)

Parameters the_string The string to be checked.

char_set A string containing characters to be counted.
The function counts the number of times any
character from this string appears in
the_string. That is, to count only
occurrences of a single character, this string
should only contain one character.

Returns A count (integer) of the number of times that characters from
char_set were found in the_string. 0 means none were found.

80 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions, string_delete

Function

string_delete

Description The string_delete function deletes a substring from a string.

Syntax string_delete

(target_string,starting_position,

substring_length)

Parameters target_string The string from which to delete.

starting_position The start of the substring to be deleted.
This value must be between 1 and the
length oftarget_string.

substring_length) The length of the substring to be deleted.
Cannot extend past the end of
target_string.

Returns A new string is returned containing the result. If any error is detected,
(e.g.,starting_position or substring_length is incorrect) a
null string is returned. The original string is left unchanged.

User-Defined Functions, string_index

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 81

Function

string_index

Description The string_index function finds the first occurrence of a substring
within another string, returning the position of the substring.

Syntax string_index (source_string, substring)

Parameters source_string The string in which to search.

substring The string to locate.

Returns If the substring exists within source_string, its location, offset
from 1, is returned. Otherwise, a 0 is returned.

NOTE: Specifying a substring that is longer than the source string is
not treated as an error. Since the substring can never be found, an 0 is
returned in this case.

82 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions, string_insert

Function

string_insert

Description The string_insert function inserts one string inside another at the
specified position.

Syntax string_insert

(base_string,insert_string,position)

Parameters base_string The string in which to insert.

insert_string The string to be inserted.

position The position (integer) in base_string at
which to insert. The restrictions on this
argument are:
1. Position must be greater than 0.
2. If position is 1 past the last character in
base_string, insert_string is
appended to base_string. (See
string_append.)
3. Position cannot be greater than
string_length (base_string + 1).

Returns A new string is returned containing the result. If position is in
error, a null string (“ ”) is returned. The original strings are left
unchanged.

User-Defined Functions, string_is_integer

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 83

Function

string_is_integer

Description The string_is_integer function determines whether a string
contains only decimal digits.

Syntax string_is_integer (the_string)

Parameters the_string The string to be checked.

Returns FALSE – The string does not represent a valid decimal integer.

TRUE – The string represents a valid decimal integer.

84 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions, string_is_real

Function

string_is_real

Description The string_is_real function determines whether a string
represents a valid real number.

Syntax string_is_real (the_string)

Parameters the_string The string to be checked.

Returns FALSE – The string does not represent a valid real number.

TRUE – The string represents a valid real number.

User-Defined Functions, string_length

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 85

Function

string_length

Description The string_length function returns the length of a string.

Syntax string_length (target_string)

Parameters target_string The string to examine.

Returns The length (integer) of the string. 0 means that the string was empty.

86 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions, string_lower

Function

string_lower

Description The string_lower function converts every uppercase alphabetic
character in a string to lower case, leaving all other characters
untouched.

Syntax string_lower (the_string)

Parameters the_string The string to be converted.

Returns A new string is returned containing the result. The original string is left
unchanged.

User-Defined Functions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 87

Function

string_upper

Description The string_upper function converts every lowercase alphabetic
character in a string to uppercase, leaving all other characters
untouched.

Syntax string_upper (the_string)

Parameters the_string The string to be converted.

Returns A new string is returned containing the result. The original string is left
unchanged.

88 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions, substring

Function

substring

Description The substring function returns the specified portion of a string.

Syntax substring (source_string, position, length)

Parameters source_string The string from which to extract a substring

position The starting position (integer) of the substring.
This value must be between 1 and
string_length (source_string).

string_length The length (integer) of the substring. This
value must be greater than position and
must not result in a value greater than
string_length source_string)
when added to position.

Returns A new string is returned containing the result. If the length values are
inconsistent, a null string (“ ”) is returned. The original string is left
unchanged.

User-Defined Functions, substring

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 89

10.2.2 Extended Arithmetic Functions

The extended arithmetic functions provide additional arithmetic functionality not already
available in Slang. The following is a list of the available functions, with a brief description
of each one. A more complete description follows the list. These functions are available by
including header file arith.ext.

Function Description

div A function-oriented integer division operator.

make_integer Converts a Slang expression to an integer, forcing truncation if
necessary.

mod A function-oriented integer modulo operator.

truncate Converts a Slang expression to an integer, forcing truncation if
necessary.

Table 10-2 Extended Arithmetic Functions

90 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions, div

Function

div

Description The div function provides an integer division operator.

Syntax div (dividend, divisor)

Parameters dividend The integer to be divided.

divisor The integer by which to divide dividend.

Returns The integer portion of the quotient. Any fractional portion is
discarded. This is equivalent to make_integer(dividend/
divisor).

User-Defined Functions, make_integer, truncate

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 91

Function

make_integer, truncate

Description The make_integer function converts a Slang expression to an
integer, forcing truncation if necessary. It is also callable as
truncate.

Syntax make_integer (operand) truncate (operand)

Parameters operand The expression, variable, or attribute to be
converted to integer.

Returns An integer version of the expression, variable, or attribute is returned.
Real data is truncated, not rounded.

92 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions, mod

Function

mod

Description The mod function provides an integer modulo operator.

Syntax mod (dividend, divisor)

Parameters dividend The integer to be divided.

divisor The integer by which to divide dividend.

Returns The remainder (integer) from dividing dividend by divisor.

User-Defined Functions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 93

10.3 Using External Functions

External functions can be called from Slang: either existing C functions or new ones created
as described in Section 10.3.2.

10.3.1 Existing C functions

There are many reasons to use external C functions. C has a rich library of utility functions
that are available. For example, many of the string routines translate directly into C library
calls. The C libraries are automatically linked into the Slang runtime without a necessity of
explicitly stating the libraries in the serpent command. As another example, when
debugging Slang programs, it is often useful to print debug messages in the window from
which Serpent was invoked. The simplest way to accomplish this is to use existing C I/O
routines. It is possible, for example, to call the C function printf from within a Slang
program.

Note that Slang assumes that each external function has a fixed number of parameters;
further, each parameter is assumed to have a fixed type. While printf does not
traditionally behave in this way, it is still possible to use it in a Slang program. Consider the
following Externals section of a Slang program:

Externals:
void printf (string, integer);
void puts (string);

With these declarations in place, you can now make the following calls in a Slang code
snippet:

printf (”counter = %d and input_string = ”, counter);
puts (input_string);

Some of the versatility of printf is lost, of course. Since the EXTERNALS declaration
specifies that the second parameter to printf is an integer, you can’t use printf to
display real numbers; if you do, they’ll be truncated to integers before printf is actually
called. Further, this binding to printf specifies that it expects only two parameters; you
cannot call it with more than two parameters in this case.

You can only bind to an external function once. In other words, the following EXTERNALS
section is not legal Slang:

Externals:
void printf (string, integer);
void printf (string, real);

94 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions

The easiest way around this dilemma is to create your own routines that, in turn, call
printf with varying type and varying number of parameters. These routines can then be
used from within a Slang dialogue.

Electronic examples of how to use external functions are included in the base Serpent
distribution in the subdirectory demos/saw/slang-ref.

10.3.2 Creating New External Functions

This section discusses the writing of an external C function to be called from a Slang
program.

10.3.3 Type Equivalences

Slang data types map into specific C data types, as outlined in the table below. Types
marked with [S] are defined in the “serpent.h” header file (which resides in the “include”
subdirectory in your Serpent directory tree); these types are briefly described following the
table. Types marked with [M] have special memory allocation requirements which are
described in following section.

Slang Data Type Corresponding C Data Type

real double * (i.e., pointer to double) [M]
integer int
string char * [M]
boolean boolean [S]
id iid_id_type [S]

The boolean type is an integer that can be set to a true or false value. The definition of
boolean also supplies a series of true and false constants. A true value can be specified with
any one of the following constants:

true TRUE True on

Likewise, a false value can be specified with any one of:

false FALSE False off

The id type is used within Serpent to identify items in the shared database. You are
discouraged from writing external functions that manipulate ids; however, in the interests
of completeness, the type is included here. Ids are currently typed as long integers in C,

User-Defined Functions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 95

although in future releases of Serpent that representation may change.

The string type maps into a standard C string. That is, a Slang string variable is assumed to
be either a NULL pointer or a pointer to a series of characters terminated by a null (i.e., ’\0’)
byte.

10.3.4 Memory Allocation Considerations

Inside Serpent, variables of type boolean, id, and integer are stored as immediate data, so
no memory allocation is required. That is, if you write a function that returns a boolean, id,
or integer, you do not have to allocate memory to return the value; you can return it on the
stack, as illustrated by this function to add two integers:

int int_add (op1, op2)
int op1;
int op2;
{
return (op1 + op2);
}

However, as the table above indicates, strings and real numbers are stored internally as
pointers. Serpent assumes that the memory a string or real pointer refers to has been
allocated by a special memory allocation routine called make_node().

The make_node() routine is similar to the conventional C malloc() routine: it takes a
single parameter specifying the number of bytes to allocate and returns a pointer to the
allocated area. The returned pointer should be cast to the appropriate pointer type. To make
use of make_node(), you must include the following lines in your source file:

#define memoryPack
#include “memoryPack.h”

(Both lines are necessary; the ”#define memoryPack” line must precede the include
directive.) It is important that you use make_node() to allocate memory, rather than
malloc() or some other allocation routine; whenever the Serpent runtime system frees
memory, it assumes the memory was allocated with make_node().

96 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions

As an illustration, contrast the above function to add two integers with this function to add
two Slang real numbers:

#include <stdio.h>

#define memoryPack

#include “memoryPack.h”

double *real_add (op1, op2)
double *op1;
double *op2;
{
 double *result;
 if (
 (result = make_node (sizeof (double))) !=
 (double*) NULL)
{
 *result = *op1 + *op2;
}
return (result);
}

For example, the code below implements the Slang functionstring_upper:

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#define memoryPack
#include “memoryPack.h”

char *string_upper (the_string)
char *the_string;
{
int length;
char *result = NULL;
char *s;

 if ((length = strlen (the_string)) > 0) {

 if ((result = (char *) make_node (length + 1))==NULL)

 (void) fprintf (stderr,
 “string_upper: memory allocation error for string %s\n”,
 the_string);
 else {
 for (s = result; *the_string != ’\0’; s++, the_string++)
 if (islower (*the_string))*s = toupper (*the_string);

User-Defined Functions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 97

 else
 *s = *the_string;
 *s = ’\0’;
 }
 }
return (result);
}

10.3.5 Linking External Functions To Slang Programs

If you only use the external functions supplied with Serpent, you can skip this section, since
the serpent command automatically searches the Serpent externals library when it links a
dialogue. However, if you plan to write your own external functions, this section describes
how to link them into a dialogue executable.

After you’ve written your external function (or functions), you must load them into an
archival library (see the documentation for the Unix ar(1) command for more information
on archival libraries). For example, suppose your functions reside in file “myfuncs.c”. After
compiling the file and producing “myfuncs.o”, you might load the object file into archival
library ”mylib.a” with these commands:

% ar r mylib.a myfuncs.o

% ranlib mylib.a

(The ”%” is the Unix prompt.)

Next, when linking a dialogue that calls one of your functions, you have to tell Serpent to
resolve that function reference from””mylib.a”. Use the “–L” option on the serpent
command to accomplish this. Suppose, for example, the dialogue in file “mydialog.sl” uses
a function in “myfunc.c”. You would compile and link “mydialog.sl” using the following
serpent command:

% serpent –cl –L mylib.a mydialog.sl

Refer to the manual page for the serpent command for more information on the –L option.

98 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

User-Defined Functions

Runtime System

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 99

11 Runtime System
The Slang runtime system, or dialogue manager, is based on a system production model.
That is, Slang statements are interpreted as rules to the runtime system and these rules are
triggered whenever a data item is created, deleted, or modified. The runtime system keeps
track of those data items that depend on other data items. Whenever the independent data
items are created, deleted, or modified, the dependent data items are reevaluated.

The reliance of Slang on dependency is one of the most powerful features of the language,
but it has several implications of importance to the dialogue specifier. These are:
determination of cycles, the time that data is available to application and toolkits, and
avoiding the dependency mechanism.

11.1 Cycles

Dependencies among data items are detected at runtime. This allows a dependent data item
to depend upon the minimum possible number of independent data items but it also implies
that cycles in dependencies can only be detected at runtime. A cyclic dependency occurs
when two (or more) variables or object attributes are mutually dependent on each other. The
following example illustrates a cyclic dependency:

x: y – 1
y: x + 1

This dialogue specification causes a cycle that the dialogue manager detects by counting
the number of times a particular snippet is executed. Whenever that number exceeds a
threshold, a cycle is determined to have occurred, execution is terminated, and an error
message generated.

11.2 Timing of Data Transfers to Application and
Toolkit

 Activities within the dialogue manager are triggered by an external event. That event is the
receipt of data from either the application or one of the toolkits. Once the dialogue manager
is triggered, it processes all of the data dependencies that exist until no more data remains
unchanged. At this time it informs the application and the toolkits of all changes in their
respective shared data. The processing of all data dependencies occurs in a process called
a minor cycle.

100 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Runtime System

There are several implications of the fact that the dialogue manager processes all changes
prior to informing the application or the toolkit of any changes:

• If a single data item is modified multiple times during a collection of minor
cycles, only one change is sent out.

• The end user sees all changes to an interaction object at one time. If the
dialogue generates some portion of the output and then calls an external
function prior to generating the rest, the toolkit will not be informed of any
changes until the external function exits. Thus, looping in an external function
that returns one line of output at a time will not produce the expected results.

In general, the automatic runtime propagation of data is a very powerful mechanism, but
occasionally it produces some behavior that is difficult to understand without a more in–
depth explanation of the system.

11.3 Implications of Dependencies

It is important when writing dialogues to understand when dependencies are automatically
propagated and when they are not. In general, computations associated with variable
declaration and object attribute declaration are targets of propagation. Computations
associated with methods, actions on create, and actions on delete are not targets of
propagation. Some implications of this follow.

Counters are handled by declaring them in the variable section, incrementing them in the
on create section and decrementing them in the on delete section.

Shared data items cannot be declared to be dependent upon other data items. Thus, shared
data items need to be explicitly modified when they should be changed. On the other hand,
other data items can be dependent upon shared data items and are automatically
recalculated when necessary.

Slang Preprocessor

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 101

12 Slang Preprocessor
Serpent uses the C preprocessor. The C preprocessor is used to make macro substitutions,
conditional compilations, and inclusions of named files. All C preprocessor commands
begin with the # symbol. The # symbol must be located in column one followed by one of
the preprocessor commands. The character following a line break character is considered
the first character of the next line.

Preprocessor control lines may also be extended on the following line by inserting a
backslash “\” character in the last position in a line. This causes the backslash character to
remove itself and the following line break character. Backslash characters in normal Slang
text are illegal.

12.1 Macros and Conditional Compilation

Slang uses the same preprocessor as the C programming language. This preprocessor is a
simple macro processor that processes the source text of a Slang program before the
compiler processes the source program.

The preprocessor supports the following commands:

Command Description
#define identifier token–string Define a preprocessor macro.
#undef name Remove a macro definition.
#include “filename” Insert text from another file.
#if expression Conditionally perform some action,

based on the value of a constant
expression.

#ifdef identifier Conditionally include some text, if
preprocessor identifier is defined.

#ifndef identifier Conditionally include some text, if
preprocessor identifier is not defined.

#else Alternately include some text, if the
previous #if, #ifdef, or #ifndef test
failed.

#endif Terminate conditional text.
#line constant identifier Supply a line number for compiler

messages.

NOTE: The preprocessor commands must be in lower case. If lowercase letters are not
used, the preprocessor will return an error message.

102 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang Preprocessor

Please refer to A C Reference Manual, Samuel P. Harbison, Guy L. Steele Jr., Second
Edition, pages 26-48 or The C Programming Language, Brian W. Kernighan and Dennis
M. Ritchie, pages 207-208 for more information about the C preprocessor.

Glossary of Terms

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 103

Appendix A Glossary of
Terms

application layer
Those components of a software system that implement the “core” application functionality
of the system.

application shared data
The section of the shared database associated with the application. This data acts as the
interface between the functional portion of the application system and Serpent.

atomic data item
A shared data component or a variable.

attribute
A characteristic of an interaction object that may be defined by the dialogue specifier.

bound
Associated with. A view controller instance is bound to the shared data instance for which
it was created.

code snippet
“Islands” of procedural code that are executed at certain defined times in the execution of
a dialogue or as a result of changes in the state of the system.

creation condition
The conditions under which a view controller template is instantiated.

data item
Anything that can be declared or specified in Slang.

dialogue
A specification of the presentation of application information to, and interactions with, the
end user.

dialogue layer
Serpent layer that controls the dialogue between the application and the end user of the
application.

dialogue manager
Serpent component that executes the dialogue.

dialogue model
The dialogue model provides the conceptual basis for dialogue specification. The dialogue
model is primarily based on a data-driven, rule-based production model.

Glossary of Terms

104 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

dialogue shared data
Mechanism that allows a dialogue to create, modify, and destroy instances of data without
informing an application or toolkit of the activities.

dialogue variables
Variables defined in view controllers within a Slang dialogue.

drop-down menu
Menu that consists of a menu bar that contains a number of options. Selecting an option
causes a submenu to appear directly below the menu bar.

extent
Refers to the period of time for which storage is allocated for a data item.

ID
Unique instance identifier of those Slang data items that may have multiple instances.

I/O toolkits
Existing hardware/software systems that perform some level of generalized interaction
with the user.

interaction object
Objects that exist in a given toolkit and can be used to interact with the end user.

lexical structure
The characters that may appear in a Slang dialogue and the lexical units or tokens that they
may form.

method
Provides a way for handling end-user interactions in the dialogue by specifying actions to
be performed for specific end-user generated events.

path
Description of the location of a data item in the dialogue structure.

presentation layer
Serpent layer concerned with low level interaction with the user. This layer consists of the
various I/O toolkits.

presentation independent
Independent of the user interface of the system.

scope
The scope of a data item is the set of statements and expressions in which the declaration
of the identifier associated with that data item is valid.

shared data
Data that is managed by Serpent except for variables declared within view controller
templates.

Glossary of Terms

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 105

shared database
Data managed by Serpent. The database consists of application data, presentation data, and
global dialogue data.

shared data definition
A shared data structure that may be instantiated at runtime; may be either a record or a
scalar.

shared data instance
An instance of a shared data element.

shared data item
A component of a shared data record instance or a shared data scalar instance.

tokens
The smallest lexical units that are recognized by Slang.

transaction
A collection of updates to the shared database that is logically processed at one time.

user interface
Those components of a software system that specify the presentation of application
information to, and interaction with, the end user.

view controller
Mechanism for defining control flow and existence of interaction objects in dialogues.

view controller instance
An instantiation of a view controller template that is bound to specific application data and
interaction objects.

view controller template
A view controller specification.

visible
A data item is said to be visible if the identifier for that data item can be associated with the
value.

white space characters
Characters that are used to separate adjacent tokens or format Slang dialogue text. These
characters include: blank (space), end of line, vertical tab, form feed, horizontal tab, and
comments.

Glossary of Terms

106 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang BNF Grammar

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 107

Appendix B Slang BNF
Grammar

This appendix defines the BNF grammar for Slang. The following conventions are used in
the specification:

Uppercase letters are used to indicate terminals, as does anything enclosed in single quotes.
Uppercase letters are used for reserved words, and singe quotes are reserved for
punctuation literals.

• Lowercase letters are used to indicate a non-terminal (rule).

• Spaces between items in a rule indicate that they are separate, lexically different
terms. A carriage return, line feed, or tab between two items in a rule has the
same meaning as a space (except for reserved words).

• A vertical bar (|) separates choices, one of which must be used.

• Items enclosed in square brackets ([]) are optional.

• Items enclosed in curly brackets ({}) may be executed any number of times,
including zero.

• Keywords are in boldface type.

Note: Reserved words consisting of two words can have white space between the words.

Slang_program ::=

prologue {externals} component_list {vc}

prologue ::=

<ill file contents> {Note: <ill file contents>
are handled by the C preprocessor} ‘|||’

externals ::=
 EXTERNALS {external_type function_name
 ‘(’ [parm_list] ‘)’ eos}

external_type ::=

 BOOLEAN
| BUFFER
| ID
| INTEGER
| REAL
| STRING

108 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang BNF Grammar

| VOID

parmlist ::=

{parm ‘,’} parm

parm ::=

 BOOLEAN
|BUFFER
|ID
|INTEGER
|REAL
|STRING

vc ::=

VC ‘:’ vc_name
creation_condition
component_list
{vc}
END VC vc_name

component_list ::=

[variables]
[objects]
[actions_on_create]
[actions_on_destroy]

creation_condition ::=

CREATION CONDITION ‘:’ boolean_condition

variables ::=

VARIABLES ‘:’ {variable_declaration}

variable_declaration ::=

variable_name ’:’ v_choice

vvchoice ::=

 code_snippet
| [expression] eos

objects ::=

OBJECTS ‘:’ object_declaration
{object_declaration}

object_declaration ::=

object_name ‘:’ object_type_name ‘{ ’
[ATTRIBUTES ‘:’ {attribute_value}]
[METHODS ‘:’ {method_handler}] ’ }’

attribute_value ::=

attribute_name ‘:’ av_choice

Slang BNF Grammar

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 109

av_choice ::=

 code_snippet
| expression eos

method_handler ::=

method_name ‘:’ code_snippet

actions_on_create ::=

ON CREATE ‘:’ [code_snippet]

actions_on_destroy ::=

ON DESTROY ‘:’ [code_snippet]

code_snippet ::=

‘{ ’ [statements] ‘ }’ [eos]

statements ::=

statement eos {statement eos}

statement ::=

 conditional_statement
| assignment_statement
| imperative_statement
| loop_statement

conditional_statement ::=

IF boolean_condition
THEN statements
{ELSIF boolean_condition THEN statements}
[ELSE statements]
END IF

assignment_statement ::=

qualified_name ‘:=’ expression

imperative_statement ::=

function_call

loop_statement ::=

WHILE boolean_condition [DO]
statements
END WHILE

boolean_condition ::=

‘(’ expression ‘)’

expression ::=

[expression logical_operator]
boolean_expression

110 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang BNF Grammar

boolean_expression ::=

[boolean_expression equality_operator]
relational_expression

relational_expression ::=

[relational_expression relational_operator]
arithmetic_expression

arithmetic_expression ::=

[arithmetic_expression addition_operator] term

term ::=

[term multiplication_operator]factor

factor ::=

[factor ‘**’] signed_id

signed_id ::=

[unary_operator] id

id ::=

 qualified_name
| function_call
| ‘(’ expression ‘)’
| constant

qualified_name ::=

name { ‘.’ name }

function_call ::=

function_name ‘(’ [expressions] ’)’

expressions ::=

expression { ‘,’ expression }

logical_operator ::=

 AND
| ‘&’
| OR
| ‘|’

equality_operator ::=

 ‘=’
| ‘<>’

relational_operator ::=

 ‘<’
| ‘<=’
| ‘>’
| ‘>=’

Slang BNF Grammar

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 111

addition_operator ::=

 ‘+’
 | ‘–’

multiplication_operator ::=

 ‘*’
| ‘/’

unary_operator ::=

 NOT
| ‘–’

constant ::=

 integer_constant
| real_constant
| boolean_constant
| string_constant
| UNDEFINED
| NULL
| SELF

integer_constant ::=

digit {digit}

real_constant ::=

 digit {digit} ‘.’ {digit}
| ‘.’digit {digit}

boolean_constant ::=

 TRUE
| FALSE

string_constant ::=

‘ “ ’ <any valid ASCII text> ‘ ” ’
function_name ::= name

name ::=

alphabetic_character_or_underscore
[{alpha_or_digit_or_underscore}
alpha_or_digit {alpha_or_digit}]

eos ::=

‘;’ { ‘;’ }

comment ::=

‘/*’ <any valid ASCII text> ‘*/’
Note: comments are handled by the C
preprocessor and may occur anywhere in a Slang
program

112 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Slang BNF Grammar

Runtime Conversions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 113

Appendix C Runtime
Conversions

Each of the following tables defines the type results and conversions based on the types
(and values) for a specified class of runtime operations. Each table defines the type
coercions that are legal and the results of the coercions. Each shared data component and
attribute has a type declared at specification time. Each variable value has a type
determined at runtime. The first table gives the type of the result when a binary arithmetic
operation (+, –, *, /, **) is performed.

C.1 Binary Arithmetic
argument 2: boolean integer real string id buffer undefined
argument 1
boolean (4) (4) (4) (4) (4) (4) (4)
integer (4) integer (3) (1) (4) (4) undefined
real (4) (3) real (2) (4) (4) undefined
string (4) (1) (2) (5) (4) (4) undefined
id (4) (4) (4) (4) (4) (4) (4)
buffer (4) (4) (4) (4) (4) (4) (4)
undefined (4) undefined undefined undefined (4) (4) undefined

Table 12-1 Binary Arithmetic

The preceding is valid for all binary arithmetic operators (+, –, *, /, **) except for division,
which has the following exceptions:

• Dividing by zero results in undefined.

• An integer divided by an integer has a real result.

Notes:

1. If the string operand can be converted to integer, do the conversion and proceed
with the operation. If the string operand cannot be converted to integer, try to
convert it to real. If it can be converted to real, then convert the integer
argument to real and the result is real. Otherwise, it is a runtime error.

114 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Runtime Conversions

2. If the string operand can be converted to real, do the conversion and proceed
with the operation. If the string operand cannot be converted to real, it is a
runtime error.

3. Convert the integer operand to real and proceed with the operation.

4. Runtime error.

5. If both string operands can be converted to integer, convert them and then
perform the operation. If neither string operand can be converted to integer, try
converting to real. If neither can be converted to real, it is a runtime error.

C.2 Relational Operations

The following table gives the type of the comparison when a relational operation (>, <) is
performed.

argument 2 boolean integer real string id buffer undefined
argument 1
boolean (3) (3) (3) (3) (3) (3) (3)
integer integer real (1) (3) (3) undefined
real real (2) (3) (3) undefined
string (5) (3) (3) undefined
id (3) (3) (3)
buffer (3) (3)
undefined undefined

Table 12-2 Relational Operations

1. If the string operand can be converted to integer, do the conversion and proceed
with the operation. If the string operand cannot be converted to integer, try to
convert it to real. If it can be converted to real, then convert the integer
argument to real and the comparison is real. Otherwise, it is a run time error.

2. If the string operand can be converted to real, do the conversion and proceed
with the operation. If the string operand cannot be converted to real, it is a
runtime error.

3. Runtime error.

4. If both string operands can be converted to integer, convert them and then
perform the operation. If both string operands cannot be converted to integer,
try converting them to real. If both cannot be converted to real, it is a runtime
error.

Runtime Conversions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 115

C.3 Assignment Operations

The following table gives the results of assigning a value to either shared data or an object
attribute.

To boolean integer real string id buffer
From
boolean valid (4) (5) (8) invalid valid
integer (6) valid valid valid invalid valid
real (7) (1) valid valid invalid valid
string (8) (2) (3) valid invalid valid
id invalid integer invalid invalid valid valid
buffer (9) (9) (9) (9) (9) valid
undefined valid valid valid valid valid valid

Table 12-3 Assignment Operations

Note: The following conversions only occur with shared data.

1. Convert the real operand to integer by truncating the value.

2. Valid if the string operand can be converted to integer; otherwise, it is a
runtime error.

3. If the string operand can be converted to real, do the conversion and then
continue with the operation. If the string operand cannot be converted to real,
it is a runtime error.

4. Boolean is converted to integer value 1 if true and 0 if false.

5. Boolean is converted to real value 1.0 if true and 0.0 if false.

6. An integer can be converted to a boolean if the value of the integer is 0
(converted to false) or 1 (converted to true). Any other value results in a
runtime error.

7. A real can be converted to a boolean if the value of the real is 0.0 (converted
to false) or 1.0 (converted to true). Any other value results in a run time error.

8. True is converted to the string “true,” false is converted to the string “false.”
The reverse conversions occur also (the string values are case sensitive). Any
other values result in a runtime error.

9. If the type of the buffer is a Serpent-defined type and the conversion is defined
for that type, then the conversion is done; otherwise it is a runtime error.

116 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Runtime Conversions

C.4 Unary Arithmetic Operations

boolean (2)
integer integer
real real
string (1)
record (2)
id (2)
buffer (2)
undefined undefined

1. If the string operand can be converted to integer or real, do the conversion and
proceed with the operation. If the string operand cannot be converted to integer
or real, it is a runtime error.

2. Runtime error.

Table 12-4 Unary Arithmetic Operations

C.5 Equality Operations

The following table gives the type of comparison when applying the equality operator.

boolean integer real string id buffer undefined
boolean boolean (8) (8) (8) (4) (9) (5)
integer integer (3) (1) (4) (9) (5)
real real (2) (4) (9) (5)
string string (4) (9) (5)
id ID (9) (5)
buffer buffer (5)
undefined TRUE

Table 12-5 Equality Operations

1. If the string operand can be converted to integer, do the conversion and proceed
with the operation. If the string operand cannot be converted to integer, the
operands are considered unequal.

2. If the string operand can be converted to real, do the conversion and proceed
with the operation. If the string operand cannot be converted to real, the
operands are considered unequal.

Runtime Conversions

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 117

3. Convert the integer operand to real and proceed with the operation.

4. Runtime error.

5. A variable of undefined type is equal to a shared data component of undefined
value, regardless of the type of the shared data component.

6. A buffer is equal to another type if the buffer can be converted to that type and
the values are equal.

7. A boolean can be compared to an integer or real value if the value can be
converted to boolean.

8. If the type of the buffer is one of the Serpent types, the comparisons are done
using the Serpent type contained in the buffer. If the buffer type is not a Serpent
type, the result is not equal.

118 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Runtime Conversions

Data Access Routines

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 119

Appendix D Data Access
Routines

The data access routines provide a means of accessing and modifying view controllers,
variables, and objects within a Slang dialogue. The routines provide access to data items
for those portions of the dialogue that are not within scope of the data item. The following
is a list and short description of these routines. A more complete description immediately
follows:

get_bound_sd_instance Gets the ID of the shared data element
bound to a given view controller.

get_name Gets the symbolic name of a view
controller, object, or variable that has the
given ID.

get_object Gets the ID of a named object associated
with a view controller instance.

get_parent_vc Gets the ID of the parent view controller
of the specified view controller or object.

get_variable_value Gets the value of a specified variable.
get_vc Returns the ID of the named view

controller created for a given shared data
element.

put_variable_value Puts a value into a variable.

120 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data Access Routines, get_bound_sd_instance

Function

get_bound_sd_instance

Description The get_bound_sd_instance function gets the ID of the shared
data instance bound to the specified view controller. The view
controller is specified through its ID.

Syntax function get_bound_sd_instance(vc_id);

Parameters vc_id The ID of the view controller.

Returns The ID of the shared data instance.

Data Access Routines, get_variable_value

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 121

Function

get_variable_value

Description The get_variable_value function gets the value for a specified
variable within a view controller instance.

Syntax function get_variable_value (vc_id , name);

Parameters vc_id The ID of the view controller instance in
which the variable lives.

name The name of the variable.

Returns The value of the specified variable.

122 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data Access Routines, get_name

Function

get_name

Description The get_name function gets the name of the specified data item.

Syntax function get_name(item_id);

Parameters item_id The ID of the data item whose name is to be
retrieved. The data item can be either a view
controller, an object, or a variable.

Returns The symbolic name of the item whose ID was passed.

Data Access Routines, get_object

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 123

Function

get_object

Description The get_object function returns the ID of object instance created
for a specified view controller instance.

Syntax function get_object (vc_id , object_name);

Parameters vc_id The ID of the view controller instance.

object_name The name of the object as a string.

Returns The ID of the object instance.

124 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data Access Routines, get_parent_vc

Function

get_parent_vc

Description The get_parent_vc function gets the ID of the parent view
controller for the specified view controller or object.

Syntax function get_parent_vc (vc_or_object_id);

Parameters vc_or_object_id The ID of the view controller or object.

Returns The ID of the parent view controller. If the argument is the ID of an
object instance, the function returns the ID of the surrounding view
controller instance. If the argument is the ID of a view controller
instance, the function returns the ID of the parent view controller
instance.

Note:if the argument is the ID of the top level view controller, the
system aborts.

Data Access Routines, put_variable_value

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 125

PROCEDURE

put_variable_value

Description The put_variable_value procedure is used to assign a value to a
specified variable.

Syntax procedure put_variable_value (vc_id , name , value);

Parameters vc_id The ID of the view controller instance of the
specified variable.

name The name of the variable.

value The value to be assigned to the variable.

126 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Data Access Routines, get_vc

Function

get_vc

Description The get_vc function gets the ID of view controller instance bound to
a specified shared data element.

Syntax function get_vc (sd_id , vc_template_name) ;

Parameters sd_id ID of the shared data element.

vc_template_name Name of the view controller template.

Returns The ID of the view controller instance.

Shared Data Routines

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 127

Appendix E Shared Data
Routines

Shared data routines are used to create, destroy, and manipulate shared data elements from
within a Slang dialogue. The following is a list and short description of these routines. A
more complete description immediately follows:

create_sd_instance Creates a shared data instance.

destroy_sd_instance Destroys a shared data instance.

get_sd_value Gets the value of a component of a shared data element
instance.

put_sd_value Puts a value into a component of a shared data element
instance.

128 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Shared Data Routines, create_sd_instance

Function

create_sd_instance

Description The create_sd_instance routine creates an instance for the
specified shared data element and returns a unique ID.

Syntax function create_sd_instance (element_name ,

sdd_mailbox);

Parameters element_name The name of the shared data element as a
string.

sdd_mailbox The name of the mailbox for the shared data
definition file in which the element is defined.
This name is constructed from the name of the
shared data definition file by capitalizing the
prefix of the file and adding “_BOX” (for
example, app.sdd uses a mailbox named
APP_BOX).

Returns The ID of the newly created shared data instance.

Shared Data Routines, destroy_sd_instance

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 129

Procedure

destroy_sd_instance

Description The destroy_sd_instance routine destroys the specified shared
data instance in the shared database.

Syntax procedure destroy_sd_instance (shared_data_id);

Parameters shared_data_id The ID of the shared data instance to be
destroyed.

130 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Shared Data Routines, get_sd_value

Function

get_sd_value

Description The get_sd_value function gets the value of a component of a
specified shared data element.

Syntax function get_shared_data_value (sd_id,

component_name) ;

Parameters sd_id The ID of the shared data element.

component_name The name of a component within the shared
data element as a string.

Returns The value of the specified shared data element

Shared Data Routines, put_sd_value

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 131

Procedure

put_sd_value

Description The put_sd_value procedure puts the specified value into a
component of the specified shared data item.

Syntax put_shared_data_value (sd_id , component_name ,

value);

Parameters sd_id The ID of the shared data element instance.

component_name The name of a component within the shared
data element.

value Value to be assigned to shared data
component.

Shared Data Routines

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 132

Utility Routines

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 133

Appendix F Utility
Routines

Utility routines serve special purposes. They are used as functions within a dialogue but are
not exclusively for shared data or for data access.

exit Terminates the dialogue manager and sends a
SIGINT signal to all the taps that were started by the
current invocation of the Serpent command.

id_exists Used to test for the existence of either a shared data
element, a view controller, a variable, or an object.

new Used in a view controller template creation condition
to indicate that an instance of shared data should be
considered for causing a new instance of that view
controller.

recording_on Turns on the Serpent transaction recording function.

recording_off Turns off the Serpent transaction recording function.

134 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Utility Routines, exit

Function

exit

Description The exit function terminates execution of a dialogue and any related
applications and I/O technologies.

Syntax procedure exit ();

Parameters None.

Utility Routines, id_exists

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 135

Function

id_exists

Description The id_exists function tests whether an ID refers to a valid shared
data item, view controller, variable, or object.

Syntax function id_exists (id) ;

Parameters id The ID to test.

Returns TRUE if the ID specifies a valid shared data item,
variable, view controller instance, or object;
FALSE otherwise.

Example The following Slang program shows how one might use id_exists.
The shared data definition file is appended to the end of the program.

#include “dm.ill”
#include “saw.ill”
|||
VARIABLES:
some_id;
is_there : false;
OBJECTS:
button : command_widget
{ATTRIBUTES:
label_text :
{IF (is_there) THEN
label_text := “THERE”;
ELSE
label_rtext := “NOT THERE”;
END IF;
}
METHODS:
notify: {
IF (id_exists (some_id)) THEN
destroy_sd_instance (some_id);
is_there := false;
ELSE
some_id := create_sd_instance (“some_sdd”,

136 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Utility Routines, id_exists

“DM_Box”);
is_there := true;
END IF;
}
}
shared data definition file
<<test>>
some_sd : shared data
some_sdd : record
some_component : integer;
end record;
end shared data;

Utility Routines, new

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 137

Function

new

Description The new function determines the existence of an unbound shared data
element in the shared database. The new function can only be used as
part of the creation condition for view controllers.

Syntax function new (shared_data_item)

Parameters shared_data_item The name of a shared data element as a string.

Returns TRUE when an unbound shared data element of the
appropriate name is found False when either
no unbound shared data element is found or
the currently bound instance is deleted.

138 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Utility Routines, recording_on

Procedure

recording_on

Description The recording_on procedure turns on the Serpent transaction
recording function.

Syntax procedure recording_on (recording_file,

header_message);

Parameters recording_file The name of a UNIX file to which the
transactions are written.

header_message An identification string included in the
recording file.

Utility Routines, recording_off

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 139

Procedure

recording_off

Description The recording_off procedure turns off the Serpent transaction
recording function.

Syntax procedure recording_off();

Parameters none

140 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 141

Appendix G Athena Widget
Set

142 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set

Athena Widget Set, XawBboard

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 143

XawBboard

Serpent Name XawBboard

include_file: X11/Xaw/Form.h
widget_type: widget
class: formWidgetClass

Description The XawBboard widget is a form widget that does not perform
geometry management for its children. (The XawBboard widget
should be used instead of the form widget when creating a background
form to parent other widgets.)

Attributes
Serpent

Name X Type Default
after Widget
allowUserMove Boolean false
allowUserResize Boolean false
toBottom bottom
focus focus
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
maintainSize Boolean
managedWhenCreated Boolean true
toTop top
widget int

144 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawBboard

Form Widget Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel white
backgroundPixmap Pixmap
borderColor Pixel black
borderPixmap Pixmap
borderWidth Dimension 1
children WidgetList
colormap Colormap
defaultDistance int
depth int
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean true
numChildren Cardinal
screen Screen
sensitive Boolean true
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Btn1Down>,<Btn1Up>: select()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Ctrl<Btn1Down>,<Btn1Up>: top()
Ctrl<Btn2Down>,<Btn2Up>: bottom()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

width Dimension
x Position
y Position

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL

Athena Widget Set, XawBboard

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 145

romVert Widget NULL
horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right unsigned_char 2
top unsigned_char 0

Methods
Name Parameters Description
move x, y, horizDistance, This method allows the user to move the widget with

vertDistance the mouse and sends the widget’s new x and y location to
the dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse, and sends the widget’s x and y location and new
width and height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse, and sends the location of that point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

select selectedX, selectedY This method allows the user to select a point on the widget
with the mouse, and sends the location of the point to the
dialogue.

146 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawBox

XawBox

Serpent Name XawBox

include_file: X11/Xaw/Box.h
class: boxWidgetClass
widget_type: widget

Description The XawBox widget provides geometry management of arbitrary
widgets in a box of a specified dimension. The children are rearranged
when resizing events occur either on the XawBox or on one of its
children, or when its children are managed or unmanaged. The
XawBox widget always attempts to pack its children as tightly as
possible within the geometry allowed by its parent

Attributes
Serpent

Name X Type Default
after Widget
allowUserMove Boolean false
allowUserResize Boolean false
toBottom bottom
focus focus
managedWhenCreated Boolean true
method MethodName
parent Widget NULL
selectedX Position 0
selectedY Position 0

toTop top
widget int

Athena Widget Set, XawBox

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 147

Box Widget Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
anbackground Pixel white
backgroundPixmap Pixmap
borderColor Pixel black
borderPixmap Pixmap
borderWidth Dimension 1
children WidgetList
colormap Colormap
depth int
destroyCallback CallbackList
height Dimension
hSpace Dimension
mappedWhenManaged Boolean true
numChildren Cardinal
orientation String
screen Screen
sensitive Boolean true
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

width Dimension
x Position
y Position

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL

148 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawBox

horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right unsigned_char 2
top unsigned_char 0

Methods
Name Parameters Description
move x, y, horizDistance, This method allows the user to move the widget with the

vertDistance mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Athena Widget Set, XawCommand

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 149

XawCommand

Serpent Name XawCommand

include_file: X11/Xaw/Command.h
class: commandWidgetClass
widget_type: widget

Description The XawCommand widget is an area, often rectangular, that contains a
text label or bitmap image. This area, which is selectable, is often
referred to as a button. When the pointer cursor is on a button, it
becomes highlighted by drawing a rectangle around its perimeter. This
highlighting indicates that the button is ready for selection. When
pointer button 1 is pressed, the XawCommand widget indicates its
selection by reversing its foreground and background colors. When the
button is released, the XawCommand widget’s notify action will be
invoked. If the pointer is moved out of the widget before the button is
released, the widget reverts to its normal foreground and background
colors, and releasing the button has no effect. This behavior allows the
user to cancel an action.

Attributes
Serpent

Name X Type Default
after Widget
allowUserMove Boolean false
allowUserResize Boolean false
toBottom bottom
managedWhenCreated Boolean true
method MethodName
parent Widget NULL
toTop top
selectedX Position 0

150 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawCommand

selectedY Position 0
widget int

Command Widget Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel white
backgroundPixmap Pixmap
bitmap Pixmap
borderColor Pixel black
borderPixmap Pixmap
borderWidth Dimension 1
callback CallbackList Six_callback
colormap Colormap
cornerRoundPercent Dimension
cursor Cursor
depth int
destroyCallback CallbackList
font XFontStruct 6x13
foreground Pixel black
height Dimension
highlightThickness Dimension
insensitiveBorder Pixmap
internalHeight Dimension 2

internalWidth Dimension 4
justify unsigned_char 1
label String
mappedWhenManaged Boolean true
resize Boolean
screen Screen
sensitive Boolean true
shapeStyle unsigned_char
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()

Athena Widget Set, XawCommand

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 151

Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
Ctrl<Btn1Down>,<Btn1Up>: top()
Ctrl<Btn2Down>,<Btn2Up>: bottom()
<Btn1Down>: set()
<Btn1Up>: notify () unset()
<EnterWindow>: highlight()
<LeaveWindow>: unhighlight()

width Dimension
x Position
y Position

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL
horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right unsigned_char 2
top unsigned_char 0

Methods
Name Parameters Description
move x, y, horizDistance, This method allows the user to move the widget with the

vertDistance mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

top This method is sent to the dialogue when the widget is
raised.

152 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawCommand

bottom This method is sent to the dialogue when the widget is
lowered.

notify This method is sent to the dialogue in response to a user
event (typically a Btn1Down).

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Athena Widget Set, XawDialog

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 153

XawDialog

Serpent Name XawDialog

include_file: X11/Xaw/Dialog.h
class: dialogWidgetClass
widget_type: widget

Description An XawDialog widget, which is simply a special case of the Form
widget, provides a convenient way to create a preconfigured form. The
typical XawDialog widget contains three areas. The first line contains
a description of the function of the XawDialog widget (for example,
the string Filename); the second line contains an area into which the
user types input; the third line contains buttons that allow the user to
confirm or cancel the XawDialog input.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
toBottom bottom
managedWhenCreated Boolean true
method MethodName
parent Widget
toTop top
selectedX Position 0
selectedY Position 0
widget int

154 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawDialog

Form Widget Resource Set
Name X Type
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension
children WidgetList
colormap Colormap
defaultDistance int
depth int
destroyCallback CallbackList
height Dimension
icon Pixmap
label String
mappedWhenManaged Boolean
numChildren Cardinal
screen Screen
sensitive Boolean
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Ctrl<Btn1Down>,<Btn1Up>: top()
Ctrl<Btn2Down>,<Btn2Up>: bottom()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

value String
width Dimension
x Position
y Position

Athena Widget Set, XawDialog

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 155

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL
horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right unsigned_char 2
top unsigned_char 0

Methods
Name Parameters Description
move x, y, horizDistance, This method allows the user to move the widget with the

vertDistance mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

156 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawForm

XawForm

Serpent Name XawForm

include_file: X11/Xaw/Form.h
class: formWidgetClass
widget_type: widget

Description The XawForm widget can contain an arbitrary number of children, or
subwidgets. The XawForm provides geometry management for its
children, allowing individual control of the position of each child. Any
combination of children can be added to an XawForm. The initial
positions of the children may be computed relative to the positions of
other children. When the XawForm is resized, it computes new
positions and sizes for its children. This computation is based upon
information provided when a child is added to the XawForm.

Attributes
Serpent

Name X Type Default
after Widget
allowUserMove Boolean false
allowUserResize Boolean false

toBottom bottom
focus focus
maintainSize Boolean true
managedWhenCreated Boolean true
method MethodName
parent Widget NULL
selectedX Position 0
selectedY Position 0
toTop top

Athena Widget Set, XawForm

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 157

widget int

Form Widget Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel white
backgroundPixmap Pixmap
borderColor Pixel black
borderPixmap Pixmap
borderWidth Dimension 1
children WidgetList
colormap Colormap
children WidgetList
colormap Colormap
depth int
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean true
numChildren Cardinal
sensitive Boolean true
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Ctrl<Btn1Down>,<Btn1Up>: top()
Ctrl<Btn2Down>,<Btn2Up>: bottom()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<Btn1Down>,<Btn1Up>: select()

width Dimension
x Position
y Position

158 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawForm

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL
horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right unsigned_char 2
top unsigned_char 0

Methods
Name Parameters Description
move x, y, horizDistance, This method allows the user to move the widget with

vertDistance the mouse and sends the widget’s new x and y location to
the dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

Athena Widget Set, XawLabel

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 159

XawLabel

Serpent Name Xawlabel

include_file: X11/Xaw/Label.h
class: labelWidgetClass
widget_type: widget

Description An XawLabel widget is a text string or bitmap displayed within a
rectangular region of the screen. The label may contain multiple lines
of Latin1 characters. The XawLabel widget will allow its string to be
left, right, or center justified. Normally, this widget can be neither
selected nor directly edited by the user. It is intended for use as an
output device only.

Attributes
Serpent

Name X Type Default
after Widget
allowUserMove Boolean false
allowUserResize Boolean false
toBottom bottom
managedWhenCreated Boolean true
method MethodName
parent Widget NULL
toTop top
selectedX Position 0
selectedY Position 0

widget int

160 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawLabel

Label Widget Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel white
backgroundPixmap Pixmap
bitmap Pixmap
borderColor Pixel black
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
cursor Cursor
depth int
destroyCallback CallbackList
font XFontStruct 6x13
foreground Pixel black
height Dimension
insensitiveBorder Pixmap
internalHeight Dimension 2
internalWidth Dimension 4
justify unsigned_char 1
label String
mappedWhenManaged Boolean true
resize Boolean true
screen Screen

sensitive Boolean true
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Ctrl<Btn1Down>,<Btn1Up>: top()
Ctrl<Btn2Down>,<Btn2Up>: bottom()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

width Dimension
x Position

Athena Widget Set, XawLabel

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 161

y Position

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL
horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right type unsigned_char 2
top unsigned_char 0

Methods
Name Parameters Description
move x, y, horizDistance, This method allows the user to move the widget with

vertDistance the mouse and sends the widget’s new x and y location to
the dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse, and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

162 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawMenuButton

XawMenuButton

Serpent Name XawMenuButton

include_file: X11/Xaw/MenuButton.h
class: menuButtonWidgetClass
widget_type: widget

Description The XawMenuButton widget is a (typically) rectangular area that
contains a text label or bitmap image. When the pointer cursor is on
the button, the button becomes highlighted by drawing a rectangle
around its perimeter. Highlighting means that the button is ready for
selection. When selected, the XawMenuButton will pop up the menu
that has been named in the menuName resource.

Attributes
Serpent

Name X Type Default
after Widget
allowUserMove Boolean false
allowUserResize Boolean false
toBottom bottom
managedWhenCreated Boolean true
method MethodName
parent Widget NULL
selectedX Position 0
selectedY Position 0
toTop top

widget Widget

Athena Widget Set, XawMenuButton

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 163

Menu Button Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel white
backgroundPixmap Pixmap
bitmap Pixmap
borderColor Pixel black
borderPixmap Pixmap
borderWidth Dimension 1
callback CallbackList Six_callback
colormap Colormap
cornerRoundPercent Dimension
cursor Cursor
depth int
destroyCallback CallbackList
font XFontStruct 6x13
foreground Pixel black
height Dimension
highlightThickness Dimension
insensitiveBorder Pixmap
internalHeight Dimension 2
internalWidth Dimension 4
justify unsigned_char 1
label String

mappedWhenManaged Boolean true
menuName String
resize Boolean
screen Screen
sensitive Boolean true
shapeStyle unsigned_char
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()

164 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawMenuButton

Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<BtnDown>: reset() notify () PopupMenu()
<EnterWindow>: highlight()
<LeaveWindow>: reset()

width Dimension
x Position
y Position

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL
horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right unsigned_char 2
top unsigned_char 0

Methods
Name Parameters Description
move x, y, horizDistance, This method allows the user to move the widget with the

vertDisttance mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a Btn1Down).

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Athena Widget Set, XawMenuShell

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 165

XawMenuShell

Serpent Name XawMenuShell

include_file: X11/ /SimpleMenu.h
class: simpleMenuWidgetClass
widget_type: override

Description The XawMenuShell widget is an override shell which acts as a
container for the menu entries. The XawMenuShell serves as the glue
to bind the individual menu entries together into a menu.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean
method MethodName
parent Widget NULL
widget int

Shell
Name X Type
accelerators Translations
ancestorSensitive Boolean
allowShellResize Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension

166 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawMenuShell

bottomMargin Dimension
children WidgetList
colormap Colormap
createPopupChildProc Boolean
cursor Cursor
depth int
destroyCallback CallbackList
geometry caddr_t
height Dimension
label String
labelClass WidgetClass
mappedWhenManaged Boolean
menuOnScreen Boolean
numChildren Cardinal
overrideRedirect Boolean
popdownCallback CallbackList
popupCallback CallbackList
popupOnEntry Widget
rowHeight Dimension
saveUnder Boolean
screen Screen
sensitive Boolean
topMargin Dimension
translations Translations: <EnterWindow>: highlight()

<LeaveWindow>: unhighlight()
<BtnMotion>: highlight()
<BtnUp>: MenuPopdown() notify() unhighlight()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
Ctrl<Btn1Down>,<Btn1Up>: top()
Ctrl<Btn2Down>,<Btn2Up>: bottom()

width Dimension
x Position
y Position

Athena Widget Set, XawMenuShell

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 167

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL
horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right unsigned_char 2
top unsigned_char 0

168 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawPaned

XawPaned

Serpent Name XawPaned

include_file: X11/Xaw/Paned.h
class: panedWidgetClass
widget_type: widget

Description The XawPaned widget manages children in a vertically or horizontally
tiled fashion. The user may dynamically resize the pane by using the
grips that appear near the right or bottom edge of the border between
two panes.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
toBottom bottom
focus focus
managedWhenCreated Boolean true
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
toTop top
widget int

Paned Widget Resource Set
Name Type Default
accelerators Accelerators

Athena Widget Set, XawPaned

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 169

ancestorSensitive Boolean
background: Pixel
backgroundPixmap Pixmap
betweenCursor Cursor
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension
children WidgetList
colormap Colormap
cursor Cursor
depth int
destroyCallback CallbackList
gripCursor Cursor
gripIndent Position
gripTranslations Translations
height Dimension
horizontalBetweenCursor Cursor
horizontalGripCursor Cursor
icon Pixmap
internalBorderColor Pixel
internalBorderWidth Dimension
leftCursor Cursor
lowerCursor Cursor
mappedWhenManaged Boolean
numChildren Cardinal
orientation String
refigureMode Boolean
rightCursor Cursor
screen Screen
sensitive Boolean
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

170 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawPaned

upperCursor Cursor
verticalBetweenCursor Cursor
verticalGripCursor Cursor
width Dimension
x Position
y Position

Constraint Resource Set
Name X Type
allowResize Boolean
max Dimension
min Dimension
preferredPaneSize Dimension
resizeToPreferred Boolean
showGrip Boolean
skipAdjust Boolean

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL
horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right unsigned_char 2
top unsigned_char 0

Methods
Name Parameter Description
move x, y, horizDistance, This method allows the user to move this widget with the

vertDistance mouse and sends the widget’s new x and y location to the
dialogue.

Athena Widget Set, XawPaned

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 171

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

172 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawScreenObject

XawScreenObject

Serpent Name XawScreenObject

Description The XawScreenObject widget allows for the detection of screen and
display IDs:
 Display size contains height and width
 Display type contains color or black & white

Attributes
Serpent

Name X Type
color Boolean
display int
height Dimension
screen Screen
width Dimension

Athena Widget Set, XawScrollbar

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 173

XawScrollbar

Serpent Name XawScrollbar

include_file: X11/Xaw/Scrollbar.h
class: scrollbarWidgetClass
widget_type: widget

Description The XawScrollbar is a rectangular area containing a thumb that,
when moved along one dimension, will cause the scrolling of a region
inside a box widget. The XawScrollbar may be oriented
horizontally or vertically. Each pointer button invokes a specific
action.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
toBottom bottom
managedWhenCreated Boolean true
method MethodName
parent Widget NULL
selectedX Position 0
selectedY Position 0
toTop top
widget int

Command Widget Resource Set
Name X Type
accelerators Accelerators
ancestorSensitive Boolean

174 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawScrollbar

background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension
colormap Colormap
depth int
destroyCallback CallbackList
foreground Pixel
height Dimension
jumpProc CallbackList
length Dimension
mappedWhenManaged Boolean
minimumThumb Dimension
orientation unsigned_char
screen Screen
scrollDCursor Cursor
scrollHCursor Cursor
scrollLCursor Cursor
scrollProc CallbackList
scrollRCursor Cursor
scrollUCursor Cursor
scrollVCursor Cursor
sensitive Boolean
shown float
thickness Dimension
topOfThumb float
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
Ctrl<Btn1Down>,<Btn1Up>: top()
Ctrl<Btn2Down>,<Btn2Up>: bottom()
<Btn1Down>: StartScroll(Forward)
<Btn2Down>: StartScroll(Continuous) MoveThumb()

Athena Widget Set, XawScrollbar

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 175

 NotifyThumb()
<Btn3Down>: StartScroll(Backward)
<Btn2Motion>: MoveThumb() NotifyThumb()
<BtnUp>: NotifyScroll(Proportional) EndScroll()

width Dimension
x Position
y Position

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL
horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right unsigned_char 2
top unsigned_char 0

Methods
Name Parameters Description
move x, y, horizDistance, This method allows the user to move the widget with the

vertDistance mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

176 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawSimpleMenu

XawSimpleMenu

Serpent Name XawSimpleMenu

include_file: X11/Xaw/Sme.h
class: smeObjectClass
widget_type: widget

Description The XawSimpleMenu widget is a container for menu entries. The
XawSimpleMenu serves as the glue to bind the individual menu
entries together into a menu.

Attributes
Serpent

Name X Type Default
after Widget
allowUserMove Boolean false
allowUserResize Boolean false
managedWhenCreated Boolean true
method MethodName
parent Widget NULL
selectedX Position 0
selectedY Position 0
toBottom bottom
toTop top
widget int

Menu
Name X Type Default
ancestorSensitive Boolean
destroyCallback CallbackList

Athena Widget Set, XawSimpleMenu

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 177

height Dimension
sensitive Boolean
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<BtnDown>: reset() notify () PopupMenu()
<EnterWindow>: highlight()
<LeaveWindow>: reset()

width Dimension
x Position
y Position

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL
horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right unsigned_char 2
top unsigned_char 0

Methods
Name Parameters Description
move x, y, horizDistance This method allows the user to move the widget

vertDistance with the mouse and sends the widget’s new x and y
location to the dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a Btn1Down).

178 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawSimpleMenu

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Athena Widget Set, XawSimpleMenuBSB

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 179

XawSimpleMenuBSB

Serpent Name XawSimpleMenuBSB

include_file: X11/ /SmeBSB.h
class: smeBSBObjectClass
widget_type: widget

Description The XawSimpleMenuBSB widget is a container for the menu entries.
It differs from a plain menu widget in that it can contain bitmaps on
both sides of a menu entry.

Attributes
Serpent

Name X Type Default
after Widget
allowUserMove Boolean false
allowUserResize Boolean false
managedWhenCreated Boolean true
method MethodName
parent Widget NULL
selectedX Position 0
selectedY Position 0
toBottom bottom
toTop top
widget Widget

BSB Object
Name X Type Default
ancestorSensitive Boolean
callback CallbackList Six_callback

180 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawSimpleMenuBSB

destroyCallback CallbackList
font XFontStruct 6x13
foreground Pixel black
height Dimension
justify unsigned_char
label String
leftBitmap Pixmap
leftMargin Dimension 4
rightBitmap Pixmap
rightMargin Dimension 4
sensitive Boolean
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<BtnDown>: reset() notify () PopupMenu()
<EnterWindow>: highlight()
<LeaveWindow>: reset()

vertSpace int 25
width Dimension
x Position
y Position

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL
horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right unsigned_char 2
top unsigned_char 0

Athena Widget Set, XawSimpleMenuBSB

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 181

Methods
Name Parameters Description
move x, y, horizDistance, This method allows the user to move the widget with the

vertDistance mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a Btn1Down).

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

182 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawSmeLine

XawSmeLine

Serpent Name XawSmeLine

include_file: X11/Xaw/SmeLine.h n
class: smeLineObjectClass
widget_type: widget

Description The XawSmeLine widget is an object used to add a horizontal line to
a menu, acting as a menu separator. This object is not selectable.

Attributes
Serpent

Name X Type Default
after Widget
allowUserMove Boolean false
allowUserResize Boolean false
managedWhenCreated Boolean true
method MethodName
parent Widget NULL
selectedX Position 0
selectedY Position 0
toBottom bottom
toTop top
widget int

SmeLine
Name X Type Default
destroyCallback CallbackList
foreground Pixel black
height Dimension

Athena Widget Set, XawSmeLine

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 183

lineWidth Dimension 1
sensitive Boolean
stipple Pixmap
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<BtnDown>: reset() notify () PopupMenu()
<EnterWindow>: highlight()
<LeaveWindow>: reset()

width Dimension
x Position
y Position

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL
horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right unsigned_char 2
top unsigned_char 0

Methods
move x, y, horizDistance, This method allows the user to move the widget

vertDistance with the mouse and sends the widget’s new x and y
location to the dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a Btn1Down).

184 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawSmeLine

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Athena Widget Set, XawText

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 185

XawText

Serpent Name XawText

include_file: X11/Xaw/AsciiText.h
class: asciiTextWidgetClass
widget_type: widget

Description The text widget provides a modifiable, emacs-style, text editor inter-
face in a widget that is used to allow arbitrary text input. XawText in
this widget can also be modified under program control and displayed
back to the user.

Attributes
Serpent

Name X Type Default
after Widget
allowUserMove Boolean false
allowUserResize Boolean false
toBottom bottom
managedWhenCreated Boolean true
method MethodName
parent Widget NULL
selectedX Position 0
selectedY Position 0
sendBuffer Boolean false
toTop top
widget int

186 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawText

Text Widget Resource Set
Name X Type Default
ancestorSensitive Boolean
autoFill Boolean
background Pixel white
backgroundPixmap Pixmap
borderColor Pixel black
borderPixmap Pixmap
borderWidth Dimension 1
bottomMargin Position
callback CallbackList
colormap Colormap
cursor Cursor
dataCompression Boolean
depth int
destroyCallback CallbackList
displayCaret Boolean
displayNonprinting Boolean
displayPosition int
echo Boolean
editType unsigned_char 2
font FontStruct 6x13
foreground Pixel black
height Dimension
insensitiveBorder Pixmap

insertPosition int
leftMargin Position
length int
mappedWhenManaged Boolean true
pieceSize int
rightMargin Position
screen Screen
scrollHorizontal unsigned_char false
scrollVertical unsigned_char false
selectTypes TextSelectType_star

Athena Widget Set, XawText

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 187

sensitive Boolean true
string String textBuffer
textSink Widget
textSource Widget
topMargin Position
translations Translations: Ctrl<Key>A: beginning-of-line()

Ctrl<Key>B: backward-character()
Ctrl<Key>D: delete-next-character()
Ctrl<Key>E: end-of-line()
Ctrl<Key>F: forward-character()
Ctrl<Key>G multiply(Reset)
Ctrl<Key>H: delete-previous-character()
Ctrl<Key>J: newline-and-indent()
Ctrl<Key>K: kill-to-end-of-line()
Ctrl<Key>L: redraw-display()
Ctrl<Key>M: newline()
Ctrl<Key>N: next-line()
Ctrl<Key>O: newline-and-backup()
Ctrl<Key>P: previous-line()
Ctrl<Key>R: search(backward)
Ctrl<Key>S: search(forward)
Ctrl<Key>T: transpose-characters()
Ctrl<Key>U: multiply(4)
Ctrl<Key>V: next-page()
Ctrl<Key>W: kill-selection()
Ctrl<Key>Y: insert-selection(CUT_BUFFER1)
Ctrl<Key>Z: scroll-one-line-up()
Meta<Key>B: backward-word()
Meta<Key>F: forward-word()
Meta<Key>I: insert-file()
Meta<Key>K: kill-to-end-of-paragraph()
Meta<Key>Q: form-paragraph()
Meta<Key>V: previous-page()
Meta<Key>Y: insert-selection(PRIMARY,CUT_BUFFER0)
Meta<Key>Z: scroll-one-line-down()
Meta<Key>d: delete-next-word()
Meta<Key>D: kill-word()
Meta<Key>h: delete-previous-word()
Meta<Key>H: backward-kill-word()
Meta<Key>\\<: beginning-of-file()
Meta<Key>\\>: end-of-file()
Meta<Key>]: forward-paragraph()
Meta<Key>[: backward-paragraph()
~Shift Meta<Key>Delete: delete-previous-word()
Shift Meta<Key>Delete: backward-kill-word()
~Shift Meta<Key>BackSpace: delete-previous-word()

188 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawText

Shift Meta<Key>BackSpace: backward-kill-word()
<Key>Right: forward-character()
<Key>Left: backward-character()
<Key>Down: next-line()
<Key>Up: previous-line()
<Key>Delete: delete-previous-character()
<Key>BackSpace: delete-previous-character()
<Key>Linefeed: newline-and-indent()
<Key>Return: newline()
<Key>: insert-char()
<FocusIn>: focus-in()
<FocusOut>: focus-out()
Ctrl<Btn1Down>,<Btn1Up>: top()
Ctrl<Btn2Down>,<Btn2Up>: bottom()
Shift<Btn1Down>,<Btn1Up>: pick()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<Btn1Down>: select-start()
<Btn1Motion>: extend-adjust()
<Btn1Up>: extend-end(PRIMARY, CUT_BUFFER0)
<Btn2Down>: insert-selection(PRIMARY, CUT_BUFFER0)
<Btn3Down>: extend-start()
<Btn3Motion>: extend-adjust()
<Btn3Up>: extend-end(PRIMARY, CUT_BUFFER0)

type unsigned_char
useStringInPlace Boolean
width Dimension
wrap unsigned_char
x Position
y Position

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL
horizDistance int 0
vertDistance int 0

Athena Widget Set, XawText

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 189

left unsigned_char 2
resizable Boolean false
top unsigned_char 0

Methods
Name Parameters Description
move x, y, horizDistance, This method allows the user to move the widget with the

vertDistance mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

send textBuffer This method is returned in response to the send_buffer
flag being set to true by the dialogue or to a translation
table action.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

190 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawTextentry

XawTextentry

Serpent Name XawTextentry

include_file: X11/Xaw/AsciiText.h
class: asciiTextWidgetClass
widget_type: widget

Description The XawTextentry widget is similar to the Text widget except a
carriage return activates the send method. The XawTextentry widget
was created for use in forms so that the text focus can shift
automatically from item to item via carriage return.

Attributes
Serpent

Name X Type Default
after Widget
allowUserMove Boolean false
allowUserResize Boolean false
toBottom bottom
managedWhenCreated Boolean true
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
sendBuffer Boolean
toTop top
widget int

Athena Widget Set, XawTextentry

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 191

Text Widget Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
autoFill Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension
bottomMargin Position
callback CallbackList
colormap Colormap
cursor Cursor
dataCompression Boolean
depth int
destroyCallback CallbackList
displayCaret Boolean
displayNonprinting Boolean
displayPosition int
echo Boolean
editType unsigned_char 2
font FontStruct 6x13
foreground Pixel
height Dimension

insensitiveBorder Pixmap
insertPosition int
leftMargin Position
length int
mappedWhenManaged Boolean
pieceSize int
rightMargin Position
screen Screen
scrollHorizontal unsigned_char
scrollVertical unsigned_char

192 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawTextentry

selectTypes TextSelectType_star
sensitive Boolean
string String textBuffer
textSink Widget
textSource Widget
topMargin Position
translations Translations: Ctrl<Key>A: beginning-of-line()

Ctrl<Key>B: backward-character()
Ctrl<Key>D: delete-next-character()
Ctrl<Key>E: end-of-line()
Ctrl<Key>F: forward-character()
Ctrl<Key>G: multiply(Reset)
Ctrl<Key>H: delete-previous-character()
Ctrl<Key>J: newline-and-indent()
Ctrl<Key>K: kill-to-end-of-line()
Ctrl<Key>L: redraw-display()
Ctrl<Key>M: newline()
Ctrl<Key>N: next-line()
Ctrl<Key>O: newline-and-backup()
Ctrl<Key>P: previous-line()
Ctrl<Key>R: search(backward)
Ctrl<Key>S: search(forward)
Ctrl<Key>T: transpose-characters()
Ctrl<Key>U: multiply(4)
Ctrl<Key>V: next-page()
Ctrl<Key>W: kill-selection()
Ctrl<Key>Y: insertselection(CUT_BUFFER1)
Ctrl<Key>Z: scroll-one-line-up()
Meta<Key>B: backward-word()
Meta<Key>F: forward-word()
Meta<Key>I: insert-file()
Meta<Key>K: kill-to-end-of-paragraph()
Meta<Key>Q: form-paragraph()
Meta<Key>V: previous-page()
Meta<Key>Y: insertselection (PRIMARY CUT_BUFFER0)
Meta<Key>Z: scroll-one-line-down()
Meta<Key>d: delete-next-word()
Meta<Key>D: kill-word()
Meta<Key>H: backward-kill-word()
Meta<Key>\\<: beginning-of-file()
Meta<Key>\\>: end-of-file()
Meta<Key>]: forward-paragraph()
Meta<Key>[: backward-paragraph()
~Shift Meta<Key>Delete: delete previous-word()
Shift Meta<Key>Delete: backward-kill word()
~Shift Meta<Key>BackSpace: delete-previous-word()

Athena Widget Set, XawTextentry

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 193

Shift Meta<Key>BackSpace: backward-kill-word()
Shift<Key>Tab: tab()
<Key>Right: forward-character()
<Key>Left: backward-character()
<Key>Down: next-line()
<Key>Up: previous-line()
<Key>Delete: delete-previous-character()
<Key>BackSpace: delete-previous-character()
<Key>Linefeed: newline-and-indent()
<Key>Return: send()
<Key>: insert-char()
<FocusIn>: focus-in()
<FocusOut>: focus-out()
Ctrl<Btn1Down>,<Btn1Up>: top()
Ctrl<Btn2Down>,<Btn2Up>: bottom()
Shift<Btn1Down>,<Btn1Up>: pick()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<Btn1Down>: select-start()
<Btn1Motion>: extend-adjust()
<Btn1Up>: extend-end(PRIMARY, CUT_BUFFER0)
<Btn2Down>: insert-selection(PRIMARY, CUT_BUFFER0)
<Btn3Down>: extend-start()
<Btn3Motion>: extend-adjust()
<Btn3Up>: extend-end(PRIMARY, CUT_BUFFER0)

type unsigned_char
useStringInPlace Boolean
width Dimension
wrap unsigned_char
x Position
y Position

Constraint Resource Set
Name X Type Default
bottom unsigned_cha 0
fromHoriz Widge NULL
fromVert Widge NULL
horizDistance in 0
vertDistance in 0

194 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawTextentry

left unsigned_cha 2
resizable Boolean false
right unsigned_cha 2
top unsigned_cha 0

Methods
Name Parameters Description
move x, y, horizDistance, This method allows the user to move the widget with the

vertDistance mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

send textBuffer This method is returned in response to the send_buffer
flag being set to true by the dialogue or to a translation
table action.

tab This method is sent to the dialogue in response to a shifted
tab.

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Athena Widget Set, XawToggleButton

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 195

XawToggleButton

Serpent Name XawToggleButton

include_file: X11/Xaw/Toggle.h
class: toggleWidgetClass
widget_type: widget

Description The Toggle widget is an area, often rectangular, containing a text
label or bitmap image. This widget maintains a Boolean state (e.g.,
True/False or On/Off) and changes state whenever it is selected. When
the pointer is on the button, the button may become highlighted by a
rectangle around its perimeter. This highlighting indicates that the
button is ready for selection. When pointer button 1 is pressed and
released, the Toggle widget indicates that it has changed state by
reversing its foreground and background colors, and its notify action
is invoked, calling all functions on its callback list. If the pointer is
moved out of the widget before the button is released, the widget
reverts to its normal foreground and background colors, and releasing
the button has no effect. This allows the user to cancel an action.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
toBottom bottom
managedWhenCreated Boolean true
method MethodName
parent Widget NULL
toTop top
selectedX Position 0
selectedY Position 0

196 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawToggleButton

widget int

Command Widget Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel white
backgroundPixmap Pixmap
bitmap Pixmap
borderColor Pixel black
borderPixmap Pixmap
borderWidth Dimension 1
callback CallbackList Six_callback
colormap Colormap
cornerRoundPercent Dimension
cursor Cursor
depth int
destroyCallback CallbackList
font XFontStruct 6x13
foreground Pixel black
height Dimension
highlightThickness Dimension
insensitiveBorder Pixmap
internalHeight Dimension 2
internalWidth Dimension 4

justify unsigned_char 1
label String
mappedWhenManaged Boolean true
radioData caddr_t
radioGroup Widget
resize Boolean
screen Screen
sensitive Boolean true
shapeStyle unsigned_char
state Boolean

Athena Widget Set, XawToggleButton

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 197

translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize(
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<Btn1Down>,<Btn1Up>: toggle() notify ()
<EnterWindow>: highlight(Always)
<LeaveWindow>: unhighlight()

width Dimension
x Position
y Position

Constraint Resource Set
Name X Type Default
bottom unsigned_char 0
fromHoriz Widget NULL
fromVert Widget NULL
horizDistance int 0
vertDistance int 0
left unsigned_char 2
resizable Boolean false
right unsigned_char 2
top unsigned_char 0

Methods
Name Parameters Description
move x, y, horizDistance, This method allows the user to move the widget with

vertDistance the mouse and sends the widget’s new x and y location to
the dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a Btn1Down).

198 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawToggleButton

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Athena Widget Set, XawTopLevelShell

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 199

XawTopLevelShell

Serpent Name XawTopLevelShell

include_file: X11/Shell.h
class: topLevelShellWidgetClass
widget_type: shell

Description Used for normal top level windows (for example, any additional top
level widgets an application needs).

Attributes

TopLevelShell
Name X Type
iconic Boolean
iconName String
iconNameEncoding unsigned_char

WMShell
Name X Type
baseHeight int
baseWidth int
heightInc int
iconMask Pixmap
iconPixmap Pixmap
iconWindow Window
iconX int
iconY int
initialState int
input Boolean

200 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawTopLevelShell

maxAspectX int
maxAspectY int
maxHeight int
maxWidth int
minAspectX int
minAspectY int
minHeight int
minWidth int
title char_star
titleEncoding unsigned_char
transient Boolean
waitForWm Boolean
widthInc int
windowGroup XID
wmTimeout int

Shell Resource Set
Name X Type
allowShellResize Boolean
createPopupChildProc Boolean
geometry caddr_t
overrideRedirect Boolean
popdownCallback caddr_t
popupCallback caddr_t
saveUnder Boolean

Athena Widget Set, XawViewport

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 201

XawViewport

Serpent Name XawViewport

/include_file: X11/Xaw/Viewport.h
widget_type: widget

Description The XawViewport widget consists of a frame window, one or two
scrollbars, and an inner window. The size of the frame window is
determined by the viewing size of the data that is to be displayed and
the dimensions to which the XawViewport is created. The inner
window is the full size of the data that is to be displayed and is clipped
by the frame window. The XawViewport widget controls the
scrolling of the data directly. No application callbacks are required for
scrolling.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
toBottom bottom
focus focus
managedWhenCreated Boolean true
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
toTop top
widget int

202 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Athena Widget Set, XawViewport

Paned Widget Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
allowHoriz Boolean
allowVert Boolean
backgroun Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension
children WidgetList
colormap Colormap
depth int
destroyCallback CallbackList
forceBars Boolean
height Dimension
mappedWhenManaged Boolean
numChildren Cardinal
screen Screen
sensitive Boolean
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Ctrl<Btn1Down>,<Btn1Up>: top()
Ctrl<Btn2Down>,<Btn2Up>: bottom()
Shift<Btn3Down>,<Btn3Motion>: move()d
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

useBottom Boolean
useRight Boolean
width Dimension
x Position
y Position

Athena Widget Set, XawViewport

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 203

Constraint Resource Set
Name X Type Default
bottom unsigned_cha 0
fromHoriz Widge NULL
fromVert Widge NULL
horizDistance in 0
vertDistance in 0
left unsigned_cha 2
resizable Boolea false
right unsigned_cha 2
top unsigned_cha 0

Methods
Name Parameters Description
move x, y, horizDistance, This method allows the user to move the widget with the

vertDistance mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

top This method is sent to the dialogue when the widget is
raised.

bottom This method is sent to the dialogue when the widget is
lowered.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse, and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

204 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 205

Appendix H Motif Widget
Set

Motif Widget Set

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 206

Motif Widget Set, XmArrowButton

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 207

XmArrowButton

Serpent Name XmArrowButton

include_file: Xm/ArrowB.h
class: ArrowButtonWidgetClass
widget_type: widget

Description The XmArrowButton widget consists of a directional arrow
surrounded by a border shadow. When it is selected, the shadow
moves to give the appearance that XmArrowButton has been pressed
in. When XmArrowButton is not selected, the shadow moves to give
the appearance that XmArrowButton has been released, or is out.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int
activateCallback CallbackList Six_callback
armCallback CallbackList
arrowDirection unsigned_char ARROW_UP
disarmCallback CallbackList

Primitive Resource Set
Name X Type Default
bottomShadowColor Pixel

208 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmArrowButton

bottomShadowPixmap Pixmap UNSPECIFIED_PIXMAP
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightOnEnter Boolean false
highlightPixmap Pixmap
highlightThickness short 0
shadowThickness short 2
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_PIXMAP
traversalOn Boolean false
unitType unsigned_char PIXELS
userData caddr_t NULL

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitived Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

<Btn1Down>: Arm()

Motif Widget Set, XmArrowButton

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 209

<Btn1Up>: Activate() Disarm()
<Key>Return: ArmAndActivate()
<Key>space: ArmAndActivate()
<EnterWindow>: Enter()
<LeaveWindow>: Leave()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>:
 resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a Btn1Down).

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

210 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmBulletinBoard

XmBulletinBoard

Serpent Name XmBulletinBoard

include_file: Xm/BulletinB.h
class: BulletinBoardWidgetClass
widget_type: widget

Description XmBulletinBoard is a composite widget that provides simple
geometry management for children widgets. It does not force
positioning on its children, but can be set to reject geometry requests
that would result in overlapping children. XmBulletinBoard is the
base widget for most dialogue widgets and is also used as a general
container widget.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
focus focus
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

BulletinBoard Resource Set
Name X Type Default
allowOverlap Boolean
autoUnmanage Boolean
buttonFontList FontList

Motif Widget Set, XmBulletinBoard

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 211

cancelButton Widget
defaultButton Widget
defaultPosition Boolean
dialogStyle unsigned_char
dialogTitle String
focusCallback CallbackList
labelFontList FontList
mapCallback CallbackList
marginHeight short
marginWidth short
noResize Boolean
resizePolicy unsigned_char
shadowType unsigned_char
stringDirection StringDirection
textFontList FontList
textTranslations Translations
unmapCallback CallbackList

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_PIXMAP
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black

highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_PIXMAP
unitType unsigned_char PIXELS
userData caddr_t NULL

212 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmBulletinBoard

Composite Resource Set
Name X Type Default
insertPosition OrderProc
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

<Btn1Down>,<Btn1Up>: select()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

Motif Widget Set, XmBulletinBoard

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 213

select selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

214 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmCascadeButton

XmCascadeButton

Serpent Name XmCascadeButton

include_file: Xm/CascadeB.h
class: CascadeButtonWidgetClass
widget_type: widget

Description The XmCascadeButton widget links two MenuPanes or a MenuBar
to a MenuPane. It is used in menu systems and must have a
RowColumn parent with its rowColumnType resource set to
MENU_BAR, MENU_POPUP, or MENU_PULLDOWN. It is the only widget
that may have a pulldown MenuPane attached to it as a submenu. The
submenu is displayed when this widget is activated within a MenuBar,
a PopupMenu, or a PulldownMenu. Its visuals can include a label or
pixmap and a cascading indicator when it is in a Popup or Pulldown
MenuPane; when it is in a MenuBar, it can include only a label or a
pixmap.

Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

ArrowButton
Name X Type Default
activateCallback CallbackList Six_callback
cascadePixmap Pixmap
cascadingCallback CallbackList

Motif Widget Set, XmCascadeButton

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 215

mappingDelay int
subMenuId Widget

Label Resource Set
Name X Type
accelerator String
acceleratorText String
alignment unsigned_char
fontList FontList
labelInsensitivePixmap Pixmap
labelPixmap Pixmap
labelString String
labelType unsigned_char
marginBottom short
marginHeight short
marginLeft short
marginRight short
marginTop short
marginWidth short
mnemonic char
recomputeSize Boolean
stringDirection StringDirection

Primitive Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightOnEnter Boolean false
highlightPixmap Pixmap
highlightThickness short 0
shadowThickness short 2

216 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmCascadeButton

topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
traversalOn Boolean false
unitType unsigned_char PIXELS
userData caddr_t NULL
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: <BtnDown>: MenuBarSelect()

<EnterWindow>: MenuBarEnter()
<LeaveWindow>: MenuBarLeave()
<BtnUp>: DoSelect()
<Key>Return: KeySelect()
<Key>Escape: CleanupMenuBar()
Shift<Btn1Down>,<Btn1Up>: pick()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,t<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Motif Widget Set, XmCascadeButton

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 217

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a Btn1Down).

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse, and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

218 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmCommand

XmCommand

Serpent Name XmCommand

include_file: Xm/Command.h
class: CommandWidgetClass
widget_type: widget

Description The XmCommand widget is a special-purpose, composite widget for
command entry that provides a built-in mechanism for displaying
command histories. XmCommand includes a field for input from the
command line, a command line prompt, and a region for displaying the
command history list.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

Command
Name X Type Default
command String
commandChangedCallback CallbackList
commandEnteredCallback CallbackList
historyItems StringTable
historyItemCount int

Motif Widget Set, XmCommand

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 219

historyMaxItems int
historyVisibleItemCount int
promptString String

SelectionBox Resource Set
Name X Type Default
applyCallback CallbackList
applyLabelString String
cancelCallback CallbackList
cancelLabelString String
dialogType unsigned_char
helpLabelString String
listItemCount int
listItems StringList
listLabelString String
listVisibleItemCount int
minimizeButtons Boolean
mustMatch Boolean
noMatchCallback CallbackList
okCallback CallbackList
okLabelString String
selectionLabelString String
textAccelerators Translations
textColumns int
textValue String

BulletinBoard Resource Set
Name X Type Default
allowOverlap Boolean
autoUnmanage Boolean
buttonFontList FontList
cancelButton Widget
defaultButton Widget
defaultPosition Boolean

220 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmCommand

dialogStyle unsigned_char
dialogTitle String
focusCallback CallbackList
labelFontList FontList
mapCallback CallbackList
marginHeight short
marginWidth short
noResize Boolean
resizePolicy unsigned_char
shadowType unsigned_char
stringDirection StringDirection
textFontList FontList
textTranslations Translations
unmapCallback CallbackList

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel

topShadowPixmap Pixmap UNSPECIFIED_Pixmap
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Motif Widget Set, XmCommand

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 221

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

222 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmCommand

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Motif Widget Set, XmDrawingArea

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 223

XmDrawingArea

Serpent Name XmDrawingArea

include_file:Xm /DrawingA.h
class: DrawingAreaWidgetClass
widget_type: widget

Description The XmDrawingArea widget is an empty widget that is easily
adaptable to a variety of purposes. It does no drawing and defines no
behavior except for invoking callbacks. Callbacks notify the
application when graphics need to be drawn (exposure events or
widget resize) and when the widget receives input from the keyboard
or mouse. Applications are responsible for defining appearance and
behavior as needed in response to XmDrawingArea callbacks.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

DrawingArea
Name X Type Default
exposeCallback CallbackList
inputCallback CallbackList
marginHeight short

224 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmDrawingArea

marginWidth short
resizeCallback CallbackList
resizePolicy unsigned_char

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList

Motif Widget Set, XmDrawingArea

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 225

height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<Btn1Down>: Arm()
<Btn1Up>: Activate()
<EnterWindow>: Enter()
<FocusIn>: FocusIn()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

226 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmDrawnButton

XmDrawnButton

Serpent Name XmDrawnButton

include_file: Xm/DrawnB.h
class: DrawnButtonWidgetClass
widget_type: widget

Description The XmDrawnButton widget consists of an empty widget window
surrounded by a shadow border. It provides the application developer
with a graphics area in which PushButton input semantics may be
used.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

DrawnButton
Name X Type Default
activateCallback CallbackList Sixcallback
armCallback CallbackList
disarmCallback CallbackList
exposeCallback CallbackList
pushButtonEnabled Boolean

Motif Widget Set, XmDrawnButton

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 227

resizeCallback CallbackList
shadowType unsigned_char

Resource Set
Name X Type
accelerator String
acceleratorText String
alignment unsigned_char
fontList FontList
labelInsensitivePixmap Pixmap
labelPixmap Pixmap
labelString String
labelType unsigned_char
marginBottom short
marginHeight short
marginLeft short
marginRight short
marginTop short
marginWidth short
mnemonic char
recomputeSize Boolean
stringDirection StringDirection

Primitive Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightOnEnter Boolean false
highlightPixmap Pixmap
highlightThickness short 0
shadowThickness short 2

228 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmDrawnButton

topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
traversalOn Boolean false
unitType unsigned_char PIXELS
userData caddr_t NULL

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position

translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<Btn1Down>: Arm()
<Btn1Up>: Activate() Disarm()
<Key>Return: ArmAndActivate()
<Key>space: ArmAndActivate()
<EnterWindow>: Enter()
<LeaveWindow>: Leave()

Motif Widget Set, XmDrawnButton

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 229

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a Btn1Down).

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

230 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmErrorDialog

XmErrorDialog

Serpent Name XmErrorDialog

include_file: XM/MessageB.h
class: MessageBoxWidgetClass
widget_type: widget

Description The XmErrorDialog widget is a MessageBox created with a
convenience routine. This dialogue is used to warn a user about
problem situations. The dialogue box comes with three buttons: OK,
Cancel, and Help. The default symbol is an octagon with a diagonal
slash.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
deactivate Boolean false
isComposite Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int
MessageBox CallbackList
cancelLabelString String
defaultButtonType unsigned_char
dialogType unsigned_char
helpLabelString String
messageAlignment unsigned_char

Motif Widget Set, XmErrorDialog

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 231

messageString String
minimizeButtons Boolean
okCallback CallbackList
okLabelString String
symbolPixmap Pixmap

BulletinBoard Resource Set
Name X Type
allowOverlap Boolean
autoUnmanage Boolean
buttonFontList FontList
cancelButton Widget
defaultButton Widget
defaultPosition Boolean
dialogStyle unsigned_char
dialogTitle String
focusCallback CallbackList
labelFontList FontList
mapCallback CallbackList
marginHeight short
marginWidth short
noResize Boolean
resizePolicy unsigned_char
shadowType unsigned_char
stringDirection StringDirection

textFontList FontList
textTranslations Translations
unmapCallback CallbackList

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_PIXMAP
foreground Pixel

232 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmErrorDialog

helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_PIXMAP
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen

sensitive Boolean
width Dimension
x Position
y Position
translations Translations: <EnterWindow>Enter()

<FocusIn>: FocusIn()
Shift<Btn1Down>,<Btn1Up>: pick()
<Btn1Down>: Arm()
<Btn1Up>: Activate()
<Key>F1: Help()
<Key>Return: Return()
<Key>KP_Enter: Return()

Motif Widget Set, XmErrorDialog

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 233

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

234 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmFileSelectionBox

XmFileSelectionBox

Serpent Name XmFileSelectionBox

include_file: Xm/FileSB.h
class: FileSelectionBoxWidgetClass
widget_type: widget
check_routine: check_FSB

Description The XmFileSelectionBox widget traverses directories, views the
files in them, and then selects a file. An XmFileSelectionBox
widget has four main areas:

• a directory mask that includes a filter label and a directory mask
input field used to specify the directory that is to be examined

• a scrollable list of file names
• a text input field for directly typing in a file name
• a group of PushButtons: OK, Filter, Cancel, and Help

Attributes
Serpent
Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

FileSelectionBox
Name X Type
dirMask String

Motif Widget Set, XmFileSelectionBox

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 235

dirSpec String
fileSearchProc Proc
filterLabelString String
listUpdated Boolean

SelectionBox Resource Set
Name X Type
applyCallback CallbackList
applyLabelString String
cancelCallback CallbackList
cancelLabelString String
dialogType unsigned_char
helpLabelString String
listItemCount int
listItems StringList
listLabelString String
listVisibleItemCount int
minimizeButtons Boolean
mustMatch Boolean
noMatchCallback CallbackList
okCallback CallbackList
okLabelString String
selectionLabelString String
textAccelerators Translations
textColumns int

textValue String

BulletinBoard Resource Set
Name X Type
allowOverlap Boolean
autoUnmanage Boolean
buttonFontList FontList
cancelButton Widget
defaultButton Widget

236 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmFileSelectionBox

defaultPosition Boolean
dialogStyle unsigned_char
dialogTitle String
focusCallback CallbackList
labelFontList FontList
mapCallback CallbackList
marginHeight short
marginWidth short
noResize Boolean
resizePolicy unsigned_char
shadowType unsigned_char
stringDirection StringDirection
textFontList FontList
textTranslations Translations
unmapCallback CallbackList

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short

topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type Default
insertPosition OrderProc

Motif Widget Set, XmFileSelectionBox

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 237

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: <EnterWindow>:Enter()

<FocusIn>: FocusIn()
Shift<Btn1Down>,<Btn1Up>: pick()
<Btn1Down>: Arm()
<Btn1Up>: Activate()
<Key>F1: Help()
<Key>Return: Return()
<Key>KP_Enter: Return()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

238 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmFileSelectionBox

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Motif Widget Set, XmForm

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 239

XmForm

Serpent Name XmForm

include_file: Xm/Form.h
class: FormWidgetClass
widget_type: widget

Description The XmForm widget is a container widget with no input semantics of
its own. Constraints are placed on children of XmForm to define
attachments for each of the child’s four sides. These attachments can
be to XmForm, to another child widget or gadget, to a relative position
within XmForm, or to the initial position of the child. The attachments
determine the layout behavior of XmForm when resizing occurs.

Attributes
Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
focus focus
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

Form
Name X Type Default
fractionBase int
horizontalSpacing int
rubberPositioning Boolean
verticalSpacing int

240 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmForm

Form Constraint
Name X Type
allowOverlap Boolean
bottomAttachment unsigned_char
bottomOffset int
bottomPosition int
bottomWidget Widget
leftAttachment unsigned_char
leftOffset int
leftPosition int
leftWidget Widget
resizable Boolean
rightAttachment unsigned_char
rightOffset int
rightPosition int
rightWidget Widget
topAttachment unsigned_char
topOffset int
topPosition int
topWidget Widget

BulletinBoard Resource Set
Name X Type
allowOverlap Boolean
autoUnmanage Boolean
buttonFontList FontList
cancelButton Widget
defaultButton Widget
defaultPosition Boolean
dialogStyle unsigned_char
dialogTitle String
focusCallback CallbackList
labelFontList FontList
mapCallback CallbackList

Motif Widget Set, XmForm

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 241

marginHeight short
marginWidth short
noResize Boolean
resizePolicy unsigned_char
shadowType unsigned_char
stringDirection StringDirection
textFontList FontList
textTranslations Translations
unmapCallback CallbackList

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap

242 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmForm

borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

<Btn1Down>,<Btn1Up>: select()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameter Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Motif Widget Set, XmFrame

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 243

XmFrame

Serpent Name XmFrame

include_file: Xm/Frame.h
class: FrameWidgetClass
widget_type: widget

Description The XmFrame widget is a very simple manager used to enclose a
single child in a border drawn by XmFrame. It uses the Manager class
resources to draw borders and performs geometry management such
that its size will always match its child’s size plus the margins defined
for it.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

Frame
Name X Type
marginWidth short
marginHeight short
shadowType unsigned_char

244 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmFrame

Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean

Motif Widget Set, XmFrame

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 245

width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>:
 resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>:move()
<EnterWindow>: Enter()
<FocusIn>: FocusIn()
<Btn1Down>: Arm() <Btn1Up>: Activate()

Methods
Move Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

246 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmInformationDialog

XmInformationDialog

Serpent Name XmInformationDialog

include_file: Xm/MessageB.h
class: xmMessageBoxWidgetClass
widget_type: widget

Description The XmInformationDialog widget is a XmMessageBox created
with a convenience routine. This dialogue is used to provide a user
with information. The dialogue box comes with three buttons: OK,
Cancel, and Help. The default symbol is a lower case i.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
deactivate Boolean false
isComposite Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int
MessageBox CallbackList
cancelLabelString String
defaultButtonType unsigned_char
dialogType unsigned_char
helpLabelString String
messageAlignment unsigned_char
messageString String

Motif Widget Set, XmInformationDialog

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 247

minimizeButtons Boolean
okCallback CallbackList
okLabelString String
symbolPixmap Pixmap

BulletinBoard Resource Set
Name X Type
allowOverlap Boolean
autoUnmanage Boolean
buttonFontList FontList
cancelButton Widget
defaultButton Widget
defaultPosition Boolean
dialogStyle unsigned_char
dialogTitle String
focusCallback CallbackList
labelFontList FontList
mapCallback CallbackList
marginHeight short
marginWidth short
noResize Boolean
resizePolicy unsigned_char
shadowType unsigned_char
stringDirection StringDirection
textFontList FontList

textTranslations Translations
unmapCallback CallbackList

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_PIXMAP
foreground Pixel
helpCallback CallbackList

248 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmInformationDialog

highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_PIXMAP
unitType unsigned_char PIXELS
userData caddr_t

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: <EnterWindow>: Enter()

<FocusIn>: FocusIn()
Shift<Btn1Down>,<Btn1Up>: pick()
<Btn1Down>: Arm()

Motif Widget Set, XmInformationDialog

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 249

<Btn1Up>: Activate()
<Key>F1: Help()
<Key>Return: Return()
<Key>KP_Enter: Return()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name X Type Default
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

notify This method is sent to the dialogue in response to a user
event (typically a Btn1Down).

250 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmLabel

XmLabel

Serpent Name XmLabel

include_file: Xm/Label.h
class: LabelWidgetClass
widget_type: widget

Description The XmLabel widget is an instantiable widget and is also used as a
superclass for other button widgets, such as PushButton and
ToggleButton. The XmLabel widget does not accept any button or
key input, and the help callback is the only callback defined. XmLabel
also receives enter and leave events. It can contain either text or a
Pixmap; its text is a compound string.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

Label Resource Set
Name X Type
accelerator String
acceleratorText String
alignment unsigned_char
fontList FontList

Motif Widget Set, XmLabel

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 251

labelInsensitivePixmap Pixmap
labelPixmap Pixmap
labelString String
labelType unsigned_char
marginBottom short
marginHeight short
marginLeft short
marginRight short
marginTop short
marginWidth short
mnemonic char
recomputeSize Boolean
stringDirection StringDirection

Primitive Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightOnEnter Boolean false
highlightPixmap Pixmap
highlightThickness short 0
shadowThickness short 2

topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
traversalOn Boolean false
unitType unsigned_char PIXELS
userData caddr_t NULL

Core Resource Set
accelerators Accelerators
ancestorSensitive Boolean

252 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmLabel

background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<EnterWindow>: Enter()
<LeaveWindow>: Leave()

Methods
Name Parameter Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Motif Widget Set, XmList

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 253

XmList

Serpent Name XmList

include_file: Xm/List.h
class: ListWidgetClass
widget_type: widget

Description The XmList widget allows a user to select one or more items from
a group of choices. Items are selected from the list in a variety of ways,
with both the pointer and the keyboard. XmList operates on an array
of strings that are defined by the application. Each string becomes an
item in XmList, with the first string becoming the item in position 1,
the second string becoming the item in position 2, and so on.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName parentWidget
selectedX Position 0
selectedY Position 0
widget int

List
Name X Type
automaticSelection Boolean
browseSelectionCallback CallbackList
defaultActionCallback CallbackList
doubleClickInterval int
extendedSelectionCallbackCallbackList

254 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmList

fontList FontList
itemCount int
items StringTable
listMarginHeight Dimension
listMarginWidth Dimension
listSpacing short
multipleSelectionCallbackCallbackList
selectedItemCount int
selectedItems StringTable
selectionPolicy unsigned_char
singleSelectionCallback CallbackList
stringDirection StringDirection
visibleItemCount int

ScrolledList
Name X Type
horizontalScrollBar Widget
listSizePolicy unsigned_char
scrollBarDisplayPolicy unsigned_char
scrollBarPlacement unsigned_char
scrolledWindowMarginHeightDimension
scrolledWindowMarginWidthDimension
spacing Dimension
verticalScrollBar Widget

Primitive Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightOnEnter Boolean false
highlightPixmap Pixmap

Motif Widget Set, XmList

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 255

highlightThickness short 0
shadowThickness short 2
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
traversalOn Boolean false
unitType unsigned_char PIXELS
userData caddr_t NULL

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension

x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>:
 move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>:move()
Button1<Motion>: ListButtonMotion()
Shift Ctrl ~Meta<Btn1Down>: ListShiftCtrlSelect()

256 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmList

Shift Ctrl ~Meta<Btn1Up>: ListShiftCtrlUnSelect()
Shift Ctrl ~Meta<KeyDown>space: ListKbdShiftCtrlSelect()
Shift Ctrl ~Meta<KeyUp>space: ListKbdShiftCtrlUnSelect()
Shift Ctrl ~Meta<KeyDown>Select: ListKbdShiftCtrlSelect()
Shift Ctrl ~Meta<KeyUp>Select: ListKbdShiftCtrlUnSelect()
Shift ~Ctrl ~Meta<Btn1Down>: ListShiftSelect()
Shift ~Ctrl ~Meta<Btn1Up>: ListShiftUnSelect()
Shift ~Ctrl ~Meta<KeyDown>space: ListKbdShiftSelect()
Shift ~Ctrl ~Meta<KeyUp>space: ListKbdShiftUnSelect()
Shift ~Ctrl ~Meta<KeyDown>Select: ListKbdShiftSelect()
Shift~Ctrl ~Meta<KeyUp>Select: ListKbdShiftUnSelect()
Ctrl ~Shift ~Meta<Btn1Down>: ListCtrlSelect()
Ctrl ~Shift ~Meta<Btn1Up>: ListCtrlUnSelect()
Ctrl ~Shift ~Meta<KeyDown>space: ListKbdCtrlSelect()
Ctrl ~Shift ~Meta<KeyUp>space: ListKbdCtrlUnSelect()
Ctrl ~Shift ~Meta<KeyDown>Select: ListKbdCtrlSelect()
Ctrl ~Shift ~Meta<KeyUp>Select: ListKbdCtrlUnSelect()
~Shift ~Ctrl ~Meta<Btn1Down>: ListElementSelect()
~Shift ~Ctrl ~Meta<Btn1Up>: ListElementUnSelect()
~Shift ~Ctrl ~Meta<KeyDown>space: ListKbdSelect()
~Shift ~Ctrl ~Meta<KeyUp>space: ListKbdUnSelect()
~Shift ~Ctrl ~Meta<KeyDown>Select: ListKbdSelect()
~Shift ~Ctrl ~Meta<KeyUp>Select: ListKbdUnSelect()
Shift Ctrl ~Meta<Key>Up: ListShiftCtrlPrevElement()
Shift Ctrl ~Meta<Key>Down: ListShiftCtrlNextElement()
Shift ~Ctrl ~Meta<Key>Up: ListShiftPrevElement()
Shift ~Ctrl ~Meta<Key>Down: ListShiftNextElement()
~Shift Ctrl ~Meta<Key>Up: ListCtrlPrevElement()
~Shift Ctrl ~Meta<Key>Down: ListCtrlNextElement()
~Shift ~Ctrl ~Meta<Key>Up: ListPrevElement()
~Shift ~Ctrl ~Meta<Key>Down: ListNextElement()
<Enter>: ListEnter()
<Leave>: ListLeave()
<FocusIn>: ListFocusIn()
<FocusOut>: ListFocusOut()
<Unmap>: PrimitiveUnmap()
Shift<Key>Tab: PrimitivePrevTabGroup()
Ctrl<Key>Tab: PrimitiveNextTabGroup()
<Key>Tab: PrimitiveNextTabGroup()
<Key>Home: PrimitiveTraverseHome()

Methods
Name Parameter Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

Motif Widget Set, XmList

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 257

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

258 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmMainWindow

XmMainWindow

Serpent Name xmMainWindow

include_file: Xm/MainW.h
class: MainWindowWidgetClass
widget_type: widget
check_routine: check_MainW

Description The XmMainWindow widget provides a standard layout for the
primary window of an application. This layout includes an MenuBar,
an CommandWindow, a work region, and ScrollBars. Any or all of
these areas are optional. The work region and prog in the
XmMainWindow behave identically to the work region and
ScrollBars in the ScrolledWindow widget. (The user can think of
the XmMainWindow as an extended ScrolledWindow with an
optional MenuBar and optional CommandWindow.)

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

MainWindow
Name X Type
commandWindow Widget

Motif Widget Set, XmMainWindow

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 259

mainWindowMarginHeight Dimension
mainWindowMarginWidth Dimension
menuBar Widget
showSeparator Boolean

ScrolledWindow Resource Set
Name X Type
clipWindow Widget
horizontalScrollBar Widget
scrollBarDisplayPolicy unsigned_char
scrollBarPlacement unsigned_char
scrolledWindowMarginHeightDimension
scrolledWindowMarginWidthDimension
scrollingPolicy unsigned_char
spacing int
verticalScrollBar Widget
visualPolicy unsigned_char
workWindow Widget

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
unitType unsigned_char PIXELS
userData caddr_t NULL

260 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmMainWindow

Composite Resource Set
Name X Type Default
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean

background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
Translations Translations Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

Motif Widget Set, XmMainWindow

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 261

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

262 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmMenubar

XmMenubar

Serpent Name XmMenubar

include_file: Xm/RowColumn.h
class: RowColumnWidgetClass
widget_type: widget

Description The XmMenuBar widget is a specially configured RowColumn widget
created with a convenience routine. It is used to build a pulldown
menu.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

RowColumn
Name X Type
adjustLast Boolean
adjustMargin Boolean
entryAlignment unsigned_char
entryBorder short
entryCallback CallbackList
entryClass WidgetClass

Motif Widget Set, XmMenubar

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 263

isAligned Boolean
isHomogeneous Boolean
labelString String
mapCallback CallbackList
marginHeight Dimension
marginWidth Dimension
menuAccelerator String
menuHelpWidget Widget
menuHistory Widget
mnemonic char
numColumns short
orientation unsigned_char
packing unsigned_char
popupEnabled Boolean
radioAlwaysOne Boolean
radioBehavior Boolean
resizeHeight Boolean
resizeWidth Boolean
rowColumnType unsigned_char
spacing short
subMenuId Widget
unmapCallback CallbackList
whichButton unsigned_int

RowColumn Special Menu
Name X Type
menuCursor String

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList

264 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmMenubar

highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
Translations Translations <Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()

Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()

Motif Widget Set, XmMenubar

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 265

Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

266 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmMenuShell

XmMenuShell

Serpent Name XmMenuShell

include_file: Xm/MenuShell.h
class: MenuShellWidgetClass
widget_type: override

Description The XmMenuShell widget is a custom OverrideShell widget. An
OverrideShell widget bypasses the window manager when
displaying itself. It is designed specifically to contain Popup or
Pulldown MenuPanes.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
parent Widget
method MethodName

Shell
Name X Type Default
Name

allowShellResize Boolean
createPopupChildProc Boolean
geometry caddr_t
overrideRedirect Boolean
popdownCallback CallbackList
popupCallback CallbackList
saveUnder Boolean

Motif Widget Set, XmMenuShell

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 267

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean

background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn2Down>,<Btn2Motion>:resize()

Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<BtnDown>: ClearTraversal()
<Key>Escape: MenuShellPopdownDone() <BtnUp>:
MenuShellPopdownDone()

268 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmMenuShell

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

Motif Widget Set, XmMessageBox

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 269

XmMessageBox

Serpent Name XmMessageBox

include_file: Xm/MessageB.h
class: MessageBoxWidgetClass
widget_type: widget

Description The XmMessageBox widget is a dialogue class widget used for
creating simple message dialogues. Convenience dialogues based on
XmMessageBox are provided for several common interaction tasks,
including giving information, asking questions, and reporting errors.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
isComposite Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

MessageBox
Name X Type
cancelCallback CallbackList
cancelLabelString String
defaultButtonType unsigned_char
dialogType unsigned_char

270 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmMessageBox

helpLabelString String
messageAlignment unsigned_char
messageString String
minimizeButtons Boolean
okCallback CallbackList
okLabelString String
symbolPixmap Pixmap

BulletinBoard Resource Set
Name X Type
allowOverlap Boolean
autoUnmanage Boolean
buttonFontList FontList
cancelButton Widget
defaultButton Widget
defaultPosition Boolean
dialogStyle unsigned_char
dialogTitle String
focusCallback tCallbackList
labelFontList FontList
mapCallback CallbackList
marginHeight short
marginWidth short
noResize Boolean
resizePolicy unsigned_char

shadowType unsigned_char
stringDirection StringDirection
textFontList FontList
textTranslations Translations
unmapCallback CallbackList

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel

Motif Widget Set, XmMessageBox

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 271

bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position

272 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmMessageBox

translations Translations: <EnterWindow>:Enter()
<FocusIn>: FocusIn()
<Btn1Down>: Arm()
<Btn1Up>: Activate()
<Key>F1: Help()
<Key>Return: Return()
<Key>KP_Enter: Return()
Shift<Btn1Down>,<Btn1Up>: pick()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Motif Widget Set, XmMessageDialog

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 273

XmMessageDialog

Serpent Name XmMessageDialog

include_file Xm/MessageB.h
class: xmMessageBoxWidgetClass
widget_type: widget

Description The XmMessageDialog widget is a MessageBox created with a
convenience routine. This convenience routine creates a MessageBox
parented to a dialogue shell.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
deactivate Boolean false
isComposite Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget Widget
MessageBox CallbackList
cancelLabelString String
defaultButtonType unsigned_char
dialogType unsigned_char
helpLabelString String
messageAlignment unsigned_char
messageString String
minimizeButtons Boolean

274 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmMessageDialog

okCallback CallbackList
okLabelString String
symbolPixmap Pixmap

BulletinBoard Resource Set
Name X Type
allowOverlap Boolean
autoUnmanage Boolean
buttonFontList FontList
cancelButton Widget
defaultButton Widget
defaultPosition Boolean
dialogStyle unsigned_char
dialogTitle String
focusCallback CallbackList
labelFontList FontList
mapCallback CallbackList
marginHeight short
marginWidth short
noResize Boolean
resizePolicy unsigned_char
shadowType unsigned_char
stringDirection StringDirection
textFontList FontList
textTranslations Translations

unmapCallback CallbackList

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_PIXMAP
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black

Motif Widget Set, XmMessageDialog

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 275

highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_PIXMAP
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: EnterWindow>:Enter()

<FocusIn>: FocusIn()
Shift<Btn1Down>,<Btn1Up>: pick()
<Btn1Down>: Arm()
<Btn1Up>: Activate()
<Key> F1: Help()

276 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmMessageDialog

<Key>Return: Return()
<Key>KP_Enter: Return()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Motif Widget Set, XmOption

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 277

XmOption

Serpent Name XmOption

include_file: Xm/RowColumn.h
class: RowColumnWidgetClass
widget_type: widget
convenience_routine: CreateOptionMenu

Description The XmOption widget provides the application with the means for
obtaining the widget ID for the internally created
CascadeButtonGadget. Once the application has obtained the
widget ID, it has the ability to adjust the visuals for the
CascadeButtonGadget.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
isComposite Boolean true
manage Boolean true
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

RowColumn
Name X Type
adjustLast Boolean
adjustMargin Boolean

278 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmOption

entryAlignment unsigned_char
entryBorder short
entryCallback CallbackList
entryClass WidgetClass
isAligned Boolean
isHomogeneous Boolean
labelString String
mapCallback CallbackList
marginHeight Dimension
marginWidth Dimension
menuAccelerator String
menuHelpWidget Widget
menuHistory Widget
mnemonic char
numColumns short
orientation unsigned_char
packing unsigned_char
popupEnabled Boolean
radioAlwaysOne Boolean
radioBehavior Boolean
resizeHeight Boolean
resizeWidth Boolean
rowColumnType unsigned_char
spacing short
subMenuId Widget
unmapCallback CallbackList
whichButton unsigned_int

RowColumn Special Menu
Name X Type
menuCursor String

Motif Widget Set, XmOption

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 279

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean

280 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmOption

width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Motif Widget Set, XmPanedWindow

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 281

XmPanedWindow

Serpent Name XmPanedWindow

include_file: Xm/PanedW.h
class: PanedWindowWidgetClass
widget_type: widget

Description The XmPanedWindow widget is a composite widget that lays out
children in a vertically tiled format. Children appear in top-to-bottom
fashion, with the child that is inserted first appearing at the top of
XmPanedWindow and the child inserted last appearing at the bottom.
XmPanedWindow will grow to match the width of its widest child and
all other children are forced to this width. The height of
XmPanedWindow will be equal to the sum of the heights of all of its
children, the spacing between them, and the size of the top and bottom
margins.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

PanedWindow
Name X Type
marginHeight short

282 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmPanedWindow

marginWidth short
refigureMode Boolean
sashHeight Dimension
sashIndent Position
sashShadowThickness int
sashWidth Dimension
separatorOn Boolean
spacing int

PanedWindow Constraint
Name X Type
allowResize Boolean
maximum int
minimum int
skipAdjust Boolean

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
unitType unsigned_char PIXELS
userData caddr_t NULL

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean

Motif Widget Set, XmPanedWindow

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 283

background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<Btn1Down>: arm()
<Btn1Up>: activate()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

284 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmPopup

XmPopup

Serpent Name XmPopup

include_file: Xm/RowColumn.h
class: RowColumnWidgetClass
widget_type: widget

Description XmPopUp is a convenience routine which creates a RowColumn
widget configured as an XmPopup menu.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
isComposite Boolean true
manage Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

RowColumn
Name X Type
adjustLast Boolean
adjustMargin Boolean
entryAlignment unsigned_char
entryBorder short
entryCallback CallbackList

Motif Widget Set, XmPopup

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 285

entryClass WidgetClass
isAligned Boolean
isHomogeneous Boolean
labelString String
mapCallback CallbackList
marginHeight Dimension
marginWidth Dimension
menuAccelerator String
menuHelpWidget Widget
menuHistory Widget
mnemonic char
numColumns short
orientation unsigned_char
packing unsigned_char
popupEnabled Boolean
radioAlwaysOne Boolean
radioBehavior Boolean
resizeHeight Boolean
resizeWidth Boolean
rowColumnType unsigned_char
spacing short
subMenuId Widget
unmapCallback CallbackList
whichButton unsigned_int

RowColumn Special Menu
Name X Type
menuCursor String

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel

286 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmPopup

helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()

Motif Widget Set, XmPopup

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 287

Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

288 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmPulldown

XmPulldown

Serpent Name XmPulldown

include_file: /RowColumn.h
class: RowColumnWidgetClass
widget_type: widget

Description The XmPulldown widget is a convenience routine that creates a
RowColumn widget configured as an Popup menu.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
isComposite Boolean true
manage Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

RowColumn
Name X Type
adjustLast Boolean
adjustMargin Boolean
entryAlignment unsigned_char
entryBorder short
entryCallback CallbackList

Motif Widget Set, XmPulldown

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 289

entryClass WidgetClass
isAligned Boolean
isHomogeneous Boolean
labelString String
mapCallback CallbackList
marginHeight Dimension
marginWidth Dimension
menuAccelerator String
menuHelpWidget Widget
menuHistory Widget
mnemonic char
numColumns short
orientation unsigned_char
packing unsigned_char
popupEnabled Boolean
radioAlwaysOne Boolean
radioBehavior Boolean
resizeHeight Boolean
resizeWidth Boolean
rowColumnType unsigned_char
spacing short
subMenuId Widget
unmapCallback CallbackList
whichButton unsigned_int

RowColumn Special Menu
Name X Type
menuCursor String

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel

290 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmPulldown

helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()

Motif Widget Set, XmPulldown

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 291

Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

292 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmPushButton

XmPushButton

Serpent Name XmPushButton

include_file: /PushB.h
class: PushButtonWidgetClass
widget_type: widget

Description The XmPushButton widget issues commands within an application.
It consists of a text label or Pixmap surrounded by a border shadow.
When XmPushButton is selected, the shadow moves to give the
appearance that it has been pressed in. When XmPushButton is not
selected, the shadow moves to give the appearance that it is out.

Attributes
Serpent

Name X Type Default
after Widget
allowUserMove Boolean
allowUserResize Boolean
managedWhenCreated Boolean
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

PushButton
Name X Type Default
activateCallback CallbackList Sixcallback
armCallback CallbackList
armColor Pixel

Motif Widget Set, XmPushButton

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 293

armPixmap Pixmap
disarmCallback CallbackList
fillOnArm Boolean
showAsDefault short

Label Resource Set
Name X Type
accelerator String
acceleratorText String
alignment unsigned_char
fontList FontList
labelInsensitivePixmap Pixmap
labelPixmap Pixmap
labelString String
labelType unsigned_char
marginBottom short
marginHeight short
marginLeft short
marginRight short
marginTop short
marginWidth short
mnemonic char
recomputeSize Boolean
stringDirection StringDirection

Primitive Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightOnEnter Boolean false
highlightPixmap Pixmap

294 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmPushButton

highlightThickness short 0
shadowThickness short 2
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
traversalOn Boolean false
unitType unsigned_char PIXELS
userData caddr_t NULL

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension

x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

<Btn1Down>:Arm()<Btn1Up>: Activate()Disarm()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
<Key>Return: ArmAndActivate()
<Key>space: ArmAndActivate()

Motif Widget Set, XmPushButton

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 295

<EnterWindow>: Enter()
<LeaveWindow>: Leave()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

notify This method is sent to the dialogue in response to a user
event (typically a Btn1Down).

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

296 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmQuestionDialog

XmQuestionDialog

Serpent Name XmQuestionDialog

include_file: Xm/MessageB.h
class: MessageBoxWidgetClass
widget_type: widget

Description The XmQuestionDialog widget is a MessageBox created with a
convenience routine. This dialogue is used to get an answer to a
question from a user. The dialogue box comes with three buttons: OK,
Cancel, and Help. The default symbol is a question mark.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
deactivate Boolean false
isComposite Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int
MessageBox CallbackList
cancelLabelString String
defaultButtonType unsigned_char
dialogType unsigned_char
helpLabelString String
messageAlignment unsigned_char
messageString String

Motif Widget Set, XmQuestionDialog

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 297

minimizeButtons Boolean
okCallback CallbackList
okLabelString String
symbolPixmap Pixmap

BulletinBoard Resource Set
Name X Type
allowOverlap Boolean
autoUnmanage Boolean
buttonFontList FontList
cancelButton Widget
defaultButton Widget
defaultPosition Boolean
dialogStyle unsigned_char
dialogTitle String
focusCallback CallbackList
labelFontList FontList
mapCallback CallbackList
marginHeight short
marginWidth short
noResize Boolean
resizePolicy unsigned_char
shadowType unsigned_char
stringDirection StringDirection
textFontList FontList

textTranslations Translations
unmapCallback CallbackList

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_PIXMAP
foreground Pixel
helpCallback CallbackList

298 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmQuestionDialog

highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_PIXMAP
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: <EnterWindow>: Enter()

<FocusIn>: FocusIn()
Shift<Btn1Down>,<Btn1Up>: pick()
<Btn1Down>: Arm()

Motif Widget Set, XmQuestionDialog

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 299

<Btn1Up>: Activate()
<Key>F1: Help()
<Key>Return: Return()
<Key>KP_Enter: Return()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name X Type Default
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

300 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmRowColumn

XmRowColumn

Serpent Name XmRowColumn

include_file: /RowColumn.h
class: RowColumnWidgetClass
widget_type: widget

Description The widget is a general purpose XmRowColumn manager capable of
containing any widget type as a child. In general, XmRowColumn
requires no special knowledge of how its children function and
provides nothing beyond support for several different layout styles.
However, XmRowColumn can be configured as a menu, in which case,
it expects only certain children and it configures to a particular layout.
The menus supported are: MenuBar, Pulldown, or Popup
MenuPanes and OptionMenu.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
isComposite Boolean true

managedWhenCreated Boolean true
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

Motif Widget Set, XmRowColumn

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 301

RowColumn
Name X Type
adjustLast Boolean
adjustMargin Boolean
entryAlignment unsigned_char
entryBorder short
entryCallback CallbackList
entryClass WidgetClass
isAligned Boolean
isHomogeneous Boolean
labelString String
mapCallback CallbackList
marginHeight Dimension
marginWidth Dimension
menuAccelerator String
menuHelpWidget Widget
menuHistory Widget
mnemonic char
numColumns short
orientation unsigned_char
packing unsigned_char
popupEnabled Boolean
radioAlwaysOne Boolean
radioBehavior Boolean
resizeHeight Boolean

resizeWidth Boolean
rowColumnType unsigned_char
spacing short
subMenuId Widget
unmapCallback CallbackList
whichButton unsigned_int

302 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmRowColumn

RowColumn Special Menu
Name X Type
menuCursor String

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap

foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList

Motif Widget Set, XmRowColumn

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 303

height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>:resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>:resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>:resize()
Shift<Btn3Down>,<Btn3Motion>:move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>:move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>:move()
<Unmap>: MenuUnmap()
<FocusIn>: MenuFocusIn()
<FocusOut>:MenuFocusOut()
<EnterWindow>: MenuEnter()
<Key>Left: MenuGadgetTraverseLeft()
<Key>Right: MenuGadgetTraverseRight()
<Key>Up: MenuGadgetTraverseUp()
<Key>Down: MenuGadgetTraverseDown()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

304 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmScale

XmScale

Serpent Name XmScale

include_file: /Scale.h
class: ScaleWidgetClass
widget_type: widget

Description The XmScale widget is used by an application to indicate a value
from within a range of values, and it allows the user to input or modify
a value from the same range. XmScale has an elongated, rectangular
region similar to that of ScrollBar. Inside this region is a slider that
indicates the current value of XmScale. The user can also modify the
value of XmScale by moving the slider within the rectangular region.
XmScale can also include a set of labels located outside the scale
region. These can indicate the relative value at various positions along
the scale.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

Separator
Name X Type
decimalPoints short

Motif Widget Set, XmScale

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 305

dragCallback CallbackList
fontList FontList
highlightOnEnter Boolean
highlightThickness short
maximum int
minimum int
orientation unsigned_char
processingDirection unsigned_char
scaleHeight Dimension
scaleWidth Dimension
showValue Boolean
titleString String
traversalOn Boolean
value int
valueChangedCallback CallbackList scale_callback

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
shadowThickness short
topShadowPixmap Pixmap UNSPECIFIED_Pixmap

unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

306 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmScale

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<Btn1Down>: Arm()
<Btn1Up>: Activate()
<EnterWindow>: Enter()
<FocusIn>: FocusIn()

Methods
Name Parameters Description
value_changed This method is sent to the dialogue in response to a

user event (typically moving a slider).

move x, y This method allows the user to move the widget
with the mouse and sends the widget’s new x and y
location to the dialogue.

Motif Widget Set, XmScale

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 307

resize x, y, width, height This method allows the user to resize the widget
with the mouse and sends its x and y location and
new width and height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the
widget with the mouse and sends the location of the
point to the dialogue in response to a user event
(typically a shifted Btn1Down).

308 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmScreenObject

XmScreenObject

Serpent Name XmScreenObject

Description The XmScreenObject widget allows for the detection of screen
display IDs: Display size includes height and width. Display type
includes color or black & white.

Attributes
Serpent

Name X Type
color Boolean
display int
height Dimension
screen Screen
width Dimension

Motif Widget Set, XmScrollBar

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 309

XmScrollBar

Serpent Name XmScrollBar

include_file: Xm/ScrollBar.h
class: xmScrollBarWidgetClass
widget_type: widget

Description The XmScrollBar widget gives the user a means of viewing data that
would not otherwise fit into the available space. The Xmscrollbar is
typically located adjacent to some viewing region. The scrollbar
consists of two rectangular regions—a large one called the scroll
region and a small one called the slider—and two arrows. When the
slider is moved, directly or through the arrows, the viewable data is
scrolled through the viewing region.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

ScrollBar
Name X Type
decrementCallback CallbackList
dragCallback CallbackList
increment int

310 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmScrollBar

incrementCallback CallbackList
initialDelay int
maximum int
minimum int
orientation unsigned_char
pageDecrementCallback CallbackList
pageIncrement int
pageIncrementCallback CallbackList
processingDirection unsigned_char
repeatDelay int
showArrows Boolean
sliderSize int
toBottomCallback CallbackList
toTopCallback CallbackList
value int
valueChangedCallback CallbackList scroll_callback

Primitive Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_PIXMAP
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightOnEnter Boolean false

highlightPixmap Pixmap
highlightThickness short 0
shadowThickness short 2
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_PIXMAP
traversalOn Boolean false
unitType unsigned_char PIXELS
userData caddr_t NULL
accelerators Accelerators
ancestorSensitive Boolean

Motif Widget Set, XmScrollBar

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 311

background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move this widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

value_changed This method is sent to the dialogue in response to a user
event (typically moving a slider).

312 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmScrolledWindow

XmScrolledWindow

Serpent Name XmScrolledWindow

include_file: Xm/ScrolledW.h
class: xmScrolledWindowWidgetClass
widget_type: widget

Description The XmScrolledWindow widget combines one or more ScrollBar
widgets and a viewing area to implement a visible window onto some
other (usually larger) data display. The visible part of the window can
be scrolled through the larger display by the use of ScrollBars.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int

ScrolledWindow Resource Set
Name X Type
clipWindow Widget
horizontalScrollBar Widget
scrollBarDisplayPolicy unsigned_char
scrollBarPlacement unsigned_char
scrolledWindowMarginHeightDimension

Motif Widget Set, XmScrolledWindow

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 313

scrolledWindowMarginWidthDimension
scrollingPolicy unsigned_char
spacing int
verticalScrollBar Widget
visualPolicy unsigned_char
workWindow Widget

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_PIXMAP
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_PIXMAP
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1

314 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmScrolledWindow

colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension 1
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move this widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Motif Widget Set, XmSeparator

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 315

XmSeparator

Serpent Name XmSeparator

include_file: Xm/Separator.h
class: XmSeparatorWidgetClass
widget_type: widget

Description The XmSeparator widget is a primitive widget that separates items
in a display. Several different line drawing styles are provided, as well
as horizontal and vertical orientation.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName serpdef
parent Widget
selectedX Position 0
selectedY Position 0
widget int
Separator short
orientation unsigned_char
separatorType unsigned_char

Primitive Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_PIXMAP
foreground Pixel

316 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmSeparator

helpCallback CallbackList
highlightColor Pixel black
highlightOnEnter Boolean false
highlightPixmap Pixmap
highlightThickness short 0
shadowThickness short 2
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_PIXMAP
traversalOn Boolean false
unitType unsigned_char PIXELS
userData caddr_t NULL
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Motif Widget Set, XmSeparator

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 317

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

318 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmText

XmText

Serpent Name XmText

include_file: Xm/Text.h
class: TextWidgetClass
widget_type: widget
check_routine: check_MText

Description The XmText widget provides a single and multi-line text editor for
customizing both user and program interfaces. It can be used for
single-line string entry, forms entry with verification procedures, and
full-window editing. It provides an application with a consistent
editing system for textual data. The screen’s textual data adjusts to the
application writer’s needs.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
sendBuffer Boolean
selectedX Position 0
selectedY Position 0
widget int

Text
Name X Type
activateCallback CallbackList
autoShowCursorPosition Boolean

Motif Widget Set, XmText

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 319

cursorPosition TextPosition
editable Boolean
editMode int
focusCallback CallbackList
losingFocusCallback CallbackList
marginHeight short
marginWidth short
maxLength int
modifyVerifyCallback CallbackList
motionVerifyCallback CallbackList
topPosition TextPosition
value String
valueChangedCallback CallbackList

Text Input
Name X Type
pendingDelete Boolean
selectionArray Pointer
selectThreshold int

Text Output
Name X Type
blinkRate int
columns short
cursorPositionVisible Boolean
fontList FontList
resizeHeight Boolean
resizeWidth Boolean
rows short
wordWrap Boolean

Text Scrolled Text
Name X Type
scrollHorizontal Boolean

320 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmText

scrollLeftSide Boolean
scrollTopSide Boolean
scrollVertical Boolean

Primitive Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_Pixmap
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightOnEnter Boolean false
highlightPixmap Pixmap
highlightThickness short 0
shadowThickness short 2
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_Pixmap
traversalOn Boolean
Techdef false
unitType unsigned_char PIXELS
userData caddr_t NULL

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList

Motif Widget Set, XmText

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 321

height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Key>Tab: tab()

Ctrl<Key>Tab:next-tab-group()
<Key>Tab:next-tab-group()
<Key>Up:traverse-prev()
<Key>Down:traverse-next()
<Key>Home:traverse-home()
Ctrl<Key>Right:forward-word()
Shift<Key>Right: key-select(right)
<Key>Right:forward-character()
Ctrl<Key>Left:backward-word()
Shift<Key>Left:key-select(left)
<Key>Left:backward-character()
Shift<Key>Delete: delete-previous-word()
<Key>Delete:delete-previous-character()
Shift<Key>Linefeed:delete-next-word()
<Key>Linefeed:delete-next-character()
Shift<Key>F13:delete-next-word()
<Key>F13:delete-next-character()
Shift<Key>BackSpace:delete-previous-word()
<Key>BackSpace:delete-previous-character()
<Key>Return:activate() send()
~Ctrl <Key>:self-insert()
Shift<Btn1Down>,<Btn1Up>: pick()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<Btn1Down>: grab-focus()
Button1<PtrMoved>: extend-adjust()
<Btn1Up>: extend-end()
<Btn2Down>: secondary-start()
Button2<PtrMoved>: secondary-adjust()
Ctrl<Btn2Up>: move-to() secondary-end-and-kill()
<Btn2Up>: copy-to() secondary-end()
<ClientMessage>: secondary-stuff() remote-kill-selection()
<LeaveWindow>: leave()

322 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmText

<FocusIn>: focusIn()
<FocusOut>: focusOut()
<Unmap>: unmap()

Methods
Name Parameter Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

send value This method is returned when the send_buffer flag is
set to true by the dialogue, or when there is a translation
table action.

tab This method is sent to the dialogue in response to a shifted
tab.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

Motif Widget Set, XmToggleButton

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 323

XmToggleButton

Serpent Name XmToggleButton

include file: ToggleB.h
class xmToggleButtonWidgetClass
widget_type: widget

Description The XmToggleButton widget presents a choice of values (such as
yes or no) to the user. When the user selects a toggle button, its value
remains in use until another choice is toggled. Usually this widget
consists of an indicator (square or diamond) with either text or a
pixmap to its right. However, it can also consist of just text or a pixmap
without the indicator.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int
ToggleButton CallbackList
disarmCallback CallbackList
fillOnSelect Boolean

indicatorOn Boolean
indicatorType unsigned_char
selectColor Pixel
selectPixmap Pixmap

324 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmToggleButton

set Boolean
spacing short
valueChangedCallback CallbackList toggle_callback
visibleWhenOff Boolean

Label Resource Set
Name X Type
accelerator String
acceleratorText String
alignment unsigned_char
fontList FontList
labelInsensitivePixmap Pixmap
labelPixmap Pixmap
labelString String
labelType unsigned_char
marginBottom short
marginHeight short
marginLeft short
marginRight short
marginTop short
marginWidth short
mnemonic char
recomputeSize Boolean
stringDirection StringDirection

Primitive Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_PIXMAP
foreground Pixel
helpCallback CallbackList
highlightColor Pixel black
highlightOnEnter Boolean false
highlightPixmap Pixmap

Motif Widget Set, XmToggleButton

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 325

highlightThickness short 0
shadowThickness short 2
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_PIXMAP
traversalOn Boolean false
unitType unsigned_char PIXELS
userData caddr_t NULL
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn1Down>,<Btn1Up>: pick()

Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()
<Btn1Down>: Arm()
<Btn1Up>: Select() Disarm()
<Key>Return: ArmAndActivate()
<Key>space: ArmAndActivate()
<EnterWindow>: Enter()
<LeaveWindow>: Leave()

326 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmToggleButton

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location, and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

toggle set This method sends the new value of the toggle button to
the user when the button is pressed.

Motif Widget Set, XmTopLevelShell

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 327

XmTopLevelShell

Serpent Name XmTopLevelShell

include_file X11/Shell.h
class: applicationShellWidgetClass
widget_type: shell

Description The XmTopLevelShell widget is the standard user shell. It is used
for normal top-level windows and mediates the interaction between
the widgets and the window manager.

Attributes
TopLevelShell

Name X Type
iconic Boolean
iconName String
VendorShell unsigned_char
keyboardFocusPolicy unsigned_char
mwmDecorations int
mwmFunctions int
mwmInputMode int
mwmMenu String
shellUnitType unsigned_char
WMShell int
iconMask Pixmap
iconPixmap Pixmap
iconWindow Window
iconX int
iconY int
initialState int
input Boolean

328 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmTopLevelShell

maxAspectX int
maxAspectY int
maxHeight int
maxWidth int
minAspectX int
minAspectY int
minHeight int
minWidth int
title char_star
transient Boolean
waitForWm Boolean
widthInc int
windowGroup XID
wmTimeout int

Shell Resource Set
Name X Type
allowShellResize Boolean
createPopupChildProc Boolean
geometry caddr_t
overrideRedirect Boolean
popdownCallback caddr_t
popupCallback caddr_t
saveUnder Boolean

Composite Resource Set
Name X Type
insertPosition OrderProc
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap

Motif Widget Set, XmTopLevelShell

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 329

borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: Shift<Btn2Down>,<Btn2Motion>: resize()

Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Default
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize this widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

330 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmWarningDialog

XmWarningDialog

Serpent Name XmWarningDialog

include_file: Xm/MessageB.h
class: xmMessageBoxWidgetClass
widget_type: widget

Description The XmWarningDialog widget is a MessageBox created with a
convenience routine. This dialogue is used to warn a user of the
consequences of some action. The dialogue box comes with three
buttons: OK, Cancel, and Help. The default symbol is an exclamation
point.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
deactivate Boolean false
isComposite Boolean true
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int
MessageBox CallbackList
cancelLabelString String
defaultButtonType unsigned_char
dialogType unsigned_char
helpLabelString String
messageAlignment unsigned_char

Motif Widget Set, XmWarningDialog

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 331

messageString String
minimizeButtons Boolean
okCallback CallbackList
okLabelString String
symbolPixmap Pixmap

BulletinBoard Resource Set
Name X Type
allowOverlap Boolean
autoUnmanage Boolean
buttonFontList FontList
cancelButton Widget
defaultButton Widget
defaultPosition Boolean
dialogStyle unsigned_char
dialogTitle String
focusCallback CallbackList
labelFontList FontList
mapCallback CallbackList
marginHeight short
marginWidth short
noResize Boolean
resizePolicy unsigned_char
shadowType unsigned_char
stringDirection StringDirection

textFontList FontList
textTranslations Translations
unmapCallback CallbackList

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_PIXMAP
foreground Pixel

332 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmWarningDialog

helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_PIXMAP
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: <EnterWindow>: Enter()

<FocusIn>: FocusIn()
Shift<Btn1Down>,<Btn1Up>: pick()

Motif Widget Set, XmWarningDialog

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 333

<Btn1Down>: Arm()
<Btn1Up>: Activate()
<Key>F1: Help()
<Key>Return: Return()
<Key>KP_Enter: Return()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

334 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmWorkingDialog

XmWorkingDialog

Serpent Name XmWorkingDialog

include_file: Xm/MessageB.h
class: xmMessageBoxWidgetClass
widget_type: widget

Description The XmWorkingDialog widget is a MessageBox created with a
convenience routine. This dialogue is used to notify a user about a
time-consuming operation in progress. The dialogue box comes with
three buttons: OK, Cancel, and Help. The default symbol is an
hourglass.

Attributes
Serpent

Name X Type Default
allowUserMove Boolean false
allowUserResize Boolean false
deactivate Boolean false
isComposite Boolean false
method MethodName
parent Widget
selectedX Position 0
selectedY Position 0
widget int
MessageBox CallbackList
cancelLabelString string
defaultButtonType unsigned_char
dialogType unsigned_char
helpLabelString String
messageAlignment unsigned_char

Motif Widget Set, XmWorkingDialog

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 335

messageString String
minimizeButtons Boolean
okCallback CallbackList
okLabelString String
symbolPixmap Pixmap

BulletinBoard Resource Set
Name X Type
allowOverlap Boolean
autoUnmanage Boolean
buttonFontList FontList
cancelButton Widget
defaultButton Widget
defaultPosition Boolean
dialogStyle unsigned_char
dialogTitle String
focusCallback CallbackList
labelFontList FontList
mapCallback CallbackList
marginHeight short
marginWidth short
noResize Boolean
resizePolicy unsigned_char
shadowType unsigned_char
stringDirection StringDirection

textFontList FontList
textTranslationsa Translations
unmapCallback CallbackList

Manager Resource Set
Name X Type Default
bottomShadowColor Pixel
bottomShadowPixmap Pixmap UNSPECIFIED_PIXMAP
foreground Pixel

336 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Motif Widget Set, XmWorkingDialog

helpCallback CallbackList
highlightColor Pixel black
highlightPixmap Pixmap
shadowThickness short
topShadowColor Pixel
topShadowPixmap Pixmap UNSPECIFIED_PIXMAP
unitType unsigned_char PIXELS
userData caddr_t NULL

Composite Resource Set
Name X Type
insertPosition OrderProc

Core Resource Set
Name X Type Default
accelerators Accelerators
ancestorSensitive Boolean
background Pixel
backgroundPixmap Pixmap
borderColor Pixel
borderPixmap Pixmap
borderWidth Dimension 1
colormap Colormap
depth Cardinal
destroyCallback CallbackList
height Dimension
mappedWhenManaged Boolean
screen Screen
sensitive Boolean
width Dimension
x Position
y Position
translations Translations: <EnterWindow>: Enter()

<FocusIn>: FocusIn()
Shift<Btn1Down>,<Btn1Up>: pick()

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 337

<Btn1Down>: Arm()
<Btn1Up>: Activate()
<Key>F1: Help()
<Key>Return: Return():
<Key>KP_Enter: Return()
Shift<Btn2Down>,<Btn2Motion>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Leave>,<Btn2Up>: resize()
Shift<Btn2Down>,<Btn2Motion>,<Btn2Up>: resize()
Shift<Btn3Down>,<Btn3Motion>: move()
Shift<Btn3Down>,<Btn3Motion>,<Leave>,<Btn3Up>: move()
Shift<Btn3Down>,<Btn3Motion>,<Btn3Up>: move()

Methods
Name Parameters Description
move x, y This method allows the user to move the widget with the

mouse and sends the widget’s new x and y location to the
dialogue.

resize x, y, width, height This method allows the user to resize the widget with the
mouse and sends its x and y location and new width and
height to the dialogue.

pick selectedX, selectedY This method allows the user to select a point on the widget
with the mouse and sends the location of the point to the
dialogue in response to a user event (typically a shifted
Btn1Down).

338 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 339

Index

A
Actions “on create” 69
Application shared data 47
Arithmetic operators 56
Assignment statement 60
Attributes 44, 63

B
Base types 37
board 143

C
Character Set 29
Code snippet 59
Comments 29

constants 32
identifiers 31
reserved words 31

Conditional statement 60
Constant 43
Context 39

D
Data elements 46
Declared data 43
Definition file 46
Dependency 37

Scope 39
Dependency considerations 70
Dialogue shared data 46
div 90
Documentation 2

E
Equality operators 54
Extent 42

F
Function call 59

I
Identifiers 31
Implications of dependencies 100
Instances 43

L
Logical AND and OR operators 53
Loop statement 61

M
make_integer, truncate 91
Methods 45, 64
mod 92

O
Object instances 44
Object type 36

R
Relational operators 55
Routines 43

S
Shared data 45
string_append 78
string_count_chars 79
string_delete 80
string_index 81
string_insert 82
string_is_integer 83
string_is_real 84
string_length 85
string_lower 86
string_upper 87
substring 88

U
Unary operators 58
Undefined values 53

V
View controllers 67
Visible 39

X
XawBboard 143
XawBox 146
XawCommand 149
XawDialog 153
XawForm 156
XawLabel 159
XawMenuButton 162

340 Serpent: Slang Reference Manual (CMU/SEI-91-UG-5)

XawMenuShell 165
XawPaned 168
XawScreenObject 203
XawScrollbar 173
XawSimpleMenu 176
XawSimpleMenuBSB 165
XawSmeLine 182
XawText 185
XawTextentry 185
XawToggleButton 195
XawTopLevelShel 199
XawViewport 201
XmArrowButton 207
XmBulletinBoard 210
XmCascadeButton 214
XmCommand 218
XmDrawingArea 223
XmDrawnButton 226
XmErrorDialog 230
XmFileSelectionBox 234
XmForm 239
XmFrame 243
XmInformationDialog 246
XmLabel 250
XmList 253
XmMainWindow 258
XmMenubar 262
XmMenuShell 266
XmMessageBox 269
XmMessageDialog 273
XmOption 277
XmPanedWindow 281
XmPopup 284
XmPulldown 288
XmPushButton 292
XmQuestionDialog 296
XmRowColumn 300
XmScale 304
XmScreenObject 308
XmScrollBar 309
XmScrolledWindow 312
XmSeparator 315
XmText 318
XmToggleButton 323
XmTopLevelShell 327
XmWarningDialog 330

XmWorkingDialog 334

13a. TYPE OF REPORT

Final

UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

15. PAGE COUNT13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr., Mo., Day)

11. TITLE (Include Security Classification)

1a. REPORT SECURITY CLASSIFICATION

Unclassified

5. MONITORING ORGANIZATION REPORT NUMBER(S)4. PERFORMING ORGANIZATION REPORT NUMBER(S

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

1b. RESTRICTIVE MARKINGS

None

10. SOURCE OF FUNDING NOS.

6c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office
6b. OFFICE SYMBOL
(if applicable)

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute

7b. ADDRESS (City, State and ZIP Code)

ESD/AVS
Hanscom Air Force Base, MA 01731

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962890C0003
8b. OFFICE SYMBOL
(if applicable)

8a. NAME OFFUNDING/SPONSORING
 ORGANIZATION

SEI Joint Program Office

22a. NAME OF RESPONSIBLE INDIVIDUAL

John S. Herman, Capt, USAF

16. SUPPLEMENTARY NOTATION

12. PERSONAL AUTHOR(S)

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

PROGRAM
ELEMENT NO

PROJECT
NO.

TASK
NO

WORK UNIT
NO.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

FIELD SUB. GR.GROUP

22c. OFFICE SYMBOL

ESD/AVS (SEI JPO)
22b. TELEPHONE NUMBER (Include Area Code)

(412) 268-7630

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

SEI

ESD/AVS

REPORT DOCUMENTATION PAGE

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS

63752F N/A N/A N/A

8c. ADDRESS (City, State and ZIP Code)

Carnegie Mellon University
Pittsburgh PA 15213

(please turn over)

CMU/SEI-91-UG-5 CMU/SEI-91-UG-5

Serpent: Slang Reverence Manual

May 1991 ~350

Serpent, UIMS, user interface management system, user

interface generators, Slang, dialogue

Serpent is a user interface management system (UIMS) that supports the development and imple-
mentation of user interfaces, providing an editor to specify the user interface and a runtime system
that enables communication between the application and the end user. This manual describes the
model, syntax, and semantics of the Slang dialogue language, the language within Serpent used for
the specification of user interfaces. Readers should be familiar with general UIMS concepts, have a
working knowledge of programming languages, and understand the concepts described in Serpent
Overview and Serpent: System Guide.

SEI User Interface Project

ABSTRACT —continued from page one, block 19

Serpent: Slang Reference Manual (CMU/SEI-91-UG-5) 341

CMU/SEI-91-UG-1 Serpent Overview
CMU/SEI-91-UG-2 Serpent: System Guide
CMU/SEI-91-UG-3 Serpent: Saddle User’s Guide
CMU/SEI-91-UG-4 Serpent: Dialogue Editor User’s Guide
CMU/SEI-91-UG-5 Serpent: Slang Reference Manual
CMU/SEI-91-UG-6 Serpent: C Application Developer’s Guide
CMU/SEI-91-UG-7 Serpent: Ada Application Developer’s Guide
CMU/SEI-91-UG-8 Serpent: Guide to Adding Toolkits

