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Software Product Liability

Abstract: Voyne Ray Cox settled into the radiation machine for the eighth
routine treatment of his largely cured cancer. The operator went to the control
room and pushed some buttons. Soon, the machine went into action and the
treatment began. A soft whir and then an intense searing pain made him yell
for help and jump from the machine. The doctors assured him there was
nothing to worry about. What they didn't know was that the operator had
inadvertently pushed an unusual sequence of controls that activated a
defective part of the software controlling the machine. He didn't die for six
months but he had received a lethal dose of radiation. This software defect
actually killed two patients and severely injured several others. The final
decisions in the resulting lawsuits have not been made public.

Software defects are rarely lethal and the number of injuries and deaths is now
very small. Software, however, is now the principal controlling element in many
industrial and consumer products. It is so pervasive that it is found in just about
every product that is labeled “electronic.” Most companies are in the software
business whether they know it or not. The question is whether their products
could potentially cause damage and what their exposures would be if they did.

While most executives are now concerned about product liability, software
introduces a new dimension. Software, particularly poor quality software, can
cause products to do strange and even terrifying things. Software bugs are
erroneous instructions and, when computers encounter them, they do precisely
what the defects instruct. An error could cause a 0 to be read as a 1, an up
control to be shut down, or, as with the radiation machine, a shield to be
removed instead of inserted. A software error could mean life or death.

1 The Software Liability Problem

Software product liability has not been a historical problem for four reasons. First, until recent-
ly, software has largely been used by experts in the computer departments of large corpora-
tions. Only in the last few years have small businesses and the general public used it directly.
Second, the design of many early software-controlled products has remained relatively sim-
ple. The nuclear power industry, for example, has opted for a very conservative design philos-
ophy (see Appendix A). Third, the leading vendors have historically marketed their products
under tight contracts. Finally, until recently, there have been few lawyers with the expertise to
handle such cases.

As the general use of software and software controlled products grows and as the public ex-
posure to poor quality products mounts, the product liability problem will increase. There is, in
fact, evidence that this is happening already. Marr Haack of St. Paul, the insurance underwrit-
er, reported that of several hundred software-related claims, half concerned software devel-
opment and quality. John Moore, of insurance underwriter Shand Morahan, reports that their
suits principally come from failure to perform or failure of the installed software to function.
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Tom Cornwell of Chubb estimates that in three years, their claim size for software-related busi-
ness has doubled. John Lautsch, a Silicon Valley attorney, further reported that the American
Bar Association’s computer law division membership grew from 89 members in 1980 to more
than 500 members in 1985. Membership has continued to increase and it now has passed
1100. There is, in fact, a growing body of legal experience with software damages.

The fact that few of these claims are for personal injury or physical damage might suggest that
software is a low risk product. If it continues to be used as in the past, that could well be true.
There is, however, growing evidence that this will not be the case.

2 CMU/SEI-93-TR-13



2 The Increasing Uses of Software

We all expect computer-related products like operating systems, telephone switching sys-
tems, and banking systems to contain millions of computer instructions. Less well known is the
fact that common products such as television sets, radios, VCRs, and telephones contain hun-
dreds and even thousands of program instructions. Projections are that such devices will soon
contain a million or more program instructions. The current rate of code growth in many ordi-
nary consumer products, if extended for ten years, will approach 100 times. Software use is
exploding and it is exploding fastest in products that are used by the general public.

From an industrial perspective, software is an almost ideal product. While many decry soft-
ware's high cost and poor quality, it is the lowest cost and highest quality way to provide so-
phisticated product function. In fact, often software is the only feasible way to implement these
functions. Once software is developed, it doesn't wear out or deteriorate, it can be legally pro-
tected, its manufacturing costs are trivial, and it is economical to modify and enhance. A good
example of these benefits is the nuclear power industry. Many of the nation's 113 nuclear pow-
er plants still have controls that are 30 or more years old. As the industry replaces them with
modern software-controlled devices, they find reliability is much improved.

The exposure to product liability is greatest when software is used to control sophisticated op-
erations in safety-critical situations. Witness, for example, the following list of software errors
that resulted in recalls of medical equipment:

= Incorrect match of patient and data.

< Incorrect readings in an auto analyzer.

* Faulty programming provided false cardiac FVC values.

* Faulty programming caused pacer telemetry errors.

« Incorrect software design caused lockup of cardiac monitor.
= Incorrect calculations.

= Failure of central alarm in arrhythmia monitor.

= Table top moved without a command.

= Detector head could hit the patient.

= Algorithm error caused low blood pressure readings.

= Qver infusion due to programming error.

These are only a few examples from a much longer list.

While software is arguably the highest quality product made by mankind, without great care,
it can easily become among the most complex. The competitive demand for more and more
product functions leads to more and more program instructions. As program size grows, so
does its complexity, and it is this combination of size and complexity that leads to problems
with software quality. Given enough instructions, even software products that are considered
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high quality by today's standards will contain many defects. While many such defects are likely
simple bugs, some could be major functional errors and omissions. Since any defect can
cause user problems, it is clear that the software community must improve software quality
faster than it expands product size. The issue is not whether software is safe but whether it is
used in safety critical systems. If it is, with the current state of software practice, any software
is potentially unsafe.
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3 Software Liability Strategies

Suppliers can protect themselves from legal liability for defective software by investing in im-
proved product quality or by relying on legal protections. These strategies are not mutually ex-
clusive. By the time someone is injured by poorly performing software, it is too late to fix the
real problem. If the software your organization produced caused the injury, you will likely pay,
and perhaps a lot. It is far safer and less expensive to avoid the problem than to attempt to
limit damages after the fact. While problem prevention takes work and is not free, in the long
run it costs a lot less than the costs of fixing the problems. With software, it turns out, problem
prevention actually saves money. Data show that software defect repair is as much as 100
times more expensive than defect prevention.

One reason why reliance on legal protection is problematical is the high cost of winning. While
there is little data on software to date, Beech, the aircraft company, defended and won most
of their 203 personal injury actions over a four year period. They spent, however, an average
of $530,000 to fight each case. An insurance company reports a recent software liability case
that cost $3,000,000, and that was to win. It would have cost much more had they lost. While
no one expects the software industry to face large volumes of litigation soon, current trends
are increasing.

Improving the quality of software development and maintenance is the best long-term strate-
gy. Since this can take time, however, software process improvement should be coupled with
a product liability strategy. Figure 3-1 shows the logic of software product liability litigation.
Here, the three types of recovery are strict liability, negligence, or product warranty. A com-
plainant will generally prefer to recover in this order while vendors will prefer the reverse. While
an injured party can pursue any one or more of these strategies, the supplier must have a de-
fense against them all. It should even be assumed that clever complainants will attack the
weakest point in the supplier's defenses. Often, in fact, litigation strategies are devised by
knowledgeable ex-employees who have become involved in the case. The problem is to un-
derstand how to influence these strategic outcomes by current actions.
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Was there
personal injury
or property

damage?

Yes or No

Was there a
contract?

Was it caused
by a product?

Does the court
uphold the
contract?

Can you prove
negligence?

Was there
failure to
perform?

Recover under
warranty

Recover under No recourse

negligence

Recover under

strict liability

Figure 3-1: The Logic of Software Product Liability
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4 Strict Liability

Strict liability is that part of tort law that covers damage caused by or threatened by unreason-
ably dangerous products. In contrast to negligence, which focuses on the processes used to
produce products, strict liability focuses on the product itself and whether or not it contained
one or more unreasonably dangerous defects. The first question then is the likelihood that
your product will be judged unreasonably dangerous. While this may not seem a serious con-
cern to most companies, somewhat circuitously, courts deem any defective product which
threatens physical harm to person or property to be “unreasonably dangerous.” So the key is-
sue is whether software is a product.

While software is essentially information, courts may consider information to be a product. In
one case, for example, a court applied the strict liability doctrine to aircraft instrument ap-
proach charts that contained fallacious data. In 1991, the 9th U.S. Circuit Court of Appeals
ruled a publisher not liable for material in a book on mushrooms. In discussing criteria for con-
sidering information a product, however, they referenced the aeronautical charts case as one
example and added that “Computer software that fails to yield the result for which it was de-
signed may be another.” Thus, there is good reason to believe that, for liability purposes, soft-
ware could well be treated like a product.

Customer-supplier transactions frequently involve both sales of products and the rendering of
services. Offerings to develop, install, service, or operate software would naturally be viewed
as services, but the software itself would most probably be considered a product. While the
courts have developed tests to deal with these sales/service hybrid transactions, to date they
have generally considered software a product and applied the doctrine of strict liability. More-
over, if a defect merely threatens harm to person or property, the supplier may be strictly liable
for purely economic losses even though there was no actual physical injury. To be safe, orga-
nizations should thus treat software as a product.

Thus, if a software defect threatens the person or property of a customer or a third party, the
injured party is entitled to bring a strict liability claim against the supplier notwithstanding con-
tractual disclaimers, limitations of remedies, and limited warranties. The virtue of a strict liabil-
ity action from the claimant's perspective is that there is no need to prove that the supplier was
negligent. If the product was defective and it caused the claimant's loss, the claimant wins
without further ado.

There is some debate about whether software is a product or a service. There is growing ev-
idence, however, that courts will consider software a product. Further, if your products are
transportation, medical, construction, or farming equipment, an improperly executed product
function could have lethal or at least physically harmful consequences. While this is a serious
exposure for those involved, it is not the general case for most organizations with software in
their products. Thus, the requirement of actual or threatened physical damage means that this
outcome is a relatively low corporate exposure except for those who supply potentially dan-
gerous products.
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5 Negligence

Negligence is defined as conduct that falls below the standard established by law to protect
persons against unreasonable risk of harm. Under negligence, a supplier is not responsible
for every software defect that causes customer or third party loss. Responsibility is limited to
those harmful defects that it could have detected and corrected through “reasonable” quality
control practices. It is the supplier's failure to practice reasonable quality control that consti-
tutes negligence and that causes the liability exposure.

While the proof obligations for negligence can be difficult, there is no need for actual or immi-
nent physical damage. Economic or even intangible losses are sufficient. Since contracts can
be written to protect against supplier negligence, one might think that this situation is only of
concern where there is no contract. It turns out, however, that contracts between corporations
and individuals can often be seen as between unequal parties and thus judged unconsciona-
ble. Negligence is thus the area of greatest risk for organizations with software-intensive prod-
ucts.

Negligence awards for physical damages can be large but those for economic losses like re-
duced profits or missed business opportunities can be enormous. These losses could even be
completely disconnected from any personal injury or property damage claims.

Thus, itis likely that suppliers will be liable for customer damage caused by negligently devel-
oped and maintained software. In fact, the courts do not even require that the complainant be
a customer. Third parties whose businesses have been disrupted by a defendant's negligence
may even recover for their lost profits and missed business opportunities. There is little case
law as yet on the recovery of purely economic losses due to defective software. Judged in the
broader context of negligence case law, however, such recoveries seem likely. Further, the
complainant's recourse against a negligent supplier applies whether the offering in question is
a service or a product.

Especially where physical damage is involved, courts may disregard a contract in which a cus-
tomer expressly assumes the risk of the supplier's negligence. Negligence, when proven, can
thus surmount almost any legal obstacle the suppliers erect. As courts and legislatures be-
come less tolerant of negligent corporate behavior, any business that is judged negligent will
likely pay for actual damages, possibly be assessed punitive damages, and may even face
regulatory or criminal proceedings. Therefore, the only secure protection is not to be negligent.
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6 Warranties

Warranties contractually assure customers that the products they buy will perform as stated.
When properly constructed, they also limit the supplier's liability in the event of nonperfor-
mance. Historically, for example, software suppliers have contracted to deliver a package of
material that contains some software. This software is warranted to run on a given machine
configuration but no assurance is given as to what that software will do.

Explicit software contracts can offer very flexible warranty protection but also have limitations.
To win a warranty claim, the plaintiff must have a valid contract that the supplier did not fulfill.
Demonstrating this can be a daunting challenge for a complainant, particularly when the sup-
pliers write the contracts. Further, even when the case can be proven, the damages are gen-
erally limited to the monies paid for the product or to some amount of liquidated damages
specified in the contract. Short of total vindication, this is the preferred corporate case. Unfor-
tunately, in dealings with the public, it is not an outcome that can be guaranteed.

In determining liability exposure, the first question to examine concerns your contract practic-
es. Do you regularly use explicit contracts with your customers? As your lawyers will explain,
most companies are operating under contracts even when they don't think they are. Salesper-
sons' comments, invoices, shipping labels, and even advertising can be part of a contract un-
less you make sure they are not. Since proven misrepresentation can void just about any
contract, plugging this defensive gap with limited warranties and disclaimers should be a top
priority.

Contract law involves the Uniform Commercial Code (UCC). This is an agreement between all
the states (except Louisiana and Washington, D.C.) that specifies how to interpret contracts.
The UCC treats, among other things, the implied warranties of fithess for a specific purpose
and merchantability. The warranty of fitness for a specific purpose arises whenever the buyer
relies on your expertise in selecting a product to perform a particular function that has been
described to you. The key point is that here your product has an implied contractual warranty
to do what your customer said was wanted. Thus, a warranty of fitness for a particular purpose
is an implied promise by you that your software will meet the needs that your customer com-
municated to you.

In contrast, warranties of merchantability accompany the sale of goods irrespective of any
communication between buyer and seller. These provisions are imposed by the law as the ba-
sis for interpreting your overall performance under the contract. Basically, to be merchantable,
your software must be of the general kind described and it must be reasonably fit for the gen-
eral purpose for which it was sold.

CMU/SEI-93-TR-13 11



Even if your contracts specifically exclude the commitments of merchantability and fitness for
a specific purpose (as they can), you could still have a problem. If the courts judge that you
were an expert and your customer was not, they could void the contract as between unequal
parties and thus unconscionable. You had special knowledge and were thus obligated to pro-
tect your customer's interests.

While there is a lot more to contract law than this, the basic issue with software is that the sup-
plier is generally an expert on an arcane and sophisticated technology and the customer is
not. Unless you take extraordinary legal and marketing precautions, your contracts may not
protect you.

So far we have talked about the good news. The bad news is that you may not even have a
contract with the injured party. Even if all your products are covered by iron-clad contracts, the
injured person could be a third party and not be covered. If, for example, you sell through dis-
tributors, your contracts are with the distributors and they deal with the users. If your contracts
hold the distributor responsible for customer claims, you will likely have few distributors. Fur-
ther, even then the users could reach you through the courts. You would then have the unap-
petizing task of suing your distributors. In any event, in dealings with third parties, you have
no contractual protection and you are at the mercy of the court's interpretation of tort law.

12 CMU/SEI-93-TR-13



7 The Current State of Software Practice

Software is a relatively new technology. The early software concepts are over a hundred years
old but the first significant computer programs were only written in the early 1950s. Since then,
there have been many advances. The processes for building software, however, have not
made much progress. The methods most software developers use today are thus much like
those used 30 and 40 years ago. The programmers start with a general understanding of the
problem and then solve it in an individualistic and often highly creative way. The resulting prod-
ucts must then be tested to find and correct their many latent defects.

This build, test, and fix quality technology is almost universal for software. No other modern
technology considers this even a minimally acceptable approach. For example, no self-re-
specting semiconductor engineer would consider testing and fixing all the defective chips com-
ing off the production line. Just as Drs. Juran and Deming taught and the Japanese have
amply demonstrated, quality must be built into products from the beginning. Testing is no sub-
stitute for proper design in either hardware or software.

The current state of software quality control can be best understood by examining the current
state of software practice. The Software Engineering Institute of Carnegie Mellon University
has developed a way to assess the capability of software organizations (see Appendix B). On
a scale of 1 (worst) to 5 (best), over 80% of the software organizations studied were at level
1. Less than 20% were at level 2 and very few were at levels 3, 4, and 5 (see Appendix C).
This means that most software organizations have poor project management practices, miss
schedules and costs, and deliver products of unknown, but often poor, quality. As this field de-
velops, it is thus likely that courts will deem a supplier's failure to move beyond SEI maturity
level 1 to be negligence.

Very few groups have achieved SEI level 5. For example, the software that flies the space
shuttle was developed by a project rated 5 by NASA. This is an IBM group in Houston, Texas
that has spent many years improving their development methods. To date, in 19 years sup-
porting the shuttle, their software has not had a single mission-critical defect. As this demon-
strates, the quality benefits of a mature software process are substantial.
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8 Some Example Cases

To illustrate software product liability principles, consider three hypothetical examples:

8.1 Case 1: A Tax Program

You manufacture and sell, through distributors, a general purpose program to assist small
companies in handling their taxes. You provide the program with a limited warranty that offers
to refund the users' payments if the product is defective.

One user claimed that data provided by your program misled him into making an unsound in-
vestment that cost him a substantial amount of money. On investigation, you found that there
was a bug in the program that could have produced the fallacious information your user
claims. What are the legal consequences?

You would obviously try to get the user to accept a refund of the $450 he paid for the program
in return for a full release from any further liability. While worth a try, this strategy is not a guar-
anteed success.

Your user, who did not buy the program directly from you, could not claim under a contract.
Also, since no physical injury or property damage was involved, claims cannot be made under
strict liability. The final recourse, therefore is to claim negligence. Here, the question is: did you
follow best industrial software development practices to assure that such problems did not oc-
cur? If the court can be convinced that you did, you would likely win. If not, you could pay sub-
stantial damages.

8.2 Case 2: A Computerized Drafting System

You manufacture, sell, and service an advanced computerized system for producing architec-
tural drawings and specifications. The system is program controlled with a range of optional
and custom features. You sell it under a warranty that limits your liability to five times the total
moneys paid for the system.

One of your customers claims that he bought your system expressly to complete a rush project
and that program defects severely delayed his work. He missed his committed dates, forfeited
a substantial incentive payment, and lost money on the architecture contract. He claims de-
fects in your software caused several files to be garbled, necessitating extensive rework. On
investigation, you find that a software defect could have caused the alleged problem. What are
the legal consequences?

Since there have been no personal injuries or property damage, strict liability is not involved
and the issues concern negligence and warranty. While you are not anxious to pay the war-
ranty maximum of five times the $9,500 paid for the system, you want to avoid having to pay
the total claimed damages of $450,000. Your strategy is thus:
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1. You first claim that he was responsible for the failure to deliver on schedule,
not your system.

2. You will next claim that the warranty limits your liability to $47,500.

Your customer will first assert that you negligently designed, developed, and supplied the sys-
tem software and that the contractual limitations are not valid. Your defense is to show that
you exercised reasonable care in developing and testing the software.

If his negligence claim fails, your customer will next claim that you, the expert, misled him, the
neophyte, about the system's capabilities. Thus, the contract is not valid and the sales claims
were guarantees. Here, you argue that your customer is knowledgeable and that you made
no invalid claims about the system's capabilities.

Finally, the customer could claim under the contract that your system did not perform as prom-
ised. If your product actually had the defect claimed, you could well pay the contractually lim-
ited damages.

8.3 Case 3: An Automated Tunneling Machine

You manufacture and market a sophisticated computerized drilling machine that senses un-
derground conditions while drilling tunnels. It is designed to determine the structural strength
of the strata through which it drills and to keep the miners informed about mine conditions.
Your machine is marketed under a warranty that limits your liability to ten times the moneys
paid for the machine.

One of your machines was used in a coal mine to dig a tunnel where there was a fire, a col-
lapse, and a loss of life. While no one survived to tell what happened, the miners' families claim
that your machine was defective because it did not alert them to the presence of methane or
the likelihood of a collapse.

Here, the argument concerns strict liability. If your machine contributed to the damages, you
will almost certainly be held liable. If it did not, you will probably have no liability. The issue
could thus revolve around the likely behavior of your machine and whether it could have
caused the alleged accident either through its design or through a malfunction. Experts would
likely be used to examine your product to see if there were any plausible ways that it could
have contributed to the accident. Here, sound design methods, state-of-the-art quality practic-
es, and comprehensive testing are your best defenses.

In every one of these example cases, poor software quality practices can be a serious disad-
vantage. This is particularly true if the practices of your software people do not at least equal
the best in your industry. If they do not, your exposures could easily exceed your contractually
limited liability.
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9 The Improvement Opportunity

If you are in the business of supplying potentially hazardous products, you should take imme-
diate short-term preventive action. First, make sure your people use the best available meth-
ods to assure that your products are safe. Nancy Levison, at the University of California,
devised methods for determining whether complex software could be unsafe. Rather than look
for defects or bugs, she suggests that developers rigorously search for all potential ways the
total system could be dangerous and then design special hardware or software provisions to
ensure these conditions never occur. That way, even if there is a software defect, other blocks
will ensure there is no damage. This extremely effective technique should be used by organi-
zations concerned about the safety of their hardware-software systems (see Appendix D).

Longer term, you must address product quality. As noted above, this requires an intensive and
continuous focus on software process improvement. The limited data now available indicate
that there is as much as a 1000 to 1 improvement in quality between organizations at SEI level
1 and SEl level 5. While it takes many years to advance to level 5, many groups have improved
to levels 2 and 3. Hughes Aircraft, for example, reaped a 5 to 1 return in just one year on their
process improvement program to reach level 3. They also cut their late software deliveries to
almost zero. Motorola, Israel, reports that their first two products to reach SEI level 2 met their
cost and schedule targets and have had zero customer-reported defects in their first 6 and 10
months of use. Raytheon has similarly reduced defects while saving over 7 times their quality
improvement costs. These companies and many others have established and funded sub-
stantial continuing programs to improve their software processes (see Appendix E).

The challenge is thus to improve the maturity of your software processes so they consistently
produce high quality products. The suggested steps are:

1. Act rapidly to determine the maturity of your software process.

2. If it is low, as it probably is, take immediate and aggressive improvement
action (see Appendix E):

- Launch and maintain a permanent emphasis on software process
improvement.

- Utilize the best state-of-the-art development and test practices.

- Utilize applicable new technology developments.

- Maintain a quality distribution and support system.
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. Under the guidance of experts, institute design-for-safety practices.

. Improve your contracts:

- Get competent legal advice.

= Be sure your customers are aware of all product risks.
= Use clear and reasonable warranties.

- Meet your commitments.

. Until you have taken these steps, avoid delivering complex software to high

risk markets (see Appendix A).

18
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10 Conclusion

Ultimately, any successful strategy must reduce the risk of public injury by defective software.
This requires that you establish and maintain a mature software process. This can take time.
Starting at SEI level 1, it could take three to five years just to reach level 2. Each succeeding
level can take another two to three years. For a level 1 organization, this is a sustained 9 to
14 year improvement effort. Substantial benefits, however, accrue with each improvement
step. The best comparable example of a long-term corporate improvement strategy is the Jap-
anese drive for quality following World War Il. While it took them over 20 years, they netted
leadership in watches from the Swiss, cameras from the Germans, and automobiles, steel,
and shipbuilding from the U.S.

Quality is a long term issue and fortunately this is not an imminent crisis. By the time it is, how-
ever, it likely will be too late to limit the damage. Behind this risk, however, is an important long-
term opportunity. An aggressive software process improvement program has helped many or-
ganizations to both improve their products and to save time and money. It could also help you
to reduce your liability risks, improve product quality, and save money.
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Appendix A Software Design Complexity

Software designs can be very simple or they can be extraordinarily complex. The decision of
where a product should fall in this spectrum is traditionally made by designers who are prop-
erly striving to produce the best technical result. Unfortunately, their decisions of what is “best”
are often not made with all the relevant information. For example, advanced technical methods
generally increase complexity. Increased complexity increases the likelihood of error. This in
turn increases the risk of potentially damaging development problems or product defects. In
simplistic terms, the complexity progression for software-based systems is roughly as follows:

1. Small single-function routines.  These software products are typically small
enough so one developer can completely understand them and build them.
Such products can also often be exhaustively tested so there is high assur-
ance that they will do exactly what was intended.

2. Large dedicated programs. While generally too large for a single individual
to develop or even to understand in detail, these programs are still reasonably
testable. The reason is that they operate in a dedicated environment where
the full range of operational conditions is often predictable and where a
reasonably comprehensive set of tests can be devised. While a large amount
of testing might be required, reasonably high product quality can generally be
assured.

3. Multi-programmed systems. As the number of computer-controlled
functions in a system increases, it is often possible to use one high-capacity
computer to handle them all. This is done through a technique known as
multi-programming where the computer spends a small fraction of its time
handling each need. This technology has been found so effective that it is the
basis for all of today's large-scale computer operating systems. As cost-
effective and useful as this technique is, it greatly increases software
complexity and vastly complicates testing. The reason is that, because of the
interleaving of many independent jobs, it is practically impossible to devise
comprehensive tests for all likely conditions. Such programs are thus subject
to unpredictable behavior under unusual conditions.

4. Multi-processing systems.  An even further step in complexity is often taken
to improve performance and reliability. In situations where a failure is
unacceptable, it is possible to build parallel systems with dynamic switching
in the event of failure. These systems can be very complex, both because of
the error detecting and switching logic and because of the increased number
of job and system configurations that need to be tested. Generally, it is not
possible to exhaustively test multi-processing systems.

This progression involves increasing software complexity to make more efficient and reliable
use of hardware. For this tradeoff to be effective, however, the software must be of very high
guality. Prudent managers should thus consider this tradeoff in selecting their product strate-
gies and use sophisticated software designs only where the risk of damaging defects can be
controlled.
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Appendix B Software Process Maturity

The Software Engineering Institute was established at Carnegie Mellon University in Decem-
ber 1984 to address the need for improved software in U.S. Department of Defense opera-
tions. As part of its work, SEI developed the software process maturity model for use both by
the Department of Defense and by industrial software organizations.

Software process maturity deals with the capability of software organizations to consistently
and predictably produce high quality products. Maturity also implies that software process ca-
pability must be grown, which requires strong management support and a consistent long-
term focus. The software process maturity model provides a graduated improvement frame-
work where each level progressively builds on prior process improvements. Because of its
progressive nature, this framework can be used to assess software organizations and to de-
fine their most important areas for improvement. It also permits organizations to determine
their relative standing with respect to other groups.

The five-level improvement model for software is shown in Figure B-1. At the initial level (level
1), organizations typically operate without formalized procedures, cost estimates, or project
plans. Schedules are late, cost targets are missed, and quality is unpredictable.

Organizations at the repeatable level (level 2) have learned that traditional engineering man-
agement works for software just as for other technical fields. These organizations have estab-
lished basic software management practices: management oversight, product assurance, and
configuration control. Such organizations can reasonably meet routine schedules and costs
but newer technologies are often a problem.

Defined level (level 3) organizations have process specialists who maintain a focus on process
improvement, keep management informed, and facilitate the introduction of new methods and
technologies. These organizations have learned how to manage change and how to draw on
industry experience to address new challenges.

Managed level (level 4) organizations have comprehensive quality and productivity measure-
ments, a process database, and analysis and consultative resources to support their projects.
They use data to statistically manage their work and they routinely set and meet aggressive
quality goals.

At the optimizing level (level 5) the organization is focused on defect prevention and continu-
ous process improvement. These world-class groups regularly set and meet more challenging
productivity and quality goals.
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Appendix C The State of Software Practice

A principal use of the SEI software process maturity model has been in assessing software
organizations to help them improve. This work has yielded substantial information on the state
of U.S. software practice. While this data on several hundred projects is not a statistically valid
survey, it does provide a reasonable indication of the problems in this field. The summary as-
sessment data in Figure C-1 show that 81% of the organizations were at maturity level 1. Very
few of these projects used even basic project management methods. The few projects at level
2 were in leading companies working on U.S. Department of Defense (DoD) contracts. De-
manding DoD specifications typically forced them to use disciplined management practices.

The assessment data show that the principal areas level 1 organizations need to address are:

= Inadequate estimating and planning practices.

= Poor control over commitments.

= Inadequate or ineffective quality assurance functions.
< Inadequate configuration and change management.

The areas level 2 organizations need to address are:

= Insufficient or inadequate training.

= Lack of focus on process improvement.
= Continuing quality assurance problems.
= Lack of quality data.

= Inadequate testing.

While these needs have some technical aspects, they are not technical problems and they
have all been solved many times before. These findings clearly show that the principal process
improvement needs of most U.S. software organizations concern management and not high
technology.
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Appendix D Software Safety

Software safety concerns the risk of encountering software-caused hazards while using a sys-
tem. Since software consists of electronic signals inside computers, it cannot directly cause
harm. When software is improperly specified, designed, implemented, or used, however, it can
cause systems to do damaging things. A software safety analysis must therefore consider the
software in the context of the system it controls. A software safety analysis involves the follow-
ing basic steps:

1. Perform a system hazard analysis to determine potential safety risks (see be-
low).

2. Determine the system design and usage changes that should be made to
prevent these hazards.

3. Implement these changes.

4. Testto assure that the changes prevent the hazardous events from occurring.

Hazard analyses can be performed in various ways but a common approach is called software
fault tree analysis. It is done as follows:

1. Make a preliminary hazard analysis. This lists all the potentially unsafe ac-
tions that the system could conceivably perform. Even if there was no obvious
way that software could cause such an action, it should be considered.

2. Construct a fault tree for each such hazard. The fault tree represents the
logical relationships of all the conditions that would have to exist to cause the
hazard to occur.

3. After the fault trees have all been constructed, determine the design or
operational changes needed to guarantee that each hazard could not
possibly occur.

Since poorly performed software safety analyses could easily overlook critical hazards, care
must be taken. The procedure appears simple, but these steps can be quite complex and
should be performed with the help of experts.
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Appendix E Software Process Assessment

Many successful software process improvement efforts have started with an assessment. This

identifies the organization's unique problems and recommends steps to address them. Action

plans are then established and implemented. After two or more years, another assessment is
done and the cycle is repeated. Because of their pivotal role in process improvement, it is es-

sential to handle the assessments properly.

An assessment is a diagnostic tool to aid organizational improvement. Its objectives are to pro-

vide a clear understanding of the organization's software practices, to identify key improve-

ment areas, and to initiate improvement action. The assessment must start with the senior

manager's commitment to support the assessment and the ensuing improvements. Software
process assessments typically have the following six phases:

1.

Commitment. Senior management, with line management agreement, com-
mits to do the assessment.

. Selection. An organization is selected to assist in the assessment. This

should be a trained group that is competent to do such work.! An agreement
is typically signed that commits management to supporting the assessment
and implementing its recommendations.

Preparation. During this two to four month period, the assessment team is
selected and trained, the assessment participants are identified, and the
assessment mechanics are settled.

. Assessment. The on-site assessment is conducted. This is an intense five

day period where many project managers and professionals are interviewed.
Its product is a thoroughly researched and reviewed set of findings that is
presented to management and all assessment participants.

Report. An assessment report is next prepared that includes the findings
together with recommendations to address them. Experience has shown that
a written assessment report facilitates continuing process improvement.

. Assessment Follow-On.  This covers action plan preparation and

implementation and should continue until the next assessment.

1.

The SEI has trained and licenced a number of commercial organizations to perform assessments.
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