Software Engineering Institute

A Survey of Commonly Applied Methods
for Software Process Improvement

R. Austin
D. Paulish

February 1993

TECHNICAL REPORT
CMU/SEI-93-TR-027

Software Process Measurement Project
Unlimited distribution subject to the copyright.

Carnegie Mellon

Carnegie Mellon

This technical report was prepared for the

SEI Joint Program Office
ESC/ENS
Hanscom AFB, MA 01731-2116

The ideas and findings In this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval
This report has been reviewed and is approved for publication.

FOR THE COMMANDER

A

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is spansored by the U.S. Department of Defense.

This report was funded by the U.S. Department of Defense.

Copyright © 1994 by Camegie Mallon University.

Copies of this document are available from Research Access, inc., 800 Vinial Street,. ijbum PA 15212. Telephone: (412)
321-2992 or 1-800-685-8510, Fax: (412) 321-2994.

This document is available through the Defense/ Technical Information Center. D-ﬂc'xavdesmbandmbrof
scientific and technical information for DoD personnel, DoD contractors and potential coritractors, and other U.S. Government

agency personnel and their contractors. To obtain a copy, pbnownudnmdnwy Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145 "

Copiudm-dowmntmdwmlabbhmghhmﬁomﬂwlnfmm For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way 1 infringe on the rights of the rademark hoider.

Table of Contents

Pretace vii

1 Introduction 1
1.1 Motivation for Software Process Improvement 1

1.2 Purpose and Scope 3

1.3 Related Efforts 4

2 What s a Process Improvement Method? 7

2.1 Définition 7

2.2 Report Content 10

3 Estimation 13

3.1 Overview 13

3.2 History/Background 13

3.3 Estimation Models 13

3.3.1 Statistical Models 14

3.3.2 Staff-Month Estimates 14

3.3.3 Function Point Analysis 15

3.3.4 Independent Variables 15

3.3.5 Expert Judgment Based Estimation 16

3.4 Difficulties with Estimation Models 16

3.5 Experience with Estimation 17

3.6 Suggestions for Introduction and Use 19

3.7 How Estimation Is Related to the Capability Maturity Model 20

3.8 Summary Comments on Estimation 20

3.9 References and Further Readings - Estimation 20

4 1SO 9000 Certification 25

4.1 Overview 25

4.2 History/Background 25

4.3 Description of ISO 9000 25

4.4 Experience with ISO 9000 27

4.4.1 Reported Benefits 27

4.4.2 Potential Problems 28

4.5 Suggestions for Introduction and Use 29

4.6 How ISO 9000 Is Related to the Capability Maturity Model 31

4.7 Summary Comments on ISO 9000 32

4.8 References and Further Readings - ISO 9000 32

5 Software Process Assessment (SPA) 35
5.1 Overview 2

CMU/SEI-93-TR-27 i

5.2
53
54
5.5
5.6
5.7
58
59

History/Background

Description of Software Process Assessment

Assessment Results

Other Assessment Methods

Experience with Software Process Assessment

Potential Problems

Suggestions for Introduction and Use

How Software Process Assessment Is Related to the Capability
Maturity Model

5.10 Summary Comments on Software Process Assessment
5.11 References and Further Readings - SPA

Process Definition

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Overview

History/Background

Description of Process Definition

Experience with Process Definition

Related Research '

Suggestions for Introduction and Use

How Process Definition Is Related to the Capability Maturity Model
Summary Comments on Process Definition

References and Further Readings - Process Definition

Formal Inspection

7.1
7.2
7.3
7.4
7.5
7.6
7.7
78

Overview

History/Background

Description of the Formal Inspection Method

Experience with Formal Inspection

Suggestions for Introduction and Use

How Formal Inspection Is Related to the Capability Maturity Model
Summary Comments on Formal Inspection

References and Further Readings - Formal Inspection

Software Measurement and Metrics

8.1
8.2
83

8.4
8.5
8.6

8.7

Overview

History/Background

Description of Software Measurement

8.3.1 Example Measures

Experience with Software Measurement

Suggestions for Introduction and Use

How Software Measurement Is Related to the Capability
Maturity Model

Summary Comments on Measurement

35
35
36
37
37
38
38

40
40
40

43
43
43
44
45
46
47
48
48
49

51
51
51
51
52
53
55
55
56

59
59
59
60
60
61
62

63
65

CMU/SEI-93-TR-27

10

1"

8.8 References and Further Readings - Measurement

Computer Aided Software Engineering (CASE)
9.1 Overview
9.2 History/Background
9.3 Description of CASE
9.3.1 Examples of CASE Tools
9.3.2 Upper and Lower CASE
9.4 Experience with CASE
9.5 Suggestions for Introduction and Use
9.6 How CASE Is Related to the Capability Maturity Mode!
9.7 Summary Comments on CASE
9.8 References and Further Readings - CASE

Interdisciplinary Group Methods (IGMs)

10.1 Overview

10.2 History/Background

10.3 Description of Interdisciplinary Group Methods
10.3.1 Group Dynamics Facilitation
10.3.2 Groupware Methods
10.3.3 Team Organization

10.4 Experience with Interdisciplinary Group Methods
10.4.1 Group Dynamics Facilitation
10.4.2 Groupware Methods
10.4.3 Team Organization

10.5 Suggestions for Introduction and Use

10.5.1 Group Dynamics Facilitation
10.5.2 Groupware Methods
10.5.3 Team Organization

10.6 How Interdisciplinary Group Methods Are Related to the Capability

Maturity Model

10.7 Summary Comments on Interdisciplinary Group Methods

10.8 References and Further Readings - IGMs

Software Rellability Engineering (SRE)

11.1 Overview

11.2 History/Background

11.3 Description of Software Reliability Engineering

11.4 Experience with SRE

11.5 Suggestions for Introduction and Use

11.6 How SRE Is Related to the Capability Maturity Model
11.7 Summary Comments on SRE

11.8 References and Further Readings - SRE

65

67
67
67
68
68
69
70
71
72
73
73

75
75
75
75
76
77
78
78
79
79
80
81
81
82
82

83

84

87
87
87
88
89
91
o1
91
92

CMU/SEI-93-TR-27

12 Quality Function Deployment (QFD) 95
12.1 Overview 95
12.2 History/Background 95
12.3 Description of QFD 95
12.4 Experience with QFD 99
12.5 Suggestions for Introduction and Use 100
12.6 How QFD Is Related to the Capability Maturity Model 101
12.7 Summary Comments on QF D 101
12.8 References and Further Readings - QFD 101

13 Total Quality Management (TQM) 103
13.1 Overview 103
13.2 History/Background 103
13.3 Description of TQM 103
13.4 TQM Tools 105
13.5 Experience with TQM 106
13.6 Suggestions for Introduction and Use 107
13.7 How TQM Is Related to the Capability Maturity Model 108
13.8 Summary Comments on TQM 108
13.9 References and Further Readings - TQM 109

14 Defect Prevention Process (DPP) 111
14.1 Overview : 111
14.2 History/Background 111
14.3 Description of the Defect Prevention Process 111
14.4 Experience with Defect Prevention 112
14.5 Suggestions for Introduction and Use 113
14.6 How Defect Pravention Is Related to the Capability Maturity Model 113
14.7 References and Further Readings - DPP 114

15 Cleanroom Software Development . 115
15.1 Overview 115
15.2 History/Background 115
15.3 Description of Cleanroom Software Development 115
15.4 Experience with Cleanroom Software Development 117
15.5 Suggestions for Introduction and Use 119
15.6 How Cleanroom Software Development Is Related to the Capability

Maturity Model 119

15.7 Summary Comments on Cleanroom Software Development 120

15.8 References and Further Readings - Cleanroom 120

16 Conclusions 123
iv CMU/SEI-93-TR-27

List of Figures

Figure 1-1 Which Software Process Improvement Methods?
Figure 1-2 Process Improvement Approach
Figure 2-1 Example Software Process Improvement Methods

Figure 8-1 Measurement Activities for Organizations at Various CMM
Levels

Figure 12-1 "House of Quality" Diagram

Figure 16-1 Characteristics of a Software Development Organization

10

64

98

124

CMU/SEI-93-TR-27

List of Tables

Table 1: Software Process Improvement Methods 8
Table 2: Vertical CASE Tools 68
Table 3: Horizontal CASE Tools 69
Table 4: Implementation Issues Summary 125

vi

CMU/SEI-93-TR-27

Preface

This report is an output of a joint Software Engineering Institute (SEl)/Siemens project
in which Siemens software development organizations are being used as case study
sites to measure and observe the impact of methods used to improve the software de-
velopment process. The project will result in the identification of specific interventions
that can be tailored to the current maturity level of an organization that wishes to im-
prove. The project is intended to assist software development managers in selecting
from the commonly applied software process improvement methods.

This report describes methods that are commonly used within industrial organizations
for improving the software development process. The report can be used by software
engineering managers who are considering alternative actions for improving their de-
velopment process. It could also prove useful to change agents of software process
improvement, such as found within a software engineering process group (SEPG),
and practitioners such as software engineers and quality specialists. The reader of
this report should learn about a number of specific process improvement methods in-
cluding key references for obtaining further information about the application and ex-
periences of other organizations with the described method.

The report describes the methods in the context of the Capability Maturity Model
(CMM). The methods are correlated to key process areas (KPAs) of the CMM so that
organizations at different levels of maturity can better identify the best methods to se-
lect and implement.

Each process improvement method is concisely described from surveying existing
technical literature citations. Each method description contains background material
concerning its origin, how it works, documented experience with its application, sug-
gestions for introduction and use, how it relates to the CMM, and a list of key referenc-
es for further information.

CMU/SEI-93-TR-27 vii

viil

CMU/SEI-93-TR-27

A Survey of Commonly Applied Methods for Software
Process Improvement

Abstract: This report describes a number of commonly applied methods
for improving the software development process. Each software
process improvement method is described by surveying existing
technical literature citations. Each method description contains
background information concerning how the method works.
Documented experience with the method is described. Suggestions are
given for implementing the method, and a list of key references is given
for further infurmation. The methods are described in the context of the
SEl Capability Maturity Model, and suggestions are given to assist
organizations in selecting potential improvement methods based upon
their current process maturity.

1 Introduction

1.1 Motivation for Software Process Improvement

Many software engineering organizations today have the desire to improve their soft-
ware development process as a way of improving product quality and development
team productivity and reducing product development cycle time, thereby increasing
business competitiveness and profitability. Although many organizations are motivat-
ed to improve, very few organizations know how best to improve their development
process. There is a wide assortment of available methods such as total quality man-
agement (TQM), quality function deployment (QFD), function point analysis (FPA), de-
fect prevention process (DPP), software quality assurance (SWQA), configuration
management (CM), software reliability engineering (SRE), etc. This often creates con-
fusion for software engineering managers with respect to which methods should be in-
troduced at which point within their process evolution (Figure 1-1).

The motivation to improve a software process usually results from a business need
such as strong competition, increased profitability, or external regulation. Approaches
to improve a software development process, such as shown in Figure 1-2, are often
initiated by an assessment of the current practices and maturity. A number of improve-
ment methods are then recommended and implemented. The selection and
successful implementation of the best improvement methods are dependent on many
variables such as the current process maturity, skills base, organization, and business
issues such as cost, risk, implementation speed, etc. Measuring the impact and pre-

CMU/SEI-93-TR-27 1

dicting the success of a specific improvement method are difficuit. This is often due to
environmental variables external to the method such as staft skills, acceptance, train-
ing effectiveness, and implementation efficiency. Once the improvement method is in
place, there is also the question of what to do next. It is necessary to determine wheth-
er the method was implemented successfully, whether the process is mature enough
to consider implementing additional methods, or whether the selected method is ap-
propriate for use within the current process maturity level and environment.

/Measurement \\
. TQM
Formal Inspection .
Testing
Design Methodology JAD
FPA Assessment
DPP SWQA QFD
4y OOP
CASE Tools Concurrent Engineering
Cost Estimation
Cleanroom SW Engineering

S

Figure 1-1. Which Software Process Improvement Methods?

2 CMU/SEI-93-TR-27

Business Need

'

Motivation to Imp.ove

'

> Assessment

'

"1 improvement Methods Selection

Y

"1 Improvement Methods implementation

Y
Metrics Measure impact

Figure 1-2. Process Improvement Approach

1.2 Purpose and Scope

This report describes methods for improving the software process related to key prac-
tices of the SEI Capability Maturity Model (CMM). Practical suggestions conceming
the implementation and impact of process improvement methods are given to software
development organizations in order to provide the foundation for continuous process
improvement.

This report describes some process improvement methods that have been commonly
applied within industrial software development organizations. All possible improve-
ment methods cannot be adequately described herein; however a subset of commonly
applied methods has been selected to give software engineering managers some
background and guidance on methods that have been successfully applied in other or-
ganizations. For this report, we have selected methods that adhere to the definition
given above and that often require significant training and effort to introduce to a soft-
ware development organization. Thus, the methods selected usually require an in-
vestment by the organization. There may often be barriers which must be overcome
for adoption of the method in the organization before one can observe a measurable

CMU/SEI-93-TR-27 3

impact resulting from the improved software process. Particular attention has been
paid in the literature survey to experience reports that claim a measurable perfor-
mance improvement as a result of applying the method. The experience ranges from
anecdotal evidence to controlled experiments.

This report contains descriptions of the following software process improvement meth-
ods: estimation, function point analysis (FPA), ISO 9000 certification, software pro-
cess assessment (SPA), software engineering process group (SEPG), process
definition, formal inspection, software measurement and metrics, computer aided soft-
ware engineering (CASE), interdisciplinary group methods (IGMs), nominal group
technique (NGT), joint application design (JAD), groupware, group decision support
systems (GDSSs), quality circles (QCs), concurrent engineering, software reliability
engineering (SRE), quality function deployment (QFD), total quality management
(TQM), defect prevention process (DPP), and cleanroom software development.

It is planned that future versions of this report will contain descriptions of additional
widely practiced software process improvement methods. The literature survey will be
supported by case studies within industrial organizations in which the application of
specific software process improvement methods will be observed, and their impact on
organization performance measured over time.

1.3 Related Efforts

This literature survey report is an output of a joint SEI/Siemens project. Within this
project a number of Siemens software development organizations have been selected
as case study sites to investigate the impact of selected process improvement meth-
ods. A limited number of basic measurements have been made to capture the current
performance of the development organization with respect to development team pro-
ductivity, schedule, process maturity, and product quality.

Within the case study sites, a number of process improvement methods have been se-
lected for implementation dependent on the current maturity level, skills base, organi-
zation structure, and business issues. The development organizations will be revisited
periodically at which time the basic measurements will be recalculated. This will pro-
vide some quantitative data concerning the impact of the selected process improve-
ment methods. In addition, lessons learned from the implementation and impact of the
process improvement methods will be captured and documented. In particular, we will
capture observations conceming the use of the methods including soft factors such as
the impact on staff morale, quality culture, motivation, etc.

The case study approach and results will be documented in additional technical re-
ports. For each case study organization we will describe:

4 CMU/SEI-93-TR-27

¢ The practices, process, and environment.

* The improvement methods approach.
¢ The performance measurements.
¢ The soft factors observed, lessons leamed, and improvement results.

Each case study will be concisely described within the technical reports. A small sub-
set of the case studies will be selected for more detailed observation and description
as appropriate.

CMU/SEI-83-TR-27 5

CMU/SEI-93-TR-27

2 Whatls a Process Improvement Method?

2.1 Deéfinition

A software process improvement method is defined as an integrated collection of pro-
cedures, tools, and training for the purpose of increasing product quality or develop-
ment team productivity, or reducing development time. Typical results of an improved
software development process could include:

o Fewer product defects found by customers.

« Earlier identification and correction of defects.

¢ Fewer defects introduced during the development process.
¢ Faster time to market.

« Better predictability of project schedules and resources.

A software process improvement method can be used to support the implementation
of a key process area (KPA) of the Capability Maturity Model (CMM) or to improve the
effectiveness of key practices within a KPA. The CMM identifies five levels of maturity
of a development organization [Paulk 93].

1. Initial. The development environment is unstable. The organization
does not consistently apply software engineering management to the
process, nor does it use modern tools and technology. Performance
can only be predicted by individual, rather than organizational, capabil-
ity. Level 1 organizations may have serious cost and schedule prob-
lems.

2. Repeatable. At level 2, the organization has installed basic software
management controls. Stable processes are in place for planning and
tracking software projects. Project standards exist and are used.

3. Defined. At level 3, the organization has a standard process for
developing and maintaining software across the organization. The
software engineering and software management processes are
integrated into a coherent whole. A software engineering process
group (SEPG) facilitates software process definition and improvement
efforts. Organization wide training is in place, to assure that all
employees have the skill necessary to perform their duties. Peer
reviews are used to enhance product quality.

CMUISEN-93-TR-27 5

4. Managed. At level 4, the organization sets quantitative quality goals for
software products. Productivity and quality are measured for important
software process activities across all projects in the organization. A
process database is used to collect and analyze the data from a
carefully designed process. There are well-defined and consistent
measures for evaluating processes and products.

5. Optimizing. At level 5, the organization is focused on continuous
improvement. There are means of identifying weak processes and
strengthening them. Statistical evidence is available on process
effectiveness and is used in performing cost-benefit analyses on new
technologies. Innovations that exploit the best software engineering
practices are identified.

The software process improvement methods described in this report and their corre-
sponding primary key process areas of the CMM are given in Table 1.

Table 1: Software Process Improvement Methods

Method Key Process Area Ex':"

Estimation Software project planning 2

ISO 9000 certification Software quality
assurance 2
Organization process def.

Software process Organization process focus

assessment (SPA)

Process definition Organization process def. 3

Formal inspection Peer reviews 3

Software measurement & | Software project planning 2

metrics Software project tracking & oversight 2
Integrated software mgt. 3
Quantitative process mgt. 4
Software quality mgt. 4
Process change mgt. 5

8 CMU/SEI-93-TR-27

]

Table 1: Software Process Improvement Methods (Continued)

CMM
Method Key Process Area Level
Computer aided software | Software configuration mgt. 2
engineering (CASE) Software quality
assurance 2
Software project tracking & oversight 2
Organization process def. 3
Software product
engineering 3
Interdisciplinary group Intergroup coordination 3
methods (IGMs)
Software reliability Quantitative process mgt. 4
engineering (SRE)
Quality function Software quality mgt. 4
deployment (QFD)
Total quality management | Organization process focus 3
(TQM) Quantitative process mgt. 4
Software quality mgt 4
Process change
management
Defect prevention process | Defect prevention
(DPP)
Cleanroom software Quantitative process mgt. 4
development Software quality mgt. 4
Defect prevention 5

The Capability Maturity Model and some examples of software process improvement
methods correlated to the key process areas are given in Figure 2-1.

CMU/SEI-93-TR-27)

Optimizing (5)
> Process Change Management

Technology Change Management
$>| Defect Prevention

DPP Managed (4)
> Software Quaiity Management }
nt

(Defined (3) e
Peer Reviews
ToM intergroup Coordination
Software Product Engineering
QFD Integrated Software Management
Training Program
Organization Process Definition
\ Organization Process Focus p

Repeatable (2) h
Software Configuration Management | <@~ 177
Software Quality Assurance -

Software Subcontract Management

Software Project Tracking & Oversight | inspection

Software Project Planning IGMs
\Requirements Management y I _ CASE
Measurement

Initial (1) Estimation

Figure 2-1. Example Software Process Improvement Methods

2.2 Report Content

The specific process improvement methods described in this report are summarized
below.

e Estimation: This collection of methods uses models and tools to
predict characteristics of a software project such as schedule and staff
resources before the project begins.

* ISO 9000 certification: 1SO 9000 is a series of quality standards
established by the International Standards Organization (ISO) for
certifying that an organization's practices meet an acceptable level of
quality control.

10 CMU/SEI-83-TR-27

o Software process assessment (SPA): Assessment methods are a
means of determining the strengths and weaknesses of an
organization's software development process. Resuits include a
"maturity rating,” and findings of potential areas for improvement which
are often implemented by a software engineering process group
(SEPG).

* Process definition: These methods refer to the practice of formally
specifying or modeling the software development process in a way that
allows communication and analysis through its representation.

e Formal inspection: This method, pioneered by Michael Fagan at IBM
in the 1970s, provides a technique to conduct review meetings to
identify defects for subsequent correction within code or other
documents.

o Software measurement and metrics: This collection of methods
provides mechanisms for defining, tracking, and analyzing measures
that can be used for controlling and improving the software
development process.

e Computer aided software engineering (CASE): This collection of
methods uses software tools for automating the software development
process, particularly in the areas of design and analysis.

e Interdisciplinary group methods (IGMs): This collection of methods
refers to various forms of planned interaction engaged in by people of
diverse expertise and functional responsibilities working together as a
team toward the completion of a software system. Example methods
include nominal group technique (NGT), joint application design
(JAD), groupware, group decision support systems (GDSSs), quality
circles (QCs), and concurrent or simultaneous engineering.

e Software reliability engineering (SRE): SRE is a collection of methods
using models for statistically predicting failure rates of a software
system before it is released.

e Quality function deployment (QFD): This method is used to assist in
defining software functional requirements that can best meet customer
needs, distinguishing resulting products from those of competitors,
and considering implementation difficuity.

CMU/SEI-93-TR-27

1

o Total quality management (TQM): This collection of methods is
oriented towards improving the quality culture of the organization
including helping to define, implement, and track improvement goals.

e Defact prevention process (DPP): This method, pioneered at IBM in
the 1980s, assists in categorizing defects such that they can be
systematically removed and avoided in future software development
products and activities.

e Cleanroom software development: Cleanroom is a software
production method that originated in the Federal Systems Division of
IBM in the late 1970s and early 1980s. Cleanroom combines practices
of formal specification, nonexecution-based program development,
incremental development, and independent statistical testing.

12

CMU/SEI-93-TR-27

3 Estimation

3.1 Overview

Estimation is a way of determining the characteristics of a project befoie it begins, to
permit planning of resource use across the life of the project. Estimation tries to an-
swer two important questions: how many people will the project require (at each de-
velopment stage), and how long will the project take from start to finish? Several
approaches have been taken to answering these and related questions; the trend in
software development has been toward actuarial models, which rely on statistical
techniques. Successful use of these techniques will aliow more efticient allocation of
project resources, by assuring that resources are available when needed, and mini-
mizing instances of resources sitting idle. Estimation is a collection of methods leading
to better project planning.

3.2 History/Background

The practice of estimation is very old; its applications to construction projects predate
the invention of the computer. Statistical methods of estimation have arisen primarily
in this century, when the mathematics required have become widely available. The in-
vention of the computer and the microcomputer have aided in the practice of actuarial
estimation since computers permit automation of the often tedious calculations re-
quired. Perhaps surprisingly for a method so old, estimation remains an area as trou-
bled as it is necessary, due largely to inherent features of the estimation problem. As
a method for improvement, estimation has potential benefits if it is used carefully and
in a sophisticated manner.

3.3 Estimation Models

There are many estimation models. Commonly applied models include COCOMO
[Boehm 81), SLIM [Putnam 92}, and PRICE-S. While they are all different (in their
choices of ways of counting, underlying assumptions, etc.), all are conceptually simi-
lar. We will not, therefore, describe a particular model; instead, we will focus on the
basic notions embedded in all models.

As usually conceived, the basic estimation problem consists of the statistical problem
of relating independent variables like "system size" (which may be measured in a sev-
eral ways) to the dependent variable "staff-months of development effort."” When in-
dependent variables are filled in with values for a specific project, estimation produces
as output (1) a prediction of the expected number of staff-months of effort required for
that project, and (2) an error term that quantifies the expected magnitude of error in

CMU/SEI-93-TR-27 13

the prediction. Gensgration of predictions and error terms requires construction of a
statistical model.

3.3.1 Statistical Models
A statistical model is characterized by (1) the form of the mathematical equation cho-
sen (i.e., linear, y = ax + b; exponential, y = ax?, etc.); and (2) the parameters of the
equation (i.e., a and b in the model equations). Form and parameters are chosen by
fitting the model to available data, using statistical techniques. For example, suppose
you have a database of 200 projects within your organization. Suppose further that
you know the size (measured, say, in thousands of lines of source code) for each de-
livered system, and the staff-months required for completion of each corresponding
project. You would then choose a form of equation and use statistical fitting techniques
to determine the values of the parameters, so that the model related size to staff-
months across all 200 projects as closely as possible. By repeating the process for dif-
ferent model forms, you would eventually discover a form and set of parameters that
- provided the "best fit" — that is, which seemed to best describe the "shape” of the data.
(Statistical techniques are available to determine "goodness of fit".) You would then
have a model to tell you how many staff-months of effort were required for any project
for which you knew the size. The model would aiso supply an estimate of the error in
prediction.

In practice, several difficulties beset development of such a model. Because the error
term gets smaller as the number of projects grows larger, development of a model re-
quires a database as large as possible. Also, creation of an estimation model requires
statistical sophistication. For these reasons, many organizations that use estimation
adopt standard estimation models rather than develop their own. The standard mod-
els make use of model forms chosen to provide good fits over a wide variety of appli-
cation domains. When the adopting organization has a sufficient database, the model
parameters may be customized (i.e., "calibrated") to the particuiar organization in
which the model will be used [Boehm 81]. Developing such a database can take a
number of years, dependent on the frequency and duration of new projects.

3.3.2 Staff-Month Estimates

The usefulness of staff-month estimates should be clear. Estimation models always
provide conversion equations and factors, which can be used to convert staff-month
estimates into estimates of project duration, staffing levels required at each stage in
the life of a project, etc. Multiplication of staffing levels times labor rates provides cost
estimates. The models usually also provide ways of calculating the additional staffing
required to reduce project duration by a certain amount. In practice, all of these calcu-
lations are usually automated.

14 CMU/SEI-93-TR-27

3.3.3 Function Point Analysis

One approach which has proven to help reduce the error involved with software size
estimation is function point analysis (FPA) [Albrecht 79], [Albrecht 83]. Function points
are calculated by examining functional characteristics of the software system in terms
of inputs, outputs, interfaces, files, and complexity. Function points have value for
comparing projects using different programming languages. They can also be calcu-
lated from a requirements or design specification prior to the start of coding. Thus
more accurate estimates can often be made at earlier phases of the software devel-
opment process using FPA. Jones [Jones 91] has extended FPA application to real-
time systems, called feature points.

3.3.4 Independent Variables

One problem with software size estimation is that software development is a very com-
plex process, with a great number of independent relevant variables. One way of re-
ducing the size of the error term is to incorporate more independent variables — things
like measures of where the system resides on a scale from very ordinary types of ap-
plications, like accounting systems, to completely unprecedented applications, like
missile defense systems. It is not difficult to think of a great number of independent
variables that affect the staffing requirements and duration of a project: complexity of
application, number of contractors involved, sophistication of personnel, whether the
client is a private firm or govemment agency, etc. Mohanty, writing in 1981, lists 49
different independent variables, each one of which is included in at least one commer-
cially available estimation model.

But while adding a great many independent variables works in one sense to reduce
the size of the error term, it also leads to another problem. In order to make good pre-
dictions about a particular sort of system, a statistical model requires data on similar
systems. The greater the number of similar systems and the more similar the systems
are, the more reliable predictions will be. It is not hard to see, then, that adding a great
many independent variables would require much more data in order to fit a good esti-
mation model. As more independent variables are added, the database is divided into
more and more groups, and systems get distributed across these increasingly numer-
ous groups. Take a database of 200 systems classified only by size into three cate-
gories (say, small, medium, large); there are, then, an average of 67 systems in each
group. If we divide further into two additional categories (say, govemment client, non-
govemment client), we now have six groups with an average of 33 systems in each
group; and so on. This problem presents substantial statistical challenges. One mit-
igating factor is that systems tend to "cluster” in groups; for example, there tend to be
a lot of very similar private branch exchange (PBX) systems. Therefore, intuitively
enough, statistical models are best able to predict for types of systems for which there

CMU/SEI-93-TR-27 15

is much available data. Unfortunately, those are usually the systems we need help with
least.

3.3.5 Expert Judgment Based Estimation

Expert judgment based estimation is an alternative or supplement to estimation mod-
els. In expert based judgment, an expert compares projects in his or her experience
for similarities and differences, then makes a subjective estimate for the project in
question. While this method is sometimes used by itself with some success, it is not
very satisfactory in general. Experts with a broad enough range of experience to be
able to estimate accurately are rare; thus, the method often becomes quite ad hoc, fre-
quently employing nonexperts [Adrangi 87].

3.4 Difficulties with Estimation Models

Despite the conceptual simplicity of estimation models, several difficulties impede their
use. To a large extent, the difficulties arise from the inherent nature of the estimation
problem — as someone wise once said, "accurate prediction is difficult, especially of
the future.” Difficulties fall into roughly three categories: (1) challenges of obtaining
good independent variable values, (2) balancing of the number of independent vari-
ables against scarcity of data, and (3) accounting for the "human element* in estima-
tion. We consider these difficulties below.

The estimation models discussed earlier required as input a number that represents
the size of the system. But the size number may itself be difficult to obtain. This fact
would seem to call for the creation of "sizing models" that would take functional re-
quirements of the system as inputs and produce as output an estimate of the size of a
system that would meet the requirements. There are such sizing models, but they are
typically quite primitive {[Boehm 81]. The fundamental difficulty in converting informa-
tion available earlier than size into effort estimates is a sort of "Catch-22" of estimation:
estimates are most valuable when provided early, but they are least reliable when pro-
vided early. Many estimation models are capable of accepting independent variables
that are available early, much earlier than size; but, precisely because these indepen-
dent variables are available so early, they are only weakly related to project duration
and staffing levels. A "garbage-in, garbage-out" situation occurs. Estimates made
very early in the development process will often result in larger errors. As Case [Case
86] observes, estimation models "do a fairly good job of telling you how long the project
will take — after you have written the code and then counted the lines." There is
progress being made toward solving this problem [Mukhopadhyay 92}, but it is still in
the research stage.

16 CMU/SEI-93-TR-27

One final category of difficulties with estimation models might be said to be due to “hu-
man factors.”" During the course of a project, project managers are well aware of es-
timates and may take estimates into account in choosing their actions [Austin 93],
[Abdel-Hamid 86]. To some extent, this behavior may be desirable. A manager falling
behind schedule may take steps to get back on schedule, and this can be good. How-
ever, some actions that managers may take in reaction to estimates may not be desir-
able. For example, managers or developers may be overly optimistic, which may
result in the "90 percent syndrome" wherein they claim to be 90 percent done for the
last 50 percent of the project [Boehm 81}, [Abdel-Hamid 88). In extreme cases, man-
agers may actually willingly compromise the quality of a project to stay consistent with
estimates [Austin 93]. Another problem that may arise, when schedules are too gen-
erous, is that managers and developers may expand the amount of work they do and
the functionality in the system to fit the schedule, when the client would rather have
the system earlier [Abdel-Hamid 86). Statistical estimation models rarely explicitly ac-
count for the human element.

3.5 Experience with Estimation

Every organization that develops software does some sort of estimation. The planning
necessary to bring resources to bear on a task requires at least some rudimentary lev-
el of estimation. This estimation can be either ad hoc (e.g., "how long do you think it'll
take?" "I dunno, how long do you think it'll take?"), or systematized in some way. Ex-
periences with ad hoc methods have lead many to argue that there must be some ad-
vantage in systemization. DeMarco [DeMarco 82] argues that ad hoc methods do not
adequately support learning based on estimation experience and, furthermore, that
they have been generally ineffective. The question, then, is whether actuarial estima-
tion models can provide some advantage over ad hoc methods.

This is not a very severe test — ad hoc methods are so widely regarded as unaccept-
able, that even a small improvement would be beneficial. However, there is a legiti-
mate question as to whether use of actuarial models provides improvement. Mohanty
[Mohanty 81] claims that "almost no model can estimate the true cost of software with
any degree of accuracy." A U.S. Air Force Avionics Laboratory study in 1984 conclud-
ed that none of the available models at that time could be shown to be accurate
enough to justify their use [Ferens 88]. Kusters et al [Kusters 90] recommend never
using estimating models by themselves, because they are not accurate enough. Van
Genuchten and Koolen [van Genuchten 91] claim that "no studies confirm the accura-
cy and usability of the (currently available) models.”

Mohanty [Mohanty 81] carried out an experiment in which the estimates produced by
12 different models were compared for the same system. Estimates from these mod-

CMU/SEI-93-TR-27 17

els ranged dramatically; the highest estimate was roughly 700 percent greater than the
lowest. Many have reasoned that the problem lies in the specific databases used by
each model; there are simply too many organization-specific independent variables
still buried in the data [Mohanty 81], [Clapp 76}, [Bartol 82), [Tausworthe 77]). One im-
plication of this conjecture, if true, is that estimation models fitted with data from appli-
cations similar to applications in the environment where the tool will be used will be
more accurate predictors in that environment. Ferens [Ferens 88] has observed that,
for this reason, a particular tool may be best for a particular environment. A study by
Naviakha [Naviakha 90] suggests that organizations often use the wrong model for
their environment. Another problem with the databases used to fit model parameters
is that they are almost always old, relative to the rapid advance in complexity of soft-
ware applications [van Genuchten 91].

The portability of models, i.e. their validity when transferred from one organization to
another, has also been determined to be quite poor [Benbasat 80]. This is a serious
matter in organizations that lack their own large database of projects to use in calibrat-
ing a model to their own use. Kemerer [Kemerer 87] concludes in an empirical study
of four of the most popular models that there is considerable need to customize the
model to the application environment; without calibration, error rates were often in the
500 to 600 percent range. He also notes that “all of the models tested failed to suffi-
ciently reflect the underlying factors affecting productivity.” Zelkowitz et al. [Zelkowitz
84] report that organizations distrust estimating models and often use them only to
compare against manually generated estimates. Van Genuchten and Koolen (1991)
cite a European survey by Siskens et al. [Siskens 89] that finds only 14 percent of re-
spondents using estimation models; van Genuchten and Koolen argue based on their
own observations that even those who claim to use estimation models often do not use
them successfully.

Not all of the news is bad, however. Kemerer found that when calibration was done,
the best of the models were able to account for 88 percent of the actual staff-month
effort (that is, only 12 percent of variation was in the error term). Naviakha [Naviakha
90] found an instance where a particular model predicted for a particular environment
with only 8.3 percent error. This is certainly an improvement over ad hoc methods. As
Kemerer also notes, however, some of the benefit of using estimating models may
come from the degree of structure they impose on the estimating task. Even when de-
velopers do not evaluate estimation models as "good," they do concede that they are
*useful” [van Genuchten 91). There are also reports of promising results in organiza-
tions that are beginning to use estimating models. Lehder et al. [Lehder 88] report that
within AT&T use of estimating models has, on pilot efforts, resulted in estimates within
20 percent of actual experience — again, clearly an improvement over ad hoc methods.

18 CMU/SEI-93-TR-27

Although it is difficult to quantify, perhaps the biggest impact of estimation application
is its use as a training and communication vehicle. Estimation is fundamental to the
planning of software projects. When software project managers initially leam estima-
tion methods they are also leaming project planning skills. In addition, the variables
to be estimated such as size, staffing levels, and schedule, become the measures that
project managers and their managers will track during the course of the project. Thus,
we believe that there is a correlation between better project planning and estimation.

3.6 Suggestions for Introduction and Use

The literature suggests that estimation models should be used with great caution.
Blindly accepting estimates is, by all accounts, a recipe for disaster.

It seems clear from a number of sources (e.g., [Kemerer 87], [Adrangi 87], [Ferens 88])
that the models are often of little use without calibration. This would suggest that or-
ganizations that have available a database of their own projects to be used in calibra-
tion are in the best position to benefit from an estimation model. Furthermore, some
models are better suited for certain environments than others [Ferens 88), [Kemerer
87]. Therefore, the potential for benefit will be maximized if the adopting organization
first conducts a comparative study, to determine which model is best suited to the or-
ganization [Navlakha 90).

There is some evidence that the additional structure imposed on the estimating task
by an estimating model is beneficial in itself [Kemerer 87], [van Genuchten 91], [Leh-
der 88]. If so, then it is perhaps worthwhile to use estimating models in conjunction
with other modes of estimating (such as the expert judgment method discussed briefly
above). Several authors make precisely this recommendation [van Genuchten 91},
[Kusters 90].

Van Genuchten and Koolen [van Genuchten 91] suggest the following process:
1. Use an expert estimzior to obtain a subjective estimate.
2. Use an estimating mc.2el to obtain an estimate.

3. If the estimates agree, accept the estimate; if not, the reasons for
differences must be determined.

4. Through the process of exploring differences, come to a consensus
estimate.

Van Genuchten and Koolen [van Genuchten 91] also list the following organizational
requirements for successful use of an estimating model:

CMU/SEI-83-TR-27 19

e Cooperation of software developers.
¢ Availability of staff to introduce and use the model.
e Commitment of management.

e Estimation guidelines to assure proper use of estimation methods.

¢ Adequate information supply to support use of the model (e.g., data
gathering on projects to support refinement of the model's
parameters).

3.7 How Estimation Is Related to the Capability Maturity Model

Estimation is a skill required for successful project planning. Within the Capability Ma-
turity Model, estimation is a software process improvement method which primarily
correlates to the level 2 key process area, software project planning.

3.8 Summary Comments on Estimation

Most organizations feel that they need help with estimation. Estimation models provide
some help, but there is danger in placing too much hope in them. However, if com-
parative testing is done to determine the best model for the organization in question,
and if calibration data are available in the adopting organization, the estimation model
can be helpful. When estimation models are useful, it is often in conjunction with other
estimation techniques. Thus, we recommend that estimation models be employed in
favorable circumstances, and in conjunction with other methods.

3.9 References and Further Readings - Estimation

[Abdel-Hamid 86]Abdel-Hamid, T. K., Madnick, S. E., "Impact of Schedule Es-
timation on Software Project Behavior,” IEEE Software, 70-
75, Vol. 3., No. 4, July, 1986.

[Abdel-Hamid 87]Abdel-Hamid, T. K., Madnick, S. E., "On the Portability of
Quantitative Software Estimation Models," Information and
Management, 13, 1-10, 1987.

[Abdel-Hamid 88]Abdel-Hamid, T. K., "Understanding the '90% Syndrome' in
Software Project Management: A Simulation-Based Case
Study,” Journal of Systems and Software, Vol. 8, No. 4, 319-
330, September, 1988.

20 CMU/SEI-93-TR-27

]

[Adrangi 87]

[Albrecht 79]

[Albrecht 83)

[Austin 93]

[Bartol 82]

[Benbasat 80)

[Boehm 81]

[Case 86}

[DeMarco 82]

[Ferens 88]

[Jones 91]

Adrangi, B. and Harrison, W., "Effort Estimation in a System
Development Project," Journal of Systems Management, 21-
23, August, 1987.

Albrecht, A.J., "Measuring Application Development Produc-
tivity," Proc. of the Joint SHARE/GUIDE Symposium, pp. 83-
92, 1979.

Albrecht, A.J. and Gaffney, J.E., "Software Function, Source
Lines of Code and Development Effort Prediction: A Software
Science Validation," IEEE Trans. on Software Engineering,
Vol. SE-9, No. 6, pp. 639-648, 1983.

Austin, R.D., "Strategic Response to Time Pressure During
Systems Acquisition," Working Paper, Dept. of Social and De-
cision Sciences, Camegie Mellon University, 1993.

Bartol, K. M., Martin, D. C., "Managing Information Systems
Personnel: A Review of the Literature and Managerial Implica-
tions," MIS Quarterly, 49-70, December, 1982.

Benbasat, I., Vessey, I., “Programmer and Analyst Time/Cost
Estimation," MIS Quarterly, 31-44, June, 1980.

Boehm, B. Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

Case, A. F. Information System Development, Prentice-Hall,
Englewood Cliffs, NJ, 1986.

DeMarco, T., Controlling Software Projects, Yourdon Press,
New York, 1982.

Ferens, D. V. "Software Parametric Cost Estimation: Wave of
the Future,* Engineering Costs and Production Economics,
Vol. 14, 157-164, 1988.

Jones, C., Applied Software Measurement, McGraw-Hill, New
York, 1991.

CMU/SEI-93-TR-27

21

[Kemerer 87] Kemerer, C. F., "An Empirical Validation of Software Cost Es-
timation Models," Communications of the ACM, Vol. 30, No. 5,
416-429, May, 1987.

[Kusters 90] Kusters, R. J., van Genuchten, M., Heemstra, F. J., "Are Soft-
ware Cost-Estimation Model's Accurate?,” Information and
Software Technology, Vol. 32, No. 3, 187-190, April, 1990.

[Lehder 88]) Lehder, W. E., Smith, D. P., Weider, D. Y., "Software Estima-
tion Technology," AT&T Technical Journal, July/August, 10-
18, 1988.

[Meyers 78] Meyers, W., "A Statistical Approach to Scheduling Software
Development," IEEE Computer, 23-35, 1978.

[Mohanty 81] Mohanty, S. N., “Software Cost Estimation: Present and Fu-
ture," Software - Practice and Experience, 103-121, 1981.

[Mulhopadhyay 92] Mulhopadhyay, T., Kekre, S., “Software Effort Models for
Early Estimation of Process Control Applications," /EEE
Transactions on Software Engineering, Vol. 18, No. 10, 915-
924, October, 1992.

[Naviakha 90] Navlakha, J. K., "Choosing a Software Cost Estimation Model
for Your Organization: A Case Study," Information and Man-
agement, Vol. 18, 255-261, 1990.

[Putnam 92) Putnam, L., Meyers, W., Measures for Excellence: Building
Reliable Software on Time, Within Budget, Prentice Hall, En-
glewood Cliffs, NJ, 1992.

[Siskens 89] Siskens, W. J., Heemstra, F. J., van der Stelt, H., "Cost Con-
trol in Automation Projects: A Survey,” Informatie, Vol. 31,
January, 1989 (in Dutch).

[Tausworthe 77) Tausworthe, R. C., Standardized Development of Computer
Science, Prentice-Hall, Englewood Cliffs, NJ, 1977.

22 CMU/SEI-93-TR-27

[van Genuchten 91} van Genuchten, M., Koolen, H., "*On the Use of Software
Cost Models," Information and Management, Vol. 21, 37-44,
1991.

[Zelkowitz 84] Zelkowitz, M. V. "Software Engineering Practices in the US
and Japan," Computer, 57-66, June, 1984.

CMU/SEI-93-TR-27

24

CMU/SEI-93-TR-27

4 ISO 9000 Certification

4.1 Overview

ISO 9000 is a series of quality standards established in 1987 by the International Stan-
dards Organization (ISO). Organizations are assessed by independent third parties
to determine whether their business practices meet one of the standards; an organi-
zation that meets the appropriate standard can legally advertise its “ISO 9000 certifi-
cation.” Certification is increasingly important for companies that trade internationally.
All firms that operate within the European common market are required to be 1ISO 9000
certified, and the standards have been adopted in greater or lesser degree by 35 coun-
tries around the world [Marquart 92). Even in countries where certification is not man-
dated, customers are increasingly asking of prospective suppliers, “are you certified?"
The purpose of the ISO 9000 series of standards is to provide a means by which cus-
tomers can be assured that their suppliers are using certain quality business practices
without performing individual audits of each prospective supplier.

4.2 History/Background

The ISO 9000 series of standards was written by a committee of the ISO composed
of delegates from many nations. Delegates created the standards by combining as-
pects of military standards, nuclear power plant regulations, medical device manufac-
turer regulations, and other regulations and standards from delegate countries. 1SO
9000 is widely deployed in the European Community (EC), as well as in countries with
close ties to the EC (e.g., New Zealand). U.S. manufacturers like DuPont, Union Car-
bide, and a variety of others, who trade in significant volume with EC clients, are busily
certifying their facilities to maintain access to their markets. The standards were con-
ceived in the context of manufacturing operations and certification is at the facility lev-
el. Benefits of certification are widely espoused by companies that have been
certified, but there is no solid empirical evidence that certification is beneficial. Be-
cause certification is fairly new, long-term effects are not well known. This may, how-
ever, be a moot point for companies who find their clients demanding ISO 9000
certification as a condition of continuing business.

4.3 Description of ISO 9000

The ISO 9000 standards establish requirements for the systems of production within
the facilities of a company. They are not product standards, but rather process stan-
dards, which require that certain process characteristics are in place. For example,
one standard (ISO 9002) contains stipulations such as "those processes affecting

CMU/SEI-93-TR-27 25

quality must be monitored and controlled" and "objective evidence must be provided
that the product received and delivered is inspected or otherwise verified" [Gasko 92].

There are five primary standards, numbered 9000 through 9004. 1SO 9000 provides
basic definitions and concepts and describes how the other standards in the series
should be used. 1SO 9001, 9002, and 9003 are the actual standards against which
companies are certified. When a company states that it is ISO certified, it most often
means that it has met ISO 9001 or 9002.

¢ |SO 9001 is for facilities engaged in design, production, installation
and servicing of a product.

* |SO 9002 is a less detailed standard for facilities engaged only in
production and installation.

¢ |SO 9003 is an even less detailed standard for organizations that seek
only to certify their conformance to accepted practices in final testing
and inspection of products.

Unlike 9001 through 9003, ISO 9004 is not intended to be used to establish guaran-
tees of practices within the organization that uses the standard. The 9004 standard
is, rather, for internal use only and lists the elements of a comprehensive total quality
system. It provides guidelines with which a facility can evaluate its practices in mar-
keting, design, procurement, production, measurement, post production, materials
control, documentation, safety, and use of statistical methods.

The ISO 9000-3 standard [ISO 90] provides guidelines to organizations that produce
software products. The ISO 9000-3 provides additional guidance information to soft-
ware development organizations such that they can apply the more general ISO 9001
standard. It thus helps correlate software process terminology to the quality systems
requirements identified in ISO 9001. The ISO 9000-3 standard identifies some of the
software process practices as described within the Capability Maturity Model such as
testing, configuration management, change control, measurement, training, and soft-
ware quality assurance.

The standard approach to achieving ISO 9000 certification involves comprehensively
documenting all processes involved in production and in support of production. In the
course of documenting, processes are reviewed and evaluated to determine if they
comply with the standard. When they do not, corrective actions are taken, and new
processes are created. The eventual goal is to create a situation in which "you docu-
ment what you do, and do what you document® [Marquardt 92]. Successfully achiev-
ing this situation and standard levels of quality of product will result in certification.
Usually informal self-assessments are made at various stages on the way to certifica-
tion, to determine the likely outcome of a formal assessment. When results of self-

26 CMU/SEI-93-TR-27

assessments are satisfactory, the organization employs a third party to conduct a cer-
tification assessment.

4.4 Experience with ISO 9000

ISO 9000 s a relatively new business development. We know of no rigorous empirical
studies of its effectiveness. The long-term effects of certification are not known. Sup-
porters point out that the standards simply require businesses to conform to practices
that are widely considered effective. We note, however, that “widely considered effec-
tive" may not be the same thing as "effective.” The issue of how mandating practices
transforms the nature of what is being required in the minds of those to whom the re-
quirement applies aiso needs to b addressed.

Inevitably, in the early stages of a business movement, the literature is full of claims of
benefits by those who have vested interests in promoting the movement. Most early
evidence comes from individuals in companies who were responsible for instituting a
program and are now claiming credit for its success, or from consultants who stand to
gain business from heightened interest in the movement in question. Many reports of
experience with iSO 9000 have this flavor. Eventually movements either prove to have
real benefits and become part of the way of doing business, or they disappoint or tumn
out to have undesirable long-term side effects. The impact of ISO 9000 on software
process improvement remains to be seen.

4.4.1 Reported Benefits

There are claims being made about the benefits of ISO 9000. DuPont reports benefits
such as increased manufacturing yields, decreased customer complaints, reduction in
process deviations [Dzus 91}, increases in on-time delivery, decreases in cycle time,
increased first pass yields in production lines, and more [Marquardt 92]. ICl Advance
Materials claims reduced product costs due to less rework and fewer customer returns
[DeAngelis 91]. The British Standards Institution, a leading certification assessor, es-
timates that registered firms reduce operating costs by 10 percent on average [Mar-
quardt 92]. In short, the benefits of ISO 9000 seem to be the benefits of any good
quality program.

In addition to promoting quality practices, the 1ISO 9000 series of standards has a clear
coordinative purpose. As products become more complex, it is increasingly difficult to
ensure the quality of materials and components provided by suppliers. One response
to this difficulty has been for client organizations to take an interest in the production
processes of their suppliers. But it is expensive to audit every supplier's processes.
Certification is a means of establishing immediately that the supplier's processes have
certain desired characteristics. In this sense, the ISO 9000 certification is not unlike,

CMU/SEI-93-TR-27 27

say, U.S. Department of Agriculture certifications on farm produce that assure a cer-
tain quality thereby saving buyers from needing to perform expensive tests on their in-
coming product. It is, however, worth following up this analogy. Recently, farm
produce standards have come under fire for relying too much on appearance and, con-
sequently, for causing farmers to use far too much pesticide [Austin 93]. One wonders
what similar destructive bias might eventually prove to be inherent in the ISO 9000
standards.

It has aiso been observed that standards have a generally destructive side, and that
they are difficult to dislodge oi modify once they are in place. Ishikawa [Ishikawa 85}
notes that "even when industrial standards are modified, they cannot keep pace to
customer requirements.” There is both an upside and downside to proceduralization.
The benefit is that the procedural knowledge of the business does not reside exclu-
sively within personnel, which, among other things, moderates the effects of worker
turnover. The organizational memory resides in the procedures, as well as in the peo-
ple. However, procedures are inherently inferior to people in adapting to the unusual
circumstances that inevitably arise in a production environment. The downside of pro-
ceduralization, then, is that attention to procedures may obscure the view of what re-
ally needs to be done. 1SO 9000 requires much documentation, which sometimes can
be associated with bureaucracy and unresponsiveness.

4.4.2 Potential Problems

One may question the effect of mandating a standard as a condition of doing business.
Obviously a supplier could institute quality programs without being required to. What
impact then does the requirement have? There are some precedents that allow some
conjecture on this matter.

Requiring that all participants in a market meet the same high standard of process and
product quality may ensure that certain practices are commonly practiced across an
industry. But is it necessarily a good thing to have most of the companies in an indus-
try doing things in the same ways? Suppor.ars may protest that it is not the purpose
of the 1ISO 9000 standards to induce homogeneity of process across all companies;
there are, they might say, many ways to quality and the 1SO 9000 standards are ca-
pable of accommodating wide variations in methods. Such defenses, though, ignore
the nature of the human response to situations where requirements are linked with
very great rewards or severe punishments. A company whose access to markets,
whose very business future depends on certification, is likely to use the most widely
accepted methods, to take the safest course to ensure certification. This will inevitably
result in a certain degree of homogeneity, as a small subset of "good" consultants es-
tablish their success rates in achieving certification for their clients, by promoting an

28 CMU/SEI-83-TR-27

ever shrinking set of techniques. In the worse case, process innovators are punished
for not complying with industry standards.

Also, when standards are required, a subtle sort of goal displacement takes place in
the minds of those working toward the goal [Merton 57]). The goal becomes winning
the certification, not achieving the benefits of the program. Motivation becomes extrin-
sic, oriented toward an evaluative body which will pass judgment. Large sums begin
to be invested in preparation for the audits. Those wishing to be certified grow cleverer
and consultants grow richer. In the U.S., some of the same consultants that train or-
ganizations in ISO 9000 are also certification auditors [Fouhy 92]. Fouhy et al. [Fouhy
92] quote one consultant who describes how certification for its own sake overiakes
any quality goals a company might have and summarizes by saying, "currently 80-
90% of the companies going through the certification process are wasting their mon-
ey.” A representative from industry states that if certification is not part of an overali
strategy, it becomes just "extra paperwork."

4.5 Suggestions for Introduction and Use

For companies whose customers demand 1SO 9000 certification, there is little benefit
in debating its merits. These companies need to know how to become certified. Not
surprisingly, this is the focus of much of the literature on ISO 9000.

DeAngelis [DeAngelis 91] provides the foliowing list of "dos and don'ts" based on ICI
Advanced Materials’ successful certification effort:

1. Do get top management support.

2. Do allow ISO 9000 to complement existing quality programs. Conduct
quality sessions as well as 1ISO 9000 seminars to ensure that people
understand the process goals. Involve all staff levels in the seminars.

3. Do survey the seminar attendees to ensure that the program
addresses their needs. Seminars should reflect the distinct needs of
each group.

4. Don't have outsiders write procedures. The procedures should be
written by those most familiar with each job.

5. Do solicit on-the-job volunteers to draft the ISO 9000 job procedures.

6. Don't make volunteers operate in a vacuum. Provide format, support,
and deadlines.

7. Do review drafts with all involved in the procedure to ensure support.

CMU/SEI93-TR-27 29

]

8. Do provide incentives and recognition for ISO 9000 volunteers.

9. Do communicate progress to employees regularly to show them how
ISO 9000 has affected performance and sales.

10. Don't expect ISO 9000 to solve quality problems. Recognize that it is
a baseline for good business practice, and that direct continuous
improvement efforts are required to build on the ISO 9000 foundation.

Similarly, Dzus [Dzus 92] documents the 20 steps DuPont followed to certification in
their Towanda, Pennsylvania facility:

1. Obtained management commitment and began training for leaders
and coordinators.

2. Set up a steering committee and sub-teams to identify what needed to
be done.

. Began internal quality auditing. {
. Held a two-day, in house seminar.

. Compiled a quality manual.

. Conducted ongoing quality audits and implemented corrective actions.

. Filled out the application for assessment and paid the application fee.

. Submitted the quality manual to the auditor for assessment.

© ® N O O A

The pre-assessment was conducted.

3 10. Implemented improvements based on pre-assessment recommend-
‘ ations.

11. Set the date for being ready for assessment.

12. Set the assessment date for two to three months later.
13. Provided more in-house training.

14. Conducted frequent checks on status with plant leaders.
15. Got plant leaders to conduct audits.

16. Shared pre-assessment findings.

17. Sent revised quality manual to auditor.

30 CMU/SEI-93-TR-27

18. The assessment was conducted.
19. Fixed minor discrepancies.
20. Registration obtained.

Gasko [Gasko 92)] provides the following account of the certification experience of
Union Carbide's Taft Louisiana plant:

1. Set up a steering committee.

2. Conducted a "gap analysis" to determine where business processes
were not up to standard.

3. Established a three-tiered document system composed of (i) a
company quality system manual that makes a broad policy statement,
(ii) a facilities manual that specified what needed to be done and by
whom, and (iii) work instructions that told how to do what needed to be
done.

4. Wrote these documents in parallel, maintaining close contact between
people responsible for writing each.

5. Adapted procedures already in place to fit with ISO 9000 standards.
Sometimes this merely required changing the names of procedures.

6. Allowed individuals to work on their own in developing procedures.
Management focused on cutting red tape.

7. Set an aggressive time frame for certification.
8. Avoided bureaucracy and emphasized individual accountability.

The preparation for certification can take about one to two years [Dzus 92}, [Fouhy 92],
[DeAngelis 91].

4.6 How ISO 9000 Is Related to the Capability Maturity Model

Since ISO 9000-3 is primarily guidelines for developing software quality management
and quality assurance standards, it most closely correlates to the level 2 key process
area (KPA), software quality assurance. It also minimally refers to some other KPAs
such as software subcontract management, software project planning, software
project tracking and oversight, peer reviews, software product engineering, configura-
tion management, organization process definition, and training. Although the I1SO
9000-3 guidelines do not contain as much description of practices as the CMM, we can
roughly correlate the maturity level of a software organization that has ISO 9000 cer-

CMU/SEI-93-TR-27 31

tification to at least level 2, repeatable. The ISO 9000 certification audit process en-
courages the development of software standards and procedures documents that
correspond to the ISO 9000-3 requirements. What ISO 9000 certification does not di-
rectly address is the question of whether or not the documented practices are effec-
tive. Thus, there exists the possibility that the ISO 9000 certification could be given to
an organization that documents and implements poor practices or does not consistent-
ly follow its documented practices.

4.7 Summary Comments on ISO 9000

While we have few qualms with the quality philosophies and methods espoused by the
ISO 9000 standards, we feel compelled to note the potentially detrimental effects of
mandatory standards. We note that Japanese companies have been unenthusiastic
about third party certification of quality systems [McFadyen 92], because, we conjec-
ture, their own quality systems are based on intrinsic desires to do better, and not an
extrinsic need to be certified or win an award. As noted aiready, however, such res-
ervations are irrelevant if your customers are demanding that you be certified. A big
advantage of the ISO 9000 method is that it becomes a strong motivator for paying
attention to software process improvement when certification is necessary to remain
competitive.

4.8 References and Further Readings - ISO 9000

[Austin 93] Austin, R. D., "A Theory of Measurement and Dysfunction in
Social Institutions®, Ph.D. Dissertation, Pittsburgh, Pa.: Carn-
egie Mellon University, 1993.

[DeAngelis 91] DeAngelis, C. A., "ICl Advanced Materials Implements ISO
9000 Program.” Quality Progress, November, 1991.

[Dzus 91] Dzus, G., "Planning a Successful ISO 9000 Assessment."
Quality Progress, November, 1991.

[Fouhy 92] Fouhy, K., Samdam, G., Moore, S., *ISO 9000: A New Road
To Quality." Chemical Engineering, October, 1992.

[Gasko 92] Gasko, H. M., "You Can Eam ISO 9002 Approval in Less
Than a Year." Joumnal for Quality and Participation, March,
1992,

32 CMU/SEI-93-TR-27

[Ishikawa 85) Ishikawa, K., What is Total Quality Control? The Japanese
Way. Translated by David J. Lu, Prentice-Hall, Englewood
Cliffs, NJ, 1985.

[1ISO 90] ISO/DIS 9000-3, Quality Management and Quality Assurance
Standards - Part 3: Guidelines for the Application of ISO 9001
to the Development, Supply and Maintenance of Software,
Sept. 1990.

[Marquardt 92] Marquardt, D. W., "ISO 9000: A Universal Standard of Quali-
ty." Management Review, January, 1992.

[McFadyen 92] McFadyen, T., Walsh, T., "Is ISO 9000 Worth the Paper It's
Written On?" Journal for Quality and Participation, March,
1992.

[Merton 57] Merton, R.K., Social Theory and Social Structure, Free Press,
Glencoe, IL, 1957, p. 50.

CMU/SEI-93-TR-27

CMU/SEI-93-TR-27

5 Software Process Assessment (SPA)

5.1 Overview

Software process assessment (SPA) is a means of determining the strengths and
weaknesses of an organization's software development process. Assessments are
done by trained members of the organization being assessed or by assessment ven-
dors. Results of assessments are confidential. Results include a "maturity rating"
from 1to 5 (1 is lowest, 5 is highest) and a detailed account of the strengths and weak-
nesses of the organization's development process. One purpose of an initial assess-
ment is to form a baseline from which an organizational strategy for process
improvement can be constructed. The initial assessment is often an organizational in-
tervention to help obtain "buy-in* for change. Reassessments are means by which
progress can be measured.

5.2 History/Background

Software process assessment is a relatively new technique, even by the short-term
standards of the software industry. The method was derived largely from the work of
Watts Humphrey [Humphrey 89] and his colieagues at the Software Engineering Insti-
tute (SEI) in the late 1980s, inspired by Crosby's [Crosby 79] work on quality assur-
ance. Since the SEI is a federally funded research and development center with
commensurate ability to influence U.S. government policy, assessment has been
widely deployed in a short period of time. One reason for such rapid deployment is
the close association between assessments and software capability evaluations
(SCEs), an evaluation of development organizations intended to determine their suit-
ability for government contract work. Assessments are often done in preparation for
SCEs, because the methods are based on the same model of a "mature" software de-
velopment organization.

Despite their widespread use, neither assessment nor the underlying maturity mode!
(which also underlies SCEs) has been conclusively demonstrated to improve software
development results. Empirical validation of the model is beginning.

5.3 Description of Software Process Assessment

Assessments (and SCEs) make use of the SEI's Capability Maturity Model (CMM)
[Paulk 93]. The maturity model depicts stages of evolution of a software development
organization from immature to most mature. The questionnaires that begin the as-
sessment process, and the interviews and discussions that follow, are aimed at deter-
mining how current practice in the organization compares with the CMM ideal.

CMU/SEI-93-TR-27 35

Assessment begins when high-level managers of an organization decide that they
want their organization assessed and commit to providing the necessary level of re-
sources. Because it starts at the top, proponents argue, assessment is more likely to
result in actual implementation of improvements. Also, participants in the assessment,
seeing the support of management, will take the process more seriously and feel more
confident that their input might cause a change in the organization [Bollinger 91).

Next, a team from the organization to be assessed is trained in performing assess-
ments by the SEl itself, or by trainers accredited by the SEI. Alternatively, a team from
an SEli-licensed vendor or from the SEI itself can be engaged to perform or help per-
form the assessment. However it is accomplished, great care is taken to protect the
confidentiality of the resuits.

The assessment team selects certain projects and groups within the organization for
asse~=ment interviews, and representatives from these projects and groups are asked
toc: ate a questionnaire about their software development process. The question-
naire serves as a starting point for an intensive week of interviews and group discus-
sion that follows shortly thereafter.

The intensive three- to five-day period of interview sessions and guided group discus-
sions are what is usually meant by “assessment” in common usage. Assessment
team members interview people about how they responded to the questionnaire and
about issues that arise in discussion, all under strict guidelines concerning confidenti-
ality and nonattribution of information to sources. Because of the extreme emphasis
on confidentiality, these discussions are often characterized by open, free exchange
of candid beliefs about the current state of the organization's processes. Participants
in the assessment are asked to reach consensus on how they would improve the soft-
ware development process, and on the last day of the assessment, key findings and
recommendations are presented to management.

After the week of interviews and discussions, the assessment team completes the pro-
cess by writing a report containing their key findings and recommended action plan for
achieving improvement. This report is conveyed to management so that recommen-
dations can be implemented. Management follows through by acting on the recom-
mendations in the report. Reassessment is recommended in 18-24 months.

5.4 Assessment Results

According to a recent SEI study [Kitson 92], most assessed organizations are at the
initial maturity level. Only 12 percent were discovered to be at the repeatable level,
and 7 percent at the defined level. There were no organizations identified in the study
at the managed or optimizing level. Only one project in the United States is believed

36 CMU/SEI-83-TR-27

to operate at the optimizing level, the project supporting the fly-by-wire software for the
space shuttle [Keller 93].

5.5 Other Assessment Methods

Although this section primarily describes the assessment approach developed at the
SEl, it is important to note that it is only one of a number of existing assessment meth-
ods. For example, an ESPRIT project, Bootstrap, has used the CMM, but it has ex-
tended the SEI method to better apply to the European software industry [Card 93].
The Bootstrap method has augmented the SEI method to better refiect the require-
ments of the ISO 9000 quality standards. In addition, a number of software consulting
firms have developed proprietary assessment methods to support their customers.
Many larger corporations (e.g. Motorola, AT&T, IBM, Siemens) have also modified/en-
hanced the SEl method to better fit within their corporate culture. In late 1992, an ISO
Working Group was established to address the issue of standardization of assessment
methods. This effort is popularly known as the SPICE project (Software Process Im-
provement and Capability dEtermination).

5.6 Experience with Software Process Assessment

Assessment is one of the newest of the methods described in this report. For this rea-
son, there is relatively little published evidence of the method's success. Some case
study data are available [Dion 90}, [Humphrey 91], which provides reason to believe
the process can be successful. Humphrey, Snyder, and Willis, for example, report that
a division of Hughes Aircraft believes it spent on the order of $450,000 on assessment
and subsequent improvements to gain annual savings estimated at $2 million.

The newness of the method is but one reason benefits are difficult to determine. An-
other is the problem that naturally arises when a concerted effort to promote practice
of a method is carried out in paraliel with attempts to determine effectiveness of the
method. In such circumstances, itis in the interests of promoters to seek out evidence
of success, but the incentive is not so great to discover difficulties. Also, there is a nat-
ural confounding of early results with promotional attempts.

On the other hand, the CMM does not present a model of software development that
is new or controversial, at least not in any obvious sense. Proponents note that it is
simply a coherent compilation of common notions about what software development
processes should look like. It is, in the words of one advocate *refined common
sense.” If we are to believe in our common sense, then the CMM seems likely to be
a reasonable, normative account of development processes.

CMU/SEI-93-TR-27 37

5.7 Potential Problems

Assessment promoters often emphasize that the initiative and the desire for assess-
ment should come from within the organization to be assessed. There is reason in the
more general behavioral science literature to believe that this might be a critical suc-
cess factor. There is a subtie but extremely important difference between intrinsic mo-
tivation and extrinsic motivation. When motivation for pursuing improvement comes
from within, the spirit rather than the rule of the improvement is most important. When
motivation is extrinsic — that is, if assessment is performed by higher management on
an unwilling organization, in an attempt to sort villains from heroes - then the whole
process may be undermined. The free and open exchange of ideas will certainly be
compromised and those being assessed will set about finding ways of subverting the
assessment process [Campbell 79]. A host of behavioral researchers (e.g., [MacGre-
gor 60}, [Ouchi 81]) have provided evidence that the resourcefulness of members of
an organization who are intent upon defeating attempts at evaluation is essentially
boundiess. The psychology of motivation (see [Deci 85]) tells us also that once moti-
vation has become extrinsic, intrinsic motivation is also compromised. In other words,
once the hard feelings inevitably stirred by forced evaluation are raised, they are diffi-
cult to dispel and organization members are less likely to internalize the objectives of
the organization.

It should also be noted that assessment is an initial first step for software process im-
provement. Once the findings and recommendations report is completed, it is neces-
sary for the software development organization to implement the recommendations.
The implementation of the recommendations requires investment, planning, tracking,
and a long-term commitment to process improvement. The implementation phase is
where many organizations fail to leverage their initial investment in assessment. The
on-site assessment period is designed to obtain maximum buy-in and commitment to
process improvement throughout the organization. Business pressures, staff turn-
over, strategy changes, reorganizations, etc., often negatively affect the discipline
necessary to implement long-term process improvement.

5.8 Suggestions for Introduction and Use

A recommended first step for any organization wishing to begin using assessment is
to contact the Software Engineering Institute in Pittsburgh, Pa. The SEl maintains lists
of assessment vendors, produces technical reports on the assessment process, and
provides training and expert support. Consuilting the body of experience in assess-
ment represented by these resources is a good way to find up-to-date advice on how
to conduct assessments.

38 CMU/SEI-93-TR-27

Humphrey, Snyder, and Willis [Humphrey 91] provide the following advice to those in-
terested in performing assessments, based on their experience at Hughes Aircraft.

e Management commitment. Delegation is not strong enough to
overcome roadblocks. Commitment is. Process improvement should
be tied to the salary or promotion criteria of senior management.

¢ Pride is the most important result. Pride feeds on itself and leads to
continuous measurable improvement.

* A software technology center is necessary. Combining development,
project management, administration, technology development,
training, and marketing in the same organization makes it more likely
that the assessment process will be successful.

* A focal point is essential. A group commissioned to plan, coordinate,
and implement organization-wide improvement efforts is a
requirement.

e Software process expertise is essential. Improvement teams must
evolve into experts in the process of software development.

* An action plan is necessary but not sufficient. Producing an action
plan provides a basis for improvement, but there is more work to be
done in exploring other things that need to be done and achieving
organization-wide consensus on the need for certain actions.

Some have suggested (e.g., [Humphrey 89]) that assessments and process improve-
ment efforts that are instigated by assessments are most successful when they are
supported by a standing group assigned responsibility for promoting such efforts.
Fowler and Rifkin [Fowler 90} echo Humphrey [Humphrey 89] in recommending that
“software engineering process groups" (or SEPGs) be composed of full-time staff of a
size that is about one to three percent of the development organization's resources.
The SEPG duties include facilitating assessment efforts and supporting, tracking, and
reporting on all process improvement efforts underway in the organization. The SEPG
is staffed by practitioners who are familiar with the problems faced by their colleagues
- working on development projects. The SEPG staff is guided by a steering committee
which provides management support for SEPG actions and management input into
process improvement decisions.

Fowler and Rifkin [Fowler 90] report that in practice few organizations maintain stand-
ing full-time SEPG staffs at the recommended one to three percent level, but that gains
can aiso be realized by smaller staffs working in collaboration with developers who

CMU/SEI-83-TR-27 39

have part-time SEPG assignments. An SEPG partially composed of active developers
is more likely to remain responsive to developer concerns, but is also more likely to be
"cannibalized” in times of crisis. There is a very real risk that process improvement will
not take hold in organizations that abandon it every time a project deadline approach-
es. Organizations committed to software process improvement should consult Fowler
and Rifkin (1990) which provides guidance in establishing and operating an SEPG.

5.9 How Software Process Assessment Is Related to the Capability
Maturity Model

Although assessment can be applied to organizations at all levels of the Capability Ma-
turity Model, it is most effectively applied to organizations that are focused on software
process improvement and have the resources to implement the resulting action plan.
Thus the assessment method best correlates to the level 3 key process area, organi-
zation process focus. Within the ideal environment, members of the software engi-
neering process group (SEPG) would participate as members of the assessment team
and then assist in implementing the improvement actions. Assessments would be re-
peated approximately every two years to monitor the progress of the organization in
climbing the maturity level ladder, and new and modified improvement actions would
be identified. In addition, measures would be defined and monitored by the SEPG to
identify whether or not the improvement actions are being implemented correctly and
whether they are having an impact on the organization’s performance.

5.10 Summary Comments on Software Process Assessment

Assessment is unusual among the methods described in this document. It is one of
the newest of the improvement methods, but it is also one of the most widely deployed
and probably the best supported. It is not yet conclusively proven to be a means to
improvement, but validation attempts are underway. When implemented in a manner
consistent with its original intentions - that is, intrinsically motivated, largely self-as-
sessment — it seems likely (to us) to yield benefits. The trend towards augmentation,
implementation, and standardization of the SE| assessment method by an internation-
al software industry market increases the likelihood that assessment will be applied as
a positive step towards process improvement.

5.11 References and Further Readings - SPA

[Bollinger 91] Bollinger, T. B., McGowan, C. "A Critical Look at Software Ca-
pability Evaluations,” JEEE Software, July, 1991.

[Campbell 79] Campbell, D. T. "Assessing the Impact of Planned Social
Change,” Evaluation and Program Planning, Vol. 2, 1979.

40 CMU/SEI-93-TR-27

[Card 93] Card, D., Ed., "Bootstrap: Europe’s Assessment Method",
IEEE Software, May 1993, pp. 93-95.

[Dawes 91) Dawes, R. M. Rational Choice in an Uncertain World, Har-
brace-Court, 1991.

[Deci 85] Deci, E. L., Ryan, R. M. Intrinsic Motivation and Self-Determi-
nation in Human Behavior, Plenum Press, NY, 1985.

[Fowler 90] Fowler, P., Ritkin, S., Software Process Engineering Group
Guide, (CMU/SEI-90-TR-24, ADA235784), Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University,
September, 1990.

[Humphrey 89] Humphrey, W. S. Managing the Software Process, Addison-
Wesley, Reading, MA, 1989.

[Humphrey 91a] Humphrey, W. S., Curtis, B. "Comments on ‘A Critical Look',"
IEEE Software, July, 1991.

[Humphrey 91b] Humphrey, W. S., Snyder, T. R., Willis, R. R. "Software Pro-
cess Improvement at Hughes Aircraft,” IEEE Software, July,
1991.

[Keller 93] Keller, T., Presentation, First International Software Metrics
Symposium, May 22, 1993, Baltimore, MD.

[Kitson 89) Kitson, D. H., Humphrey, W. S. The Role of Assessment in
Software Process Improvement, (CMU/SEI-89-TR-3,
ADA227426), Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 1989.

[Kitson 92} Kitson, D. H., Masters, S. An Analysis of SEI Software Pro-
cess Assessment Results: 1987-1991, (CMU/SEI-92-TR-24),
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mel-
lon University, 1992,

[MacGregor 60] MacGregor, D. The Human Side of Enterprise, McGraw-Hill,
NY, 1960.

[Ouchi 81) Ouchi, W. G. Theory Z, Avon Books, NY, 1981.

CMU/SEI-93-TR-27 41

[Paulk 93]

[SEI 91]

[SEI 92a)

[SEI 92b]

Paulk, Mark C. et al, Capability Maturity Model for Software,
Version 1.1, (CMU/SEI-93-TR-24, ADA263403), Pittsburgh,
Pa.: Software Engineering Institute, Carnegie Mellon Univer-
sity, February 1993.

Software Engineering Institute, "Process Program Releases
Revised Capability Maturity Model," Bridge, December, 1991.

Software Engineering Institute, "SPA: SCE Sorting It Out,”
Bridge, December, 1992.

Software Engineering Institute, "The Role of Assessments,”
Bridge, March, :992.

42

CMU/SEI-93-TR-27

6 Process Definition

6.1 Overview

Process definition refers to the practice of formally specifying (or “modeling®) a busi-
ness process in a way that allows analysis of the completeness and correctness of the
representation. The most often modeled process is the software development life cy-
cle but the method is more general and can be extended to any business process. The
result of process definition is a process "map” that facilitates understanding and com-
munication, supports process improvement and management, and highlights opportu-
nities for automation [Curtis 92]. Software development organizations often define
their process through high-level, written text procedures or standards.

6.2 History/Background

Process modeling has always been a part of software development. Coding is a form
of very low-level process description, and structured techniques like data flow dia-
gramming are forms of process definition that have long been used to specify applica-
tions to be automated, and to check specifications for completeness and correctness.
What is new in process definition, as it has gained momentum primarily in the late
1980s and early 1990s, is that process modeling has been turned inward on the soft-
ware development process itself. '

Process definition as it has evolved does not confine itself to modeling processes to
be automated but aspires to specify processes enacted by humans. Movement in this
direction is in preliminary stages, and there is evidence that there are still problems to
be solved before process definition can fulfill its promise. Some of the problems seem
serious; for example, there are fundamental disagreements about the feasibility and
advisability of completely defining the development cycle at a low level of detail, be-
cause of the difficulties involved in modeling the inevitable informally structured reac-
tions to unanticipated contingencies. Until these issues are resolved, the extent of
benefits that may arise from process definition remains uncertain.

CMU/SEI83-TR-27 o

6.3 Description of Process Definition

There are really two problems being addressed by researchers in process definition:

1. The technical problem of creating a language (textual, graphical or
mathematical), that will permit complete and correct specification of
processes that can be rigorously, and perhaps automatically, verified.

2. The human aspects of making appropriate use of process
representations, to make them helpful tools rather than bureaucratic
obstacles.

Questions important to the technical line of research have to do with the ability of a
specification technique to eliminate ambiguity in representation while extending mod-
eling to ever more subtle process phenomena. Numerous techniques have been de-
veloped. Curtis et al., [Curtis 92] list five process modeling approaches:

1. Programming models attempt to use computer program-like descrip-
tions to model general business processes.

2. Functional models are similar but emphasize functional decomposition
as a means of building process depictions and lend themselves more
readily to graphical analysis.

3. Plan-based models emphasize the contingent nature of many
business processes and attempt to provide greater capacity for
modeling contingency.

4. Petri-net models focus on the frequency and nature of the interaction
of roles in a process. "Role interaction nets" aid the representation and
execution of tasks that can be planned from known dependencies.

5. Quantitative models attempt to capture the dynamics of project
development using mathematical expressions.

The second problem in process definition has to do more with the social aspects of the
development cycle than its technical aspects. This is the human problem of how to pro-
duce process descriptions that are useful to developers, that help rather than hinder
in the process of software development. To some extent, the questions important to
this line of research address issues of "user-friendliness" of representations and the
like — how easy is a particular process language to read, understand, and use? A
weightier aspect of this problem, however, hinges on the question of how feasible and
advisable it is to formalize the informal and less structured aspects of human perfor-
mance in a production process, especially in response to unanticipated events. Are
software production processes inherently deterministic or not? If they are not, can

44 CMU/SEI-93-TR-27

they be made deterministic? And, perhaps the most important but least discussed
question is: should development processes be made more repeatable? Determinism
and repeatability at some level leads to an enhanced capacity to improve on a stable,
baseline process. Determinism imposed at a lower than appropriate level on a non-
deterministic process is a definition of bureaucracy, a complex set of procedures that
must be gotten around by anyone who wants to do the job right.

Process definition usually begins with a high-level process description at the level of a
life-cycle model. Through use of the specification “language,* process modelers ex-
plore and specify the current components of the overall process at lower and lower lev-
els of detail. Process pieces discovered to be particularly simple, repetitive, and
deterministic are candidates for automation. In representing existing processes, mod-
elers usually also discover ways of simplifying processes. For process pieces that are
neither deterministic enough to be automated nor unpredictable in the extreme, pro-
cedures can be created at a level of detail sufficient to provide guidance to those doing
the development work. What to do about exceptionally nondeterministic process piec-
es is not yet resolved by researchers, and there are significant differences of opinion
on this subject.

6.4 Experience with Process Definition

In a sense, no method is as widely deployed as process definition. Every software or-
ganization does process modeling in the course of systems development and virtually
every organization has a systems life-cycle model of some sort. But process definition
as the phrase is currently used (see, for example, [Feiler 92]) has a specific and rig-
orous definition that implies something other than what is commonly practiced. Pro-
cess definition as formal, fine-grained specification of the development process is
hardly practiced at all. The few attempts at such ambitious process description have
been in the laboratory or in pilot programs.

Krasner et al. [Krasner 92] report the results of development and use of a process
modeling tool called software process modeling system (SPMS). Although some of
their findings suggest that the method is promising, they are clearly interim research
results. The researchers encountered difficulties with depiction of a process model in
a format useful to human developers, and with integration of the modeling system into
other systems development management systems. Krasner et al. (1992) also report
on experiments at the Software Engineering Institute (SEI). Three process models
were defined: (1) the cleanroom software development process, (2) the IEEE P-107A
configuration management process, and (3) the AT&T quality function deployment
(QFD) process. The experiments identified needed enhancements to SPMS, the pro-
cess definition tool. Keliner and Hansen [Kellner 89] recount use of process definition
on a U.S. Air Force business process for making changes to systems currently in pro-

CMU/SEI-93-TR-27 45

.

duction (i.e., a "post deployment software support® process). Their pilot study efforts
led to enhanced understanding of the process by those who performed it. The study
also identified recommendations for several process improvements. These results
demonstrate that process definition can be applied to beneficial effect in real situa-
tions.

6.5 Related Research

There are other fields of research that bear directly on the central problem of process
definition. Organization theory has long been concerned with the degree to which for-
mal specification of business processes is possible and advisable (see, for example,
[Blau 62]). A general finding from that field is that most business processes are cru-
cially dependent on their informal aspects, which lie outside of formally specified pro-
cedures because formal specification cannot take sufficient account of contingencies.
Curtis et al. [Curtis 87] echo this point in arguing that human processes cannot be ren-
dered adequately by inherently deterministic representations such as programming
specifications. Organization theorists have also found that attempts to specify and en-
force prescriptive procedures at too low a level can lead to dysfunctional behaviors
that subvert the intended purpose of the specification (see, for example, [Blau 63},
[Campbell 79)). It is important to notice that there are two issues here, one having to
do with the feasibility of low-level specification and another having to do with whether
low-level specification is a good idea even when it is possible. Organization theory
suggests that such specification is possible for a relatively small subset of organiza-
tional processes and advisable for an even smaller subset.

Economists also have something to say on the issue of feasibility and advisability of
low-level specification [Williamson 85]. Institutional economists argue that it is the na-
ture of the world that consequences of acts cannot always be anticipated and that,
therefore, *complete” contracts cannot be written in many situations. Complete con-
tracts are those that specify down to a low level of detail what actions should be per-
formed for fulfiilment of the contract, including specification of responses to all
contingencies. When low-level specifications can be produced easily, argue econo-
mists, then outsourcing is the recommended means of procurement. A reason why
some production is coordinated within a firm is that modern production processes can
almost never be specified down to an extremely low level of detail. The world is simply
not that deterministic. In a nondeterministic world it is often more cost effective to del-
egate authority to make discretionary decisions to a loyal employee, than it is to spec-
ify the process completely.

The economics perspective raises a question that cuts to the heart of the appropriate-
ness of process definition. Although it is fashionable in software development to as-

48 CMU/SEI-93-TR-27

sume that the benefits of process definition offset the costs, the economists’
arguments can be construed as a complaint that software researchers are using fauity
accounting. There is a cost of operating a business process that grows with its degree
of formalization, not just due to difficulty in execution but also to the inability of the for-
malized process definition to adequately prescribe appropriate organizational re-
sponses. Krasner [Krasner 92] has concluded that "to be effective, future process
models must also be able to explicitly represent such aspects as variability, uncertain-
ty, intentions, assumptions, assertions, conflict, agreements, commitments, issues,
pre/proscriptive actions, and nonlinear process dynamics® and that “this helps to set
the research component of our agenda for the next decade." If Krasner and his fellow
researchers succeed in incorporating all of these elements (i.e., variability, uncertain-
ty, etc.) into process definitions in a way that allows them to be used at low cost, they
will do far more than change the way software is developed. They will eliminate the
justification for the large-scale firm and thereby dramatically change the entire busi-
ness landscape. Viewed this way, the process definition agenda seems staggeringly
ambitious and perhaps impossible.

This conclusion should not, however, be taken as implying that no benefit can be
achieved from process definition. The method provides a valuable means of identify-
ing opportunities for automation and for process improvement. But the ideal of com-
pletely specified processes seems unlikely to ever be attained. Some of the process
specification research is, then, an example of, as Curtis [Curtis 87] puts it, looking un-
der the lamppost because the light is better there, despite the fact that the answer to
the problem is not to be found under the light.

6.6 Suggestions for Introduction and Use

Process definition as it is usually meant currently is very new. It is probably too new
for a nonresearch organization to attempt a full-scale deployment of the method. How-
ever, there are some benefits that can be gained. Specifying process at even a high
level can lead to better understanding of the process and to ideas for improvement. A
survey of relevant literature finds that benefits are more likely to be realized from at-
tention to the human elements of the process definition (i.e., constructing a *friendiy”
mode of representation) rather than to its technical rigor. Some specific suggestions
can be derived from the literature.

* A graphical representation of process is much more useful to people
than a textual one; this finding is fairly consistent across the literature.

» CASE tools are currently not adequate to support process modeling
because they support process modeling in a way that does not reflect
the complexities of nonautomated processes [Krasner 92).

CMU/SEI-93-TR-27 47

e Automated tools of some sort are necessary; the volume of process
description soon overcomes any manual effort at process definition
[Krasner 92).

¢ An iterative process of interviewing and investigating to uncover the
true nature of existing processes is necessary; one pass will not work
[Keliner 89).

¢ Those interviewed during investigation of the process often, for a
variety of reasons, leave things out; what is left out is often important
and must be tracked down.

In practice, every software development organization must define its software devel-
opment process as the baseline for continual improvement. This software develop-
ment process, initially defined at a high level, must be documented, understood, and
practiced throughout the organization. In most organizations today, this high-level!
process definition takes the form of a number of procedures often integrated within
some type of software development process handbook. For organizations that are be-
ginning this effort for the first time, it is suggested either to describe in writing how they
are currently developing their products or to modify a previously existing standard
(e.g., [IEEE 87)). The draft process procedures are then used to stimulate a dialogue
with all software developers concerning the details of their process. The process pro-
cedures can also be used for training employees new to the organization. They may
also be used to meet audit requirements for documents such as those required for ISO
9000 certification. A process description can be "descriptive," which describes the cur-
rent practices, or "prescriptive,” which describes an idealized process which is incre-
mentally implemented by the organization.

6.7 How Process Definition Is Related to the Capability Maturity
Model

Process definition is most commonly correlated to the level 3 key process area, orga-
nization process definition. However, even organizations at maturity level 1 should be
encouraged to begin defining their process for their individual software projects as part
of the implementation of the level 2 KPA, software project planning. It is necessary to
have a high-level understanding of a product development process in order to do the
planning for a software project. Furthermore, it is a prerequisite to have a defined pro-
cess before the process can be improved.

6.8 Summary Comments on Process Definition

Process definition holds great promise to help organizations better communicate and
improve their software development process. It also provides help in identifying tools

48 CMU/SEI-93-TR-27

that can automate the development process. Further issues remain for researchers
to determine whether the various representation methods can increase understanding
of the development process, as compared to more widely practiced “informal® meth-
ods of generating text-based process development standards and procedures.

6.9 References and Further Readings - Process Definition

[Blau 62] Blau, P. M., Scott, W. R., Formal Organizations: A Compara-
tive Approach, Chandler Publishing Company, San Francisco,
CA, 1962.

[Blau 63] Blau, P. M., The Dynamics of Bureaucracy, University of Chi-

cago Press, Chicago, IL, 1963.

[Campbell 79] Campbell, D. T., "Assessing the Impact of Planned Social
Change," Evaluation and Program Planning, Vol. 2, 67-90,
1979.

[Card 89] Card, D. N,, Berg, R. A, "An Industrial Engineering Approach
to Software Development,® Journal of Systems and Software,
Vol. 10, 159-168, 1989.

[Curtis 87)] Curtis, B., Krasner, H., Shen, V., Iscoe, N., "On Building Soft-
ware Process Models Under the Lamppost,” Proceedings of
the Ninth Interational Conference on Software Engineering,
IEEE Computer Society, Washington D.C., 96-103, 1987.

[Curtis 88] Curtis, B., Krasner, H., Iscoe, N. “A Field Study of the Soft-
ware Design Process on Large Systems,” Communications of
the ACM, Vol. 31, No. 11, 1268-1287, 1988.

[Curtis 92] Curtis, B., Keliner, M. I., Over, J., "Process Modeling," Com-
munications of the ACM, Vol. 35, No. 9, 75-90, September,
1992.

[Feiler 92) Feiler, P. H., Humphrey, W. S., Software Process Develop-
ment and Enactment: Concepts and Definitions, (CMU/SEI-
92-TR-04, ADA 258465), 1992, Pittsburgh, Pa.: Software En-
gineering Institute, Camegie Mellon University.

CMU/SEI93-TR-27 o

[Humphrey 85] Humphrey, W. S., "The IBM Large-Systems Software Devel-
opment Process: Objectives and Direction,” IBM Systems
Journal, Vol. 24, No. 2, 76-78, 1985.

[IEEE 87] IEEE Software Engineering Standards, ISBN 471-63457-3,
1987.

[Keliner 89] Keliner, M. 1., Hansen, G. A., "Software Process Modeling: A
Case Study," Proceedings of the Twenty-Second Annual Ha-
waii International Conference on Systems Science, Vol. Il -
Software Track, IEEE press, 1989.

[Krasner 92] Krasner, H., Terrel, J., Linehan, A., Amold, P., Ett, W. H.,
*Lessons Leamed from a Software Process Modeling Sys-
tem," Communications of the ACM, Vol. 35, No. 9, 91-100,
September, 1992.

[Williamson 85]) Williamson, O. E., The Economic Institutions of Capitalism:
Firms, Markets, Relational Contracting, The Free Press, NY,
1985.

50 CMU/SEI-93-TR-27

7 Formal Inspection

7.1 Overview

Formal inspection is a means of removing defects from code and other structured soft-
ware development work products. It is a team technique requiring strict adherence to
a set of specific procedural rules. These rules distinguish formal inspection from re-
lated but less precisely defined techniques, such as peer reviews and structured walk-
throughs. The terms “inspection,” "peer review," “walkthrough,” etc., are sometimes
used interchangeably. However, "formal” inspection aimost always refers to the spe-
cific procedure described here. Peer review and walkthrough often describe a larger
class of defect detection processes (which may include formal inspection). "Fagan in-
spection" is a subclass of formal inspection in which M. Fagan'’s ([Fagan 76), [Fagan
86]) process is foliowed exactly. The purpose of formal inspection is to ensure the
quality of delivered software products and improve productivity by eliminating rework.

7.2 History/Background

The formal inspection procedure was pioneered by Michael Fagan in 1972 at IBM
Kingston, NY [Fagan 86]. Widespread use of inspections began in 1976 with the pub-
lication of Fagan's account of their success within IBM. In the 17 years since, many
organizations have reported success in using formal inspection. The large quantity of
documented experience with formal inspection provides reason to believe with high
confidence that substantial benefits may be derived from the appropriate use of the
method.

7.3 Description of the Formal Inspection Method

The inspection procedure consists of six discrete phases: planning, overview, prepa-
ration, inspection meeting, rework, and follow-up. The phases are carried out by a
team that consists of a moderator, author, reader, and recorder. The focus of the
team's efforts is a work product, for example a segment of code or design specifica-
tion, from which defects will be extracted.

Responsibility for conducting the procedure falls to the moderator. In the planning
phase, the moderator identifies the inspection team and makes logistical arrange-
ments to support the rest of the procedure. After planning, the moderator calls the
team together for an overview. The author of the work product to be inspected de-
scribes it to other team members and the moderator distributes copies of the work
product along with inspection-defect log forms, to be used in preparationto record dis-
covered defects. During preparation, team members review the work product for up

CMU/SEI-93-TR-27 51

to two hours, locating and logging defects. The reader (never the same team member
as the author) prepares to present the work product to the group, making sure that he
or she understands the work product.

The inspection meeting itself never lasts more than two hours (otherwise fatigue re-
duces its effectiveness). The reader presents the work product and other team mem-
bers identify and discuss the defects discovered in preparation, or in the meeting itself.
it is a specific stipulation of the method that discussion is limited to identifying, verify-
ing, and recording defects; correction of defects is the responsibility of the author and
discussion of correction is not permitted during the meeting. (The moderator enforces
this rule.) The recorder maintains a master log of defects, which is the principal output
of the meeting.

In the rework phase of the procedure, the author corrects defects identified on the log.
After rework, the moderator and author jointly decide whether another iteration of the
inspection procedure should occur for the work product in question. If not, the work
product moves to the final phase, follow-up. In this phase, the moderator must verify
that defects have been corrected and log a fix date for each defect.

Variations of the procedure have evolved, but most share at least the elements pre-
sented above. Common variations include the addition to the defect logging system
of defect classification schemes, or slight procedural variations to account for differ-
ences in the work products being inspected (e.g., differentiation between high- and
low-level design inspections, and coding inspections [Dobbins 87]).

7.4 Experience with Formal Inspection

Fagan [Fagan 86] has conducted a controlled study of the effectiveness of software
inspections. In that study, design and code inspections found 82 percent of defects
uncovered, leaving only 18 percent to be found in later tests. Coding productivity in-
creased 23 percent because of the reduced need for rework. Bush [Bush 90] reports
savings at NASA's Jet Propuision Laboratory roughly estimated to be on the order of
$25,000 per inspection. Fowler [Fowler 86] summarizes several Bell Laboratories
studies, all of which provide support for the contention that inspections increase quality
and productivity. McKissick, et al. [McKissick 84] and Peele [Peele 82] reached the
same conclusion, concluding that inspection use at General Electric and First Union
Corporation, respectively, resulted in cost savings and improved quality.

Summary information conceming the effectiveness of the method obtained by Fagan
[Fagan 86] from a wide variety of sources includes the foliowing:

* Inspection costs typically amount to 15 percent of project costs.

52 CMU/SEI-93-TR-27

¢ Inspections result in the discovery of more than 50 percent of all
discovered defects.

e Cases have been reported where more than 90 percent of defects
were discovered by the inspection method; 80 percent defect
detection is not uncommon.

e Cases of up to 85 percent savings in programmer time have been
claimed by some users of code inspections.

Russell [Russell 91] reports that inspections at Bell-Northern Research (BNR) of 2.5
million lines of code resulted in defects being removed at a rate of between 0.8 and 1
defect per staff-hour. The average defect discovered in a BNR system after the soft-
ware is released to the customer requires 4.5 staff-days to be removed. This suggests
a return on time spent in inspections of roughly 33 to 1. This 33 to 1 ratio is not a true
measure of the ratio of benefits to costs since it is unreasonable to argue that all de-
fects not found in inspections would have reached the customer. (Some would have
surely been detected in testing, for example.) Nevertheless, the magnitude of the ratio
merits attention. The credibility of this 33 to 1 estimate is enhanced by Doolan [Doolan
92], who does a similar calculation for software development at Shell Research and
arrives at a comparable 30 to 1 ratio. In comparing inspections with testing at BNR,
Russell further claims that inspections are between 2 and 20 times more effective. He
also estimates that inspections found approximately 80 percent of all errors in the BNR
code.

7.5 Suggestions for Introduction and Use

Inspections succeed where related methods fail largely because of their structure [Fa-
gan 86]. The phased procedure coupled with sharply defined roles for team members
subverts nonconstructive group tendencies. For example, defensiveness on the part
of the author is avoided by assigning responsibility for presenting the work product to
the reader and by suppression of discussion that moves beyond what is required to
identify and verify defects. The structure also maintains a low level of cognitive com-
plexity in the defect identification task, by dividing responsibilities into manageable
chunks. Modifications of the procedure that reduce its effectiveness usually fail to
maintain these positive features of the inspection process.

Fagan [Fagan 86] provides the following helpful hints based on his interaction with
many who have used inspections:

¢ Omitting or combining any of the six phases results in decreased
efficiency of the method. Only the overview phase may be omitted
without exposure to unacceptable levels of risk.

CMU/SEI-83-TR-27 53

¢ The inspection meeting time limit of two hours should be strictly
followed; the ability of team members to detect defects is restored after
a break of at least two hours.

* Inspection team members may find a checklist of types of possible
defects helpful as they prepare for and participate in the inspection
meeting.

e The moderator should not be directly involved in the development of
the work product to be inspected, so that he or she can maintain
objectivity.

¢ The moderator role is extremely important; a person playing this role

should act as a "player-coach®; a person with strong interpersonal
skills would be ideal for this role.

¢ Inspection data should neverbe used in performance evaluation; such
a use destroys the incentive to find defects.

Many authors ([Fowler 86], [Fagan 86], [Ackerman 82], [Collofello 87]) stress the role
of training in the successful introduction of the inspection procedure into an organiza-
tion. Training is important not only to ensure accurate execution of the procedure, but
also to explain the advantages of the method to managers who must make available
the time their employees will need to conduct inspections. In most organizations, train-
ing consists of a half-day or up to a four-day course.

Doolan [Doolan 92] and Russell [Russell 91] provide the following general suggestions
concerning start-up of an inspection program.

¢ Choose a first project for inspection that is not too large and work
actively to see that inspection does not fail for lack of motivation or
commitment.

¢ Introduce inspection gradually, one work product at a time.

* Obtain commitment from all members of the organization, especially
management.

¢ Constantly monitor the start-up and be prepared to make minor
modifications.

¢ Be aware that inspection use may seem "low-tech," thus suffering an
image problem compared to technology-based solution proposals.

54 CMU/SEI-93-TR-27

e Be up-front about the time required for inspections, but also be
prepared to show how time will be saved in the long run (during testing,
for example).

o Start early on establishing "proof” of the effectiveness of the program,
using inspection data.

Research at BNR by Russell [Russell 91] suggests that there is an optimal pace of the
inspection meeting, at BNR, around 150 lines of code per hour. Bush [Bush 90] con-
cludes, based on experience with inspections at NASA's Jet Propulsion Laboratory,
that the number of defects found in an inspection does not significantly increase with
the number of team members, thus, that three-person inspection teams can also op-
erate effectively.

A major advantage of formal inspection is that it can be introduced at any phase of an
organization’s software development process. Inspections could be initially applied to
reviewing test procedures or to requirements specifications depending on the current
implementation phase and needs of the organization. Many organizations initially ap-
ply formal inspections to the coding phase since introduction and acceptance barriers
are usually minimal. There are many commercially available training classes which
can both motivate and provide the required skills for an organization to begin introduc-
ing formal inspection to their software development process.

7.6 How Formal Inspection is Related to the Capability Maturity
Model

Maturity level 3, the defined level, requires that peer reviews be a part of the develop-
ment process. Since formal inspection is a type of peer review, inspection would seem
to be most app-opriate in organizations where the overall development process is re-
peatable, documented, and defined. Thus, formal inspection is a software process im-
provement method that can effectively meet the needs of the level 3 key process area
(KPA), peer reviews, or be applied for improving the effectiveness of peer reviews.
Based on the evidence of its successful application, we believe formal inspection
should have value to organizations at all levels of the CMM.

7.7 Summary Comments on Formal Inspection

Formal inspection is strongly recommended to any organization wanting to improve
their development process. It is one of the oldest methods described in this report.
There is substantial evidence in the literature that many organizations have applied
the method with good success. Formal inspection is generally recognized as an effec-
tive method for an organization to find defects earlier in the development process

CMU/SEI-93-TR-27 55

which results in higher quality products and reduced development and maintenance
costs.

7.8 References and Further Readings - Formal Inspection

[Ackerman 82] Ackerman, A. Frank, Amy S. Ackerman, and Robert G.
Ebenau, "A Software Inspections Training Program," COMP-
SAC '82: 1982 Computer Software and Applications Confer-
ence, Chicago, IL, Nov. 8-12, pp. 443-444, IEEE Computer
Society Press.

[Bush 90] Bush, Marilyn. "Improving Software Quality: The Use of For-
mal Inspections at the Jet Propulsion Laboratory," 12th Inter-
national Conference on Software Engineering, 1990, pp. 196-
199, IEEE Computer Society Press.

[Collofello 87]) Collofello, James S. "Teaching Technical Reviews in a One-
Semester Software Engineering Course," ACM SIGCSE Bul-
letin, Vol. 19, No. 1, Feb. 1987, pp. 222-227.

[Dobbins 87] Dobbins, J. H. "Inspections as an Up-Front Quality Te: ..
nique," Handbook of Software Quality Assurance, G. G.
Schulmeyer and J. I. McManus, eds., pp. 137-177, NY: Van
Nostrand Reinhold, 1987.

[Doolan 92] Doolan, E. P. "Experience with Fagan's Inspection Method,"
Software — Practice and Experience, Vol. 22, No. 2, Feb.
1992, pp. 173-182.

[Fagan 86]) Fagan, Michael E., "Advances in Software Inspections," /EEE
Transactions on Software Engineering, Vol. 12, No. 7, July,
1986, pp. 744-751.

[Fagan 76] Fagan, Michael E. "Design and Code Inspections to Reduce
Errors in Program Development®, /BM Systems Journal, Vol.
15, No. 3, 1976, pp. 182-211.

[Fowler 86] Fowler, Priscilla J., "In-Process Inspections of Workproducts
at AT&T," AT&T Technical Jounal, March/April 1986, pp.
102-112.

56 CMU/SEI-83-TR-27

[McKissick 84)

[Peele 82]

[Russell 91]

McKissick, John Jr., Mark J. Somers, and Wilhelmina Marsh.
*Software Design Inspection for Preliminary Design® COMP-
SAC '84: 1984 Computer Software and Applications Confer-
ence, Las Vegas, NV, Jul. 1984, pp. 273-281.

Peele, R. "Code Inspections at First Union Corporation,”
COMPSAC '82: 1982 Computer Software and Applications
Conference, Chicago, IL, Nov. 8-12, 1982, pp. 445-446, IEEE
Computer Society Press.

Russell, Glen W. “Experience with Inspection in Ultralarge-
Scale Developments, IEEE Software, Vol. 8, No. 1, Jan. 1991,
pp. 25-31.

CMU/SEI-83-TR-27

57

CMU/SEI-93-TR-27

Software Measurement and Metrics

8.1 Overview

*Software measurement" describes the use of quantitative indicators to learmn about
and improve the software development process. A software metric is strictly defined
as a unit of measure used in software measurement ([Zuse 90}, [Fenton 91)), but the
phrase "software metrics" is often used more broadly to describe the process of mea-
surement as well. The purposes of software measurement are to provide:

1.

Status information on individual projects to help planners anticipate
problems.

. Information about the development process that can be used to make

improvements in the process.

. A base of statistical information that can be used to predict project

duration, cost, etc.

Feedback to developers to help them understand how to change their
own performance to produce better results.

8.2 History/Background

Software measurement arose primarily from four technology trends that began in the
1970's [Mdller 93].

1.

There was significant research into ways of measuring code complex-
ity based upon graph-theoretic concepts. Complexity was assumed to
be associated with development difficulty and was easily quantified by
automated means.

. Attempts arose to quantify factors associated with project cost so that

the cost of future projects could be estimated based on statistical
comparisons to similar projects.

. Notions of quality assurance began to filter into the software world,

resulting in the creation of methods to detect, track, and prevent faults
during various stages of the software development cycle.

. The software development process itself began to take on a more

structured form that emphasized control of development resources
across the various stages of development. Such control required the
development of quantitative neasures of resources.

CMU/SEI-83-TR-27

59

Because software measurement describes such a broad set of practices, it is difficuit
to make blanket comments on the success of its use. However, there seems to be
many claims of successful implementation of measurement across a variety of orga-
nizations.

8.3 Description of Software Measurement

Software measurement is associated with a wide variety of techniques that share a de-
pendence on the gathering of quantitative data. A primary reason for this wide varia-
tion of techniques is that measurement application is merely a tool for identifying
actions for improving the software development process. Measures defined for a spe-
cific organization must be derived from the goals of that organization, and be tailored
to function within the software development process and culture unique to that orga-
nization. Since space provided here does not allow exhaustive accounting of all mea-
surement-related processes, we will merely enumerate and briefly describe common
categories of measurement. Those wishing a more detailed treatment are invited to
consult Méller and Paulish [Méller 93] or any of a number of other references on the
subject (e.g., [Grady 87], [Jones 91]).

8.3.1 Example Measures

Size is a commonly applied measurement category. Size can be measured in units
such as function point counts, lines of code, or effort. It is a useful measurement cat-
egory for helping to establish system development effort, schedules, and cost. It is
also often used as a "nommalizing" factor for measures within other categories de-
scribed below (e.g., fauits found per number of thousand lines of code).

Product quality characterizes the quality level of the software product or service itself.
Some measures can be “interim" for providing insights into the final product quality or
complexity. Examples of measures in the product quality category could include the
number of faults detected and counted during various phases (e.g., system testing) of
the development process. Earlier sections of this report provided descriptions of spe-
cific methods of detecting and counting software defects. Measurements of defects
that allow determination of where they originated (i.e., in what phase of development),
where they were detected, etc., are of obvious use in guiding the introduction of quality
improvement actions and tracking their effects. Those who count defects must solve
problems of standardizing means of counting, and must also be careful to avoid mis-
interpreting changes in defect levels; there is, for example, danger in interpreting a de-
fect rate decrease as the result of process improvements if the complexity of
applications being developed was reduced at the same time. To be confident of the
interpretation of defect rates (as well as many other indicators), one must strive to cap-

60 CMU/SEI-93-TR-27

ture all independent variables that may have an effect on that rate. Nevertheless, de-
fect detection has been used successfully in many organizations.

Process quality characterizes the maturity of the process within which the software
product is developed. These measures can be obtained during the product develop-
ment for providing real-time feedback to software project management. An example
of this type of measure would be the management of development team productivity.
For productivity, one usually compares the rate of output to the effort expended in pro-
duction of that output. The two most common output measures are lines of code
(LOC) and function points (FP) [Albrecht 79). Effort is most commonly measured in
staff-hours. Like all measures of productivity, software productivity metrics are beset
by a variety of complications having to do with the reliability of the measurement mech-
anism, lack of standardization (e.g., division 1 counts function points in a different way
than division 2), and strategic behavior by developers ("l it's lines of code you want,
it's lines of code you'll get...").

Environment characterizes the organizational resource environment within which the
product is developed. Experience within this category is least mature to the point that
the measures are often referred to as "soft factors.” Measures in this category often
try to capture characteristics of development teams or software producing organiza-
tions such as staff size, staff turnover, morale, skills distribution, etc.

It must also be pointed out that measurement application is an "accompanying tech-
nology." This means that measurement must be used with other methods for improv-
ing the software development process. The collection of measurement data has no
intrinsic value if the trend of the data is not analyzed to provide insights about what to
do to improve the development process. Thus, it is not measurement that has an im-
pact on the development process, but rather the actions to improve the development
process that were selected as a result of analyzing the trend data. Thus, it is most
common to hear about measurement being used along with other described process
improvement methods (e.g., inspection, DPP, estimation).

8.4 Experience with Software Measurement

There is a large body of documented experience with software measurement which
suggests that its use is potentially beneficial. Mdlier and Paulish [Méller 93] provide a
series of case studies of successful applications. Grady and Caswell [Grady 87] de-
scribe the metrics program at Hewlett-Packard, which is widely acknowledged to be
among the best. However, it is difficult to cite meaningful quantitative evidence of the
berefits due to measurement programs because “software measurement"® describes
such a broad set of practices and because its impact is inherently difficult to evaluate
empirically.

CMU/SEI-93-TR-27 61

While there is a clear consensus among most in the software industry that metrics are
generally beneficial, there are vocal exceptions (e.g., [Evangilist 88]). There have
been reports of unsuccessful measurement programs, but these are not often found
in the literature; this fact creates a sampling bias in our database regarding the tech-
nique (i.e., we mostly hear about successes). Without an unbiased sample, it is diffi-
cult to systematically attribute failures of measurement programs to particular causes.
The conclusion one would hope to reach is that software measurement is potentially
beneficial for most organizations, that benefits follow when certain specific practices
or procedures are followed, and that failures were due to errors in implementation.

8.5 Suggestions for Introduction and Use

Mélier and Paulish [Méller 93] suggest a seven-step approach for the introduction of a
measurement program:

1. Establish and document a baseline software development process,
which will be improved dynamically over time.

2. Identify goals that are derived from and support strategic business
objectives.

3. Assign responsibility for introduction of the program to an individual
who has the ability, commitment, and stature within the organization to
act as a persuasive advocate.

4. Do initial research to determine what might be measured in the
organization, by surveying members of the organization or using a
formal assessment process (e.g., as described in [Paulk 93]).

5. Define a basic set of metrics for measuring progress toward goals.

6. Introduce and communicate the metric program to the organization
such that high visibility and cooperation are achieved.

7. ldentify the metrics reporting and feedback mechanisms such that
actions for improving the software development process can be
determined and implemented.

Méller and Paulish [Mélier 93] also provide the following hints concerning introduction
and use of a measurement program:

62 CMU/SEI-83-TR-27

e Overcome lack of acceptance by educating developers about the
purpose and substance of the measurements; assure them that any
additional work required will be supported by their managers (and see
to it that this is demonstrably true); make the benefits of the program
clear to all, but diffuse expectations of "quick-fixes."

e Explicitly decouple the measurement program from individual
performance appraisal.

e Work to maintain momentum beyond the introduction of
measurement; loss of momentum will threaten when the excitement

subsides and the hard work begins.

» Take steps to see that any tools required by the program are made
available.

* Make sure that goals are well defined and that process improvement
suggestions are acted upon quickly.

* Emphasize teamwork and joint responsibility for solving problems,
rather than attributing blame.

8.6 How Software Measurement Is Related to the Capability
Maturity Model

Software measurement is used at stages of the maturity model above level 1. Higher
stages require more sophisticated measurement systems. At the fourth and fifth lev-
els, respectively, "process and products are quantitatively understood and controlled
using detailed measures,” and "continuous improvement is enabled by quantitative
feedback” [Paulk 93]. For more details on the par . metrics that can be used at
each level of the CMM, see [Baumert 92].

Although measurement is most emphasized within the CMM level 4 (managed) as part
of the KPA quantitative process management, it is a tool that can be effectively used
at all levels of the CMM in varying degrees. This can be illustrated in Figure 8-1 which
identifies a higher level of measurement application sophistication for organizations at
higher levels of the CMM. It is suggested that level 1 organizations not consider using
measurement until they have defined and documented their high-level software devel-
opment process. Once a process is documented and is being followed, an organiza-
tion can begin collecting primary data that will be useful to build project management
skills for the level 2 KPAs software project planning and software project tracking and
oversight. Primary data could include measures for such basic categories as size, ef-
fort, schedule, and defects. At level 2, the organization uses the primary data for es-

CMU/SEI-83-TR-27 &3

timating and tracking projects. At level 3, the organization uses product quality data
to support their process. Organizations at level 4 implement process measurement
and analysis. At level 5 measurement is used to support DPP and provide feedback
for process change management. Organizations at level 5§ can also perform action al-
ternative tradeoffs based upon benefit measurements.

Investment in measurement must be made to increase an organization to a higher lev-
el. This investment requires building skills, and integrating more sophisticated use of
measurement for data collection and analysis coupled to the organization's goals and
process. In general, the investment necessary to initiate measurement activities and
barriers to overcome are most difficult for an organization moving from level 1 to level
2 and from level 3 to level 4 [Humphrey 89].

Defect Prevention,
Process Feedback & Improvement, Level 5
Benefits Measurement
Process Level 4
Measurement
Increasing Product Quality Level 3
Measurement Skills

&

Investment
Project Management Level 2
Primary Data Collection Level 1

Figure 8-1. Measurement Activities for Organizations at Various CMM Levels

64 CMU/SEI-93-TR-27

8.7 Summary Comments on Measurement

Measurement is a fundamental skill for organizations wishing to improve their software
development process. Measurement can be applied at all levels of the CMM. Practi-
tioners of measurement must remember that collection of data by itself has minimal
value. What is important is how the data are used to continually improve the software
development process. Measurement is thus widely used along with other methods of
software process improvement.

8.8 References and Further Readings - Measurement

[Albrecht 79)

[Austin 92]

[Baumert 92]

[Boehm 81]

[Evangelist 88]

[Fenton 91]

[Grady 87]

[Humphrey 89)

[Jones 91])

Albrecht, A.J. "Measuring Application Development Produc-
tivity," Proc. of the Joint SHARE/GUIDE Symposium, pp. 83-
92.

Austin, R., Larkey, P. "The Unintended Consequences of Mi-
cromanagement: The Case of Procuring Mission Critical
Computer Resources," Policy Sciences, 1992.

Baumert, John H. Software Measures and the Capability Ma-
turity Model (CMU/SEI-92-TR-25) Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1992

Boehm, Barry W. Software Engineering Economics, Engle-
wood Cliffs, NJ: Prentice-Hall, 1981.

Evangelist, Michael, "Complete Solution to the Measurement
Problem," JEEE Software, Jan. 1988.

Fenton, Norman E. Software Metrics: A Rigorous Approach,
Chapman & Hall, London, 1991.

Grady, Robert B., Caswell, Deborah L., Software Metrics: Es-
tablishing a Company-Wide Program, Englewood Cliffs, NJ:
Prentice-Hall, 1987.

Humphrey, W. S. Managing the Software Process, Addison-
Waesley, Reading, MA, 1989.

Jones, Capers, Applied Software Measurement, New York:
McGraw-Hill, 1991.

CMU/SEI-93-TR-27

65

[M3lier 93]

[Paulk 93]

[Zuse 90]

Mdller, K.-H., Paulish, D.J. Software Metrics: A Practitioner's
Guide to Improved Product Development, IEEE Computer So-
ciety Press, Los Alamitos, CA, 1993.

Paulk, Mark C. et al, Capability Maturity Mode! for Software,
Version 1.1, (CMU/SEI-93-TR-24, ESC-TR-93-177), Pitts-
burgh, PA: Software Engineering Institute, Camegie Melion
University, February 1993.

Zuse, H. Software Complexity: Measures and Methods, de
Gruyter, 1990.

CMU/SEI-93-TR-27

9 Computer Aided Software Engineering (CASE)

9.1 Overview

Computer aided software engineering, usually denoted by its acronym CASE, refers
to automation of the software development process. The central premise of CASE is
that the fundamental structure of a software system is present in abstract models of its
data organization and process flows, which typically exist very early in the develop-
ment process. If an abstract model can be created in a standardized (perhaps dia-
grammatic) language, then lower level elements of design, such as physical database
definitions and code, can be automatically generated from the model. Benefits from
CASE derive from the fact that once an automated system generation capability is in
place, changes to the system are easier. Changes are made to the abstract model,
then a replacement system is automatically generated. Development becomes a pro-
cess of creating the model, generating and testing a system, adjusting the model, re-
generating and retesting, and so on. Taken to its logical conclusion, CASE could
make coding as we now know it today virtually obsolete, just as third generation lan-
guages dramatically reduced the prevalence of machine coding. The resulting pro-
ductivity gains are obvious, but equally dramatic quality improvements could result as
well, because of decreased opportunities to inject defects and automated tests to de-
tect defects that do exist.

9.2 History/Background

What is now called CASE began in the mid-70s when Dan Tiechroew and his col-
leagues at the University of Michigan developed a user-oriented requirements speci-
fication tool called PSL/PSA, which had a limited capability for detecting specification
errors but did not permit the generation of lower level specifications [Barros 92]. Since
then, a variety of products designed to automate segments of the development cycle
have evolved for many different computing environments.

Results of using CASE are mixed. Some projects experience significant benefits. In
others, benefits are not realized and CASE technology becomes “shelf-ware.” Some
of the reasons for the differences in experiences are summarized below. For now,
CASE is a means of improvement to be used judiciously, by relatively mature software
organizations. However, the greatest payback from CASE is probably yet to come, as
technology and software organizations evoive and improve.

CMU/SEI-93-TR-27 67

9.3 Description of CASE

9.3.1 Examples of CASE Tools

Automation of any aspect of the development cycle can be called "“CASE." Business
planning, data and process modeling, database design, and code generation tools
might all be considered CASE tools. The makers of some simple drawing tools have
even claimed the title. As of 1990, there were more than 160 vendors claiming to sell
CASE tools [Nejmeh 90). Most commonly, CASE is used to refer to tools that support
software design and analysis methods.

CASE tools that are designed to support specific phases of the software development
process are called vertical CASE tools. Some example vertical CASE tools are given
in Table 2, which is reproduced from an internal Siemens report.

Table 2: Vertical CASE Tools

Phase UNIX DOS Macintosh
Concept FrameMaker, Inter- Word Word, Claris
leaf
Requirements StP, Teamwork, EasyCASE, Power | HyperCard, MacAn-
StateMate, Power Tools, System alyst, OOA, Power
Tools Developer I Tools, TurboCase
Design StP, Teamwork, EasyCASE, Power MacDesigner,
StateMate, Power Tools, System OOD, Power Tools,
Tools Developer 1 TurboCase
Construction cc, CC (C++), Code- Borland C++, Mac Programmer’s
Center (C), Object- | Microsoft C, Power | Workshop, Power
Center (C++), Tools, Turbo C, Tools, Think C
Power Tools, Team- Turbo C++
work
Integration & Test | Power Tools, Smart- Power Tools Mac Programmer’s
System, Teamwork Workshop, Power
Tools
Maintenance StP, Teamwork, Power Tools Mac Programmer’s
Hindsight, Bat- Workshop, Power
tleMap, SmartSys- Tools
tem

68 CMU/SEI-93-TR-27

CASE tools that are used to support an activity that occurs during mutltiple or all phas-
es of the software development process are called horizontal CASE tools. Some ex-
ample horizontal CASE tools are given in Table 3, which is reproduced from a
Siemens internal report.

Table 3: Horizontal CASE Tools

Activity UNIX DOS Macintosh
Configuration Mgt. | rcs, sccs, TeamNet PVES, Version Mac Programmer’s
Manager Workshop
Documentation FrameMaker, Inter- Word Word, Claris
leaf
Project Mgt. GECOMO Plus, Microsoft Project, | Project Scheduler 4,
Pertmaster Advance Time Line MacProject,
Microsoft Project
Measurement & GECOMO Plus, Checkpoint, PC- MC-Metric
Quality Assurance Battlemap, SIZE Metric, Software
Plus, UX-Metric Metrics Repository

9.3.2 Upper and Lower CASE

The application of CASE to requirements definition, design, and analysis—sometimes
called simply "upper CASE"—is initiated by the request for a specific system to be
built. Requirements analysis frequently proceeds in a forum much like business plan-
ning, with a facilitated cross-functional group process used to identify, group, and pri-
oritize requirements, and a CASE tool used to document the process. When
requirements have been defined, analysis often begins with analytical data and pro-
cess models. In the futuristic ideal case, a data model for the entities involved in the
system already exists in the organization’s library of data models, and can be incorpo-
rated and tailored for the system at hand. Few organizations are currently so ad-
vanced; thus, the data model does not exist and must be created in a diagrammatic
specification language. Similarly, in the ideal situation, a generic process for the sys-
tem will already exist, but usually this must also be created, again in a specification
language. The models are then linked, and cross checked automatically (to ensure,
for example, that processes do not require data elements that are not present).

Eventually, CASE technology is expected to evolve to a point where most of the work
will be done during analysis. Low-level design will involve various decisions about the
physical implementation of the system (such as how a database will be tailored to fit
the physical database environment). Thus “lower CASE" tools are required to refine
data and process models into physical implementations from which code can be gen-

CMU/SEI-83-TR-27 69

erated. Designers, working at design workstations, carry out this work and operate the
generation facilities which produce code. In addition, there exist upper and lower
CASE tools, which are capable of producing complete applications for specialized do-
mains (e.g., system development language (SDL) for telecommunications, information
engineering for management information systems (MIS)).

9.4 Experience with CASE

There are no long-term studies on the economics of CASE, because the industry is
barely 10 years old. In fact, over half of all CASE users have less than three years
experience with it [Jones 92]. Users of CASE seem to experience productivity gains,
but not always dramatic ones. Sullivan [Sullivan 90] claims that there are only two
studies that show a relationship between CASE and project productivity. One of these,
by Lempp and Lauber, 1988, reports a 9 percent cost savings immediately, but a 69
percen. savings on maintenanc: costs. Since maintenance costs are a considerable
portion of system costs over the life of a s stem, Sullivan concludes that the 9 percent
savings reported by Lempp and Lauber is probably an underestimate. Savings on
maintenance are a consistent finding in the literature on CASE [Jones 92).

Necco, et al. (1987) found that systems designed using CASE were ranked higher
than non-CASE systems in a number of important development performance catego-
ries (e.g., timeliness of delivery). Binder [Binder 90] reports that according to his sur-
vey, software developers that use CASE claim an average 28 percent perceived (i.e.,
subjectively estimated, not measured) increase in overall productivity. However, as
Jones [Jones 92] points out, no controlled experimental studies have been done. He
finds, based on his own survey data, that in the first year of CASE use, productivity
actually decreases (probably due to learning effects). Jones estimates a payback pe-
riod of between two years under very favorable conditions (i.e., when introduction of
CASE and requisite training coiiicide with the start of several important projects), and
never as when a CASE system is abandoned.

While there are no hard data to support their claim, users of CASE believe that quality
improvements are one of the main advantages of CASE [Sullivan 90}, [Jones 92]. The
reason for this persistent perception seems to be that CASE-produced work products
are easier to review and test [Jones 92].

While benefits do seem to accrue to those who call themselves users of CASE, it is
clear that there is a sampling bias. Organizations that begin to use CASE and do not
succeed, probably do not call themselves CASE users; their experiences are noi re-
ported in studies of CASE users. This fact is not lost on those who have studied CASE,
and consequently, there are some studies that attempt to identify the differences pe-
tween CASE users and nonusers.

70 CMU/SEI-83-TR-27

It appears that successful CASE users are well trained [Binder 90), [Jones 92]. With-
out effective training, failure rates exceed 50 percent [Jones 92]. Organizations where
CASE has been successful are already using sound and sophisticated methods (e.g.,
entity relationship modeling, Yourdon process modeling) methods, and tend to use
CASE in conjunction with intensive customer-involvement methods such as joint ap-
plication design (JAD) [Sullivan 90]. Also, not surprisingly, successful CASE users
had been using CASE for a relatively long time [Binder 90]. Culver-Lozo and Glezman
[Culver-Lozo 92] recount use of CASE tools on 15 projects, 6 of which abandoned
CASE midway through; the differences they observe between successful and unsuc-

cessful CASE users echo those above.

9.5 Suggestions for introduction and Use
Many of the above reported experiences suggest advice on adopting CASE:

¢ Introduce and train everyone in the design and analysis methods first.
* Make sure all analysts who will use CASE are well trained on the tool.

» Use CASE in conjunction with methods that promote intensive
interaction between customer and analyst.

* Be prepared for a learning curve; do not expect immediate results.

¢ Make sure managers understand that CASE will change development,
require leaming time, and perhaps cause productivity losses in the first
year.

CASE users provide the following additional tips [Nash 92]:

¢ Using CASE on just one project is a waste of money because start up
costs will wipe out any savings; to obtain real payback, CASE must be
deployed more broadly.

e Start with projects that have somewhat fiexible deadlines because of
the leaming curve required.

* Prepare staff to releam their jobs; developing with CASE is very
different than developing in old-style mainframe environments.

e Choose analysts with business sense, who can translate the
ambiguous into the structured language of the CASE tool.

* Make sure the vendors or experienced third-party consultants are
available for hand-holding.

CMU/SEI-@3-TR-27

n

]

e Use CASE in conjunction with project management tools and
techniques, because CASE projects grow quickly and in ways to which
analysts are unaccustomed.

e Establish a measurement system that you can use to determine the
benefits of CASE.

Similarly, an internal Siemens report identifies the following CASE adoption issues:

e Gain control of the software development process first, then apply
CASE.

¢ Consider new methods along with the tools, automating a mess will
only result in an automated mess.

* Before selecting a CASE tool, select a development methodology for
the project.

* Be aware of and plan for the need to manage organizational change.

¢ Train management and staff on both the new methods and CASE
tools.

¢ Plan for all costs such as those to purchase the tools and training, as
well as personnel costs associated with learning and tools support.

e Manage expectations; productivity may decrease during the learning
curve, and gains may be minimal.

¢ Use measurement to monitor progress and impact of CASE.

9.6 How CASE Is Related to the Capability Maturity Model

As has been observed already, CASE is most likely to succeed in software organiza-
tions with mature, well-defined processes. At the least, a software development pro-
cess must be defined, which would place CASE application at level 3. CASE use
would be primarily within the level 3 KPAs of organization process focus and software
product engineering. Horizontal CASE tools can be used to support the implementa-
tion of level 2 KPAs such as software configuration management, software quality as-
surance, and software project tracking and oversight. Within application domains
where fully automated solutions exist, it is recommended that organizations at any pro-
cess maturity consider applying such tools (e.g., SDL for telecommunications, infor-
mation engineering for MIS).

72 CMU/SEI-93-TR-27

9.7 Summary Comments on CASE

CASE seems to hold some promise for changing the way software is created. The
technology has advanced to the point where successes with CASE are beginning to
be significant. This will probably improve in the coming years. However, it is clear that
CASE is not an off-the-shelf panacea, a miraculous technology which needs only to
be purchased to provide return on investment. Organizations that successfully use
CASE are, almost without exception, already successful in the use of structured meth-
ods of requirements definition, analysis, and design. Before using CASE, an organi-
zation must get its process house in order. Then, it must weigh the suitability of its
applications environment for this not entirely mature improvement method. Sophisti-
cated users with appropriate applications will probably experience success with

CASE, certainly in the long run, if not right away.

9.8 References and Further Readings - CASE

[Barros 92]

[Binder 90}

Barros, Oscar. "A Pragmatic Approach to Computer-Assisted
System Building," Journal of Systems and Softwars, Vol. 18,
1992.

Binder, Robert. "A Model of CASE Users," CASE Outlook, No.
1, 1990.

[Culver-Lozo 92] Culver-Lozo, Kathleen, Glezman, Vicki. "Experiences Apply-

[Jones 92]

[Nash 92]

[Nejmeh 90]

[Sullivan 90)

ing Methods Supported by CASE Tools," AT&T Technical
Journal, November/December 1992.

Jones, Capers. "CASE's Missing Elements," /IEEE Spectrum,
June, 1992.

Nash, Kim S. "Words from the CASE-wise: Think big, know
your vendor,” ComputerWorld, Vol. XXVI, No. 43, October 26,
1992.

Nejmeh, Brian A. "“Designs on CASE," Unix Review, Vol. 6,
No. 11, 1990.

Sullivan, Patrick J. “A Study of CASE Early Adopters," CASE
Outlook, No. 1, 1990.

CMU/SEI-93-TR-27

74

CMU/SEI-93-TR-27

10 Interdisciplinary Group Methods (IGMs)

10.1 Overview

Interdisciplinary group methods (or IGMSs) is our collective term for the various forms
of planned interaction engaged in by people of diverse expertise and functional re-
sponsibilities working jointly toward the completion of a software system. Many IGMs
are intended to structure group interaction through use of rules, technologies, or
modes of organization, to improve group performance. Examples of such methods in-
clude joint application design (or JAD), certain forms of rapid prototyping, concurrent
enginaering, and quality circles. The purpose of IGMs is to maximize the advantages
of group work, which result from bringing numerous and diverse perspectives to bear
on a problem, while minimizing group work's undesirable side affects, such as real or
imagined pressures to conform.

10.2 History/Background

IGMs arose from suggestions that gained popularity in the late 1960s that groups
might perform some tasks better than individuals. Application of this idea took numer-
ous forms, but usually involved structuring interaction between individuals in face-to-
face meetings, or providing technological support for their interactions. The ideas were
extended to software design in the form of JAD as promoted by IBM, and a variety of
emerging technologies for electronic mail and conferencing. Despite the relatively
long history, evidence of the success of these methods remains mixed. Part of the
problem is that variation in methods and the group task undertaken makes it difficult
to compare "apples to apples.” Success in use seems conditional on a number of fac-
tors, not all of which are known. Consequently, all recommendations of these methods
must be qualified with the phrase "in appropriate circumstances." In appropriate cir-
cumstances, however, there is evidence that these methods can be highly successful.

10.3 Description of Interdisciplinary Group Methods

Three loose and overlapping categories of methods can be defined: group dynamics
facilitation, groupware methods, and team organization.

* Group dynamics facilitation includes methods such as nominal group
technique (NGT) [Delbecq 75}, [Hegedus 86], and related software-
specific techniques that have arisen to define system requirements
(like JAD, [Corbin 91]) or to estimate project cost and schedule [Taff
91].

CMU/SEI-93-TR-27 75

¢ Groupware methods are those which make use of software tools that
support group interaction; these tools range from group conferencing
and electronic mail software to certain varieties of rapid prototyping
software.

e Team organization describes the practice of staffing project groups
with personnel of mixed expertise and functional responsibilities to
improve communication and foster cross-pollination of ideas.
Concurrent engineering is a commonly used phrase that refers to such
a type of team organization.

Each of these methods is explained further in the following sections. Many specific
techniques overiap two or more categories.

10.3.1 Group Dynamics Facllitation

This is perhaps the oldest category of IGMs and the most generic. Davis [Davis 69}
argued that there were advantages to resolving problems within groups, not least of
which were the different insights and knowledge bases that could be brought to bear
on the problem. By extension, an interdisciplinary group would offer special advantag-
es because of its corresponding wider diversity of insights and knowledge bases. But
in the early 70s, behavioral researchers believed that many of the benefits of group
problem solving were not realized in real groups because of undesirable characteris-
tics of group interaction. Most significant among these were group pressures to avoid
expressing deviant ideas or offering suggestions that would be deemed not in keeping
with the theme of the discussion. Groupthink, as studied by Janis [Janis 72], was rec-
ognized as a particularly onerous problem in which members of a group who did not
agree with the majority were considered disloyal and ostracized by the group, espe-
cially in crisis situations. The desire to realize the benefits without the costs of group
interaction lead to the development of the nominal group technique (NGT) from which
many group software design methods are descended.

NGT involves use of a facilitator who enforces certain rules of interaction in the group.
The rules are intended to eliminate pressures to conform and result in the five unique
features of NGT, which are recognizable in methods like JAD today. The five features
are: (1) individual work that precedes group discussion, (2) round-robin reporting to
communicate ideas among the group members, (3) a period of largely unstructured
group discussion, (4) a polling procedure used to converge on a specific solution, and,
(5) some face-to-face individual and group work [Hegedus 86].

Numerous techniques similar to NGT have been developed to help software develop-
ers improve requirements gathering and analysis. These techniques include JAD,
WISDM, Rapid Analysis, CONSENSUS, Accelerated Analysis, The Method, and

76 CMU/SEI-93-TR-27

many similar methods by sther names. All use a facilitator who leads the group
through steps of idea generation, clarification, discussion, and decision. In some, sub-
groups work together during breakout periods and retum to the larger group to report
their results. Sessions last anywhere from one to two-and-one-half weeks, and involve
a dozen or so participants, mostly from the user community. Development personnel
are available to answer technical questions but play a secondary role. The idea is to
have the users design their own system specification. Some of the methods produce
complete requirements and analysis specifications, sometimes inciuding data flow di-
agrams and data organization tables. The duration of the requirements gathering and
analysis phases of the development cycle are often dramatically shortened as a con-
sequence.

10.3.2 Groupware Methods

Groupware is an exceptionally broad category of software tools. It ranges from tech-
nologies that facilitate group communication (like electronic mail and conferencing), to
sophisticated computerized meeting facilities, to advanced rapid prototyping technol-
ogies, or any combination of these. The common feature of groupware methods is that
they all constitute conscious attempts to take advantages of the new capabilities pro-
vided by the software tools. Potential advantages are due not only to modes of inter-
action made possible that formerly were not, but also to the ability to impose structure
on interaction through use of the technology. Where group dynamics facilitation used
a facilitator to enforce corrections to group process, groupware methods can substi-
tute technological constraints. Technology can be designed, for example, to equalize
participation among group members or to allow anonymous voting on an issue.

One sort of groupware is often used in support of group dynamics facilitation. During
a group session much information is generated and it is convenient to capture the in-
formation by using an automated tool. If the tool can interface with a CASE tool, then
the development process is made even more streamlined. Having the output of such
a session in a format where it can easily be modified, version controlied, and repro-
duced is a great advantage in many situations.

Computerized meeting facilities take groupware one step further. These "group deci-
sion support systems" or GDSSs often allow each person access to an independent
computer [Dennis 88). Group members exchange control of a commonly visible
screen usually mounted on a wali, and may be able to communicate to each other pri-
vately via the keyboard. Obviously there are a great number of possible configurations
of such rooms, many of which might hold promise for a software development facility.
Elaborations of this concept include meeting rooms where not all members of the
group are in the same location, but still are able to communicate and see a common
work surface.

CMU/SEI-93-TR-27 77

Particularly advanced forms of groupware methods might actually involve users in
construction of a prototype system. “"Fourth generation® prototyping systems which
include facilities for rapid construction of user interfaces and automatic coding from
specifications are not far from this goal [Gronbaek 88]. One can easily imagine a com-
bination of a JAD-like method with prototyping tools in an automated meeting facility,
which would allow users to interact with prototypes and specify further development of
the system at each stage of development. Such a facility is currently under develop-
ment at the University of Michigan's Cognitive Science and Machine Intelligence Lab-
oratory [Katterman 90).

10.3.3 Team Organization

A team is a group of people with particular expertise(s) assembled to perform a spe-
cific task. Team organization describes ways of choosing the composition and organi-
zational structure of teams to improve the likelihood of a favorable outcome. One
useful and common team organization is interdisciplinary and linked together by dense
informal relationships. Concurrent engineering, sometimes referred to as simuilta-
neous engineering ([Dumaine 89], [Gordon 89}, [Schmelzer 89)), calls for constructing
a team composed of all the different functions required in the development of a product
and involving all of them simultaneously in a project from beginning to end. Many ben-
efits have been realized from such a team organization: problems that arise are more
often anticipated and coordination is improved throughout the production cycle. It
seems likely that especially large or complex projects, where coordination and unex-
pected problems are common, would benefit most from attention to team organization.
In particular, recent attention is being paid to software projects in which software is em-
bedded within hardware which is also being designed for the first time. Techniques
applied to such systems are collectively referred to as hardware/software codesign.

Other sorts of team organization have played important roles in software process im-
provement. Quality circles (QCs) have been implemented in many organizations.
QCs are a combination of team organization and group dynamics facilitation in that
they usually follow a structured problem solving routine that involves data analysis,
cause-and-effect diagramming, and elementary statistical plotting.

10.4 Experience with Interdisciplinary Group Methods

IGMs are not a single specific method. There are many variations and, because IGMs
are specifically designed to affect the delicate balance of human social interaction, the
differences matter. It is, therefore, exceedingly difficult to make general statements
about the usefulness of IGMs. In some contexts they are spectacularly successful,
and in others they are dismal failures. Successes are necessarily over-represented in

78 CMU/SEI-93-TR-27

the trade literature (people usually do not report failures), but the mixed results from
the research literature provides reason to believe that the failures are out there.

10.4.1 Group Dynamics Facllitation

There has been considerable experimental research done on NGT for a variety of
tasks. Conclusions about the performance of groups using the method relative to the
performance of individuals and unstructured groups are mixed, but some general prin-
ciples do seem to emerge [Hegedus 86]. One of these focuses on the nature of the
task being undertaken. In particular, whether the task is easily divisible into manage-
able chunks seems to make a difference. If not, “the individual-group decision se-
quence in the NGT may compound, rather than reduce, the complexity of such tasks"
([Hegedus 86), pg. 547). Use of NGT-like methods (including JAD and its siblings) on
more unitary evaluation and decision making tasks is likely to produce poor results.
Another finding is that NGT participants often express satisfaction with the method
whether or not it produces better outcomes [Gladstein 84]. Thus NGT and similar
methods have the potential to become popular without doing much good.

Fortunately, many software requirements definition and analysis tasks are divisible
into subtasks. There is evidence that when group sessions are restricted to the pur-
poses for which they were conceived (i.e., requirements definition and analysis for a
particular system), the chances for success are good (see [Corbin 91], for example).
Organizations considering using a similar technique for less standard tasks should
proceed carefully. Consultants who specialize in facilitation of group sessions can
sometimes advocate the “I've got a hammer and all of your problems are nails" syn-
drome. Other uses of the method are possible, but common sense and the above stat-
ed principle of suitability of task should be employed in extending the method to other
types of tasks.

10.4.2 Groupware Methods

In the area of groupware methods, "apple-to-apple® comparisons are exceptionally
hard to find. So many of the technologies that permit these methods are just emerging
that it is impossible to generalize. Electronic mail and conferencing facilities are widely
used and have been studied [Sproull 86], and computerized meeting facilities have
been the subject of some research (e.g., [Nunamaker 88], [Dennis 88}, [DeSanctis
87]), as has rapid prototyping (e.g., [Gronbaek 88]). But very few general principles
have emerged. One of the case study sites in the Siemens/SEl Measuring Software
Process improvement Methods Project is utilizing groupware methods for multination-
al product development among teams in Germany and the USA. The following para-
graphs describe experience with the most common groupware methods — electronic
mail, computerized meetings rooms, and rapid prototyping.

CMU/SEI-93-TR-27 79

Electronic Mail

Research on electronic mail has revealed that people do change their patterns of so-
cial interaction in response to new technologies. For example, electronic mail commu-
nication is without many of the cues of social context that are present in verbal
communication, like tone of voice, and this has effects on the nature of interaction via
the electronic medium. Among the interesting findings is that people are more likely
to *flame" - i.e., to use strongly worded statements, including profanity — when using
electronic mail than they would in face-to-face communication [Sproull 86).

Computerized Meeting Rooms

Computerized meeting room research has shown that participation can be made more
equal by use of technology [Zigurs 88). Results concerning whether task outcome is
improved are mixed. As with NGT, satisfaction with the method seems high, but sat-
isfaction is sometimes not correlated with improved performance. Like NGTs, group-
ware technologies may be popular without doing much good.

Rapid Prototyping

Few results are available on rapid prototyping. Gronbaek [Gronbaek 88] conducted a
limited empirical study in which he found that horizontal prototypes, which had the sur-
tace appearance of a system but little functionality, were inferior to vertical prototypes,
which provided a narrower range of interfaces but more functionality, at engaging the
user's interest.

10.4.3 Team Organization

Team organization, especially concurrent engineering, is widely credited with signifi-
cant improvements in product development over the past decade and a half. Team
organization is usually customized to the task, which compromises the relevance of
experimental research on small group work. For this reason, most of the evidence of
the success of team organization is anecdotal, based on a few famous success sto-
ries.

One of the most famous examples of successful team organization is "Team Taurus,"
which designed the Ford Motor Company's highly successful sedan. Ford combined
an interdisciplinary group of designers, process engineers, tool builders, marketers,
sales people, promotion staff, and research and development (R&D) people in a team
that worked on a design together from drawing board to dealer showroom. Many ac-
tivities that had traditionaily been performed in sequence (design then manufacturing
then marketing) were done in parallel with close coordination among team members
engaged in different activities (hence the phrase "concurrent engineering®) [Boudette

80 i CMU/SEI-93-TR-27

90]. There is evidence that Japanese auto firms have worked in similar teams for
many years [Ouchi 81], [Liker 93]. Teams are becoming more prevalent in westem in-
dustry overall. Siemens Automotive Division of Newport News, Va. has reorganized
completely into teams. There are no longer functional departments (e.g., manufactur-
ing, accounting, etc.); but instead most personnel work in interdisciplinary teams orga-
nized around products [Boudette 90].

Quality circles (QCs) provide an interesting case of team organization because they
are perceived by some to have been less than completely successful. The Economist
[Econ 92] reports that the only U.S. firm to win the Japanese Deming Award, Florida
Power and Light Company, has disbanded most of its quality teams. Hyde [Hyde 86]
provides a list too lengthy to reproduce here of reasons why the use of QCs and similar
teams has waned. His conclusions are that QCs were oversold to organizations that
did not understand and were not ready for true team organization, and whose man-
agement ultimately lacked conviction in the team building process.

10.5 Suggestions for Introduction and Use

Suggestions for use are specific to the categories of IGMs and, sometimes, to meth-
ods within the categories.

10.5.1 Group Dynamics Facllitation

In general, great attention should be paid to the task being undertaken. If the task is
nonstandard (i.e., not requirements analysis or something like it), then care should be
exercised in considering the suitability of the task to the method. As mentioned earlier,
the task should be one that lends itself to division into parts.

Corbin [Corbin 91] provides the following recommendations specifically for JAD, al-
though they are ciearly more generally applicable.

e Team members need to be those who "can't be spared from their
current jobs." The task will be performed in the best manner possible
only with the participation of those people whose knowledge of the
application is so critical that they and others feel that they cannot leave
it alone for a week or two.

* Get management support at a level high enough to free critical
individuals to participate.

 Choose facilitators carefully; a good facilitator will have excellent
people skills and a good command of systems development concepts.
This is a rare combination, even among consultants in this business.

CMU/SEI-93-TR-27 a1

o Meet off-site where participants cannot be called away for phone calls
or crises.

¢ The Information Systems (IS) staff should be seen, not heard; the
team should be composed of mostly users, and the developer's role is
to listen and provide answers to technical questions.

In using group dynamics methods, one should realize that the specific procedures and
rules have very important behavioral justifications, even when they are not apparent.
Some methods described elsewhere in this report, such as formal inspection, use
group dynamics techniques to facilitate their implementation, and there is a lesson that
can be drawn from this observation. The success of formal inspections has been
shown to be quite sensitive to variation in specific rules of conduct. Review methods
that depart from the Fagan rules usually are not as effective, because they allow un-
desirable side-effects of group activity to creep back into the task. Similarly, group dy-
namics facilitation of all kinds are more likely to be successful when the rules of
conduct are obeyed. If the decision-making task cannot be usefully accomplished
within the rules, then perhaps the method is not right for the task.

10.5.2 Groupware Methods

Little can be said here because of the tremendous variation across groupware and as-
sociated methods. Again, suitability of the method to the task should be important.
Also, those who use these methods should remain aware that the technology is likely
to be popular whether or not it is effective. For this reason, those who implement
groupware methods should insist on evidence of increased effectiveness to offset the
costs of the associated technology. On the other hand, there is some evidence that
such technologies may become useful in ways that were not anticipated. implement-
ers should be alert for “second-order” benefits of this sort, that arise from people find-
ing the technology usetul in ways that were not planned. As with many things, simple
is probably better in groupware methods.

10.5.3 Team Organization

Some lessons can be drawn from instances of success and from Hyde's [Hyde 86]
analysis of the failure of QCs.

o It is often useful to group people from different functional areas
together and associate them with a project or an objective to be
accomplished.

82 CMU/SEI-93-TR-27

——

* It is important that the group perceives itself as a team. An on-paper-
only reorganization accomplishes nothing; team feeling is built through
frequent interaction, collocation, and related interpersonal factors.

e The team environment should be designed to maximally facilitate
informal communication. Team organization is an attempt to
substitute informal modes of communication and group structure for
more formal ones; thus, attention must be paid to making the informal
modes possible.

* It should be recognized that the transition from a formal, hierarchical
organization to a flatter, less formal, team-based organization is
dramatic. Time and attention should be paid to who the perceived
losers are in the reorganization; if middle management, for example,
perceives a threat to its power base, they can subvert team
organization.

* Team organization must really be team organization, not traditional
organization disguised; to achieve the sort of informal control required
in team organization, there must be two-way commitment, team
members to the effort and the organization to the team members.

e Team organization is not a few specialized methods like Pareto
analysis, or cause and effect diagramming; these tools may be used
by the team, but they are not what defines the team.

10.6 How Interdisciplinary Group Methods Are Related to the
Capability Maturity Model

The various interdisciplinary group methods described correlate to the level 3 key pro-
cess area, intergroup coordination. The methods described provide assistance to or-
ganizations wishing to better coordinate the activities and interaction among various
functions involved with the development of software products. These functions can in-
clude groups within software engineering (e.g., a design team) or to groups external
to software engineering (e.g., hardware engineering, marketing, service, test).

10.7 Summary Comments on Interdisciplinary Group Methods

IGMs seem to hold considerable promise for improving the way software is developed,
but only if great attention is paid to the appropriateness of the method to the task.
There is a tendency with these methods to think that they will solve too many prob-
lems. In areas where they are tried and true, like requirements definition, no organi-
zation should hesitate to use them, provided the organization can get the level of

CMU/SEI-83-TR-27 83

management support necessary to assemble the right participants. Also, for those
who have some behavioral sophistication and are willing to be pioneers, combining
methods from the three categories may hold great promise.

10.8 References and Further Readings - IGMs

[Boudette 90] Boudette, N. E., "Give Me a T!' Give Me an 'E!'...," Industry
Week, 62-65, January 8, 1990.

[Corbin 91]) Corbin, D. S., "Team Requirements Definition: Looking Fcr A
Mouse and Finding an Elephant," Joumnal of Systems M: -
agement, 28-30, May, 1991.

[Davis 69] Davis, J. H., Group Performance, Addison-Wesley, Reading,
MA, 1969.

[Delbecq 75] Delbecq, A. L., Van de Ven, A. H., Gustafson, D. H., Group
Techniques for Program Planning, Scott, Foresman, Glen-
view, IL, 1975.

[Dennis 88]) Dennis, A. R., George, J. F., Jessup, L. M., Nunamaker, J. F.,
Vogel, “Information Technology to Support Electronic Meet-
ings," MIS Quarterly, Vol. 12, No. 4, 591-624, 1988.

[Desanctis 87] Desanctis, G. and Gallupe, R., "A Foundation for the Study of
Group Decision Support Systems,” Management Science,
Vol. 33, No. 5, 589-609, 1987.

[Dumaine 89] Dumaine, B., "How Managers Can Succeed Through Speed,"
Fortune, Feb. 13, 1989.

[Econ 92] *Cracks in Quality,” The Economist, 67-68, April 18, 1992.
[Gladstein 84] Gladstein, D. L., "Groups in Context: A Model of Task Group
Effectiveness," Administrative Science Quarterly, Vol. 29,

499-517, 1984.

[Gordon 89] Gordon, F., Isenhour, R., "Simultaneous Engineering," Engi-
neering Manager, Jan. 30, 1989.

84 CMU/SEI-93-TR-27

[Gronbaek 88]

[Hegedus 86])

[Hyde 86]

[Janis 72]

[Katterman 90)

[Liker 93]

Gronbaek, K., "Rapid Prototyping with Fourth Generation Sys-
tems," Technical Report, Aarhus University Computer Sci-
ence Department, Aarhus, Denmark, November, 1988.

Hegedus, D. M., Rasmussen, R. V., "Task Effectiveness and
Interaction Process of a Modified Nominal Group Technique
in Solving an Evaluation Problem," Journal of Management,
Vol. 12, No. 4, 545-560, 1986.

Hyde, W. D., "How Small Groups Can Solve Problems and
Reduce Costs," Industrial Engineering, 42-49, December,
1986.

Janis, I. L., Victims of Groupthink, Houghton Mifflin, Boston,
MA, 1972.

Katterman, L., "The Future of Collaboration,” Research News,
The University of Michigan, Division of Research Develop-
ment and Administration, May-June, 1990.

Liker, J. K., Kamath, R. R., Wasti, N., Nagamachi, M., "Suppli-
er Involvement in Product Development in Japan and the
U.S.," University of Michigan working paper, 1993.

[Nunamaker 88] Nunamaker, J., Applegate, L., Konsynski, B., "Computer-Aid-

[Opper 88]

[Ouchi 81]

[Schmelzer 89]

[Sproull 86]

ed Deliberation: Model Management and Group Decision
Support," Operations Research, Vol. 36, No. 6, 826-848,
1988.

Opper, S., "Making the Right Moves with Groupware," Per-
sonal Computing, 134-140, December, 1988.

Ouchi, W. G., Theory Z, Addison-Wesley, Reading, MA, 1981.

Schmelzer, H.J., "How to Gain a Competitive Edge", Siemens
Review, Nov./Dec. 1989, Vol. 56, 6/89.

Sproull, L., Kiesler, S., "Reducing Social Context Cues: Elec-
tronic Mail in Organizational Communication,” Management
Sciences, Vol. 32, 1492-1512, 1986.

CMU/SEI-93-TR-27

85

[Taff 91) Taff, L. M., Borchering, J. W., Hudgins, Jr., W. R., "Estimeet-
ings: Development Estimates and a Front-End Process for a
Large Project," IEEE Transactions on Software Engineering,
Vol. 17, No. 8, 839-849, August, 1991.

[Zigurs 88] Zigurs, 1., Poole, M. S., DeSanctis, G., "A Study of Influence in
Computer-Mediated Group Decision Making," MIS Quarterly,
Vol. 12, No. 4, 625-644, 1988.

86 CMU/SEI-83-TR-27

11 Software Reliability Engineering (SRE)

11.1 Overview

Software reliability engineering is a statistical technique for predicting failure rates for
a software system before it is released. This information is valuable for a number of
reasons.

¢ Since the failure rates decrease with testing and debugging,
predictions of failure rates can help developers know when to stop
testing (i.e., when the quality of the software is adequate).

* Having a prediction of failure rates makes decisions about tradeoffs
between performance, cost, schedule, reliability, and other factors
easier and more explicit.

¢ Knowing predicted failure rates associated with various development
methods can help refine the development process.

¢ Accurate prediction of failure rates makes it possible for producers of
software to guarantee to their customers failure rates below certain
tolerances.

The overall goal of SRE is to improve the Way in which software quality can be man-
aged - to cast what was formerly a matter of intuition and guesswork into more objec-
tive terms.

11.2 History/Background

Software reliability started in the early 70's with the publication of a series of papers in
the academic literature. Musa [Musa 75] heightened interest in the area by demon-
strating that reasonably accurate predictions could be made using reliability models.
Since then, a tremendous variety of models have proliferated, each with their own ad-
vantages and drawbacks. (See [Abdeil-Ghaly 86] for a partial survey.) Because soft-
ware reliability has arisen in the research laboratory where it has been tested under
rigorous conditions, there is high confidence in the claims made in the literature.
Based on these claims, SRE would seem to hold great promise for improving the way
software is developed. Also because of its research ancestry, however, and because
it is a mathematically challenging subject, there are significant challenges yet to be
met in adapting SRE for common use by practitioners.

CMU/SEI-93-TR-27 87

11.3 Description of Software Reliability Engineering

A software failure is "a departure of a computer program's operation from the user re-

quirements; a failure may be a ‘crash’, in which a system ceases to function, or a sim-
pler malfunction, such as the display of an incorrect character on a monitor* (Musa,
1989). A failure is distinct from a fault, which is the specific software feature that
caused the failure (e.g., a coding error). The end result of SRE is to produce predic-
tions of failure rates as expressed in a number of closely related ways. Examples of
predicted failure rates include:

¢ Failure intensity is the number of failures of a software system
occurring in a standard time period; “2.5 failures per 1000 hours of
operation” is a statement of failure intensity.

e Reliability is the probability that a software system will operate failure-
free for a standard time interval; “0.95 for 24 hours" is a statement of
system reliability.

¢ Mean time to failure, often abbreviated MTTF (or, equivalently, mean
time before failure, or MTBF), is the average duration of system
operation expected before the occurrence of the first failure; 1000
hours MTTF," is a statement of mean time to failure.

Reliability predictions are routinely used in the design and manufacture of hardware
components to determine how often parts and components will require service. Such
predictions are critical to customer satisfaction. Software reliability, while also critical
to customer satisfaction, is different from hardware reliability in that failure is not due
to a "wearing out” process [Musa 75). Software failures occur when the system is ex-
posed to an input for which it was not designed. Because of the relative logical com-
plexity of software, its large number of possible states and inputs, it is usually impos-
sible to test software comprehensively. Software reliability is, then, not so much a
statement about the durability of the components of a system as a statement of the
level of confidence in the design. By testing and debugging, developers can grow
more confident in the design of a system. The central advantage of SRE is that it pro-
vides a structured means of determining quantitatively how much confidence in the de-
sign of a system is warranted, at any point in time.

The actual models involved in SRE are mathematically complex, but some have been
automated for applied use [Musa 89]. As testing is carried out, the rate at which fail-
ures are discovered provides information about the number of faults in the system. As
failures are discovered and repaired in testing, failure intensity decreases, and reliabil-
ity and MTTF increase. They increase in a manner that can be described mathemat-

88 CMU/SEI-93-TR-27

ically; thus, at any point in time thereafter, a quantitative estimate of system reliability
can be produced.

As with any statistical technique, predictive accuracy depends greatly on estimates of
model parameters, which in turn depend on the data used to estimate the parameters.
Some parameters are quite constant over time and across environments, but others
are not. This means that SRE models, like estimation models, may vary in their per-
formance across environments. That is, SRE models must be "calibrated" to particular
environments and some models may be better than others for specific environments.
Parameter estimation depends also on accurate gathering and recording of data con-
cerning the timing of fault discovery, system characteristics, etc.

An additional benefit of SRE is that it substantially enhances the level of developer-
customer dialog [Musa 87]. Customers and developers must reach agreement on
what constitutes a "failure” in their environment, and this usually leads to better spec-
ification of requirements. Reliability figures can easily be related to the operational
costs of failures and development costs, providing customers with a basis for making
decisions about tradeoffs.

11.4 Experience with SRE

Software reliability engineering is anomalous among the methaods in this report. Unlike
many methods for which enthusiasm abounds, SRE has been rigorously tested and
found to be effective. Despite the strong evidence of its benefits, however, SRE is not
widely deployed, compared to many of the methods in this report. A 1988 survey re-
vealed that only four percent of respondents reported using SRE [Karcich 91]. There
are at least two reasons for this. First, SRE is relatively new, although no newer than
many of the methods that have gamered large followings. Second, and most signifi-
cant, SRE comes out of the laboratory looking like research. It has not yet been effec-
tively packaged in a way that makes it accessible to many development organizations.
This leads to the following problems:

1. Papers on reliability are usually deep into ominous looking equations
by page three or so.

2. Software reliability researchers are more inclined to make minor
corrective changes to their models than to confront issues relevant to
practice [Levendel 91]. As a result, many practitioners have been put
off.

Not all practitioners have been put off, however. Some have been attracted by the
findings in the laboratory that predicted failure intensities within 15 percent or so can

CMU/SEI-93-TR-27 89

be achieved [Musa 75]). Musa [Musa 89] reports the following instances of model im-
plementations:

* Programs that implement reliability models are now available as part
of at least two commercial products.

* The U.S. Naval Surface Weapons Center in Dahligren, Virginia, has
implemented several models in a program that runs under MS-DOS.

¢ Hewlett-Packard employed a reliability model to determine when to
release the firmware for their Frontier series of remote terminals. They
reported that after one year of checking the predictions, slightly fewer
than the predicted number of failures had occurred.

» Hewilett-Packard also used reliability models to estimate expected
failure intensities for firmware in two other terminals after they were
released to users. Predictions were within 12 percent of actuals.

¢ Designers within a 1986 AT&T project used a reliability model to
predict completion dates — dates by which failure rates would reach
target levels. After two of the ten weeks of testing were completed, the
model predicted the completion date to within one week.

o AT&T used reliability models to predict the rate of field maintenance
requests for its SESS switching system. Predictions differed from
actuals by 5 to 13 percent.

Other authors cite examples of uses in which predictions are acceptably close to ac-
tuals [Shooman 87, [Everett 87), [Ejzak 87], [Drake 87].

SRE has been used successfully to ensure high levels of reliability in safety-critical sit-
uations. Stark [Stark 87] recounts how SRE has been used successfully in the devel-
opment of NASA's Shuttle Mission Training Facility, to notify management of changes
in the reliability of the system due to new requirements implemented, to understand
which functions of the simulation system are the reliability problem areas, and to iden-
tify trends in the reliability of the software over time. The use of SRE on the space
shuttle project suggests possible future uses in certifying the reliability of code that
cannot be allowed to fail. Recent disasters related to software failures include the soft-
ware malfunction of the Therac-25, a device for destroying tumors, which killed several
people before the problem was found [Leveson 93], and several aircraft and air traffic
control mishaps [Lee 91]. Theorists warn that applications which demand ultrahigh
levels of reliability are not suited to existing models [Musa 89). Keller [Keller 91}, how-

80 CMU/SEI-93-TR-27

ever, reports just such an application of SRE, on the space shuttle's "primary avionics
software system.”

11.5 Suggestions for Introduction and Use

Because SRE has been focused primarily on research, there is minimal "how-to" ad-
vice in the literature. Some limited advice is offered by SRE pioneers:

¢ Training is an absolute necessity for users of SRE [Musa 89].
Although users need not become expert in the intimate details of the
models, they should have a thematic understanding of the statistical
issues involved.

¢ Model selection is important, as is calibrating the chosen model to the
development environment [Abdel-Ghaly 86]. Adams [Adams 91] has
reported that common reliability models have been unsuccessful at
Cray Research, because their development processes fail to conform
to model assumptions. This fact emphasizes the importance of
understanding the models' basic assumptions and determining
whether your own processes adequately approximate the
assumptions.

11.6 How SRE Is Related to the Capability Maturity Model

SRE most closely correlates to the level 4 key process area, quantitative process man-
agement. SRE provides models and tools for applying more sophisticated measures.
Since predictions of software reliability can be made using SRE, the predicted data
can also be used for tracking progress during development.

11.7 Summary Comments on SRE

Software reliability engineering seems to hold great promise as a means of improving
the way software is developed. Unfortunately, it has been slow to emerge from the re-
search laboratory. The gap between researchers and practitioners has yet to be fully
closed. For those willing to attempt to bridge that gap, the benefits may be consider-
able. Of particular benefit to software developers is the possibility of using SRE to im-
prove software reliability. When the reliability of a software system can be predicted,
the data collected through the development process can be used for controlling and
improving the process.

CMU/SEI-93-TR-27 91

11.8 References and Further Readings - SRE
[Abdel-Ghaly 86]Abdel-Ghaly, A.A., Chan, P. Y., Littlewood, B. "Evaluation of

[Currit 86]

[Drake 87

[Ejzak 87]

[Everett 87]

[Hecht 86]

[Karcich 91]

[Keller 91}

Competing Software Reliability Predictions," /IEEE Transac-
tions on Software Engineering, Vol. SE-12, No. 9, September,
1986.

Currit, P. A,, Dyer, M., Mills, H. D., "Certifying the Reliability of
Software," IEEE Transactions on Software Engineering, Vol.
SE-12, No. 1, January, 1986.

Drake, D., "Reliability Theory Applied to Software Testing,"
Proceedings of the Fall Joint Computer Conference, |EEE,
1987, Dallas, Texas.

Ejzak, R. P., "On the Successful Application of Software Reli-
ability Modeling," Proceedings of the Fall Joint Computer Con-
ference, |IEEE, 1987, Dallas, Texas.

Everett, W. W., "Software Reliability Applied to Computer-
Based Network Operation Systems," Proceedings of the Fall
Joint Computer Conference, \EEE, 1987, Dallas, Texas.

Hecht, H., Hecht, M., "Software Reliability in the System Con-
text," IEEE Transactions on Software Engineering, Vol. SE-
12, No. 1, January, 1986.

Karcich, R. M., "Panel Discussion: Practical Applications of
Software Reliability Models," Proceedings of the 1991 Interna-
tional Symposium on Software Reliability Engineering, |IEEE
Computer Press, 1991.

Keller, T., “Panel Discussion: Practical Applications of Soft-
ware Reliability Models," Proceedings of the 1991 Internation-
al Symposium on Software Reliability Engineering, |EEE
Computer Press, 1991.

92

CMU/SEI-93-TR-27

[Lee 91)

[Levendel 91]

[Leveson 93]

[Musa 75]

[Musa 87]

[Musa 89]

[Shooman 87]

[Stark 87]

Lee, Leonard, The Day the Phones Stopped, Donald |. Fine,
Inc., NY, 1991.

Levendel, Y. H., "Panel Discussion: Practical Applications of
Software Reliability Models," Proceedings of the 1991 Intema-
tional Symposium on Software Reliability Engineering, |IEEE
Computer Press, 1991.

Leveson, N.G., Turner, C.S., "An Investigation of the Therac-
25 Accidents," IEEE Computer, July, 1993.

Musa, J. D., "A Theory of Software Reliability and Its Applica-
tions," IEEE Transactions on Software Engineering, SE-1, No.
3, September, 1975.

Musa, J. D., lannino, A., Okumoto, K., Software Reliability:
Measurement, Prediction, Application, McGraw-Hill, 1987.

Musa, J. D., "Tools for Measuring Software Reliability," /EEE
Spectrum, February, 1989.

Shooman, M. L., *Yes, Software Reliability Can Be Measured
and Predicted,” Proceedings of the Fall Joint Computer Con-
fsrence, IEEE, 1987, Dallas, Texas.

Stark, G. E., "Monitoring Software Reliability in the Shuttle
Mission Simulator," Proceedings of tho Fall Joint Computer
Conference, IEEE, 1987, Dallas, Texas.

CMU/SEI-93-TR-27

93

CMU/SEI-93-TR-27

12 Quality Function Deployment (QFD)

12.1 Overview

Quality function deployment, usually called simply QFD, is a way of structuring the
translation of cusiomer requirements into product features. The method has evolved
to fit different areas where it has been applied. Thus QFD means different things to
different people. However, all of its forms share reliance on a matrix diagram, called
“the house of quality." This diagram is used to:

* Document, group, and prioritize customer requirements.
* Relate requirements to engineering factors.
« Highlight interactions among engineering factors.

While there is no single "“QFD process," some software organizations have embedded
QFD into their development cycle. The purpose of QFD is to structure and focus early
stages of design so that the customers needs will be better served by the final product.

12.2 History/Background

QFD originated in 1972, at Mitsubishi's Kobe shipyard, and its use spread aimost im-
mediately [King 87]. Toyota and its suppliers added many of the features that are part
of the modern QFD approach [Hauser 88]. In Japan and the U.S., QFD has been
widely and suc:zessfully used in the auto industry. QFD is, however, relatively new to
software development. Yoshizawa et al. ([Yoshizawa 90a], [Yoshizawa 90b]) recount
application on products with software components in Japan, and Zultner [Zultner 92)
reports that organizations such as AT&T Bell Laboratories, Digital Equipment Corpo-
ration (DEC), Hewlett-Packard (HP), IBM, and Texas Instruments (T1), have begun to
use QFD to design software products. But the quantity of documented, publicly avail-
able evidence of its successful use is relatively small. Nevertheless, QFD has been
successful in a wide variety of nonsoftware applications, and most software organiza-
tions do want to improve their requirements gathering and design processes. These
two facts suggest that QFD might offer benefits to software developers willing to pio-
neer in its use.

12.3 Description of QFD

QFD has many complex variations. Rather than attempt to describe all of its varia-
tions, we recount the core elements of QFD as it was originally conceived for generic
products (i.e., not necessarily software products). This description is drawn primarily

CMU/SEI-93-TR-27 85

from [Hauser 88]. We then describe some common variations, featuring those that
have occurred in software development settings.

1. QFD begins by finding out what customers say they want. Customers
are asked what they like about a product of this type (e.g., “what makes
a good car door?"). In software development, this aspect of QFD re-
quires some modification, since product types are harder to define and
there is (usually) no mass-market from which to draw customers expe-
rienced with a range of such products. But software organizations do
have procedures for eliciting requirements from their users, which QFD
can be adapted to incorporate. In some existing software applications
of QFD, its definition has been effectively expanded to include many
specific methods tor deriving requirements, such as joint application
design (JAD) and other group meeting and facilitation techniques [Co-
hen 88], [Brown 91]. Two classes of requirements are not supplied by
customers but are particularly important for software products. They
are:

a. "expected quality" requirements, which customers do not
mention because they assume such requirements will be met by
any product of this type; and,

b. “exciting quality” requirements, which represent features that
are new, that the customer has never encountered but will like,
made possible by technological advances or design
innovations.

2. Requirements of all types are listed, where possible in the customer's
own words, and grouped into categories.

3. Weights are supplied for each requirement, to indicate their relative
importance. To the degree possible, weightings come directly from the
customer. Weights are written along side each requirement, usually in
terms of percentages which total 100.

4. Next, the current product is compared to competitors’ products for each
requirement. For example, adjacent to the requirements list might be
a scale on which the product is rated from one to five, along with similar
ratings for competitors’ products. Comparative rating helps highlight
areas where the product is particularly strong or weak, relative to the
competition, thus pointing out either advantages to be exploited or the
need for corrective action. Clearly this aspect of QFD will require
modification in many software development environments, whers it is

98 CMU/SEI-93-TR-27

more difficult to determine comparable products and find customers
capable of making product comparisons. In some environments,
where software is produced exclusively for in-house use, discussion of
competitors may not be appropriate; hence this part of the QFD matrix
may be omitted entirely.

5. Once requirements are listed and weighted, the engineering factors
that can affect the requirements are themselves listed, across the top
of the matrix. Engineering factors are characteristics of the product
that are not directly experienced by the customer. In a typical
automotive example, an engineering factor might be the strength of a
windshield wiper spring and the requirement that it affects might be the
incidence of windshield streaking in a rain storm. In software
development, these factors are more likely described by technical
characteristics of the system, such as the way data are organized in a
database. The direction and strength of influence (on a scale, say,
from -10 to 10) of engineering factors on requirements is represented
by filling in the matrix. In some applications, the weighting of a
requirement is multiplied by this influence number, to help highlight
opportunities for improvement; where this is done, the product of the
two numbers is also written in the body of the matrix.

6. Usually, engineering factors are not completely independent of each
other. Using thicker steel may make a car door more crash resistent,
but it may also increase the force needed to swing the door open and
the weight of the car, thus reducing gas mileage. In software, changing
the way the data are organized, say choosing to store a data element
in one place rather than two, may enhance the integrity of the data, but
may adversely affect processing time. These interactions of
engineering factors are represented in a triangle above the list of
engineering factors. By tracing along the appropriate axes of the
triangle from any two engineering factors, one comes to a joint
coordinate wherein the interaction's strength and direction may be
indicated. This part of QFD is extremely valuable in that it makes
explicit the sort of interactions that lead to unanticipated consequences
of design changes.

CMU/SEI-93-TR-27

97

7. Finally, the bottom of the matrix may be used to further quantify
engineering factors, to list cost of change estimates, and to set targets
for engineering factors. It is customary in QFD to list single value
targets for engineering factors, rather than tolerances, because
tolerances lead to production of the lowest level within tolerance.
Figure 12-1 depicts an example "house of quality" diagram.

Correlation
figtrx

HOW

Relationshi
WHAT Matrix P

arget Values
HOW MUCH

echnical Importance

Figure 12-1. "House of Quality" Diagram

CMU/SEI-93-TR-27

QFD is often used in a hierarchical manner. A first house of quality might have cus-
tomer requirements related to engineering factors. A seconc house might have engi-
neering characteristics related to component characteristics, and so on, down to the
lowest level of implementation detail. In software developmant, the house and each
hierarchical level might correspond to a stage of the developmant cycle.

What few accounts of QFD's use in software development exist tend to emphasize
processes for eliciting requirements and constructing the matrix. Brown [Brown 91] re-
counts how QFD is used at AT&T Bell Laboratories by establishing a cross-functional
*QFD team" which then follows a step-by-step process to construct the matrix (or ma-
trices). A variety of group facilitation techniques not unique to QFD are emphasized
by Cohen [Cohen 88] who provides an account of the use of QFD at DEC. Zultner ([Zu-
itner 90], [Zultner 91}, [Zultner 92]) promotes a complex array of QFD-like matrices,
used, for example, to identify different customer segments and relate them to require-
ments. One often claimed benefit of QFD is that, by serving as a central communica-
tion device, it facilitates simultaneous engineering of multiple product components,
thereby shortening cycle times.

12.4 Experience with QFD

As has been noted, the volume of publicly available documentation on use of QFD in
software development is small compared to what is available for the process improve-
ment methods presented earlier. Brown [Brown 91] reports successful use within
AT&T on already completed and ongoing products with software components. in ar-
eas where QFD has been used, Brown claims that:

¢ Customer needs were generally better understood.
» More critical needs were met.

» Credibility with the customer was enhanced.

* Unmet customer needs were discovered.

» Communications were generally better among members of the design
team.

Cohen [Cohen 88] recounts the following benefits from using QFD at DEC:

* QFD is more efficient than other product planning processes; in the
same amount of time a more detailed statement of customer needs
can be derived.

CMU/SEI93-TR-27 %

* The structure inherent in construction of the house of quality makes
product planning easier to carry out.

¢ QFD makes explicit detailed information on interrelationships between
product features and customer needs.

o QFD provides a tool for identifying disagreement and convenrting that
into consensus.

¢ The house of quality acts as an archive of the planning process; trade-
off decisions are well documented.

It is unclear, however, from Cohen's account how much software content was included
in products designed by using QFD.

Yoshizawa et al. indicate that an effort to extend QFD to software development has
been underway in Japan since the late 1970s [Yoshizawa 90a], [Yoshizawa 90b].
They report, as well, that several companies in Japan have been applying QFD to soft-
ware development since 1982. The companies applying QFD include CSK, IBM Ja-
pan, NEC IC Micon, and Nippon Systems. Unfortunately, publicly available English
language accounts of these applications are difficult to obtain.

12.5 Suggestions for Introduction and Use

It is clear from the literature on QFD implementations that QFD is almost always tai-
lored significantly to the application at hand. King [King 87] notes that successful tai-
loring usually brings the tool to bear on "key interfaces,” places in the design process
where communication is difficult but essential to the eventual performance of the prod-
uct. Brown suggests that organizations trying QFD for the first time should get help
from someone experienced with the technique. He also emphasizes the importance
of training, including training of management personnel who must understand the ra-
tionale, time requirements, and expected benefits of QFD. Cohen [Cohen 88] pro-
vides the following suggestions for those seeking to minimize the substantial time
required to carry out QFD:

e Break QFD participants into subgroups, each responsible for
developing a different part of the matrix. In doing so, however, the
multidisciplinary nature of the original group should be preserved in the
subgroups. When subgroups reassemble into a larger group, provide
reports from each subgroup to make sure subgroups all share a
common understanding.

100 CMU/SEI-93-TR-27

e Construct a large (three to five foot tall) house of quality with
removable "shingles." Groups can take shingles, fill them in, and
return for another shingle.

e Construct the matrix only for a subset of most important customer
needs; alternatively, fill in the body of the matrix only for categories of
requirements, rather than for every specific requirement.

Obviously there are risks in any abbreviation of customers needs. But these risks,
along with the other important issues involved in making QFD usable in a specific en-
vironment, can be addressed. The best uses of QFD for software will probably, judg-
ing from the literature on QFD, occur in situations where QFD is carefully and
intelligently customized to be appropriate; failures will likely occur where the method
is adopted by rote.

12.6 How QFD Is Related to the Capability Maturity Model

QFD is a structured means of transforming customer requirements into design speci-
fications. It is identified as an example method for tracing and prioritizing software
quality needs of the organization, customer, and end user within the CMM KPA soft-
ware quality management. The KPA software quality management is within level 4,
the managed level of the CMM. QFD also could be used to improve the performance
of an organization to do requirements management, which is a level 2 (repeatable)
KPA.

12.7 Summary Comments on QFD

Software development is often negatively impacted by complex interactions between
design features. Small design changes ripple through projects producing conse-
quences that no one anticipated. While software developers have evolved structured
means of doing their jobs, identification of interactions is not an explicit emphasis of
most software development methodologies. QFD - a structured way of identifying and
understanding interactions — seems poised, then, to offer this very significant advan-
tage to software developers. This advantage, added to QFD's potential for improving
developer's focus on customer requirements, makes the method seem very promis-

ing.

12.8 References and Further Readings - QFD

[Brown 91] Brown, Patrick, "QFD: Echoing the Voice of the Customer,”
AT&T Technical Journal, March-April, 1991.

CMU/SEI-93-TR-27 101

[Cohen 88] Cohen, Louis, "Quality Function Deployment: An Application
Perspective form Digital Equipment Corporation," National
Productivity Review, Summer, 1988.

[Hauser 88] Hauser, John R., and Clausing, D. *The House of Quality,"
Harvard Business Review, May-June, 1988.

[King 87] King, Robert. "Listening to the Voice of the Customer: Using
the Quality Function Deployment System," National Produc-
tivity Review, Summer, 1987.

[Thackeray 89] Thackeray, R., Van Treeck, G., "Quality Function Deployment
for Embedded Systems and Software Product Development®
GOAL/QPC Sixth Annual Conference Proceedings, Boston,
1989.

[Yoshizawa 90a] Yoshizawa, T., Akao, Y., Ono, M., Sindou, H. "Recent Aspects
of QFD in the Japanese Software Industry," ASQC Quality
Congress Transactions - San Francisco, 1980.

[Yoshizawa 90b] Yoshizawa, T., Togari, H., Kuribayashi, T., and the CSK Soft-
ware Quality Assurance Committee, "Quality Function De-
ployment for Software Development,® in Quality Function De-
ployment: Integrating Customer Requirements into Product
‘Design, ed. Yoji Akao, transiated by Glenn Mazur, Productiv-
ity Press, Cambridge, MA, 1990

[2ultner 90) Zultner, Richard E. "Software Quality Deployment: Applying
QFD to Software,” 2nd Symposium on QFD Transactions,
Novi, Michigan, June 1990.

[Zultner 91] Zultner, Richard E. "Before the House: The Voices of the Cus-
tomers in QFD," 3rd Symposium on QFD Transactions, Novi,
Michigan, June 1991.

[Zultner 92] Zultner, Richard E. "Quality Function Deployment (QFD) for
Software", American Programmer, February, 1992.

102 CMU/SEI-93-TR-27

13 Total Quality Management (TQM)

13.1 Overview

Total quality management, usually denoted by its acronym, TQM, refers to a philoso-
phy of management and a collection of methods with the central goal of improving the
quality of an organization's products and the satisfaction of its customers. TQM has
become pervasive throughout U.S. companies; not since the scientific management
movement in the early years of this century has a change in management practices
been so embraced by the business community at large [Ross 93]. One consequence
of its popularity is that TQM has become somewhat loosely defined. It is common to
use TQM to describe nearly any method intended to improve processes or promote
quality in products. However, the creation in 1987 of the Malcolm Baldrige National
Quality Improvement Award, given by the U.S. Department of Commerce to compa-
nies that excel in quality management, has restored some coherence to.the TQM con-
cept. The legislation that created the award explicitly called for creation of guidelines
and criteria that companies could use to evaluate their quality improvement efforts
[Garvin 91). By many accounts, these guidelines and criteria have ¢ me to define
TQM. '

13.2 History/Background

TQM arose from the quality management techniques employed by Japanese manu-
facturers, which are commonly considered responsible for the quality superiority of
many Japanese products. lronically, Americans W. Edward Deming and J. M. Juran
are credited with developing many of the techniques used so effectively to seize U.S.
market share from American firms. In fact, the Japanese national prize for quality is
named for Deming; the "Deming Prize" was the original inspiration for the Baldrige
Award. More recently, TQM was derived from the philosophy and techniques ex-
pounded by Kaoru Ishikawa [Ishikawa 85] under the label "total quality control® or
"TQC." TQM is at use in many software organizations, to a greater or lesser extent,
but it is important to realize that TQM is an organizational undertaking; that is, it must
be broadly deployed, not just in software development. Thus, for TQM to be truly "to-
tal,” it must be adopted not only in software development, but also as part of a larger
organizational effort.

13.3 Description of TQOM

TQM is used to describe such a vast array of practices that it would be impossible to
detail them all in the space provided. However, there are certain common features in
most TQM efforts. Those common features are captured in the criteria for the Baldrige

CMU/SEI-93-TR-27 103

Award. The scoring framework for the Baldrige Award therefore provides a structure
for describing TQM. Note that we present TQM here in its generic sense; i.e., not nec-
essarily as adapted to software development. Software development variations are
discussed at the end of this section. Much of what follows is derived from [Garvin 91]
and [Ross 93).

There are seven categories of management practice that together constitute TQM.
They are:

¢ Leadership.

¢ Information and analysis.

e Strategic quality planning.

¢ Human resources utilization.

¢ Quality assurance of products and services.
¢ Quality resuilts.

e Customer satisfaction.

Leadership reflects the degree to which the organization's management has internal-
ized quality objectives and values. Information and analysis concerns how effectively
the organization gathers and analyzes information conceming its own quality perfor-
mance, especially as compared to its competition. Strategic quality planning refers to
the degree to which quality concems are integrated into the organization's planning
process, and how quality plans and objectives are communicated to operating units.
Human resource utilization concems whether the organization has succeeded in pro-
moting a culture of quality in all of its workers and also the degree to which employees
are "empowered"—authorized to take action to make changes that improve quality.
Quality assurance of products and services examines actual implementation of quality
principles, tools, and techniques, including design-for-manufacture, just in time (JIT),
continuous process improvement, quality assessment, statistical process control
(SPC), etc. Quality results is what it sounds like—demonstrable improvement in prod-
uct quality over time. And finally, customer satisfaction—considered the most impor-
tant category—focuses on the organization's relationships with its customers:
customer needs determination, customer service capability, demonstrable improve-
ments in customer satisfaction, etc.

104 CMU/SEI-93-TR-27

13.4 TQM Tools

There are also seven specific tools that are considered standard for TQM [Zultner 88].
The tools themselves are not mandatory in an organization that adopts TQM, but ful-
fillment of the tools’ respective purposes is required. The tools are:

¢ Check sheets useful for tabulating errors for each work product.
¢ Graphs such as trend charts, which present defect data over time.

e Cause and effect diagrams, which show all possible causes of some
condition.

* Pareto charts, which rank types of defects by frequency.
¢ Histograms, which are bar charts for displaying frequency data.

e Scatter diagrams, which are plots that relate two measurable
quantities to each other and therefore permit discovery of relationships
between the quantities.

¢ Control charts, which show defects plotted over time with statistical
control limits.

These tools are often used in a structured sequence by interdisciplinary teams, called
quality circles (see description in Chapter 10), at all levels of the organization.

A central theme in TQM is identification and improvement of production processes.
Such processes frequently cross boundaries between suborganizations within the
overall organization; thus, process stages are subject to differing influences. Different
parts of the process are "owned" by different members of the organization. However,
for successful production of quality products, it is essential that processes operate
smoothly across boundaries. TQM emphasizes the identification of essential
processes and the establishment of ownership for the overall processes. If there is
one "process owner,” it will be more likely that each element of the process will be
integrated successfully into the whole.

Because of its emphasis on essential processes, TQM focuses on rewarding
excellence in process rather than end results [Shaffer 92]. The rationale behind this
focus is that end results are usually influenced by factors outside the control of those
seeking to improve quality. Therefore, favorable results may arise from faulty
processes and vice-versa. However, the most consistently favorable trends will result,
it is argued, from focus on factors that can be controlied. Quality teams within
organizations are, therefore, often rewarded for excellence in adhering to an

CMU/SEI-93-TR-27 105

improvement process, rather than for the actual results of their actions. Similarly, the
largest part of the Baldrig. Award scoring is on process, not resuits. Not all
commentators approve of this de-emphasis of results [Shaffer 92].

In fact, the way TQM has been implemented in many U.S. companies, especially in
efforts to win the Baldrige Award, has become a subject of acute controversy. In
particular, a pitched debate rages around the Baldrige Award itself; surprisingly, some
of the most vocal critics are the founders of the quality movement. Deming [Deming
92] himself has written: "The Baldrige Award does not codify the principles of
management of quality. It contains nothing about quality." And of an article explaining
and defending the Baldrige Award written by a member of the award's board of
overseers, Deming [Deming 92] has said "It transgresses all that | try to teach.”
Crosby [Crosby 92], author of the influential book Quality is Free, argues that “the
Baldrige criteria have trivialized the quality crusade perhaps beyond help." His
condemnation is unequivocal: *One day this do-it-yourself kit may be recognized as
the cause of a permanent decline in product and service quality management in the
United States.”

Specific criticisms of the Baldrige Award and common implementations of TQM are
varied and can be found in the January-February 1992 issue of The Harvard Business
Review. We recommend that the issues raised there be seriously considered by any-
one thinking of bringing TQM to their own organization. One central issue worth men-
tioning here involves the degree to which quality principles and methods can be
tailored while still retaining their value. Founders of the quality movement like Deming
and Crosby, who are unhappy with the Baldrige criteria, argue that many implementa-
tions of quality assurance methods transgress crucial principles of quality assurance.
They note further that the Baldrige Award, in taking an "ecumenical approach® [Garvin
92), fails to penalize these transgressions, thereby encouraging faulty practice. Advo-
cates of the Baldrige Award (e.g., [Garvin 91]) reply by denying that the principles of
Deming and Crosby are fundamental, and arguing that there are many roads to qual-

ity.

13.5 Experience with TQM

Many U.S. companies have experience with TQM, but in most companies TQM has
been in place for only a short time. This makes it difficult to assess the long-term
effectiveness of TQM. The most significant evidence to date that TQM improves
organizational performance comes from a May 1990 General Accounting Office
(GAO) report. The GAO surveyed and interviewed 20 companies that scored well in
either the 1988 or 1989 Baldrige competition. They concluded that there was a cause-
and-effect relationship between adherence to TQM practices embodied in the Baldrige

106 CMU/SEI-93-TR-27

criteria and organizational performance, measured by empioyee relations,
productivity, customer satisfaction, or profitability. They also found that there was no
*cookbook" approach to quality; the 20 surveyed companies used different specific
practices but all adhered to the principles at the heart of the Baldrige Award and TQM.

But while the GAO report is the best evidence yet of the effectiveness of TQM, it is
hardly conclusive. As has been pointed out by critics of the study, the study did not
employ statistical methods that would allow firm conclusions to be reached.
Furthermore, not all survey questions were answered by all 20 companies. The
average number of respondents per question was only 9. Eleven companies did not
answer employee satisfaction questions. Supporters of the report's validity attribute
the low response rate to company confidentiality requirements, but it is difficult to verify
that this is the true reason.

Regardless of the overall question of the effectiveness of TQM and the Baldrige
criteria, it is clear that many TQM-compatible quality assurance techniques can
produce favorable results. Colson and Prell [Colson 92] describe successful use of
TQM on a large software project at AT&T. Murine [Murine 88] reports successful use
of software quality assurance methods by Japanese companies like NEC, Mitsubishi,
Fujitsu, and Nippon. He claims cost reductions of 30 to 35 percent through the
development cycle, and up to 85 percent reduction if resulting improved system
maintainability is taken into account.

13.6 Suggestions for Introduction and Use

As was noted earlier, TQM is not “total" uniess it is deployed widely, across the entire
organization. The literature is quite clear in stating that full benefits will not be realized
from a piecemeal approach. Colson and Prell [Colson 92] provide the following advice
to those implementing TQM in a software development setting:

* Active support and participation from senior management is essential.

* A system-wide view of process is crucial to establish goals and
directions that actually contribute to strategic business planning and
satisfied external customers.

* Formal process ownership must reside at the level of management
that can implement change.

* It is essential that all levels—from engineers up through senior
management—exercise ownership for process improvement.

CMU/SEI-93-TR-27 107

e Process work is a project—it must be planned, designed,
implemented, and managed.

¢ Process work must have a dedicated staff, both within each process
and in a centralized consulting and support organization.

e Communication with the entira development community is crucial to
ensure commonality of goals and support of process change.

Briesford [Briesford 88] adds that software quality organizations need:
e visibility,
¢ supportive management,
¢ independence from software developers,
e computer-knowledgeable management,
* ability to retain software personnel, and
¢ a career path for software quality assurance professionals.

Many authors emphasize that TQM is not so much a method or technique as it is a
whole new way of doing and thinking about things. As such, it is not to be taken lightly.
Only when the management of an organization can wholeheartedly back a dramatic
change in their organization should TQM be attempted.

13.7 How TQM Is Related to the Capability Maturity Model

As with QFD, TQM is a method best applied within the level 4 (managed) KPAs, or-
ganization process management and software quality management. Some of the con-
cepts could also be applied within the software quality assurance KPA at level 2 of the
CMM, and within the organization process focus KPA at level 3 of the CMM. However,
extensive application of TQM requires substantial maturity of the software develop-
ment organization’s process. Application of TQM is perhaps the most pervasive strat-
egy of level 3 organizations wishing to achieve levels 4 and 5 of the CMM. The
advanced quality control techniques of TQM usually require application beyond the
software development organization, i.e., to the business enterprise. The TQM method
is best applied within organizations motivated to improve their quality culture.

13.8 Summary Comments on TQM

TQM is widely believed, although not conclusively shown, to yield great benefits to
organizations that adopt it. Ironically, its chances for success are perhaps hampered

108 CMU/SE!-93-TR-27

by its rapid rate of acceptance within U.S. businesses. Because so many people are
eager to "sell* TQM, to their own organization or to others, it is difficult to sort out plus-
es and minuses at the level of detail necessary for implementation. We suggest that
anyone thinking of implementing TQM seek out not only pro-TQM, but also anti-TQM
commentary. Find out, for example, what Deming dislikes about the way TQM is often
implemented. As with most attempts to improve the way business is done, the most
successful approaches will result from careful adaptation of what already exists to
form a coherent set of quality principles suited to the application environment.

13.9 References and Further Readings - TQM

[Anjard 92]

[Basili 87]

[Breisford 88]

[Cavano 87]

[Colson 92]

[Crosby 92]

{Deming 92]

[Elmendorf 92]

[Garvin 91]

Anjard, R. P. Sr., "Software Quality Assurance Consider-
ations," Electronics Reliability, Vol. 32, No. 3, 307-312, 1992.

Basili, V. R.,, Rombach, H. D., "Implementing Quantitative
SQA: A Practical Model," /IEEE Software, 6-9, September,
1987.

Breisford, J. J., "Establishing a Software Quality Program,”
Quality Progress, November, 1988.

Cavano, J. P., LaMonica, F. S., "Quality Assurance in Future
Development Environments," /IEEE Software, 26-34, Septem-
ber, 1987.

Colson, J. S,, Prell, E. M., *Total Quality Management for a
Large Software Project," AT&T Technical Journal, 48-56,
May/June, 1992.

Crosby, P. B., "Debate," Harvard Business Review, 127-128,
January-February, 1992.

Deming, W. E. "Debate," Harvard Business Review, 134, Jan-
uary-February, 1992

Eimendorf, D. C. "Managing Quality and Quality Improve-
ment," AT&T Technical Joumal, 57-65, May/June, 1992.

Garvin, D. A, "How the Baldrige Award Really Works," Har-
vard Business Review, 80-93, November-December, 1991.

CMU/SEI-83-TR-27

109

[Ishikawa 85) Ishikawa, K., What is Total Quality Control? The Japanese
Way, trans. by D. J. Lu, Prentice-Hall, Englewood Cliffs, NJ,
1985.

[Kishida 87) Kishida, K., Teramoto, M., Torii, K., Urano, Y., "Quality-Assur-
ance Technology in Japan,” IEEE Software, 11-17, Septem-
ber, 1987.

[Murine 88] Murine, G. E., "Integrating Software Quality Metrics with Soft-
ware QA," Quality Progress, November, 1988.

[Ross 93] Ross, J. E., Total Quality Management: Texts, Cases, and
Readings, St. Lucie Press, Delray Beach, FL, 1993.

[USGAO 90] United States General Accounting Office, Management Prac-
tices — U.S. Companies Improve Performance Through Qual-
ity Efforts, May, 1990.

[Zultner 90] Zultner, R. "Software Total Guality Management: What does it
take to be World-Class?," American Programmer, 1-6, No-
vember, 1990.

{Zultner 88] Zultner, R. "The Deming Approach to Software Quality Engi-
neering,* Quality Progress, 58-64, November, 1988.

110 CMU/SEI-93-TR-27

14 Defect Prevention Process (DPP)

14.1 Overview

The defect prevention process (DPP) is a means of preventing the insertion of defects
into code and other structured software development work products. It is a team tech-
nique based on causal analysis as introduced by the Japanese quality expert Ishikawa
[ishikawa 85). Defects are analyzed to uncover root causes and actions are initiated
to eliminate causes. The process of defect analysis and prevention is integrated into
the overall development process, resulting in lower defect insertion, and consequently
higher quality and productivity (due to less rework).

14.2 History/Background

The DPP originated within IBM in the early 1980s, but related causal analysis tech-
niques have been in use, especially in Japan, for much longer [Mays 90]. Wider use
of the DPP began in 1985 with the publication of a description of the method by Jones.
While there is evidence that the DPP has been used successfully within IBM
([Kolkhorst 88}, [Spector 84], [Gale 90]). the base of documented experience with the
technique remains limited. The successful reports thus far, and the obvious success
o! related techniques in nonsoftware design and production, provide reason for cau-
tious optimism concerning the potential widespread benefits of defect prevention.

14.3 Description of the Defect Prevention Process

The DPP calls for integrating into each stage of software development two additional
activities, the kickoff meeting and the causal analysis, and aiso the addition of one or-
ganizational entity, the action team. The process is integrated into an entry-task-vali-
dation-exit (ETVX) framework.

The kickoff meeting is added to the entry substage. At this meeting, the development
team reviews the inputs from the previous stage, for completeness and also to pro-
mote an understanding of the task at hand. Process and methodology guidelines are
reviewed, and developers are exposed to a list of common errors for that stage of de-
velopment (this list is derived from the DPP in a way that will become apparent). Also
at the kickoff meeting, the team sets goals for error prevention and detection. Team
goals are for the team's own internal use and are never published.

Causal analysis is added to both the validation and exit substages. During validation,
formal inspections (see Chapter 7) are conducted and defects are detected. The DPP
enhancement is to have the author of discovered defects add them to a database,
along with the defect resolution information and a preliminary analysis of what caused

CMU/SEI-93-TR-27 11

the defect. In the exit substage, a causal analysis meeting is conducted. Defects are
analyzed to determine their causes and the stage of development in which they origi-
nated. Causes are classified as communications (i.e., failure of), education (i.e., a
team member fails to understand something), oversight (i.e., some possible conditions
are overlooked), and transcription (e.g., a typo). Team members suggest ways of
avoiding each defect and recommend corrective actions to prevent similar such errors
in the future.

The action team is a group within the organization with responsibility for acting on the
recommendations that result from causal analysis. The action team prioritizes, then
implements and tracks action items. They are also responsible for reporting back ac-
tions taken to the development community, developing common error lists for use in
kickoff meetings, administering the defect prevention database, and suggesting action
items derived from analysis of problems with broad trends across projects.

14.4 Experience with Defect Prevention

Documented experience with the DPP comes exclusively from within IBM, in limited
quantities. However, Mays et al. [Mays 90] report that the process has been used "in
more than 25 organizations at 7 IBM development laboratories, involving systems pro-
gramming, application programming, and microcode development.”

Accounts of the resuits of the use of defect prevention suggest that the process results
in considerably lower defect insertion rates. One product studied in detail by Mays et
al. [Mays 90] showed a reduction in defects averaging 54 percent when the DPP was
introduced for later releases. The costs of the DPP introduction were largely due to
the additional time required for DPP meetings and for following up on action items; to-
tal costs, accordina to Mays et al. [Mays 90}, are between 0.4 and 0.5 percent of total
project resources. Benefits are harder to quantify but arise due to less time spent de-
tecting, investigating, and fixing defects, and would seem quite substantial.

The potential long-term benefits are great in that the causal analysis, with its emphasis
on attacking root causes, can potentially lead to the "extinction® [Mays 90] of whole
classes of errors. Causal trends can be identified and wamings to developers placed
in strategic locations (e.g., checklists, process documentation, tools that make auto-
matic checks, templates for work products). Also, substantial process improvements
to the overall development may result as the real root causes of problems become ap-
parent. The DPP is a technique for substantially reducing the defect insertion rate for
a software development process. Since every defect has an associated cost for de-
tection and correction, the cost reduction benefits of DPP are apparent when fewer de-
fects are introduced into the software development process.

112 CMU/SEI-93-TR-27

14.5 Suggestions for Introduction and Use

Mays et al. [Mays 90] provide the following suggestions for introduction and use of de-
fect prevention.

e Identify a sponsor in a high-level position willing to be an advocate for
the process; ideally two advocates would be identified, one a technical
person and the other a manager.

e Advocates should start by educating managers and developers about
the DPP, on cost and benefits, etc.

e Advocates should actively supervise initial DPP efforts, to assure that
start-up efforts are not undermined by problems of logistics, lack of
focus, etc.

¢ Start small, with a pilot project, and then gradually expand use of the
process.

¢ Action team members should be carefully chosen; they should be
highly motivated and dedicated to improving the area's processes.

¢ Action team members should strive for quick implementation of some
early action items, to establish the credibility of the process.

e Early kickoff and causal analysis meetings should include a significant
amount of instruction on how to carry out the DPP.

» Be alert in early meetings for an initial sensitivity and defensiveness
because developers are being asked to analyze their own mistakes;
defensiveness can be diffused by a skillful moderator who should work
to keep the atmosphere of the meeting nonthreatening.

14.6 How Defect Prevention Is Related to the Capability Maturity
Model!

Defect prevention is an elaboration on the inspection process and requires that an in-
spection-like means of error detection be in place. The DPP process is, essentially, a
means of tracking down sources of variation in the software development process and
taking action to prevent future injection of defects. As such, it is located at level 5 of
the Capability Maturity Model (the optimizing level), as the defect prevention KPA.
Less formal versions of defect prevention may, however, reasonably arise as early as
level 2 (the repeatable level), since ensuring repeatability of the development process
may require at least rudimentary causal analysis of problems.

CMU/SEI-83-TR-27 113

It is also interesting to speculate when an organization could consider DPP as related
to their process maturity. In general, it is easier to detect defects effectively before one
has the knowledge to prevent defects. Thus, peer reviews as implemented by formal
inspections (level 3) are a necessary prerequisite for DPP application. There is also
a dependency on the KPA process measurement and analysis (level 4) since many
defects are caused by deficiencies of the software development process, and quanti-
tative evidence and analysis may be needed to identify and confirm these deficiencies.
The action team will need to rely on process measurements (see Chapter 8) to identify
the appropriate process improvement actions to implement. Thus, a level 3 organiza-
tion with process metrics can reasonably begin the planning necessary to introduce
DPP.

14.7 Refeiences and Further Readings - DPP

[Gale 90] Gale, J. L, J. R. Tirso, C. A. Burchfield, "Implementing the De-
fect Prevention Process in the MVS Interactive Programming
Organization," IBM Systems Journal, Vol. 29, No. 1, 1990, pp.
33-43.

[Ishikawa 85] Ishikawa, K., What is Total Quality Control? The Japanese
Way, translated by D. J. Lu, Englewood Cliffs, NJ: Prentice
Hall, 1985. ’

[Jones 85] Jones, C. L. "A Process-Integrated Approach to Defect Pre-
vention," IBM Systems Journal, Vol. 24, No. 2, 1985, pp. 150-
167.

[Kolkhorst 88] Kolkhorst, B. G., A. J. Macina, "Developing Error-Free Soft-
ware," IEEE Aerospace Electronic Systems Magazine, Vol 3.
No. 11, Nov. 1988, pp. 25-31.

[Mays 90] Mays, R. L, C. L. Jones, G. J. Holloway, D. P. Studinski, “Ex-
periences with Defect Prevention," IBM Systems Journal, Vol.
29, No. 1, 1990, pp. 4-32.

[Spector 84] Spector, A., Gifford, D. "“The Space Shuttle Primary Computer
System,* Communications of the ACM, Vol. 27, No. 9, 1984,
pp. 874-900.

114 CMU/SEI-93-TR-27

15 Cleanroom Software Development

15.1 Overview

Cleanroom software development is a software production method that emphasizes
preventing the introduction of errors rather than testing to remove errors after they
have been introduced. Cleanroom combines formal specification, nonexecution-
based program development, incremental development, and independent statistical
testing. Of these features, nonexecution-based program development is the point of
greatest departure from more traditional methods. In cleanroom, development teams
literally do not have access to compilers to produce executable code, so they cannot
rely on automated checking to identify errors. Realizing this, the team develops a mind
set that facilitates prevention of defects. Error rates in cleanroom software are usually
lower than error rates in software produced by more traditional methods. The goals of
cleanroom are to reduce life-cycle costs by reducing rework and to produce certifiably
reliable software.

15.2 History/Background

Cleanroom originated in the Federal Systems Division of IBM in the late 1970s and
early 1980s [Dyer 92]. It has not gained wide acceptance, perhaps because it repre-
sents a dramatic change from the traditional way of developing software. Nonexecu-
tion-based program development probably sounds odd to organizations investing in
ever more advanced personal computer and workstation based program editors and
compilers. But where cleanroom has been used, results have been impressive. In
contrast with many of the methods described in this report, there have been controlled
studies of cleanroom that show it is superior to more traditional methods on a variety
of dimensions, at least in experimental settings. As with any relatively new method,
problems with cleanroom may bec:me apparent as it becomes more widely used. But
even at this early stage of use, ciaiis of the advantages of cleanroom seem better
supported than claims about some other methods that are more widely deployed.

15.3 Description of Cleanroom Software Development

Cleanroom has four essential features that set it apart from more conventional meth-
ods.

1. Incremental development: Cleanroom calls for incremental develop-
ment rather than the sequential process of analysis, design, implemen-
tation and testing used in traditional development processes. A system
with bare bones functionality is constructed and then the functionality

CMU/SEI-83-TR-27 115

is extended incrementally. Each successive release adds functionality.
Functionality accumulates as development progresses and finally re-
sults in a fully functional product.

2. Formal methods: Cleanroom uses formal methods for specification
and design. Unlike other development methodologies, which may also
use formal methods, Cleanroom depends on the formal methods to
divide system functionality into deeply nested subsets that can be
developed incrementally [Selby 87]. The formal methods make use of
black boxes, state boxes, and clear boxes, each of which specify the
system functionality at a lower level of detail. The level of detail called
for by each is rigorously defined. For example, the black box "is a
precise specification of external, user-visible behavior in all possible
circumstances of use" [Linger 92a]. The precise specifications allow
independent testing of the product at each incremental level of detail.

3. Development without program execution: Developers are literally
restricted from using any tool that would allow testing of the
executability of the code. Developers do not participate in testing and
debugging at all. instead, they focus on code inspections and other
*off-line software review techniques" [Selby 87] to assure the
correctness of their implementation. Without the crutch of execution-
based testing, developers are forced to produce coherent, easy-to-
inspect designs and code, and to assure their correctness by close
attention to the task at hand. The mind set of developers becomes
changed when they are freed from the assumptions that "we can
always catch errors in testing.”

4. Independent statistically-based testing: The independent group that
performs testing adopts a perspective of reliability assessment (see
Chapter 11, which covers SRE) rather than error detection and
elimination. The reliability group runs the software with test cases from
probability distributions across all possible user inputs and system
states, at each incremental stage of development. Special test cases
are designed to head off catastrophic failures. The end result of the
testing is a certified level of reliability in terms of "mean time to failure”
or some similar reliability measure.

Thus, cleanroom incorporates many of the other software process improvement meth-
ods described in this report such as formal inspection, CASE, measurement, SRE,
DPP, etc.

118 CMU/SEI-93-TR-27

15.4 Experience with Cleanroom Software Development

Most of the documented experience with cleanroom has occurred in or in conjunction
with IBM's Federal Systems Division. Reports of remarkably low error rates are not
uncommon [Mills 91].

Hewvner et al. [Hevner 92] report results from seven full and partial cleanroom projects
between 1980 and 1990. In two products produced by these projects, no defect had
ever been found during customer use. One of these two products consists of 25 KLOC
and the other is 63 KLOC, and both have been in operation since the early 1980s.

Linger and Hausler [Linger 92a] report results from 11 full and partial cleanroom
projects between 1987 and 1992. Two of these were among those reported by Hevner
et al. Many of these projects cited productivity gains. That there were savings from
foregone maintenance is obvious.

Selby et al. [Selby 87] conducted a controlled experimental study of the effectiveness
of the method. They compared 10 cleanroom teams with 5 non-cleanroom teams
working for six weeks on exactly the same roughly 1500 line application. Subjects
were computer science students at the University of Maryland who averaged 1.6 years
of professional experience and had graduate, senior, or junior standing. There were
three students on each team. Researchers used "Simpl-T," a language unknown to all
subjects at the start of the experiment. Use of an obscure language eliminated expe-
rience with language confounds and enforced the prohibition against use of compilers
by cleanroom teams, because no compiler for Simpl-T was available. Other factors
that might have produced confounds (such as academic performance) were divided
across teams as evenly as possible. This research produced seven major results:

1. Six of 10 cleanroom teams delivered at least 91 percent of the required
system functions, while only one of the five non-cleanroom teams did.

2. Cleanroom team products met system requirements more completely
and had a higher percentage of successful, operationally-generated
test cases.

3. Source code developed using cleanroom had more comments and
less dense control flow complexity.

4. The more successful cleanroom teams modified their use of the
implementation language; they used more procedure calls and IF
statements, fewer CASE and WHILE statements, and had a lower
frequency of variable reuse.

CMU/SEI93-TR-27 117

5. All 10 cleanroom teams made all of their scheduled intermediate
product deliveries, while only two of the five non-cleanroom teams did.

6. Eighty-six percent of the cleanroom developers indicated that they
missed the satisfaction of program execution to some extent, but this
had no relationship with product quality.

7. Eighty-one percent of the cleanroom developers said they would use
the method again.

Some of the qualitative results of the Selby et al. study do suggest areas of concern,
however. For example, several people from cleanroom teams said they had difficulty
*visualizing the user interface," and therefore felt that the system might not be user-
friendly enough. Nonetheless, the incremental design method should facilitate user
interaction. It is possible that with slight modification, the cleanroom method might
solve this problem. Also, as Selby et al. note, the method could be easily combined
with a prototyping approach, which would provide a user interface early in a project.

Of other possible issues, the most important is surely one having to do with culture
change. Developers are not likely to give up their favorite editor/compiler/debugger
easily. Many developers got started in the profession because of a love of interacting
with the computer, making changes, and watching their effects. Cleanroom may be
seen by these developers as an unattractive way to develop software. Those who re-
sist development without program execution may find ways to gain access to compil-
ers despite whatever precautions are taken against it. Real applications cannot be
developed in Simpl-T or some similarly obscure language. Selby, et al. propose that
other methods of satisfying the desire to see program execution might be invented.
They suggest having the development team watch system testing. This idea seems
promising when one envisions anxious developers gathered around the testing team
to cheer for their software.

We know of no exhaustive study that compares costs of traditional development with
cleanroom. Such a test would be difficult because cleanroom would gain much of its
savings from foregone maintenance due to much lower error rates; such savings nec-
essarily are realized over time. But the low error rates associated with cleanroom sug-
gest that savings of this kind could be considerable. Also, from the Selby et al. study
it is apparent that cleanroom need not cost more in the early stages of development.
In the experiment, cleanroom teams consistently met project schedules and delivered
functionality where teams using more traditional methods did not. Linger and Span-
gler [Linger 92b] claim that quality improvements offset all introduction costs, and this
does not seem unreasonable.

118 CMU/SEI-83-TR-27

15.5 Suggestions for Introduction and Use

Cleanroom is an advanced method of developing computer software. The method it-
self requires training, and the testing capabilities of the organization seeking to imple-
ment cleanroom must be well established and sophisticated. Testing from a reliability
perspective requires that the organization have reliability testing up and running. Fur-
thermore, rigorous formal specification requires training and considerable process so-
phistication. Inspections and other "off-line software review techniques® should
already be in place. Because of all of these factors, cleanroom is among the most dif-
ficult of the methods in this report to implement. Attempts to implement cleanroom
should perhaps be confined to development teams that are particularly adept, or de-
ployed widely in very mature software organizations.

For those that do attempt it, however, there is advice available. IBM's Cleanroom Soft-
ware Technology Center (CSTC) provides training and other cleanroom-related ser-
vices. Their program for getting a cleanroom project started is evidence of the
complexity of the method [Linger 92b).

e Initial planning must include selection of an appropriate project,
reviews of staffing and resource plans, and management briefings;
setting expectations and defining success factors is the critical function
of this stage.

¢ Education of the cleanroom team invoives a one day introductory class
and at least three longer and more advanced classes.

¢ First attempts at cleanroom benefit from close consultation with
someone experienced in the method.

¢ Propagating cleanroom throughout an organization is best
accomplished by assigning original cleanroom team members to work
with or head other teams that want to attempt cleanroom development.

15.6 How Cleanroom Software Development Is Related to the
Capability Maturity Model

Cleanroom is perhaps the most sophisticated and complex software process improve-
ment method described in this report. Organizations that implement cleanroom exhibit
many of the characteristics of levels 4 and 5 of the CMM. For these reasons, it is rec-
ommended that only organizations currently performing at levels 3 or 4 of the CMM
consider implementing cleanroom. Cleanroom most closely correlates to the level 4
key process areas, quantitative process management and software quality manage-
ment, and to the level 5 key process area, defect prevention.

CMU/SEI-83-TR-27 119

15.7 Summary Comments on Cleanroom Software Development

Cleanroom seems to hold great promise. It is not technology intensive and therefore
is not costly in that sense. It seems likely to reduce overall system life-cycle costs.
However, it requires considerable organizational maturity of those who seek to imple-
ment it. It is also quite new. As with all new methods, problems may become apparent
as more experience with the method is accumulated. For the mature software orga-
nization willing to pioneer a new development process, though, cleanroom seems
worth a try.

15.8 References and Further Readings - Cleanroom

[Currit 86] Currit, P. A., Dyer, M., Mills, H.D., "Certifying the Reliability of
Software,” IEEE Transactions on Software Engineering, Jan-
uary, 1986.

[Dyer 87] Dyer, M., "A Formal Approach to Software Error Removal,”

The Joumal of Systems and Software, Vol. 7, 109-114, 1987.

[Dyer 92] Dyer, M., The Cleanroom Approach to Quality Software De-
velopment, J. Wiley & Sons, 1992.

[Hevner 92] Hevner, A. R., Vagoun, T., Lemmon, D., "Quality Measure-
ments in the Cleanroom Development Process," Proceedings
of the Second International Conference on Software Quality,
Research Triangle Park, NC, October 5-7, 1992.

[Linger 92a] Linger, R. C., Hausler, P. A., "On the Road to Zero Defects
with Cleanroom Software Engineering,” IBM Technical Re-
port, 1992.

[Linger 92b] Linger, R. C., Spangler, R. A., "The IBM Cleanroom Software
Engineering Technology Transfer Program," Proceedings of
the Sixth SEI Conference on Software Engineering Education,
San Diego, CA, October 5-7, 1992.

[Mills 91] Mills, H.D., "Cleanroom Engineering: Engineering Software
Under Statistical Quality Control," American Programmer,
May 1991.

120 CMU/SEI-93-TR-27

[Selby 87]

Selby, R. W., Basili, V. R., Baker, F. T., "Cleanroom Software
Development: An Empirical Evaluation," /[EEE Transactions
on Software Engineering, Vol. SE-13, No. 19, September,
1987.

CMU/SE!-83-TR-27

121

122

CMU/SEI-93-TR-27

16 Conclusions

This literature survey indicates that there is substantial evidence that industrial soft-
ware development organizations have been successful in applying the described pro-
cess improvement methods. The methods have had a positive result on the
organizations' ability to produce higher quality software products, improve productiv-
ity, or reduce development cycle times.

The major variable of application success appears to be the ability of the organization
to adapt to the change that the method introduces to the current work habits. The vari-
ance in the implementation difficulty of the methods appears to be quite large. One
may categorize two classes of methods:

e Those that are procedurally well defined and map to usually one KPA
(e.g., formal inspection, software process assessment).

e Those that have multiple approaches dependent on organization
maturity and other environmental factors, and that often map to
multiple KPAs at various levels of the CMM (e.g., measurement,
CASE).

The simpler methods tend to supply more of a "recipe” for application. They are thus
easier to implement, and the literature contains generally more experience reports
claiming successful implementation and benefits. The more complex methods are of-
ten collections of methods that can be applied to many organizational situations, thus
increasing their implementation difficulty. In almost all cases, the methods require
some degree of “tailoring” to be successfully applied due to the great variance found
in industrial software development processes, tools, and environments.

The scope of the methods also varies greatly with respect to the impact on the orga-
nization implementing a specific method or collection of methods. Some of the meth-
ods described can be applied to specific phases of the development process by
isolated functions within the organization, while some methods involve greater num-
bers of staff and multiple or all phases of the development process. If we consider the
relationships of characteristics of a software development organization’s product, pro-
cess, and environment, then we can illustrate the scope of the described methods as
shown in Figure 16-1. In general, the methods with smaller scope are easier to imple-
ment, but perhaps do not result in benefits as great as the broader scope methods.

The selection of the "best" methods for an organization to apply is largely dependent
on the organizatinon's process maturity level, and the implementation difficulty of the
method. It is apparent that level 1 organizations should be primarily focussed on doc-
umenting their process, and that they should resist attempting the methods that would

CMU/SEI-93-TR-27 123

be more appropriate for level 3-5 organizations. Similarly, one may define a "core" set
of methods that does not require a high degree of process maturity and is relatively
simple to implement. It is apparent that formal inspection would fall within such a core
set of methods since it is well defined, has a large number of practitioners, and can be
introduced at any stage of the development process. Similarly, one could apply soft-
ware process assessment as a diagnostic tool to any software organization as a rec-
ommended step towards initiating and sustaining software process improvement
activities.

Product

Process

- Inspection - Estimation

- SRE - SPA

-QFD - Process Def.
- CASE
-DPP
- Cleanroom

- 1ISO 9000

- Measurement
- IGMs
-TQM

Figure 16-1. Characteristics of a Software Development Organization

Table 4 summarizes some of the implementation issues of the methods described in
this report. For each method, we indicate a maturity level range at which an organiza-
tion shouid be in order to consider implementing the method for the first time. In ad-

dition, a small number of summary pros and cons are indicated concerning
implementation of the method.

124 CMU/SE!-93-TR-27

Table 4: Implementation Issues Sun..nary

Recommended
Method Maturity Level Pros Cons
——

Estimation 1 Fundamental to Works best when histori-
project planning cal data are available

ISO 9000 1 Required for Emphasis is on evidence
many markets rather than improvement

SPA 1-2 Good first step Investment provides
towards process primarily findings
improvement

Process defi- 1-2 Provides baseline | Representation tools

nition for improvement skills often missing

Formal 1-2 Easy to begin More commonly used for

inspection code than documents

Measurement 1-2 Used with other Must be tailored to goals
methods

CASE 1-2 Automates pro- High investment (e.g.,
cess license fees, training)

IGMs 1-2 Promote better Possible communication &
teamwork meeting overhead

SRE 2-3 Provides field Training and skills often
defect rate missing
predictions

QFD 2-3 Helps build the Difficult to manage
*right" products product complexity and

communications

TQM 2-3 Builds a "quality Requires commitment &

culture® implementation
throughout organization

DPP 3-4 Makes classes of | Can only be considered by
errors extinct mature organizations

Cleanroom 34 Can result in high | Different than current
product quality development practices

CMU/SEI-83-TR-27

125

Although measurement is identified as a specific method, its application varies consid-
erably depending on the maturity level of the organization. It may also be viewed as
an "accompanying technology" since the measurement data analysis must be used to
stimulate other actions for process improvement. Measurement by itself has no sig-
nificant impact on organization performance. Furthemmore, it is strongly suggested
that measurement be used in conjunction with all of the described methods. Measure-
ment provides a feedback mechanism to the organization introducing process im-
provement methods such that it can determine how effective the method is being
applied. This feedback will help ar. organization determine how well the process im-
provement method is being introduced and accepted, and it will help identify when the
organization is ready to introduce additional methods.

128 CMU/SEI-83-TR-27

UNLIMITED, UNCLASSIFIED
SEQURITY CLASEIMCATION OF THIS MOR

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified None
28 SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for Public Release
7. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
CMU/SEI-S3-TR-27 ESC-TR-83-201
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(if spplicable)

Software Engineering Institute

SEl Joint Program Office

SEl
6c. ADDRESS (city, stato, and zip code) To. ADDRESS (city, state, and xip code)
Camegie Mellon University HQ ESC/ENS
Pittsburgh PA 15213 5 Eglin Street
Hanscom AFB, MA 01731-2116
In.oN:MB OFFUNDING/SPONSORING all;. OFFICE gvm 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
SE! Joint Program Office ESC/ENS F1 c

Sc. ADDRESS (city, state, and xip code))

10. SOURCE OF FUNDING NOS.

:

Camegie Mellon University PROGRAM PROJECT TASK WORK UNIT
Pittsburgh PA 15213 gax;?géﬂo ?}A Noa
11. TITLE (Include Security Classification)
A Survey of Commonly Applied Methods for Software Process Improvement
12. PERSONAL AUTHOR
Robent D. Austin and Daniel J. Paulish
13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Final FROM TO0 February 1994 126 pp.
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (continne on reverss of necessary and identify by block mumber)
AED GRowe SUB.GR ____| capability maturity mode software process
literature survey
process improvement methods
19. (continue on roverss if necossary and Dy block number)

This report describes a number of commonly applied methods for improving the software develop-
ment process. Each software process improvement method is described by surveying existing tech-
nical literature citations. Each method description contains background information concerning how
the method works. Documented experience with the method is described. Suggestions are given
for implementing the method, and a list of key references is given for further information. The meth-
ods are described in the context of the SEI Capability Maturity Model, and suggestions are given to
assist organizations in selecting potential improvement methods based upon their current process

maturity.

(plesse tum over) .
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
uncLAssFEDANUMITED i} saMEAske[] pricusers | Unclassified, Unlimited Distribution
22a. NAME OF RESPONSIBLE INDIVIDUAL 22. TELEPHONE NUMBER (inclade ares cods) [22. OFFICE sYMBOL
Thomas R. Miller, Lt Col, USAF (412) 268-7631 ESC/ENS (SEl)
DD FORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED

SBCURITY CLASSIFICATION OF THIS

~— costinued fyom pegs ona, block 19

